Nonconvex Stochastic Optimization

Saeed Ghadimi

ORFE

ORFE 544

February 21, 2019
Motivation and background

- Problem of interest:
 \[
 \min_{x \in X} f(x).
 \]

- Assume that \(f : \mathbb{R}^d \rightarrow \mathbb{R} \) is continuously differentiable and \(X \subset \mathbb{R}^d \) is a closed convex set.

- Assume that exact information of \(f \) is not available. It can be given as
 \[
 f(x) = \mathbb{E}[F(x, \xi)].
 \]

- Random vector \(\xi \) has distributions \(P \) supported on \(\Omega \subset \mathbb{R}^{\tilde{d}} \).
Motivation and background

Why Nonconvex Stochastic Optimization?

- Machine learning: nonconvex loss function or regularization

\[f(x) = \int_{\Omega} l(x, \xi) dP(\xi) + r(x) \]
Motivation and background

Why Nonconvex Stochastic Optimization?

- Machine learning: nonconvex loss function or regularization

\[f(x) = \int_{\Omega} l(x, \xi) dP(\xi) + r(x) \]

- Text analytics
 - A word to vector method to convert the text into numerical features
 - Skip-Gram
 - Continuous bag of words
 - A support vector machine (SVM)/neural network model to learn from the features
Motivation and background

Why Nonconvex Stochastic Optimization?

- Machine learning
- Endogenous uncertainty
 \[f(x) = \int_{\Omega(x)} F(x, \xi) dP_x(\xi). \]
- Nested stochastic optimization
- Zeroth-order stochastic optimization
 - Hyperparameter tuning in machine learning
 - Simulation-based optimization
Motivation and background

Hyperparameter tuning in machine learning

- Google DeepMind has recently used to improve performance of the AlphaGo to beat human professionals.
Motivation and background

Simulation-based optimization

- Noisy function evaluations are available through a simulation process.
- Each simulation can be very expensive.
- Many inventory-related problems in supply chains, finance, energy storage fit into this setting.
Randomized Stochastic Gradient

Basic setting for stochastic optimization:

- Objective function f is equipped with a stochastic first-order oracle (SFO).

Assumption

Given any $x \in X$, the SFO outputs a stochastic gradient $G(x, \xi)$ such that

a) $\mathbb{E}[G(x, \xi)] = \nabla f(x)$,

b) $\mathbb{E} \left[\| G(x, \xi) - \nabla f(x) \|^2 \right] \leq \sigma^2$.
Unconstrained problems:

Algorithm 1 Randomized Stochastic Gradient (RSG) Method

Input: Initial point x_1, iteration limit N, stepsizes $\{\gamma_k\}_{k \geq 1}$ and probability mass function (PMF) $P_R(\cdot)$ supported on $\{1, \ldots, N\}$.

0. Generate a random integer R according to the PMF P_R.
1. For $k = 1, \ldots, R$:

 Call the stochastic first-order oracle for computing $G(x_k, \xi_k)$ and set

 $$x_{k+1} = x_k - \gamma_k G(x_k, \xi_k).$$

Output x_R.
Randomized Stochastic Gradient

- An ϵ-optimal point $\bar{x} \in \mathbb{R}^d : \mathbb{E}[f(\bar{x}) - f(x^*)] \leq \epsilon$.

- No rate of convergence can be provided to find an ϵ-optimal point, when f is nonconvex.

- An ϵ-stationary point $\bar{x} \in \mathbb{R}^d : \mathbb{E}[\|\nabla f(\bar{x})\|] \leq \epsilon$.

Theorem

a) An ϵ-stationary point of the problem (in expectation) can be found while the total number of calls to the SFO is bounded by $O\left(\frac{1}{\epsilon^4}\right)$.

b) Recall that this bound is in the order of $O\left(\frac{1}{\epsilon^2}\right)$ to find an ϵ-optimal point of the problem, when f is convex.
Algorithm 2 Two-phase RSG (2-RSG) Method

Input: Initial point x_1, iteration limit N, sample size T, and confidence level $\Lambda \in (0, 1)$.

0. Set $S = \lceil \log 2 / \Lambda \rceil$.

1. **Optimization phase:**

 For $s = 1, \ldots, S$

 Call the RSG method with input x_1, iteration limit N, stepsizes $\{\gamma_k\}$ and probability mass function P_R same as in RSG method. Let \bar{x}_s be the output of this procedure.

2. **Post-optimization phase:**

 Choose a solution \bar{x}^* from the candidate list $\{\bar{x}_1, \ldots, \bar{x}_S\}$ such that

 $$\|g(\bar{x}^*)\| = \min_{s=1,\ldots,S} \|g(\bar{x}_s)\|, \quad g(\bar{x}_s) := \frac{1}{T} \sum_{k=1}^{T} G(\bar{x}_s, \xi_k).$$
An \((\epsilon, \Lambda)\)-stationary point \(\bar{x} \in \mathbb{R}^n\): \(\text{Prob}\{\|\nabla f(\bar{x})\| \leq \epsilon\} \geq 1 - \Lambda\) for some \(\Lambda \in (0, 1)\).

Theorem

Under a light-tail assumption on the stochastic gradients, one can show that an \((\epsilon, \Lambda)\)-stationary point of the problem can be found while the total number of calls to the \(SFO\) in the 2-RSG method is bounded by \(O\left(\frac{\log(1/\Lambda)}{\epsilon^4}\right)\).
Constrained and composite problems:

- Problem of interest: $\min_{x \in X} \{ \phi(x) = f(x) + \mathcal{X}(x) \}$.
- The regularization term $\mathcal{X}(\cdot)$ is convex and possibly nonsmooth.
- Size of the gradient is no longer a good notion of stationary points.
- A new termination criterion ”gradient mapping” is employed.
- It plays the gradient role for constrained/nonsmooth problems.
Randomized Stochastic Gradient

Constrained/composite problems:

Algorithm 3 Randomized Stochastic Projected Gradient (RSPG) Method

Input: Initial point $x_1 \in X$, iteration limit N, stepsizes $\{\gamma_k\}_{k \geq 1}$, the positive integer $\{m_k\}_{k \geq 1}$, and probability mass function (PMF) $P_R(\cdot)$ supported on $\{1, \ldots, N\}$.

0. Generate a random integer R according to the PMF P_R.

1. For $k = 1, \ldots, R$:

 Call the \mathcal{SFO} m_k times to obtain $G(x_k, \xi_{k,i}), i = 1, \ldots, m_k$, set

 $G_k = \frac{1}{m_k} \sum_{i=1}^{m_k} G(x_k, \xi_{k,i})$, and compute

 $x_{k+1} = \arg\min_{u \in X} \left\{ \langle G_k, u \rangle + \frac{1}{2\gamma_k} \|u, -x_k\|^2 + \mathcal{X}(u) \right\}$.

Output x_R.
A two-phase variant of the RSPG method can be also designed.

Sample complexities of the RSPG and 2-RSPG methods are similar to their counterparts for unconstrained problems.

If the feasible set X is bounded, one can design another two-phase variant of the RSPG, called 2-RSPG-V method.

The only difference between the 2-RSPG-V and 2-RSPG methods is that in the optimization phase of the former, the S runs are not independent. In particular, the output of each run is the starting point of the next run.

While the sample complexity of both methods are the same, the practical performance of the 2-RSPG-V method seems to better than that of the 2-RSPG method.