
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. doi: 10.18637/jss.v000.i00

MOLTE: a Modular Optimal Learning Testing

Environment

Yingfei Wang
Princeton University

Warren Powell
Princeton University

Abstract

We address the relative paucity of empirical testing of learning algorithms (of any type)
by introducing a new public-domain, Modular, Optimal Learning Testing Environment
(MOLTE) for Bayesian ranking and selection problem, stochastic bandits or sequential
experimental design problems. The Matlab-based simulator allows the comparison of a
number of learning policies (represented as a series of .m modules) in the context of a
wide range of problems (each represented in its own .m module) which makes it easy to
add new algorithms and new test problems. State-of-the-art policies and various problem
classes are provided in the package. The choice of problems and policies is guided through
a spreadsheet-based interface. Different graphical metrics are included. We offer MOLTE
as an easy-to-use tool for the research community that will make it possible to perform
much more comprehensive testing, spanning a broader selection of algorithms and test
problems. We demonstrate the capabilities of MOLTE through a series of comparisons of
policies on a starter library of test problems. We also address the problem of tuning and
constructing priors that have been largely overlooked in optimal learning literature. We
envision MOLTE as a modest spur to provide researchers an easy environment to study
interesting questions involved in optimal learning.

Keywords: Bayesian optimization, ranking and selection, multi-armed bandits, sequential de-
cision making, Matlab.

1. Introduction

We consider sequential decision problems in which at each time step, we choose one of finitely
many alternatives and observe a random reward. The rewards are independent of each other
and follow some unknown probability distribution. One goal can be to identify the alterna-
tive with the best expected performance within a limited measurement budget, which is the
objective of offline ranking and selection. Another goal can be to maximize the expected cu-

http://dx.doi.org/10.18637/jss.v000.i00

2 MOLTE: a Modular Optimal Learning Testing Environment

mulative sum of rewards obtained in a sequence of allocations, a problem class often addressed
under the umbrella of multi-armed bandit problems.

Ranking and selection problems and/or multi-armed bandits arise in many settings. We may
have to choose a type of material that has the best performance, the features in a laptop
or car that produce the highest sales, or the molecular combination that produces the most
effective drug. In health services, physicians have to make medical decisions (e.g. a course of
drugs, surgery, and expensive tests) to provide the best treatment. In online advertisements,
the system would like to choose ads to gather the most ad-clicks.

Since the seminal paper by Lai and Robbins (1985), there has been a long history in the
optimal learning literature of proving some sort of bound, supported at times by relatively
thin empirical work by comparing a few policies on a small number of randomly generated
problems (Audibert, Bubeck et al. 2010; Cappé, Garivier, Maillard, Munos, Stoltz et al. 2013;
Srinivas, Krause, Kakade, and Seeger 2009; Auer, Cesa-Bianchi, and Fischer 2002; Garivier
and Moulines 2008; Audibert, Munos, and Szepesvári 2009). The problem, of course, is that
compiling a library of test problems, and then running an extensive set of comparisons, is
difficult. The problem is this means that we are analyzing the finite time performance of
algorithms using bounds that only apply asymptotically by limited empirical experiments
to support the claim of finite time performance. To this end, we introduce a new Modular
Optimal Learning Testing Environment (MOLTE) for comparing a number of policies on
a wide range of learning problems, providing the most comprehensive testbed that has yet
appeared in the literature.

Similar libraries have been proposed for Bayesian optimization in different programming lan-
guages with different metrics and visualizations, for example, BayesOpt (Martinez-Cantin
2014) and Spearmint (Snoek, Larochelle, and Adams 2012). Yet the uniqueness of MOLTE
lies in its design goal to facilitate comprehensive comparisons, on a broader set of test prob-
lems and a broader set of policies (which is not to restricted to Bayesian algorithms), rather
than just a code library. With its unique modular design, MOLTE allows users to easily
specify their own problems or their own algorithms without limitation as long as they fol-
low the general function interface. The choice of problems and policies is guided through a
spreadsheet-based interface. Since many of the algorithms have tunable parameters, we in-
clude the feature that the user can easily indicate in the spreadsheet to specify the value of the
tunable parameter, or ask the package to optimize the tunable parameter. We have designed
various (graphical) comparison metrics in order to gain a comprehensive understanding of
different policies from different perspective. We offer MOLTE as an easy-to-use tool for the
research community that provides a highly flexible environment for testing a range of learning
policies on a library of test problems, so that researchers can more easily draw insights into
the behavior of different policies in the context of different problem classes.

MOLTE is designed for problems where decisions can be represented as a set of discrete al-
ternatives. These might be materials, drug combinations, features in a product, and medical
decisions. They might also be discretized continuous decisions such as temperatures, pres-
sures, concentrations, length and time (e.g. how long a material is soaked in a bath). If there
are more than two or three dimensions, it is possible to use a sampled set of alternatives
(this set can be updated from time to time, but MOLTE is designed to handle a single set of
alternatives).

This paper is organized as follows. In Section 2, we lay out the mathematical models for

Journal of Statistical Software 3

sequential decision problems. Section 3 describes how MOLTE is implemented and describes
the package from a user’s perspective. We demonstrate the ability of MOLTE and the types
of reports that it produces through extensive experimental results in Section 4 and 5. We
draw the conclusion that there is no universal policy that works the best under all problem
classes and the existence of bounds does not appear to provide reliable guidance regarding
which policy works best. In practice, we believe that more useful guidance could be obtained
by abstracting a real world problem, running simulations and using these to indicate which
policy works best. We envision MOLTE as a modest spur to induce other researchers to come
forward to study interesting questions involved in optimal learning, for example, the issue of
tuning as discussed in Section 6.

2. Sequential decision problems

Suppose we have a collection X of M alternatives, each of which can be measured sequentially
to estimate its unknown performance µx = E[F (x,W)]. The utility function F (x,W) can be
understood as costs, rewards or losses, where x ∈ X is a decision variable and W is a random
variable. The initial state S0 is used to capture all information given as prior input. At each
time step n, we use some policy to choose one alternative to measure xn = Xπ(Sn) and receive
a stochastic reward F̂n+1 = F (xn,Wn+1). After the decision and information, the system
transitions to the state of belief at the next point in time according to some known transition
function Sn+1 = SM (Sn, xn, F̂n+1). Two styles of objective functions are considered in this
paper:

• Terminal reward – considered in Bayesian optimization, ranking and selection problems,
and also known as simple regret in multi-armed bandits. Here we assume have a lim-
ited budget of N function evaluations which have to be sequentially allocated over the
different alternatives x ∈ X using a policy π. We use this policy to produce estimates
θπ,Nx of µx, and then choose the best design:

Xπ,N = arg max
x

θπ,Nx .

We can state the problem of finding the best experimental policy as

max
π

E
[
F (Xπ,N ,W)|S0

]
. (1)

In this case, we are not punished for errors incurred during training and instead are only
concerned with the final recommendation after the offline training phases. It should be
noted that the expectation is over different sets of random variables. The first is the
sequence of observations W 1, . . . ,WN which then produces the random Xπ,N . The
second expectation is over W in the equation, which is used to evaluate the solution. If
a Bayesian approach is used, there is a third level of expectation over the prior.

• Cumulative reward – extensively studied under the umbrella of multi-armed bandits. If
we have to experience the rewards while we do our learning/exploring, we may want to
maximize contributions over some time horizon. The (online) objective function would
be written as

max
π

E
[N−1∑
n=0

F (Xπ(Sn),Wn+1)|S0
]
, (2)

4 MOLTE: a Modular Optimal Learning Testing Environment

where the expectation is over the sequence of observations W 1, . . . ,WN and the prior
if any.

Despite different styles of objective functions, a general algorithm for sequential decision
problems can be summarized in Algorithm 1:

Algorithm 1: General algorithm for sequential decision problems

input : time horizon N , initial state S0, policy π, transition function SM

for n = 0 to N do
Select the point xn = Xπ(Sn)
Observe F̂n+1 = F (xn,Wn+1)
Update the state Sn = SM (Sn, xn, F̂n+1)

end

It should be noted that the states Sn can be understood as belief states which specifies the
posterior on the unknown function F (x, ·) if a Bayesian approach is used as in Bayesian opti-
mization and ranking and selection problems. The transition function SM then follows from
Bayes’ Theorem. We assume a normally distributed prior with heteroscedastic measurement
noise (that is, the variance of an experiment depends on x), with known standard deviation
σWx . We begin with a normally distributed Bayesian prior belief µx ∼ N (θ0,Σ0). For conve-
nience, we introduce the σ-algebras Fn for any n = 0, 1, ..., N − 1 which is formed by the pre-
vious n measurement choices and outcomes, x0,W 1, ..., xn−1,Wn. We define θnx = E[µx|Fn]
and Σn the conditional covariance matrix. After a measurement Wn+1 of alternative x, a
posterior distribution on the beliefs are calculated by:

θn+1 = Σn+1
(

(Σn)−1 θn + βWWn+1ex

)
, (3)

Σn+1 =
(

(Σn)−1 + βW exe
T
x

)−1
, (4)

where ex is the vector with 1 in the entry corresponding to alternative x and 0 elsewhere.
Sn = (θn,Σn) is then our state of knowledge in this case.

3. Software implementation

In this section, we describe the implementation of MOLTE1 that is designed to test a variety of
different learning policies on a library of test problems. The architecture makes it particularly
easy for researchers to add new policies, and new problems.

3.1. Structural overview

MOLTE is a Matlab-based modular architecture, where policies and problems are captured
in a set of .m files, which makes it easy for researchers to add new policies and new problems.
MOLTE.m compares the polices specified in an Excel spreadsheet for each problem class for
numP times. Each time the simulator is run, it generates numTruth different sample paths,
shared between all the policies, computes the value of the objective function for each sample

1The software is available at http://www.castlelab.princeton.edu/software.htm.

http://www.castlelab.princeton.edu/software.htm

Journal of Statistical Software 5

path and then averages the numTruth replicas as the expected terminal reward or the expected
cumulative rewards. The user may select in the spreadsheet to evaluate policies using either
an online (cumulative reward) objective function Eq. (2), or an offline (terminal reward)
objective function Eq. (1) (ranking and selection, Bayesian optimization).

We pre-coded a number of standard test functions, including

• problems with additive Gaussian noise, such as

– Branin’s function (Dixon and Szegö 1978),

– Goldstein Price function (Hu, Fu, and Marcus 2008),

– Rosenbrock function (Hu et al. 2008),

– Griewank function (Hu et al. 2008),

– six-hump camel back function by (Molga and Smutnicki 2005)),

• synthetic bandit experiments (Audibert et al. 2010),

• Gaussian process regression,

• real-world applications like newsvendor problems and payload delivery.

We also pre-coded a number of competing policies, such as

• UCB variants (Auer et al. 2002),

• successive rejects,

• sequential Kriging (SKO, as a representative of Bayesian global optimization (Jones,
Schonlau, and Welch 1998; Huang, Allen, Notz, and Zeng 2006; Jones 2001)),

• Thompson sampling,

• the knowledge gradient policies (Frazier, Powell, and Dayanik 2008).

Each of the problem classes and policies is organized in its own Matlab file, so that it is
easy for a user to add in a new problem or a policy. In order to make a fair comparison,
all the observations are pre-generated and shared between competing policies. There may be
problems where a domain expert can provide prior knowledge (such as the likely success of a
drug for a particular patient, the popularity of an online movie, or the sales potential of a set
of features in a laptop), but in some settings these have to be derived from data. In MOLTE
we provide various ways to construct a prior, including

• user-provided prior distributions,

• hard-coded default prior distributions,

• an uninformative prior,

• maximum likelihood estimation MLE (see Section 3.6).

6 MOLTE: a Modular Optimal Learning Testing Environment

3.2. Input Arguments

The input to the simulator is an Excel spreadsheet ProblemsandAlgorithms.xls which allows
users to specify the problem classes and competing policies, as well as the belief models, the
objectives, the prior construction and the measurement budgets. We provide a sample input
spreadsheet in Table 1. For policies that have tunable parameters, a star included in the
parentheses after the policy will initiate an automatic brute force tuning procedure with the
optimal value reported in alpha.txt. The logic anticipates that tunable parameters may be
anywhere from 10−5 up to 105. Whereas the user can also specify the value to be used for
the policy in the parentheses.

Table 1: Sample input spreadsheet.
Problem

class
Prior

Measurement
Budget

Belief Model
Offline/
Online

Number
of policies

Bubeck1 Uninform 10 independent Online 3 OLKG IE(*) UCB
Branin MLE 5 independent Offline 4 UCBE(*)IE(1.7) KG SR
GPR Default 0.3 correlated Online 4 KLUCB EXPL UCBTS

NanoDesign MLE 0.5 correlated Offline 3 Kriging EXPT KG

Problem class is the name of a pre-coded problem with a specified truth function, the
number of alternatives and a default noise level. If it is a user defined problem, the user
should write a .m file in the ./problemClasses folder with the same name as presented in
this spreadsheet. Due to the high popularity of Gaussian Process Regression (GPR), we offer
the flexibility of directly specify the values of the parameter of GPR in the spreadsheet. For
example, GPR(σ, β;M) specifies the value of the parameters as follows (Powell and Ryzhov
2012): the prior mean θ0

x is drawn from N (0,
√
σ), the prior covariance matrix Σ0 is of the

form σ exp(−β(x− x′)) and M is the number of alternatives.

Prior indicates the ways to get a prior.

• MLE means using Latin hypercube designs and MLE for initial fit.

• Default can be used only for the problems (e.g. GPR and InanoparticleDesign) that
have a default prior.

• Given means using the prior distribution provided by the user. It can be achieve either
by specifying the parameters of the problem class, e.g. GPR(50, 0.45;100), or by provid-
ing a Prior_problemClass.mat file containing mu_0, covM and beta_W in the ./Prior

folder, e.g. Prior_GPR.mat.

• Uninformative specifies mean zero and infinite variance for each alternative.

Measurement Budget specifies the ratio between the time horizon of the decision making
procedure to the number of alternatives. For example, in the spreadsheet a 5 means that
the horizon will be 5 times the number of alternatives (which is 100), producing a total
experimental budget of 500.

Belief Model specifies whether we are using independent or correlated beliefs for the policies
which use a Bayesian belief model.

Offline/Online controls whether the objective is to maximize the expected terminal reward
Eq. (1) or the expected cumulative rewards Eq. (2).

Journal of Statistical Software 7

Number of Policies is the number of policies under comparison. This specifies the number of
columns which contain the name of a policy to be tested, each represented in the corresponding
.m file with the same name. If there are parentheses with a number after the name of the
policy, it means setting the tunable parameter to the value specified in the parentheses. If
there are parentheses with ∗, it means tuning the parameters and using the tuned value in
the comparison; otherwise use the default value (in fact some policies, e.g. KG and Kriging,
do not have tunable parameters). All policies are compared against the first policy in the list.

3.3. Output

All the data and figures are saved in a separate folder for each problem class. Within the
folder of each problem class, each one of the numP folders (with the folder name from 1 to
numP) contains:

objectiveFunction.mat saves the value of the online or offline objective function achieved
by each policy for each of the numP replica.

choice.mat saves the decisions made by each policy in a variable named choices and the
name of all policies in another variable policies. This file is only obtained for the first trial
so that the dimension of choices is number of policies×M× numTruth.

FinalFit.mat saves the final estimate of the surface by each policy after the measurement
budget exhausted, together with the corresponding truth. This file is only obtained for the
first trial.

alpha.txt saves the value of tunable parameter for each policy that requires tuning, i.e. with
a (∗) in the input spreadsheet.

offline_hist.pdf is the histogram for each policy describing the distribution over numP

trials of the expected terminal reward compared to the reward obtained by the reference
policy (which is the first policy in the input spreadsheet).

online_hist.pdf is the histogram describing the distribution of the expected cumulative
reward over numP trials. One of the example figure is Fig. 1. A distribution centered around
a positive value implies the policy underperforms the reference policy, which in this example
is UCBV.

It is always useful for researchers to examine the sampling pattern of each policy to gain a
better understanding of its behavior. To this end, we provide a function histChoice.m that
reads in the choice.mat and generates the distribution of the frequency of choosing each
of the alternatives for each policy. filedir specifies which one of the numP trials is used
to generate the sampling pattern, e.g. filedir=’./1/’. Since within each trial, numTruth
different truths are sampled, numT is used to indicate the number of truths the user would
like to draw the sampling pattern from. Fig. 2 is an example of a sampling pattern with the
x-axis the 100 alternatives and the histogram of the sampling pattern under a measurement
budget of 300.

We also provide other graphical metrics for comparing the policies. genProb.m can read in
the objectiveFunction.mat and depict the mean opportunity cost with error bars indicating
the standard deviation of each policy as shown in Fig. 3(a), together with the probability of
each policy being optimal and being the best in Fig. 3(b):

The statistics stored in objectiveFunction.mat, choice.mat and FinalFit.mat can eas-
ily be used for other illustrations. For example, one can use the truth values stored in

8 MOLTE: a Modular Optimal Learning Testing Environment

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

10

20

30

40

50

60

70

F
re

qu
en

cy

UCBV−π

OLKG
IE
TS
EXPL

Figure 1: Example figure of online hist.pdf.

Figure 2: Example figure of the histogram of the frequency of choosing each of the alternative
under a policy.

FinalFit.mat and the number of times each policy samples each alternative in choice.mat

to generate two dimensional contour plot using Matlab commands contour(...), plot(...)
and text(...), as well as the corresponding posterior contour using the final estimate of the
surface stored in FinalFit.mat, as we demonstrate later in Fig. 5.

3.4. Pre-coded problem classes

While a wide range of problem classes and policies are precoded in MOLTE, in the next
two subsections we only briefly summarize the problem classes and policies mentioned in
the following numerical experiments of this paper. As of this writing, MOLTE includes 23
pre-coded problem classes, and 20 pre-coded policies.

Bubeck’s Experiments: (Audibert et al. 2010) We consider Bernoulli distributions with
the mean of the best arm always µ1 = 0.5. M is the number of arms.

Journal of Statistical Software 9

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

O
pp

or
tu

ni
ty

 c
os

t

KG
IE
UCB−E
SR
EXPL
EXPT

(a) Opportunity cost

Probability of optimality Probability of winning
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

KG
IE
UCB−E
SR
EXPL
EXPT

(b) Probability of optimality/winning

Figure 3: (a) depicts the mean opportunity cost with error bars indicating the standard
deviation of each policy. The first bar group in (b) demonstrates the probability that the final
recommendation of each policy is the optimal one. The second bar group in (b) illustrates
the probability that the opportunity cost of each policy is the lowest.

Bubeck1: M = 20, µ2:20 = 0.4.
Bubeck2: M = 20, µ2:6 = 0.42, µ7:20 = 0.38.
Bubeck3: M = 4, µi = 0.5− (0.37)i, i ∈ {2, 3, 4}.
Bubeck4: M = 6, µ2 = 0.42, µ3:4 = 0.4, µ5:6 = 0.35.
Bubeck5: M = 15, µi = 0.5− 0.025i, i ∈ {2, · · · , 15}.
Bubeck6: M = 20, µ2 = 0.48, µ3:20 = 0.37.
Bubeck7: M = 30, µ2:6 = 0.45, µ7:20 = 0.43, µ21:30 = 0.38.

Asymmetric unimodular function (AUF): x is a controllable parameter ranging from
21 to 120. The objective function is F (x, ξ) = θ1 min(x, ξ) − θ2x, where θ1, θ2 and the
distribution of the random variable ξ are all unknown. ξ is taken as a normal distribution
with mean 60. Three noise levels are considered by setting different noise ratios between the
standard deviation and the mean of ξ: HNoise–0.5, MNoise–0.4, LNoise–0.3. Unless explicitly
pointed out, experiments are taken under LNoise.

Equal-prior: M = 100. The true values µx are uniformly distributed over [0, 60] and
measurement noise σW = 100. θ0

x = 30 and σ0
x = 10 for every x.

All the standard optimization test functions are flipped in MOLTE to generate maximization
problems instead of minimization in line with R&S and bandit problems. The standard
deviation of the additive Guassion noise is set to 20 percent of the range of the function
values.

Rosenbrock functions with additive noise:

f(x, y, φ) = 100(y − x2)2 + (1− x)2 + φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13 alternatives.

Pinter’s function with additive noise:

f(x, y, φ) = log10

(
1 + (y2 − 2x+ 3y − cosx+ 1)2

)
+ log10

(
1 + 2(x2 − 2y + 3x− cos y + 1)2

)
+ x2 + 2y2 + 20 sin2(y sinx− x+ sin y) + 40 sin2(x sin y − y + sinx) + 1 + φ,

10 MOLTE: a Modular Optimal Learning Testing Environment

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13 alternatives.

Goldstein-Price’s function with additive noise:

f(x, y, φ) = [1 + (x+ y + 1)2(19− 14x+ 3x2 − 14y + 6xy + 3y2)] ·
[30 + (2x− 3y)2(18− 32x+ 12x2 + 48y − 36xy + 27y2)] + φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13 alternatives.

Branins’s function with additive noise:

f(x, y, φ) = (y − 5.1

4π2
x2 +

5

π
x− 6)2 + 10(1− 1

8π
) cos(x) + 10 + φ,

where −5 ≤ x ≤ 10, 0 ≤ y ≤ 15. x and y are uniformly discretized into 15 × 15 alternatives.

Ackley’s function with additive noise:

f(x, y, φ) = −20 exp
(
−0.2 ·

√
1

2
(x2 + y2)

)
−exp

(1

2
(cos(2πx)+cos(2πy))

)
+20+exp(1)+φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13 alternatives.

Hyper Ellipsoid function with additive noise:

f(x, y, φ) = x2 + 2y2 + φ.

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 13 × 13 alternatives.

Rastrigin function with additive noise:

f(x, y, φ) = 20 +
[
x2 − 10 cos(2πx)

]
+
[
x2 − 10 cos(2πy)

]
+ φ,

where −3 ≤ x ≤ 3, −3 ≤ y ≤ 3. x and y are uniformly discretized into 11 × 11 alternatives.

Six-hump camel back function with additive noise:

f(x, y, φ) = (4− 2.1x2 +
x4

3
)x2 + xy + (−4 + 4y2)y2 + φ,

where −2 ≤ x ≤ 2, −1 ≤ y ≤ 1. x and y are uniformly discretized into 13 × 13 alternatives.

3.5. Pre-coded policies

We have pre-coded various state-of-the-art policies π, which differ according to their decision
Xπ,n(Sn) of the alternative to measure at time n given state Sn.

Knowledge gradient (KG): (Frazier et al. 2008; Frazier, Powell, and Dayanik 2009) This
policy is designed for offline objective (1). Define the knowledge gradient as

νKG,n
x = E[max

x′
θn+1
x′ −max

x′
θnx′ |xn = x, Sn].

XKG,n(Sn) = arg max
x∈X

νKG,n
x .

Online knowledge gradient (OLKG): (Ryzhov, Powell, and Frazier 2012)

XOLKG,n(Sn) = arg max
x∈X

θnx + (N − n)νKG,n
x .

Journal of Statistical Software 11

Interval Estimation (IE): (Kaelbling 1993)

XIE,n(Sn) = arg max
x

θnx + zα/2σ
n
x ,

where zα/2 is a tunable parameter.

Kriging: Huang et al. (2006)

Let x∗ = arg maxx(θnx + σnx), and then

XKriging,n(Sn) = arg max
x

(θnx − θnx∗)Φ(
θnx − θnx∗
σnx

) + σnxφ(
θnx − θnx∗
σnx

),

where φ and Φ are the standard normal density and cumulative distribution functions.

Thompson sampling (TS): (Thompson 1933)

XTS,n(Sn) = arg max
x

θ̃nx ,

where θ̃nx ∼ N (θnx , σ
n
x) for independent beliefs or θ̃nx ∼ N (θn,Σn) for correlated beliefs.

UCB: (Auer et al. 2002)

XUCB,n(Sn) = arg max
x

θ̂nx +

√
2V n

x log n

Nn
x

,

where θ̂nx , V n
x , Nn

x are the sample mean of µx, sample variance of µx, and number of times
x has been sampled up to time n, respectively. The quantity θ̂0

x is initialized by measuring
each alternative once. These are similarly defined in the following variants of UCB.

UCB-E: (Audibert et al. 2010)

XUCB-E,n(Sn) = arg max
x

θ̂nx +

√
α

Nn
x

,

where α is a tunable parameter.

UCB-V: (Audibert et al. 2009)

XUCB-V,n(Sn) = arg max
x

θ̂nx +

√
V n
x log n

Nn
x

+ 1.5
log n

Nn
x

.

SR: (Audibert et al. 2010) Let A1 = X , log(M) = 1
2 +

∑M
i=2

1
i ,

nm =
⌈ 1

log(M)

n−M
M + 1−m

⌉
.

For each phase m = 1, ...,M − 1:

1. For each x ∈ Am, select alternative x for nm − nm−1 rounds.

2. Let Am+1 = Am \ arg minx∈Am θ̂x.

12 MOLTE: a Modular Optimal Learning Testing Environment

KLUCB: (Cappé et al. 2013)

XKLUCB,n(Sn) = arg max
x

θ̂nx +

√
2V n

x (log n+ 3 log log(n))

Nn
x

.

EXPL: A pure exploration strategy that tests each alternative equally often through random
sampling of the set of alternatives.

EXPT: A pure exploitation strategy.

XEXPT,n(Sn) = arg max
x

θ̂nx .

3.6. Prior Generation

MOLTE features the following strategies for building a prior:

• If an uninformative prior is specified by the user for independent beliefs, a uniform
prior will be used with θ0

x = 0 and σ0
x = inf for every x. In such case, same as with

frequentist approaches (for example, UCBs), Bayesian approaches will measure each
alternative once at the very beginning.

• User-defined priors can be achieved either by specifying the parameters of the prob-
lem class, e.g. GPR(50, 0.45;100), or by providing a Prior_problemClass.mat file
containing mu_0, covM and beta_W in the ./Prior folder, e.g. Prior_GPR.mat.

• If maximum likelihood estimation (MLE) is chosen to obtain the prior distribution for
either independent beliefs or correlated beliefs, we follow Jones et al. (1998) and Huang
et al. (2006) to use Latin hypercube designs for initial fit. For independent beliefs, we
adopt a uniform prior with the same mean value θ0

x and standard deviation σ0
x for all

alternatives. For correlated beliefs, we use a constant mean value θ0
x for all alternatives

and a prior covariance matrix of the form

Σ0
xx′ = σe−

∑d
i=1 λi(xi−x′i)2 ,

where each arm x is a d-dimensional vector and σ, λi are constant. We adopt the rule
of thumb by Jones et al. (1998) for the default number (10 × p) of points, where p is
the number of parameters to be estimated. In addition, as suggested by Huang et al.
(2006), to estimate the random errors, after the first 10×p points are evaluated, we add
one replicate at each of the locations where the best p responses are found. Maximum
likelihood estimation is then used to estimate the parameters based on the points in the
initial design.

3.7. User defined problem classes and/or policies

Each of the problem classes is organized in its own .m file in the ./problemClasses folder.
The standard API is defined as:
function [mu, beta_W, numD]=UserDefinedName(varargin)

Journal of Statistical Software 13

%user defined function

end

where varargin is used to pass input parameters with variable lengths for the problem class if
needed. mu is a column vector generating a true function value (not known to the learner) of
the user defined problem class. If Gaussian process regression is used, mu is sampled from the
prior distribution. beta_W is a column vector of the inverse of the variance of measurement
noise σW,2x and numD specifies the dimensionality of the function. For example, if the user is
intended to define their own GPR problems, the function should be defined as:

function [mu, beta_W, numD] = UserDefinedName(varargin)}

mu_0=varargin{1};

covM=varargin{2};

beta_W=varargin{3};

mu=mvnrnd(mu_0, covM)';
numD=1;

end

The user also needs to provide the priors for the GPR problems. This can be done by writing
a Prior_UserDefinedName.m file in the ./Prior folder to provide the prior mean, covariance
matrix and the measurement noise:
function [mu_0, covM, beta_W] = Prior_UserDefinedName(varargin)

If the user would like to define a problem from a test function (such as Pinter’s function with
additive noise introduced in Section 3.4), one should first code up the test function, choose a
discrete set of alternatives and calculate their function values. One example can be:

function [mu, beta_W, numD] = Pinter(varargin)

%set the dimensionality of the function

numD=2;

%choose the discrete set of alternatives of interest

xx=-3:0.5:3;

yy=-3:0.5:3;

[x,y]=meshgrid(xx,yy);

f=fun(x,y);

[a,b]=size(f);

mu=max(max(f))-reshape(f,[a*b,1]);

%define the variance of measurement noise

beta_W=1./(0.2*(max(max(f))-min(min(f)))).^2*ones(length(mu),1);

end

%define the test function

function f=fun(x,y)

f=x.^2+2*y.^2+20*sin(y.*sin(x)-x+sin(y)).^2+40*sin(x.*sin(y)-y+sin(x)).^2

+log10(1+(y.^2-2*x+3*y-cos(x)+1).^2)

+2*log10(1+2*(x.^2-2*y+3*x-cos(y)+1).^2)+1+rand()*5;

end

14 MOLTE: a Modular Optimal Learning Testing Environment

Each of the policies is also organized in its own .m file in the ./policies folder. The standard
API is defined as:

function [mu_est, count, recommArm] = Name(mu_0,beta_W,covM,samples,alpha,tune)

[M,N]=size(samples);

count=zeros(M,1); % count the times each alternative is measured

mu_est=mu_0;

for i = 1:N

%user defined policy decision rule to find x=X^{\pi}(S^n)

count(x)=count(x)+1;

W=samples(x, count(x));

%user defined transition function S^{n+1} = S^{M}(S^n, x,W)

end

[value, recommendedArm] = max(mu_est);

end

where mu_0 and covM specifies the prior distribution, beta_W is the known measurement
(experimental) noise, samples are pre-generated and shared among all the policies, alpha is
the tunable parameter and tune specifies whether to tune this policy or use default value.

4. Experiments for Offline (Terminal Reward) Problems

In this section we report on a series of experiments with the goal of illustrating the use of
MOLTE and the types of reports that it produces. We do not attempt to demonstrate that
any policy is better than another, but our experiments support the hypothesis that different
policies work well on different problem classes. This observation supports the claim that
more careful empirical work is needed to develop a better understanding of which policies
work best, and under what conditions.

4.1. Experiments with independent beliefs

We first compare the performance of KG, IE with tuning, UCB-E with tuning, SR, EXPL
and EXPT for offline ranking and selection problems. MLE is used to construct the prior
distribution for KG and IE. Figure 4 shows the performance in problem classes AUF and
Goldstein with independent beliefs under a measurement budget five times the number of
alternatives.

We run each policy for numP=1000 times. We illustrate in the first column of Figure 4 the
mean opportunity cost and the standard deviation of each policy over 1000 runs, with the
opportunity cost (OCπ) defined as:

OCπ = max
x

µx − µxπ,N ,

where xπ,N = arg maxx θ
π,N
x .

In order to provide a more comprehensive comparison of different policies, we also calculate
the probability that the final recommendation of each policy is the optimal one and the
probability that the opportunity cost of each policy is the lowest, as illustrated in the figures
on the right hand side of Figure 4.

Journal of Statistical Software 15

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

O
pp

or
tu

ni
ty

 c
os

t

KG
IE
UCB−E
SR
EXPL
EXPT

(a) AUF: Opportunity cost

Probability of optimality Probability of winning
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

KG
IE
UCB−E
SR
EXPL
EXPT

(b) AUF: Probability of optimality/winning

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

O
pp

or
tu

ni
ty

 c
os

t

KG
IE
UCB−E
SR
EXPL
EXPT

(c) Goldstein: Opportunity cost

Probability of optimality Probability of winning
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

KG
IE
UCB−E
SR
EXPL
EXPT

(d) Goldstein:Probability of optimality/winning

Figure 4: Comparisons for AUF and Goldstein. (a) and (c) depict the mean opportunity cost
with error bars indicating the standard deviation of each policy. The first bar group in (b) and
(d) demonstrates the probability that the final recommendation of each policy is the optimal
one. The second bar group in (b) and (d) illustrates the probability that the opportunity cost
of each policy is the lowest.

16 MOLTE: a Modular Optimal Learning Testing Environment

The three criteria characterize the behavior of policies in different aspects. For example, under
AUF, if one cares about the average performance of the policy and its stability, SR is the best
choice concluding from Figure 4 (a). Yet, if one can only run one trial (as in most cases of
experimental science) and want to identify the best alternative, KG might be a better choice
since it has the highest probability of finding the optimal alternative. Or if one can live with
fairly good alternatives other than the optimal one, UCB-E could be the choice (although it
has to be carefully tuned).

One observation is that there is no universal best policy for all problem classes or under
all criteria. In practice, a useful guidance could be abstracting the real world problem and
running synthetic simulations to find the best simulated policy under some desired criterion
before conducting the real experiments.

4.2. Experiments with correlated beliefs

In this section, we exploit correlated beliefs between alternatives in order to strengthen the
effect of each measurement so that one measurement of some alternative can provide infor-
mation for other alternatives.

In order to better understand the behavior of each policy, a useful way is to examine the
sampling pattern of each policy. We present an example of the frequency of measuring each
alternative for each competing policy for Branin functions with a measurement budget of
100. To take advantage of correlated beliefs, rather than measuring each alternative once to
initialize the empirical mean, we use the prior mean as the starting point and use the posterior
mean θn in place of the empirical mean θ̂n for UCB-E. In the left column of Figure 5, the
sampling pattern of each policy is displayed together with the contour of the Branin objective
function which exhibits one global maximum at (−3, 12) and other two local maxima at (9, 3)
and (16, 4). The frequency that each alternative is measured is marked in numbers. The right
column depicts the final prediction under each policy. All the observations are pre-generated
and shared for all policies. We see from the figures that since KGCB and Kriging take
correlation into consideration in the decision functions, they need less exploration and rely
on the correlation to provide information for less explored alternatives. They quickly begin
to focus on the alternatives that have the best values. Yet Kriging wanders around local
minima for a while before it heads toward the global maximum. Note that the prediction of
KGCB gives a good match in general. The function value at the true maximum alternative is
well approximated, while moderate error in the estimate is located away from this region of
interest. UCB-E is exploring more than necessary and wasting time on less promising regions.
But when the budget is big enough, the exploration will contribute to better prediction of
the surface, leading to a potentially larger final outcome in the long run. Pure exploitation
gets stuck in a seemingly good alternative and the sampling pattern is not reasonable nor
meaningful.

5. Experiments for Online (Cumulative Reward) Problems

In this section, we provide sample comparisons of different policies using the online (cumula-
tive reward) objective function. The performance measure that we use to evaluate a policy π

Journal of Statistical Software 17
K

G
C

B

1

1

1

1

2

1

1

2

2

1

1

4

1

1

3

8

2

1

5

1

1

4

1

1

1

3

2

2

1

1

1

2

1

1

2 3

1

3 1

1

4

2

2 2

1

1

6

1

3

1

1

1

1

1

−5 0 5 10
0

5

10

15

−5 0 5 10
0

5

10

15

K
ri

gi
n
g

 1

 1

 1

 1

 1

 1

 1

 2

 5

 2

 1

 2

 6

 1

 2

 1

 1

 1

 1

 3

 1

 1

 1

 1

 1

 2

 2 2 5

 9

 2

 3

 3

 1

 7

 1

 9

12

 1

 1

−5 0 5 10
0

5

10

15

−5 0 5 10
0

5

10

15

U
C

B
-E

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

1

1

1

1

1

2

2

2

2

2

1

1

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

-5 0 5 10
0

5

10

15

-5 0 5 10
0

5

10

15

P
u

re
E

x
p

lo
it

at
io

n

 1

 3

 2 93

 1

−5 0 5 10
0

5

10

15

−5 0 5 10
0

5

10

15

Figure 5: Left column: sampling distribution. Right column: posterior distribution.

18 MOLTE: a Modular Optimal Learning Testing Environment

in an online setting is
R̄πN
N , where the pseudo-regret R̄πN is defined as

R̄πN = N max
x∈X

µx −
N∑
n=0

E[µXπ,n(sn)].

The opportunity cost (OC) between two policies in an online setting is defined as the difference
of their pseudo-regrets.

5.1. Experiments with independent beliefs

In real world problems, especially in experimental science, frequentist techniques cannot in-
corporate prior knowledge from domain experts, relying instead on the training from vast
pools of data. This may be infeasible to perform in reality since running one experiment
might be very expensive. The advantage of a Bayesian approach is unarguable in such cases.
However, if we use MLE to fit the prior instead of using domain knowledge, it seems that the
comparisons are in favor of Bayesian approaches by using an extra 11× p measurements. In
order to make a seemingly more fair comparison in our synthetic experimental setting, we also
experiment with uninformative priors with no additional information provided for Bayesian
approach.

Tables 2, 3 and 4 provide comparisons of OLKG, IE with tuning, UCB-E with tuning, UCB,
KLUCB, pure exploration (EXPL) using the Bubeck problems with uninformative prior. The
measurement budgets are set to 10, 100 and 500 times the number of alternatives of each
problem class in Tables 2, 3 and 4, respectively. IE and UCB-E are carefully tuned for each
problem class. Under each problem class, we ran each policy for numP=1000 times. In each run,
all the measurements are pre-generated and shared across all the policies. For each policy
we record the normalized opportunity cost between OLKG and other competing policies,
where the normalized opportunity cost is defined as the ratio between the opportunity cost
R̄πN
N −

R̄OLKG
N
N and the range of the truth µ. Positive values of OC indicate that the corresponding

policy underperforms OLKG on average. Other than the interest of average performance
measured by pseudo-regret, only one sample path will be realized in real world experiments
and it is meaningful to find out which policy is most likely to perform the best in one sample
run. Thus we also report the probability that each of the other policy outperforms (obtains
a lower regret than) OLKG within 1000 realizations. Any policy can be set as a benchmark
by placing it as the first policy in the input spreadsheet.

We see from the three tables that the probability of any other policy that outperforms OLKG
is in general much less than 0.5. If this criterion is what an experimenter anticipates, then
OLKG is a safe choice in most situations. We then discuss the performance of each policy
in terms of OC. At the beginning of each trial, IE and UCB-E are more exploiting than
exploring while OLKG tends to explore before it moves toward the best estimates. This
contributes to good performance (measured by OC) of IE and UCB-E in Table 2 with a
small measurement budget. The tuned values of parameters further sharpen this effect by
utilizing smaller values compared to those under larger measurement budgets as reported
in Table 5 which summarizes the optimally tuned values for each parameter. Since UCB
policies tend to explore more than necessary (which can be seen from the sampling pattern,
for example, Figure 5), the performance degenerates with a moderate measurement budget as
shown in Table 3. In this case, OLKG yields the best performance since after an exploration

Journal of Statistical Software 19

Table 2: The difference between each policy and OLKG (OC), and the probability that each
policy outperforms OLKG, using uninformative priors with a measurement budget 10 times
the number of alternatives.

Problem Class
IE UCBE UCBV UCB KLUCB EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck1 -0.031 0.43 -0.032 0.43 0.073 0.51 0.016 0.35 0.054 0.50 0.078 0.50
Bubeck2 -0.032 0.55 -0.031 0.52 0.097 0.30 0.025 0.43 0.070 0.35 0.105 0.29
Bubeck3 -0.000 0.29 0.006 0.30 0.068 0.26 0.021 0.53 0.020 0.34 0.095 0.23
Bubeck4 -0.004 0.39 -0.003 0.57 0.100 0.36 0.029 0.48 0.040 0.40 0.124 0.33
Bubeck5 -0.019 0.71 -0.020 0.71 0.213 0.01 0.018 0.48 0.087 0.11 0.255 0.00
Bubeck6 -0.034 0.49 -0.035 0.48 0.139 0.34 0.034 0.41 0.098 0.37 0.151 0.33
Bubeck7 -0.036 0.70 -0.036 0.71 0.065 0.17 0.009 0.48 0.043 0.22 0.073 0.15

Table 3: The difference between each policy and OLKG (OC), and the probability that each
policy outperforms OLKG, using uninformative priors with a measurement budget 100 times
the number of alternatives.

Problem Class
IE UCBE UCBV UCB KLUCB EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck1 0.006 0.34 0.015 0.32 0.387 0.36 0.245 0.14 0.311 0.37 0.431 0.36
Bubeck2 0.006 0.31 0.017 0.35 0.399 0.09 0.226 0.17 0.309 0.22 0.458 0.06
Bubeck3 0.002 0.32 0.007 0.31 0.111 0.18 0.077 0.39 0.052 0.25 0.214 0.07
Bubeck4 -0.014 0.31 -0.005 0.30 0.232 0.27 0.156 0.32 0.114 0.30 0.365 0.17
Bubeck5 -0.003 0.39 0.003 0.34 0.228 0.01 0.064 0.26 0.094 0.15 0.425 0.00
Bubeck6 0.014 0.38 0.025 0.38 0.522 0.10 0.274 0.12 0.380 0.10 0.619 0.09
Bubeck7 0.015 0.52 0.016 0.44 0.260 0.00 0.158 0.21 0.215 0.09 0.303 0.00

period, it begins to focus on the alternatives that have the best estimates while looking for
alternatives whose estimates are less certain. Yet exploration benefits in the long run. Thus
the performance of UCB policies and IE improves if allowed to explore for a sufficiently long
time as reported in Table 4.

5.2. Experiments with correlated beliefs

In this section, we summarize numerical experiments on problems with correlated beliefs
between different policies, including OLKG, IE with tuning, UCBE, UCBV, Kriging, UCB,
Thompson Sampling (TS) and pure exploration (EXPL). To take advantage of correlated
beliefs, we use the prior mean as the starting point and use posterior mean θn in place of the
empirical mean for UCBV and UCB policies.

In order to gain a good understanding of the performance of the policies, MOLTE produces
histograms illustrating the distribution of the difference between the normalized OC of a
benchmark policy and either of the other policies over 1000 runs. Whichever policy that is
listed as the first policy is treated as the benchmark. The measurement budget is set to 0.2
times the number of alternatives of each problem class. Figure 6 compares the performance of
several policies under various problem classes with different benchmark policies. A distribu-
tion centered around a positive value implies the policy underperforms the benchmark policy,

20 MOLTE: a Modular Optimal Learning Testing Environment

Table 4: The difference between each policy and OLKG (OC), and the probability that each
policy outperforms OLKG, using uninformative priors with a measurement budget 500 times
the number of alternatives.

Problem Class
IE UCBE UCBV UCB KLUCB EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck1 -0.105 0.30 -0.098 0.30 0.296 0.26 0.288 0.10 0.175 0.27 0.634 0.26
Bubeck2 -0.089 0.28 -0.080 0.26 0.253 0.31 0.226 0.15 0.139 0.32 0.609 0.02
Bubeck3 -0.009 0.34 -0.006 0.31 0.069 0.18 0.077 0.39 0.035 0.29 0.268 0.03
Bubeck4 -0.075 0.28 -0.069 0.27 0.091 0.26 0.174 0.24 0.014 0.26 0.462 0.12
Bubeck5 -0.030 0.33 -0.026 0.31 0.066 0.28 0.050 0.23 0.012 0.34 0.462 0.00
Bubeck6 -0.024 0.26 -0.022 0.24 0.310 0.05 0.227 0.16 0.190 0.06 0.771 0.05
Bubeck7 -0.045 0.33 -0.045 0.34 0.262 0.11 0.152 0.23 0.200 0.27 0.430 0.00

Table 5: Tuned parameters of IE and UCB-E under different problem classes and measurement
budgets. The second row indicates the ratio between the measurement budget and the number
of alternatives.

Problem Class
IE UCBE

10 100 500 10 100 500

Bubeck1 0.0007079 1.295 2.036 0.0008991 0.3934 1.103
Bubeck2 0.1675 1.295 2.169 0.002359 0.337 0.9063
Bubeck3 0.8991 1.395 1.878 0.1206 0.4562 0.8635
Bubeck4 0.8991 1.571 2.196 0.004392 0.5332 1.197
Bubeck5 0.004566 1.395 2.169 0.0003102 0.3518 1.002
Bubeck6 0.09063 1.197 1.642 0.000505 0.3201 0.7748
Bubeck7 0.002773 0.8991 1.878 0.0005936 0.2169 0.8007

Journal of Statistical Software 21

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
0

10

20

30

40

50

60

70

F
re

qu
en

cy

UCBV−π

OLKG
IE
TS
EXPL

(a) Goldstein

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

10

20

30

40

50

60

F
re

qu
en

cy

OLKG−π

IE
UCBV
UCB
TS
EXPL

(b) HyperEllipsoid

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

F
re

qu
en

cy

IE−π

OLKG
UCBE
EXPL
TS

(c) Rastrigin

Figure 6: Normalized opportunity cost between different policies.

Table 6: Comparisons with OLKG for correlated beliefs with the measurement 0.2 times the
number of alternatives of each problem class.

Problem Class
IE UCBE UCBV Kriging TS EXPL

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Goldstein -0.061 0.81 -0.097 0.92 -0.003 0.45 -0.031 0.73 0.100 0.09 0.041 0.16
AUF HNoise 0.058 0.40 0.022 0.43 0.037 0.54 0.031 0.39 0.073 0.22 0.047 0.48
AUF MNoise 0.043 0.29 0.027 0.42 0.343 0.21 0.023 0.28 0.173 0.21 -0.057 0.52
AUF LNoise -0.043 0.73 -0.013 0.64 0.053 0.51 0.005 0.53 0.038 0.20 0.003 0.62

Branin -0.027 0.76 0.025 0.24 0.026 0.26 0.004 0.54 0.041 0.07 0.123 0.00
Ackley 0.007 0.42 0.04 0.41 0.106 0.20 0.037 0.42 0.100 0.23 0.344 0.00

HyperEllipsoid -0.059 0.73 0.064 0.12 0.08 0.07 0.146 0.22 0.011 0.38 0.243 0.03
Pinter -0.028 0.56 -0.003 0.51 0.029 0.42 -0.055 0.65 0.122 0.19 0.177 0.04

Rastrigin -0.082 0.70 -0.03 0.56 0.162 0.04 -0.026 0.57 0.136 0.08 0.203 0.01

while one centered around a negative number means the policy outperforms the benchmark.
For example, Figure 6(a) compares the performance of UCBV, OLKG, IE, TS and EXPL
under Goldstein with UCBV as the benchmark policy. We can see that the tuned IE and
OLKG are outperforming UCBV and others are underperforming.

We close this section by providing more comparisons between other policies with OLKG
under various problem classes. The measurement budget is set to 0.2 times the number
of alternatives of each problem class. Table 6 reports the normalized mean OCs and the
probability that each of the other policy outperforms OLKG under 1000 runs. IE and UCB-E
are carefully tuned for each problem classes with the optimal value shown in Table 7. IE and
UCB-E after tuning works generally well. Yet the optimal values of the tuned parameters are
quite different for different problems as shown in Table 5 and 7. In addition, the performance
of the policies are sensitive to the value of the tunable parameters. In light of this issue, we
can conclude that OLKG and Kriging have one attractive advantage over IE and UCB-E:
they require no tuning at all, while yielding comparable performance to a finely tuned IE or
UCB-E policy. A detailed study on the issue of tuning is presented in Section 6.1.

Table 6 together with the comparisons shown in previous sections suggests that there is no
universal best policy for all problem classes and one could possibly design toy problems for
either policy to perform the best. Similar observations have also been reported by Kuleshov

22 MOLTE: a Modular Optimal Learning Testing Environment

Table 7: Tuned parameters of IE and UCB-E under different problem classes.
Problem Class IE UCBE

Goldstein 0.009939 2571
AUF HNoise 0.01497 0.319
AUF MNoise 0.01871 1.591
AUF LNoise 0.01095 6.835

Branin 0.2694 0.0003664
Ackley 1.197 1.329

HyperEllipsoid 0.8991 21.21
Pinter 0.9989 0.0001636

Rastrigin 0.2086 0.001476

and Precup (2000) for different bandit problems on different metrics. Besides, there are
theoretical guarantees proved for each of the policy mentioned above, but the existence of
these bounds does not appear to provide reliable guidance regarding which policy works best.
An asymptotic bound does not provide any assurance that an algorithm will work well on a
particular problem in finite time. In practice, we believe that more useful guidance could be
obtained by abstracting a real world problem, running simulations and using these to indicate
which policy works best.

6. Discussion

We close our presentation by discussing two issues that tend to be overlooked in comparisons
of learning algorithms: the tuning of heuristic parameters (widely used in frequentist UCB
policies) and priors (used in all Bayesian policies such as knowledge gradient).

6.1. The issue of tuning

Previous experimental results show that tuned version of IE and UCB-E yield good per-
formance in general and yet the optimal value for IE and UCB-E may be highly problem
dependent. Our experiments also suggest that the performance of a policy is sensitive to
the value of the tuned parameter. For example, Figure 8 provides the comparisons between
the performances of IE with different parameter values (provided in the parentheses) with
the online objective function under various problem classes. The measurement budget is set
to five times the number of alternatives for each problem class experimented with indepen-
dent beliefs and 0.3 times the number of alternatives for each problem class experimented
with correlated beliefs. ‘OC’ is the mean opportunity cost comparing tuned IE with others
OCIE − OCπ, with a positive value indicating a win for tuned IE. ‘Prob.’ is the probability
that other policies outperform the tuned IE. We see from the table that zα is highly problem
dependent and the performance degrades quickly away from the optimal value. For some
experimental applications, tuning can require running physical experiments, which may be
very expensive or even entirely infeasible.

6.2. The issue of constructing priors

In MOLTE, we use MLE to fit the prior for test functions based on sampling measurements,

Journal of Statistical Software 23

.

Problem Class B z∗α
IE(1) IE(2) IE(3) IE(4) IE(5)

OC Prob. OC Prob. OC Prob. OC Prob. OC Prob.

Bubeck4 I 2.086 0.002 0.40 0.001 0.45 0.002 0.46 0.015 0.47 0.017 0.47
Bubeck6 I 2.01 0.003 0.44 0.001 0.48 0.004 0.43 0.013 0.23 0.028 0.13

AUF MNoise I 1.1305 0.004 0.38 0.041 0.04 0.071 0.00 0.095 0.00 0.114 0.09
CamelBack I 1.295 0.006 0.35 0.069 0.32 0.108 0.03 0.145 0.00 0.172 0.00

AUF LNoise C 0.9498 0.043 0.00 0.080 0.00 0.105 0.00 0.123 0.03 0.136 0.00
Branin C 0.4438 0.001 0.25 0.005 0.32 0.014 0.07 0.023 0.01 0.032 0.01

Goldstein C 0.079 0.071 0.00 0.090 0.00 0.101 0.00 0.108 0.00 0.113 0.00
Rosenbrock C 0.9989 0.007 0.18 0.060 0.08 0.093 0.05 0.120 0.04 0.143 0.03

Table 8: Comparisons between tuned IE and IEs with fixed parameter values. The second
column indicates the belief model, with I for independent belief and C for correlated belief.
z∗α is the tuned value for each problem class. The number included in the parenthesis is the
parameter value used by each IE policy.

which seems like a tuning process. Yet designing a Bayesian prior is not necessarily the
same as tuning parameters. In real world problems, such as applications in experimental
sciences (although there are many other examples from other problem domains), the Bayesian
prior may be based on an understanding of the physical system and might be based on the
underlying chemistry/physics of the problem, a review of the literature, or past experience.
This information might be qualitative in nature and is not easily incorporated by frequentist
approaches. When this domain knowledgeable is available, and especially when experiments
are expensive, Bayesian approaches are strongly preferred.

7. Conclusion

We offer MOLTE as a public-domain test environment to facilitate the process of more com-
prehensive comparisons, on a broader set of test problems and a broader set of policies, so
that researchers can more easily draw insights into the behavior of different policies in the
context of different problem classes. There has been a long history in the optimal learning lit-
erature of proving some sort of bound, supported at times by relatively thin empirical work by
comparing a few policies on a small number of randomly generated problems. When choosing
policies from a huge algorithms pool, we hope MOLTE can be a starting point for researchers,
experimental scientists and students to more easily draw insights into the behavior of different
policies in the context of different problem classes. We demonstrate the ability of MOLTE
through extensive experimental results. We draw the conclusion that there is no universal
best policy for all problem classes, and bounds, by themselves, do not provide reliable guid-
ance to the policy that will work the best. We envision MOLTE as a modest spur to induce
other researchers to come forward to study interesting questions involved in optimal learning,
for example, the issue of tuning in this paper. We hope MOLTE can help with the current
issue of relative paucity of empirical testing of learning algorithms.

References

24 MOLTE: a Modular Optimal Learning Testing Environment

Audibert JY, Bubeck S, et al. (2010). “Best arm identification in multi-armed bandits.” COLT 2010-
Proceedings.

Audibert JY, Munos R, Szepesvári C (2009). “Exploration-exploitation tradeoff using variance estimates in
multi-armed bandits.” Theor. Comput. Sci., 410(19).

Auer P, Cesa-Bianchi N, Fischer P (2002). “Finite-time analysis of the multiarmed bandit problem.” Machine
learning, 47(2-3), 235–256.

Cappé O, Garivier A, Maillard OA, Munos R, Stoltz G, et al. (2013). “Kullback–leibler upper confidence
bounds for optimal sequential allocation.” The Annals of Statistics, 41(3), 1516–1541.

Dixon L, Szegö G (1978). “The global optimization problem: an introduction.” Towards global optimization,
2, 1–15.

Frazier P, Powell W, Dayanik S (2009). “The knowledge-gradient policy for correlated normal beliefs.” IN-
FORMS journal on Computing, 21(4), 599–613.

Frazier PI, Powell WB, Dayanik S (2008). “A knowledge-gradient policy for sequential information collection.”
SIAM Journal on Control and Optimization, 47(5), 2410–2439.

Garivier A, Moulines E (2008). “On upper-confidence bound policies for non-stationary bandit problems.”
arXiv preprint arXiv:0805.3415.

Hu J, Fu MC, Marcus SI (2008). “A model reference adaptive search method for stochastic global optimization.”
Communications in Information & Systems, 8(3), 245–276.

Huang D, Allen TT, Notz WI, Zeng N (2006). “Global optimization of stochastic black-box systems via
sequential kriging meta-models.” Journal of global optimization, 34(3), 441–466.

Jones DR (2001). “A taxonomy of global optimization methods based on response surfaces.” Journal of global
optimization, 21(4), 345–383.

Jones DR, Schonlau M, Welch WJ (1998). “Efficient global optimization of expensive black-box functions.”
Journal of Global optimization, 13(4), 455–492.

Kaelbling LP (1993). Learning in embedded systems.

Kuleshov V, Precup D (2000). “Algorithms for multi-armed bandit problems.” Journal of Machine Learning
Research.

Lai TL, Robbins H (1985). “Asymptotically efficient adaptive allocation rules.” Advances in applied mathe-
matics, 6(1), 4–22.

Martinez-Cantin R (2014). “BayesOpt: a Bayesian optimization library for nonlinear optimization, experimen-
tal design and bandits.” The Journal of Machine Learning Research, 15(1), 3735–3739.

Molga M, Smutnicki C (2005). “Test functions for optimization needs.” Test functions for optimization needs.

Powell WB, Ryzhov IO (2012). Optimal learning, volume 841.

Ryzhov IO, Powell WB, Frazier PI (2012). “The algorithm for a general class of online learning problems.”
Operations Research, 60(1), 180–195.

Snoek J, Larochelle H, Adams RP (2012). “Practical Bayesian optimization of machine learning algorithms.”
In Advances in neural information processing systems, pp. 2951–2959.

Srinivas N, Krause A, Kakade SM, Seeger M (2009). “Gaussian process optimization in the bandit setting: No
regret and experimental design.” arXiv preprint arXiv:0912.3995.

Thompson WR (1933). “On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples.” Biometrika, pp. 285–294.

Journal of Statistical Software 25

Affiliation:
Yingfei Wang
Department of Computer Science
Princeton University
Princeton, NJ, 08540
E-mail: yingfei@cs.princeton.edu

Warren Powell
Department of Operations Research and Financial Engineering
Princeton University
Princeton, NJ, 08544
E-mail: powell@princeton.edu

Journal of Statistical Software http://www.jstatsoft.org/

published by the Foundation for Open Access Statistics http://www.foastat.org/

MMMMMM YYYY, Volume VV, Issue II Submitted: yyyy-mm-dd
doi:10.18637/jss.v000.i00 Accepted: yyyy-mm-dd

mailto:yingfei@cs.princeton.edu
mailto:powell@princeton.edu
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v000.i00

	Introduction
	Sequential decision problems
	Software implementation
	Structural overview
	Input Arguments
	Output
	Pre-coded problem classes
	Pre-coded policies
	Prior Generation
	User defined problem classes and/or policies

	Experiments for Offline (Terminal Reward) Problems
	Experiments with independent beliefs
	Experiments with correlated beliefs

	 Experiments for Online (Cumulative Reward) Problems
	Experiments with independent beliefs
	Experiments with correlated beliefs

	Discussion
	The issue of tuning
	The issue of constructing priors

	Conclusion

