
Stochastic Programming in Transportation

and Logistics

Warren B. Powell and Huseyin Topaloglu

Department of Operations Research and Financial Engineering, Princeton
University, Princeton, NJ 08544

Abstract

Freight transportation is characterized by highly dynamic information processes:
customers call in orders over time to move freight; the movement of freight over
long distances is subject to random delays; equipment failures require last minute
changes; and decisions are not always executed in the field according to plan. The
high-dimensionality of the decisions involved has made transportation a natural
application for the techniques of mathematical programming, but the challenge of
modeling dynamic information processes has limited their success. In this chapter,
we explore the use of concepts from stochastic programming in the context of re-
source allocation problems that arise in freight transportation. Since transportation
problems are often quite large, we focus on the degree to which some techniques
exploit the natural structure of these problems. Experimental work in the context
of these applications is quite limited, so we highlight the techniques that appear to
be the most promising.

Preprint submitted to Elsevier Preprint 8 January 2003

Contents

1 Introduction 1

2 Applications and issues 2

2.1 Some sample problems 2

2.2 Sources of uncertainty 5

2.3 Special modeling issues in transportation 7

2.4 Why do we need stochastic programming? 8

3 Modeling framework 9

3.1 Resources 10

3.2 Processes 12

3.3 Controls 16

3.4 Modeling state variables 17

3.5 The optimization problem 18

3.6 A brief taxonomy of problems 19

4 A case study: freight car distribution 22

5 The two-stage resource allocation problem 25

5.1 Notational style 26

5.2 Modeling the car distribution problem 28

5.3 Engineering practice - Myopic and deterministic models 30

5.4 No substitution - a simple recourse model 33

5.5 Shipping to regional depots - a separable recourse model 35

5.6 Shipping to classification yards - a network recourse model 45

5.7 Extension to large attribute spaces 55

i

6 Multistage resource allocation problems 56

6.1 Formulation 57

6.2 Our algorithmic strategy 59

6.3 Single commodity problems 65

6.4 Multicommodity problems 66

6.5 The problem of travel times 69

7 Some experimental results 71

7.1 Experimental results for two-stage problems 72

7.2 Experimental results for multistage problems 73

8 A list of extensions 77

9 Implementing stochastic programming models in the real world 78

10 Bibliographic notes 80

ii

1 Introduction

Operational models of problems in transportation and logistics offer a ripe set of applica-
tions for stochastic programming since they are typically characterized by highly dynamic
information processes. In freight transportation, it is the norm to call a carrier the day
before, or sometimes the same day, to request that a shipment be moved. In truckload
trucking, last minute phone calls are combined with requests that can be made a few days
in advance, putting carriers in the position of committing to move loads without knowing
the last minute demands that will be made of them (sometimes by their most important
customers). In railroads, requests to move freight might be made a week in the future, but
it can take a week to move a freight car to a customer. The effect is the same.

The goal of this chapter is to provide some examples of problems, drawn from the arena
of freight transportation, that appear to provide a natural application of stochastic pro-
gramming. Optimization models in transportation and logistics, as they are applied in
practice, are almost always formulated based on deterministic models. Our intent is to
show where deterministic models can exhibit fundamental weaknesses, not from the per-
spective of academic theory, but in terms of practical limitations as perceived by people
in industry. At the same time, we want to use the richness of real problems to raise issues
that may not have been addressed by the stochastic programming community. We want
to highlight what works, what does not, and where there are rich areas for new research.

We do not make any effort to provide a comprehensive treatment of stochastic optimiza-
tion problems in transportation and logistics. First, we consider only problems in freight
transportation (for the uninitiated, “transportation and logistics” refers to the operational
problems surrounding the movement of goods). These problems are inherently discrete,
giving rise to stochastic, integer programming problems, but we focus on problems where
linear programming formulations represent a good starting point. We completely avoid the
general area of stochastic vehicle routing or the types of batch processes that often arise
in the movement of smaller shipments, and focus instead on problems that can be broadly
described as dynamic resource allocation problems.

Our presentation begins in section 2 with an overview of different classes of applications.
This section provides a summary of the different types of uncertainty that arise, and ad-
dresses the fundamental question of why stochastic programming is a promising technology
for freight transportation. Section 3 provides a general modeling framework that represents
a bridge between linear programming formulations and a representation that more explic-
itly captures the dimensions of transportation applications. In section 4 we present a case
study based on the distribution of freight cars for a railroad. This case study provides us
with a problem context where dynamic information processes play an important role. We

1

use this case study in the remainder of the chapter to keep our discussions grounded in
the context of a real application.

We approach the stochastic modeling of our freight car problem in two steps. First, we
discuss in section 5 the basic two-stage resource allocation problem. This problem is partic-
ularly relevant to the car distribution problem. The characteristics of the car distribution
problem nicely illustrate different types of recourse strategies that can arise in practice.
Specialized strategies give way to approximations which exploit the underlying network
structure. For the most general case (network recourse) we briefly review a broad range
of stochastic programming strategies, focusing on their ability to handle the stucture of
transportation problems.

Section 6 addresses multistage problems. Our approach toward multistage problems is that
they can and should be solved as sequences of two-stage problems. As a result, we solve
multistage problems by building on the theory of two-stage problems.

Transportation problems offer far more richness than can be covered in a single chapter.
Section 8 provides a hint of the topics that we do not attempt to cover. We close with
section 9 that discusses some of the challenges of actually implementing stochastic models
in an operational setting.

2 Applications and issues

It is important to have in mind a set of real problems that arise in transportation and
logistics. We begin our discussion of applications by listing some sample problems that
arise in practice, and then use these problems a) to discuss sources of uncertainty, b) to
raise special modeling problems that arise in transportation applications, and finally c) to
highlight, from a practical perspective, the limitations of deterministic models and how
stochastic programming can improve the quality of our models from a practical perspective.

2.1 Some sample problems

Transportation, fundamentally, is the business of moving things so that they are more
useful. If there is a resource at a location i, it may be more useful at another location j.
Within this simple framework, there is a tremendous variety of problems that pose special
modeling and algorithmic issues. Below is a short list of problems that helps to highlight
some of the modeling issues that we will have to grapple with.

2

1) Product distribution - Perhaps one of the oldest and most practical problems is the
determination of how much product to ship from a plant to intermediate warehouses
before finally shipping to the retailer (or customer). The decision of how much and where
to ship and where must be made before we know the customer demand. There are a
number of important variations of this problem, including:

a) Separability of the distribution process - It is often the case that each customer will
be served by a unique warehouse, but substitution among warehouses may be allowed.

b) Multiple product types with substitution - A company may make multiple product
types (for example, different types of salty food snacks) for a market that is willing
to purchase different products when one is sold out. For the basic single period dis-
tribution problem, substitution between products at different locations is the same as
substitution across different types of products, as long as the substitution cost is known
(when the cost is a transportation cost, this is known, whereas when it represents the
cost of substituting for different product types, it is usually unknown).

c) Demand backlogging - In multiperiod problems, if demand is not satisfied in one time
period, we may assume the demand is lost or backlogged to the next time period. We
might add that the same issue arises in the product being managed; highly perishable
products vanish if not used at a point in time, whereas nonperishable products stay
around.

2) Container management - Often referred to as fleet management in the literature, “con-
tainers” represent boxes of various forms that hold freight. These might be trailers,
boxcars, or the intermodal containers that are used to move goods across the oceans
(and then by truck and rail to inland customers). Containers represent a reusable re-
source where the act of satisfying a customer demand (moving freight from i to j) also
has the effect of changing the state of the system (the container is moved from i and j).
The customer demand vanishes from the system, but the container does not. Important
problem variations include:

a) Single commodity problems - These arise when all the containers are the same, or
when there are different container types with no substitution between different types
of demands. When there is no substitution, the problem decomposes into a series of
single commodity problems for each product type.

b) Multicommodity problems - There may be different container types, and the customers
may be willing to substitute between them. For example, they may accept a bigger
container, or be willing to move their dry goods in a refrigerated trailer (although no
refrigeration is necessary).

c) Time windows and demand backlogging - The most common model represents cus-
tomer demands at a point in time, where they are lost if they are not served at that
point in time. In practice, it is usually the case that customer orders can be delayed.

d) Transshipment and relay points - The simplest models represent a demand as the need
to move from i to j, and where the movement is represented as a single decision. More

3

complex operations have to model transportation legs (ocean or rail movements) with
relays or transshipment points (ports, rail yards) where the containers move from one
mode to the next. A major element of complexity is when capacity constraints are
imposed on the transportation legs.

3) Managing complex equipment - The major railroads in North America need to manage
fleets of several thousand locomotives. The air mobility command has to move freight
and people on a global scale using different types of aircraft. Recently formed companies
service a high end market with personal jet service using jets in which the customers own
a fraction. These problems have been modeled in the past using the same framework as
container management problems with multiple container types. These complex pieces of
equipment require something more. For example, there are four major classes of locomo-
tive, reflecting whether they are high or low “adhesion” (a technology that determines
the slippage of the wheels on a rail), and whether they are four axle or six axle units (six
axle locomotives are more powerful). On closer inspection, we find that the horsepower
rating of a locomotive can be divided into 10 or 12 reasonable divisions. It matters if
the locomotive has its home shop in Chicago, Atlanta or southern California. Since lo-
comotives may move from the tracks of one railroad to another, it matters who owns the
locomotive. And it matters if the locomotive is due into the shop in 1, 2, . . . , 10 days,
or more than 10 days. In short, complex equipment is complex, and does not lend itself
easily to a multicommodity formulation. As we show later, this characteristic determines
whether the size of the attribute space of a resource is small enough to enumerate the
entire space, or too large to enumerate.

4) People and crews - Trucks, trains and planes move because people operate them. Not
surprisingly, the modeling of the people is not only important, but requires a set of
attributes that makes complex equipment look simple. A truck driver, for example,
might be characterized by his current location, his home base, his skill level, whether he
has experience driving into Mexico or Canada, how many hours he has driven in the last
eight days, how many consecutive hours he has been “on duty” today, and how many
hours he has been actively driving during his current duty period. Production systems
have to cover these and many other issues.

These problems are all examples of resource allocation problems where, with few excep-
tions, a single “resource” serves a single “demand.” “Bundling” arises when, for example,
you need several locomotives to pull a single train, or two drivers (a sleeper team) to
operate a single truck. “Layering” arises when you need an aircraft, a pilot, fuel and spe-
cial loading equipment to move a load from one airbase to another. In some cases, the
resource/task dichotomy breaks down. For example, we may be managing locomotives,
crews and boxcars. The boxcar needs to go from A to B. We need the crew to move the
train, but the crew needs to get back to its home domicile at C. And the locomotive needs

4

to get to shop at D. We would refer to the locomotives, crew and boxcars as three resource
layers, since the locomotives, crew and boxcars are all needed to move the train. In fact,
for more complex problems, we refer to the objects being managed as resource layers (or
sometimes, resource classes), where one layer is almost always one that would be referred
to as a customer, or job, or task.

2.2 Sources of uncertainty

Uncertainty arises whenever we need to make a decision based on information that is not
fully known. We are aware of three scenarios under which this can arise:

1) The information is not yet known, but will become known at some point in the future.
This is the standard model of uncertainty.

2) Information is known to someone (or something), but is not known to the decision-
maker. We would generally say that this information is knowable but for various reasons
(most commonly, it is simply too expensive) has not been properly communicated to
where the information is needed for a decision.

3) The information will never be known (optimization under incomplete information). For
any of a variety of economic or technical reasons, an unknown variable is never measured,
even though it would help improve decisions. Since the information is never known, we
are not able to develop a probability distribution for it.

Cases (2) and (3) above both represent instances where decisions have to be made without
information, but we assume that case (3) represents information that never becomes known
explicitly, whereas (2) represents the case where someone knows the information, raising
the possibility that the information could be shared (at a cost) or at a minimum, where a
probability distribution might be constructed after the fact and shared with others.

Classical uncertainty arises because information arrives over time. It is possible to di-
vide the different types of dynamic information processes into three basic classes: the “re-
sources” being managed (including customer demands), the physical processes that govern
the evolution of the system over time, and the decisions that are actually implemented to
drive the system. This division reflects our modeling framework, presented in section 3.
Since the focus of this volume is on modeling uncertainty, it is useful to give each of these
at least a brief discussion.

Resources:
Under the heading of “resources” we include all the information classes that we are actively
managing. More formally, these are “endogenously controllable information classes which
constrain the system,” a definition that includes not just the trucks, trains and planes that

5

we normally think of as resources, but also the customer orders that these resources are
normally serving). Dynamic information processes for resources may include:

a) Information about new (exogenous) arrivals to the system - This normally includes the
arrival of customer orders, but may also include the arrivals of the product, equipment
or people required to satisfy the customer order. For example, a trucking company is
constantly hiring new drivers (there is a lot of turnover) so the arrival of new drivers to
the fleet is a dynamic information process. Similarly, a railroad has to manage boxcars,
and the process of boxcars becoming empty turns out to be a highly stochastic process
(far more uncertain than the customer orders).

b) Information about resources leaving the system - Drivers may quit, locomotives may
be retired from service, product can perish. The challenge of modeling departures is
that they depend on the state of the system, whereas exogenous arrivals are normally
modeled as being independent of the state of the system.

c) Information about the state of a resource - An aircraft may break down or a driver may
call in sick.

An important dimension of the modeling of resources is the concept of knowability and
actionability. It is not uncommon for a customer to call in and book an order in advance.
Thus, the order becomes known right now (time t) but actionable when it actually arrives
to the system at some point in the future (at time t′ ≥ t). Most stochastic models implicitly
assume that a customer demand is not known until it actually arrives. By contrast, most
deterministic models assume that we know all orders in advance (or more precisely, that we
do not want to make a decision taking into account any order that is not already known).
In practice, both extremes arise, as well as the case of prebooking where customers call at
least some of their orders in advance.

Processes:
Under this category, we include information about parameters that govern the evolution
of the system over time. The most important classes include:

a) The time required to complete a decision - In most areas of transportation, travel times
are random, and sometimes highly so (although applications vary in the degree to which
random arrival times actually matter). In air traffic control problems, planes may land
at two minute intervals. Flights of several hours can easily vary in duration by 10 or
20 minutes, so they have to maintain a short backlog of flights to ensure that there is
always an aircraft available to land when the runway has the capacity to handle another
arrival. In railroads, it is not unusual for the travel time between two points to take
anywhere from five to eight days.

b) The cost of a decision - This is often the least uncertain parameter, but there are a
number of reasons why we might not know the cost of a decision until after the fact. Costs

6

which are typically not fully known in advance include tolls, transportation accidents,
and processing costs that are not always easy to allocate to a particular activity. Even
more uncertain is the revenue that might be received from satisfying a customer which
might arise as a result of complex accounting procedures.

c) Parameters that determine the attributes of a resource after a decision - Examples
might include the fuel consumption of an aircraft or locomotive (which determines the
fuel level), or the maintenance status of the equipment at the end of a trip.

Controls:
In real problems, there is a difference between the decisions that we are planning to make,
and the decisions that are actually made. The flow of actual decisions is an important
exogenous information process. There are several reasons why an actual physical system
does not evolve as planned:

1) The decisions made by a model are not as detailed as what is actually needed in opera-
tions. The user has to take a plan developed by the model and convert it into something
implementable.

2) The user has information not available to the model.
3) The user simply prefers to use a different problem solving approach (possibly suboptimal,

but this assumes the solution provided by the model is in some way optimal).

When there is a difference between what a model recommends and the decisions that are
actually made, we encounter an instance of the user noncompliance problem. This is a
source of uncertainty that is often overlooked.

2.3 Special modeling issues in transportation

Transportation problems introduce an array of issues that provide special modeling and
algorithmic challenges. These include:

a) Time staging of information - In freight transportation, information arrives over time.
This is the heart of any stochastic model.

b) The lagging of information - Often, a customer will call at time t to place an order to be
served at time t′ > t. The same lagging of information may apply to the vehicles used to
serve customers. Since we have information about the future, it is tempting to assume
that we can make plans about the future, even before new information becomes known.

c) Complex resource attributes - It is often assumed that the number of different types of
resources is “not too large.” The number of resource types determines the number of
constraints. In practice, the attributes of resources can be surprisingly complex, creating
problems where the number of constraints can number in the millions. This is a challenge

7

even for deterministic models, but poses special difficulties in the context of stochastic
problems.

d) Integrality - Many transportation problems exhibit network structure that makes it
much easier to obtain integer or near-integer solutions. This structure can be easily
destroyed when uncertainty is introduced.

e) Travel times - The common behavior in transportation problems that it takes time to
move from one location to the next is generally a minor issue in deterministic models.
In stochastic models, it can introduce major complications. If the travel times are deter-
ministic, the result can be a dramatic growth in the size of the state space. However, it
is often the case that travel times not only are stochastic, they are not even measurable
when the trip is initiated.

f) Multi-agent control - Large transportation systems might be controlled by different
agents who control specific dimensions of the system. The decisions of other agents can
appear as random variables to a particular agent.

g) Implementation - What we plan may not be the same as what actually happens. An
overlooked source of uncertainty is the difference between planned and executed deci-
sions.

2.4 Why do we need stochastic programming?

There are two types of modeling technologies that are widely used in practice: simulation
models, which are used almost entirely for planning purposes where there is a need to
understand the behavior of a system that evolves over time, and deterministic optimization
models and algorithms, when there is a need for the computer to recommend what action
should be taken. Stochastic programming brings the modeling of uncertainty explicitly
into the process of making a decision (using an optimization algorithm). But, there is
a large community of both academic researchers and consultants who feel that they are
being quite productive with the algorithms that they are developing based on deterministic
models.

There is a broad perception, in both the academic research community and in engineering
practice, that deterministic optimization algorithms are “good enough.” In part this can
be attributed to both the mathematical maturity that has been required to understand
stochastic models, and the lack of practical, problem-solving tools. But equally important,
we need to understand the ways in which stochastic models can provide solutions that
are not just better, but noticeably better in a way that would attract the attention of
industry. An understanding of these issues will also indicate where stochastic models are
not necessarily appropriate. A partial list of motivations for stochastic models should
include:

8

1) The newsvendor effect - Providing the right amount of resource to meet demand given
the uncertainty in demand and the relative costs of providing too much or too little. A
deterministic model will never allocate more than the point forecast, even when there
are excess resources. Stochastic models can overallocate or underallocate depending on
the overall availability of resources to meet forecasted demands.

2) Robust allocation - We might need the container in city A or city C, but we are not
sure, so we send the truck halfway in between to city B where it can wait and respond
to the demand at the last minute. A deterministic model will never send capacity to a
location that does not need it.

3) The value of advance information - Stochastic models can explicit model the staging
of information over time. A carrier might want to know the value of having customers
book orders farther in advance. A proper analysis of this question needs to consider the
value of reducing the uncertainty in a forecast.

4) Forecasts of discrete items - Sometimes it is necessary to forecast low volume demands;
for example, orders might be 1 with probability 0.20 and 0 with probability 0.80. A
point forecast would produce a demand of 0.20, but a routing and scheduling model is
unable to assign 0.20 trucks to the order (the algorithm routes a single truck). Integer
rounding amounts to little more than Monte Carlo sampling (simple rounding produces
biases - it is necessary to round based on a random sample whose expectation is the
same).

5) The algorithmic challenge of solving problems over extended planning horizons - Clas-
sical optimization algorithms struggle with optimization problems defined over long
horizons, typically as a result of degeneracy. Formulations based on a stochastic “view”
of the world produces time-staged problems that are much easier to solve. Sequences of
two-stage problems are much easier to solve than a single, large integer program.

6) Overoptimizing problems with imperfect data - A deterministic view of the world can
produce problems that are larger and more complex than necessary. An appreciation of
uncertainty, not only of the future but also of the “here and now” data (which in practice
is a major form of uncertainty) produces models that are smaller and more compact.

3 Modeling framework

The first chapter of this handbook provides a basic mathematical framework for multi-
stage stochastic programming problems. The problem with these abstract formulations is
spanning the gap between generic mathematical formulations and real problems. In this
section, we offer a notational framework that helps to bridge the gap between real-world
dynamic resource allocation problems, and the basic framework of math programming in
general, and stochastic programming in particular.

9

We divide our modeling framework between three fundamental dimensions: the resources
being managed, the processes that govern the dynamics of the system, and the structure
and organization of controls which manage the system. Our presentation is not the most
general, but allows us to focus on the dimensions that are important for modeling the
organization and flow of information.

3.1 Resources

To help formalize the discussion, we offer the following definition:

Definition 1 A resource is an endogenously controllable information class that constrains
the system.

From a math programming perspective, a resource is anything that shows up as a right
hand side of a constraint (no surprise that these are often referred to as “resource con-
straints”). For transportation, resources include trucks, trains, planes, boxcars, containers,
drivers/crews, and special equipment that may be needed to complete a trip. Sometimes,
but not always, the “demands” being served also meet this definition. For example, the
load of freight that we are moving from one location to the next is both endogenously
controllable (we often have to determine when to move the load, and sometimes how it is
routed) and it constrains the system.

We describe resources using the following:

CR = The set of resource classes (e.g. tractors, trailers, drivers, freight).
Rc = The set of (discrete) resources in class c ∈ CR.
ar = The attributes of resource r ∈ Rc, c ∈ CR.
Ac = The space of attributes for resource class c ∈ CR, with element ac ∈ Ac. We often use

A to represent the attribute space of a generic resource.

The attribute vector is a very flexible device for describing the characteristics of a resource.
In truckload trucking, it might be the case that all trucks are the same, in which case the
attribute vector consists only of the location of the truck. In rail car distribution, the
attribute vector can be the type of car as well as the location. If the resource is a human
operator, the vector can grow to include attributes such as the home domicile, days away
from home, hours of service, and skill sets.

The definition of the attribute space requires an understanding of how a resource evolves
over time, and in particular the flow of information. For example, an air cargo carrier
working for the military airlift command might have to move a load of cargo from the

10

eastern United States to southeast Asia. This trip might require midair refueling, as well
as stops at several intermediate airbases. Is it necessary to represent the aircraft at each of
these intermediate points, or is it enough to assign the aircraft to move a load, and then
model its status at the destination? The answer depends on the evolution of information
and decisions. For example, if we can completely model all the steps of a trip using the
information available when the aircraft first takes off from the origin, then there is no
need to model the intermediate points. But we might wish to model the possibility of a
failure in the midair refueling, or the failure of the aircraft itself at any of the intermediate
airbases. Both of these represent examples of new information arriving to the system,
which requires modeling the status of the aircraft just before the new information arrives.
The new information may produce new decisions (we may wish to reroute the aircraft) or
a change in the dynamics (the aircraft may be unexpectedly delayed at an airbase).

The need to model our aircraft at intermediate points raises a new and even more complex
issue. An aircraft that is fully loaded with freight takes on the characteristics of a layered
(or composite) resource. That is, we have not only the characteristics of the aircraft, but
also the characteristics of the freight on the aircraft. This sort of layering arises frequently
in transportation operations. Another example arises in the management of locomotives.
A locomotive may be sitting idle at a rail yard, or it may be attached to an inbound train
(which is making an intermediate stop). If the locomotive is attached to an inbound train,
then we have not only the attributes of the locomotive, but also of the train itself (such
as its final destination).

We handle this behavior by defining layered attribute vectors. For example, let:

aA = The attributes of an aircraft.
aR = The attributes of a load of freight being moved (known as requirements).
aC = The attributes of the crew piloting the aircraft.

When an aircraft is loaded and making a set of stops, then the attributes of the composite
resource at the intermediate stops would be represented using:

a(A) = The attributes of the aircraft layer.
= aA|aR|aC , where aA, aR and aC are the attributes of the primitive aircraft, requirement

and crew resources.

A layer is a concatenation of attributes. An aircraft which is currently sitting idle (a
primitive resource) would have the attribute a(A) = aA|aφ|aφ.

In more complex problems, we may encounter three, four or even five layers. For these
problems, we have to define in advance how resources may be combined.

11

Regardless of our problem class, we let:

Rt,a = The number of resources with attribute a ∈ A at time t.
Rt = (Rt,a)a∈A.

One issue that often arises in transportation is the concept of knowability and actionability.
We may know of a resource r with attribute ar at time t which is not actionable until some
time t′ > t. This can arise when a customer calls in an order in advance, or when a plane
takes off from airport i at time t but will not arrive at airport j until time t′. Actionability
can arise as an “estimated time of arrival,” an order pickup time, or the time when a task
(such as maintenance) will be finished. Actionability can be viewed as being simply an
attribute of a resource, and therefore part of the vector a. But often, the actionable time
is sufficiently important that it needs to be represented explicitly. In this case, we write:

Rt,at′ = Number of resources that we know about with attribute a at time t that will not be
actionable until time t′ ≥ t.

Rtt′ = (Rt,at′)a∈A.
Rt = (Rtt′)t′≥t.

Thus, we can continue to use the vector Rt as our general state vector, recognizing that it
may be divided into elements Rtt′ .

This discussion illustrates a division in the operations research community on the meaning
of a time index. Deterministic models of time-staged processes always use time to refer
to when an action will happen (“actionability”). Stochastic models almost always use
time to refer to the information content of a variable (“knowability” or, in formal terms,
“measurability”). In general problems, it is necessary to use both, but this can sometimes
be clumsy. We use the double time index (t, t′) when we want to explicitly refer to the
information content of a variable (“t”), and when an activity actually takes place (“t′”).
Whenver we use a single time index, such as Rt, we will always intend the time index to
refer to the information content.

3.2 Processes

A dynamic process evolves because of two types of information processes: exogeneous
information processes, that arrive as a series of events which update the state of the
system, and endogenous information processes, otherwise known as decisions. Following
the conventions described in the first chapter of this volume, we let:

ξt = The information arriving in time period t. ξ can represent new information about

12

customer demands, new equipment entering the system, equipment breakdowns, and
travel delays.

ξ = (ξt)t∈T .
= The information process over the model horizon represented by the set of time periods
T .

In general, new information arriving from external sources is captured in a knowledge base
which summarizes all the information known at time t. Following standard convention, we
let Ft be the σ−algebra generated by the vector (ξ0, . . . , ξt).

The standard representation of information in real problems does not always follow stan-
dard assumptions. To illustrate, let:

Kt = Our (data) knowledge base at time t.
UK = The knowledge updating function which updates Kt−1 using new information ξt.

We would representing our updating process as:

Kt←UK(Kt−1, ξt)

Realizing that Ft−1 ⊆ Ft, one would expect that σ(Kt) (the σ−algebra generated by
the random variable Kt) would satisfy σ(Kt−1) ⊆ σ(Kt). This assumes that computer
databases do not “forget” information. But this is not always the case. It is not our
intent to raise this as a serious issue, but just as a reminder to the reader that standard
mathematical assumptions do not always apply to the real world.

For our problems, we can typically divide new information into two classes: the arrivals of
new resources (including new customer demands, as well as new equipment or new drivers),
and information about model parameters (such as costs and times). This distinction is
important in our problem representation, so we define:

ρ̂t = Updates to model parameters arriving in time period t.
R̂tt′ = The vector of new resources arriving in time period t that become actionable at time

t′ ≥ t.
R̂t = (R̂tt′)t′≥t.

Thus, we would write ξt = (ρ̂t, R̂t) with sample realization ωt = ξt(ω) = (ρ̂t(ω), R̂t(ω)).

We represent decisions using:

CD = The set of decision classes (move empty, move loaded, refuel, maintain the equipment,
have a driver go on rest, etc.)

13

Dc = The set of discrete decisions in decision class c ∈ CD.
D = ∪c∈CDDc

We use D to refer to the complete set of decisions. In most transportation applications, it
is useful to capture the fact that the set of decisions also depends on the attribute of the
resource being acted on. For this purpose we define:

Da = The set of decisions that can be used to act on a resource with attribute a ∈ A.

For the purposes of our presentation, we consider only direct decisions that act on the
attributes of a resource (this would exclude, for example, decisions about pricing or what
speed to fly an aircraft). For transportation problems, if d ∈ D is an instance of a deci-
sion, then the impact of the decision is captured through the modify function, which is a
mapping:

M(Kt, a, d)→ (a′, c, τ) (1)

where d is a decision acting on a (possibly layered) resource with attribute a at time t,
producing a resource with attribute a′, generating a contribution c and requiring time τ to
complete the action. a′, c and τ are all functions, which we can represent using the triplet
(aM(t, a, d), cM(t, a, d), τM(t, a, d)) (for notational compactness, we index these functions
by time t instead of modeling the explicit dependence on Kt). We call aM(t, a, d) the
terminal attribute function. Normally, we represent the costs and times using the vectors
ctad = cM(t, a, d) and τtad = τM(t, a, d). We note as an aside that while we will usually
model (aM(t, a, d), cM(t, a, d), τM(t, a, d)) as Ft−measurable, this is certainly not always
the case. For example, section 4 describes an application in rail car distribution. In this
application, empty freight cars are moved to customers to move loads of freight. The
destination of a load is typically not known until the car is released loaded back to the
railroad. The travel time of the movement is not known until the car actually reaches the
destination.

The set D is the set of types of decisions we make. The decision vector itself is represented
using:

xtad = The number of times that we act on a resource with attribute a using decision d at
time t.

xt = (xtad)a∈A,d∈D.
= The vector of decisions at time t.

Letting ct similarly represent the vector of contributions at time t provides for a compact
representation that matches standard modeling notation. Most transportation costs are

14

linear in the decision variables, and as a result, the total contribution at time t can be
written as:

Ct(xt) =
∑
a∈A

∑
d∈D

ctadxtad

= ctxt

It is important to realize that our notation for stochastic problems is different in a subtle
but important way than the notation conventionally used in deterministic transporation
models. For example, it is normal to let xijt be the flow from location i to location j
departing at time t. The index j effectively presumes a deterministic outcome of the
decision (the notation xijt(ω) does not fix the problem; we would have to write xi,j(ω),t

which is quite ugly). We might not question the outcome of a decision to send a truck or
plane from i to j (frequent fliers will remember at least one occasion when the plane did
not arrive at the proper destination as a result of weather problems). But in more complex
problems where we are capturing a larger vector of attributes, the terminal attribute
function aM(t, a, d) cannot in general be assumed to be a deterministic function of (t, a, d).
The representation of a decision using xtad is important for stochastic problems since the
variable is indexed only by information available when the decision is made.

For algebraic purposes, it is useful to define:

δt′,a′(t, a, d) = Change in the system at time t′ given a decision executed at time t.

=

 1 if Mt(t, a, d) = (a′, ·, t′ − t)

0 otherwise

We note that if d represents a decision to couple two resources, then a is the attributes of
the resource, d contains the information about the resource being coupled with, and a′ is
the concatenation of two attribute vectors.

Using this notation, we can now write the dynamics of our resource variable (incorporating
the time-lagging of information):

Rt+1,a′t′ =Rt,a′t′ + R̂t+1,a′t′(ω) +
∑
d∈D

∑
a∈A

δt′,a′(t, a, d)xtad a′ ∈ A, t′ > t (2)

15

3.3 Controls

It is common in transportation problems to focus on decisions that move resources from
one location to the next. While this is the most obvious dimension, it is important to
capture other types of decisions.

Our notation for representing decisions offers considerable flexibility. It is a common mis-
conception in the modeling of transportation systems that decisions always represent move-
ments from one location to another. Examples of different classes of decisions other than
spatial movements include: cleaning dirty vehicles, repairing or maintaining equipment,
sending a driver off-duty, using outside contractors to perform a task, transferring rail
cars from one shipper pool to another (this is a form of classification, and does not mean
moving from one location to another), buying/selling/leasing equipment, and hiring/firing
drivers.

In deterministic problems, decisions are made by solving a particular instance of an opti-
mization problem. In stochastic problems, we have to capture the time staging of decisions
and information. We represent the process of making decisions at time t using:

It = The set of information available for making a decision.
Xπ

t (It) = The decision function of policy π ∈ Π which returns a vector xt given the information
set It.

In section 3.6, we describe different classes of information, and the types of decision func-
tions these produce.

For our problems, the decision function will be some sort of mathematical program, since
the decisions typically are vectors, possibly of fairly high dimensionality. Later we pro-
vide specific examples of decision functions, but for now, we simply assume that they
produce feasible solutions. The most important constraint that must be satisfied is flow
conservation:

∑
d∈D

xtad =Rta ∀a ∈ A

In addition, the flows must be nonnegative and, in many applications (virtually all involv-
ing operational problems in transportation) integer.

16

3.4 Modeling state variables

It is useful at this point to make a brief comment about “state variables,” since these take
on different meanings in different communities. In our modeling framework, the attribute
vector a captures the “state” of a particular resource. Rt = (Rta)a∈A is the “state” of the
vector of resources. It (which we have not completely defined) is the “information state” of
the system. In some subcommunities (notably, people who solve crew scheduling problems
using column generation techniques), the management of multiple resources is decomposed
into subproblems involving the optimization of a single resource. In this context, someone
might talk about a large “state space” but refer to the attribute space of a single resource.

It is very common in the operations research literature (most commonly in the context
of dynamic programming and Markov decision processes) to talk about the “state” of
the system, where the state variable captures the amount of product being stored or the
customer demands that have been backlogged. In this setting, the “state” of the system
refers to the resource state variable, Rt. Even recently, discrete dynamic programming
models have been proposed using Rt as the state variable. Not surprisingly, the number of
possible realizations of Rt (assuming it is discrete) will be huge even for toy problems.

Of course, the real state variable must be what we know or, literally, the state of our
knowledge, which we denote by Kt. Other authors refer to this as the information state.
We let It be the information state, but claim that there are potentially four classes of
information:

a) Knowledge - This is the data in the vector Kt, capturing the exogenous data that has
been provided to the system.

b) Forecasts of exogenous processes - This is information from a forecasting model, rep-
resenting projects of what might happen in the future. If we are making a decision at
time t, this would be a projection of (ξ̂t+1, ξ̂t+2, . . . , ξ̂T). We may use a point forecast
of future events, or forecast a set of future scenarios which would be represented using
the set Ω̂t (the set of future events forecasted at time t). If |Ω̂| = 1, then we are using a
traditional point forecast.

c) Forecasts of the impact of decisions now on the future. In this chapter, this dimension
will be captured through the recourse function and hence we denote the set of possible
recourse functions, estimated at time t (but capturing the impact on the future) by Qt.

d) Plans - These are projections of decisions to be made in the future, which can be ex-
pressed in a variety of ways (it is useful to think of these as forecasts of future decisions).
A convenient way is to represent them as a vector of decisions xp

t = (xp
tt′)t′≥t, where xp

tt′

is the plan for time t′ using the information available at time t. We note that plans are
almost always expressed at some level of aggregation. Normally, we use plans as a guide

17

and penalize deviations from a plan.

The last three classes of information are all forms of forecasts. We assume that these are
generated from data that is a function of Kt. However, while a forecast is generated from
knowledge, they do not represent knowledge itself. All companies seek to improve decision-
making by improving the knowledge base Kt, but they also consider the value of including
forecasts (many transportation companies do not perform short term operational forecasts,
and most research into problems such as dynamic vehicle routing does not use forecasts)
or future plans. Companies make explicit decisions to add these classes of information to
their decision making process (and adjust the process accordingly).

Using this definition of information, the information state can come in a variety of forms,
such as It = (Kt), It = (Kt, Ω̂t), It = (Kt, x

p
t) and It = (Kt, Qt). Later we show that

different classes of information give rise to the major classes of algorithms known in the
operations research community. For the moment, it is necessary only to understand the
different ways of representing the “state” of the system. Our notation contrasts with the
standard notation St for a state variable. The problem is that St is not very explicit about
what is comprising the state variable. We suggest using St when we want to refer to a
generic “state,” and use a, Rt, Kt or It when we want to express explicit dependence
on, respectively, the attribute of a single resource, the resource state vector, the entire
knowledge base, or a broader information set.

Using these notions of state variables, it is useful to revisit how we write our cost and
decision functions. The representation of costs and decisions using the notation ctad and
xtad suggests that both the costs and decisions are a function only of the attribute vector of
the resource, although this does not have to be the case. We may write the decision function
as Xπ(Rt) if all other types of information are static. The reader may write Xπ(Kt) to
express the explicit dependence on the larger knowledge base, but this generality should
be reserved for problems where there are parameters which are evolving over time, and
whose values affect the forward evolution of the system.

3.5 The optimization problem

Our problem is to find a decision function Xπ that solves the following expression:

F ∗ = supπ∈ΠEF
π (3)

= supπ∈ΠE

{∑
t∈T

Ct(X
π
t (It))

}
(4)

18

The system has to respect the following equations governing the physical and information
dynamics:

Physical dynamics:

Rt+1,a′t′(ω) =Rt,a′t′(ω) + R̂t+1,a′t′(ω) +
∑
d∈D

∑
a∈A

δt′,a′(t, a, d)xtad a′ ∈ A, t′ > t (5)

Informational dynamics:

Kt+1 =UK(Kt, ξt+1) (6)

The decision function Xπ
t is assumed to produce a feasible decision. For this reason, flow

conservation constraints and upper bounds are not included in this formulation.

The optimization problem is one of choosing a function. The structure of the decision
function depends on the information available. Within an information class, a decision
function is typically characterized by a family of parameters and we have to choose the
best value for these parameters.

3.6 A brief taxonomy of problems

Using our modeling framework, we can provide a brief taxonomy of major problem classes
that arise in transportation. We divide our taxonomy along the three major dimensions of
resources, processes and controls.

Resources

By just using the attribute vector a notation, we can describe six major problem classes
in terms of the resources being managed:

1) Basic inventory problems - a = {} (no attributes). This is the classical single product
inventory problem.

2) Multiproduct inventory problems - a = {k} where k ∈ K is a product type.
3) Single commodity flow problems - a = {i} where i ∈ I is a state variable (such as a city

or geographical location).
4) Multicommodity flow problems - a = {i, k} where i ∈ I is a state variable (such as a

location) and k ∈ K is a commodity class.
5) Heterogeneous resource allocation problem - a = {a1, a2, . . . , aN}. In these more complex

problems, it is possible to divide the attribute vector into static attributes, as, which do

19

not change over time, and dynamic attributes, ad, which do change. Writing a = {as, ad},
we can think of ad as a resource state variable, and as as a resource type variable.

6) The multilayered resource allocation problem - a = {a1|a2| · · · |aL} where ac is the
attributes of resource class c. Here, a is a concatenation of attribute vectors.

Although the sixth class opens the door to multilayered problems, it is useful to divide
resource allocations between single layer problems, two layer problems (which most often
involve an active resource layer representing people or equipment, and a passive layer
representing customer requests), and multilayer problems.

We focus on single layer problems in this chapter, which include the first five types of
attribute vectors. Of these, the first four are typically characterized by small attribute
spaces, where it is possible to enumerate all the elements inA, while heterogeneous resource
allocation problems are typically characterized by an attribute space that is too large to
enumerate. As we point out later, this creates special problems in the context of stochastic
resource allocation problems.

System dynamics

Under the heading of system dynamics, we divide problems along three major dimensions:

1) The time staging of information - The two major problem classes are:
a) Two-stage problems.
b) Multistage problems.

2) Travel times (or more general, decision completion times). We define two major classes:
a) Single-period times - τtad = 1 for all a ∈ A, d ∈ D.
b) Multiperiod times - 1 ≤ τtad ≤ τmax. We assume that τtad ≥ 1 but we can relax this

requirement and model problems where τtad = 0.
3) Measurability of the modify function. We again define two major classes:

a) The function M(t, a, d) is Ft−measurable. This means that (aM(t, a, d), cM(t, a, d),
τM(t, a, d)) is deterministic given a, d and other parameters that are known at time
period t.

b) The function M(t, a, d) is not Ft−measurable. This is common, although we are not
aware of any research addressing this issue.

Controls

We first divide problems into two broad classes based on control structure:

1) Single agent control structure - The entire company is modeled as being controlled by
a single agent.

2) Multiagent control structure - We model the division of control between multiple agents.

20

Starting with the single agent control structure, we can organize problems based on the
information available to make a decision. Earlier, we described four classes of information.
We can now describe four classes of algorithms built around these information sets:

a) It = (Kt) - This is our classic myopic algorithm, widely used in simulations. This is
also the standard formulation used (both in practice and in the research community)
for dynamic vehicle routing problems, and other on-line scheduling problems.

b) It = (Kt, Ω̂t) - If |Ω̂t| = 1, this is our classical rolling horizon procedure using a point
forecast of the future. This represents standard engineering practice for fleet management
problems and other dynamic resource allocation problems. If |Ω̂t| > 1, then we would
obtain a scenario-based stochastic programming model. The use of these formulations
for multistage problems in transportation and logistics is very limited.

c) It = (Kt, x
p
t) - Here we are making decisions reflecting what we know now, but using

plans to help guide decisions. This information set typically gives rise to proximal point
algorithms, where the proximal point term penalizes deviations from plan.

d) It = (Kt, Qt) - This information set gives rise to dynamic programming formulations,
Bender’s decomposition and other methods for approximating the future. Typically, the
recourse function Qt is itself a function of a distributional forecast Ω̂t, so it is appropriate
to write Qt(Ω̂t) to express this dependence.

This breakdown of different types of decision functions, each based on different types of
information, nicely distinguishes engineering practice (It = (Kt) or It = (Kt, Ω̂t) with
|Ω̂| = 1) from the stochastic programming literature (It = (Kt, Ω̂t) with |Ω̂| > 1 or
It = (Kt, Qt)). The use of proximal point algorithms has been studied in the stochastic
programming literature, but the use of plans (generated from prior data) to help guide
future decisions is often overlooked in the modeling and algorithmic community. If stochas-
tic programming is to gain a foothold in engineering practice (within the transportation
and logistics community), it will be necessary to find the problem classes where the more
advanced decision sets add value.

Complex problems in transportation, such as railroads, large trucking companies and the
air traffic control system, are characterized by multiple decision-making agents. We would
represent this structure by defining:

Dq = The subset of decisions over which agent q has control.
Itq = The information available to agent q at time t.

Then Xπ
tq(Itq) is the decision function for agent q given information Itq at time t.

Multiagent systems capture the organization of information. By contrast, classical stochas-
tic programming models focus on the flow of information. In transportation, modeling in-
formation is important, but we typically have to capture both the organization and flow.

21

We also find that in a multiagent system, we may have to forecast the behavior of another
agent (who may work within the same company). This can be an important source of
uncertainty in large operations.

4 A case study: freight car distribution

When moving freight by rail (for the purposes of this discussion, we exclude the movement
of intermodal freight such as trailers and containers on flatcars), a shipper requests one
or more cars, of a particular type, at his dock for a particular day. The request may be
for one or two cars, or as many as 100 or more. The railroad identifies specific cars that
can be assigned to the request, and issues a “car movement order” to get the car to the
shipper. The car may be in a nearby yard, requiring only the movement of a “local” train
to get the car to the shipper. Just as easily, the car may have to move from a much farther
location through a sequence of several trains before arriving at the final destination.

Freight cars come in many types, often looking the same to the untrained eye but appearing
very different to the shipper. For example, there are 30 types of open top gondola cars
(“gons” in the industry). When a railroad cannot provide the exact type of car from the
closest depot on the correct day, it may resort to three types of substitution:

1) Geographic substitution - The railroad may look at different sources of cars and choose
a car that is farther away.

2) Temporal substitution - The railroad may provide a car that arrives on a different day.
3) Car type substitution - The railroad may try to satisfy the order using a slightly different

car type.

Once the decision has been made to assign a car to a customer request, the railroad begins
the process of moving a car to the destination. If the car is far away, this may require
movements on several trains, passing through one or more intermediate classification yards
which handle the sorting process. Travel times are long, and highly variable. It can take
three weeks to move an empty car to a customer, wait for it to load, move it loaded, and
then wait for it to unload (known as a car cycle). Travel times typically range between
four to ten days or more. Travel times between a pair of locations that averages six days
can see actual transit times between four and eight days.

From the perspective of car distribution, there are three important classes of dynamic
information: the flow of customer requests for capacity, the process of cars becoming empty
(either because a shipper has emptied and released the car or because another railroad has
returned the car empty), and the travel times for cars moving from one location to another.

22

Fig. 1. Actual vs. predicted forecasts of future demands for empty cars, showing the 10th and
90th percentiles

Customer orders are typically made the week before the car is actually needed, but some
orders are made more than a week in advance, and some orders are made at the last minute
(especially from large, high priority customers). There is very little advance information
about empty cars, and of course, transit times are only known after the movement is
completed. Thus, we see information processes where the difference when a resource is
knowable and actionable is large (customer orders), small (empty cars), and where the
modify function is not Ft−measurable.

It is useful to get a sense of the variability of the data. Figure 1 is an actual graph of
the demand for cars at a regional level, showing actual, predicted, and both 10th and 90th

percentiles. This graph ignores the presence of booked orders, and in practice, most orders
are known a week into the future. For this reason, customer orders are not the largest source
of uncertainty in an operational model. A much more significant source of error arises from
the forecast of empty cars. Figure 2 shows a similar graph similar for a particular type of
freight car at a specific location. We again see a large degree of variability. In this case,
there is little advance information.

One of the most difficult sources of uncertainty arises in transit times. In railroads, it is not
unusual to see transit times that range between five and ten days. This source of noise is

23

Fig. 2. Actual vs. predicted forecasts of supplies of empty cars, showing the 10th and 90th per-
centiles

particularly problematic. It means that if we ship 10 cars from i to meet a demand at j, we
are not sure when they will arrive. It has been suggested that we can improve our forecast
of empty cars becoming available by using what we know about cars that are currently
moving loaded (we know where they are going, so if we could estimate the transit time,
we could estimate when they are becoming available). The uncertainty of transit times
complicates this analysis.

We are now ready to consider more carefully the decision classes that govern the problem.
As a result of the long travel times and high degree of uncertainty, it is not possible to
simply wait until orders become known before a car is assigned to satisfy the order. The
situation is further complicated by the fact that they cannot always let a car sit until there
is an order to assign it to. A car may become available at a location that does not have the
capacity to store the car. As a result, the railroad faces four possible classes of decisions
when a car becomes empty:

1) Send it directly to a customer who has booked an order. Normally, we assume that this
decision is to assign a car to a specific order, but it could be modified to send the car
to a customer (where it would be assigned to a specific order after it arrives).

2) Send it to a regional depot which only serves customers in the region.
3) Send it to a classification yard where cars can be sorted and moved out on different

24

trains. A classification yard at a railroad is a major facility and represents a point where
it is easiest to make a decision about a car. From a classification yard, a car may be sent
to another classification yard, a regional depot or directly to a customer.

4) Do nothing. This means storing the car at its current location. This is generally not
possible if it just became available at a customer, but is possible if it is at a storage
depot.

Not every car can be immediately assigned to an order, partly because some orders simply
have not been booked yet, and possibly because there are times of the year when there
are simply more cars than we need. At the same time, one would expect that we do not
always assign a car to a particular order, because not all the available cars are known right
now. However, there is a strong bias to find an available car that we know about right
now (even if it is a longer distance from the order) than to use a car that might become
available later.

5 The two-stage resource allocation problem

We start with the two-stage problem because it is fundamental to multistage problems,
and because some important algorithmic issues can be illustrated with minimum complex-
ity. It should not be surprising that we are going to solve multistage problems basically
by applying our two-stage logic over and over again. For this reason, it is particularly
important that we be able to understand the two-stage problem very well.

We begin our presentation in section 5.1 with a brief discussion of our notational style.
Two-stage problems are relatively simple, and it is common to use notational shortcuts to
take advantage of this simplicity. The result, however, is a formulation that is difficult to
generalize to harder problems. 5.2 summarizes some of the basic notation used specifically
for the car distribution problem. We introduce our first model in section 5.3 which presents
models that are in practice today. We then provide three levels of generalization on this
basic model. The first (section 5.4) introduces uncertainty without any form of substitution,
producing the classical “stochastic programming with simple recourse” formulation. The
second models the effect of regional depots (section 5.5), which produces a separable two-
stage problem which can be solved using specialized techniques. The last model considers
classification yards which requires modeling general substitution (section 5.6), and brings
into play general two-stage stochastic programming, although we take special advantage
of the underlying network structure. Finally, section 5.7 discusses some of the issues that
arise for problems with large attribute spaces.

25

5.1 Notational style

One of the more subtle modeling challenges is the indexing of time. In a two stage prob-
lem, this is quite simple. Often, we will let x denote an initial decision, followed by new
information (say, ξ), after which there is a second decision (perhaps denoted by y) that is
allowed to use the information in the random variable ξ.

This is very simple notation, but does not generalize to multistage problems. Unfortu-
nately, there is not a completely standard notation for indexing activities over time. The
problem arises because there are two processes: the information process, and the physical
process. Within the information process, there is exogenous information, and the process
of making decisions (which can be viewed as endogenously controllable information). In
many problems, and especially true of transportation, there is often a lag between the
information process (when we know about an activity) and the physical process (when it
happens). (We ignore a third process, which is the flow of financial rewards, such as billing
a customer for an activity at the end of a month.)

In the operations research literature, it is common to use notation such as xt to represent
the vector of flows occurring (or initiating) in time t. This is virtually always the case
in a deterministic model (which ignores completely the time staging of information). In
stochastic models, it is more common (although not entirely consistent) to index a variable
based on the information content. In our presentation, we uniformly adopt the notation
that any variable indexed by time t is able to use the exogenous information up through
and including time t (that is, ξ0, ξ1, . . . , ξt). If xt is a decision made in time t, then it
is also allowed to see the information up through time t. It is often useful to think of
ξt as information arriving “during time period t” whereas the decision xt is a function
determined at the end of time period t.

We treat t = 0 as the starting point in time. The discrete time t = 1 refers to the time
interval between 0 and 1. As a result, the first set of new information would be ξ1. If we let
S0 be our initial state variable, we can make an initial decision using only this information,
which would be designated x0. A decision made using ξ1 would be designated x1.

There may be a lag between when the information arrives about an activity and when
the activity happens. It is tempting, for example, to let Dt be the demands that arrive
in period t, but we would let Dt be the orders that become known in time period t. If
a customer calls in an order during time interval t which has to be served during time
interval t′, then we would denote this variable by Dtt′ . Similarly, we might make a decision
in time period t to serve an order in time period t′; such an activity would be indexed by
xtt′ .

26

A more subtle notational issue arises in the representation of state variables. Here we
depart from standard notation in stochastic programming which typically avoids an explicit
definition of a state variable (the “state” of the system going into time t is the vector of
decisions made in the previous period xt−1). In resource allocation problems, vectors such as
xt can have a very large number of dimensions. These decisions produce future inventories
of resources which can be represented using much lower dimensional state variables. In
practice, these are much easier to work with.

It is common in multistage problems to let St be the state of the system at the beginning
of time period t, after which a decision is made, followed by new information. Following
our convention, St would represent the state after the new information becomes known
in period t, but it is ambiguous whether this represents the state of the system before or
after a decision has been made. It is most common in the writing of optimality equations
to define the state of the system to be all the information needed to make the decision
xt. However, for computational reasons, it is often useful to work in terms of the state of
the system immediately after a decision has been made. If we let S+

t be the complete state
variable, giving all the information needed to make a decision, and let St be the state of
the system immediately after a decision is made, the history of states, information and
decisions up through time t would be written:

ht = {S+
0 , x0, S0, ξ1, S

+
1 , x1, S1, ξ2, S

+
2 , x2, S2, . . . , ξt, S

+
t , xt, St, . . .} (7)

We sometimes refer to St as the incomplete state variable, because it does not include
the information ξt+1 needed to determine the decision xt+1. For reasons that are made
clear later (see section 6.2), we find it more useful to work in terms of the incomplete
state variable St (and hence use the more cumbersome notation S+

t for the complete state
variable).

In this section, we are going to focus on two-stage problems, which consist of two sets of
decision vectors (the initial decision, and the one after new information becomes known).
We do not want to use two different variables (say, x and y) since this does not generalize
to multistage problems. It is tempting to want to use x1 and x2 for the first and second
stage, but we find that the sequencing in equation (7) better communicates the flow of
decisions and information. As a result, x0 is our “first” stage decision while x1 is our second
stage decision.

27

5.2 Modeling the car distribution problem

Given the complexity of the problem, the simplicity of the models in engineering practice
is amazing. As of this writing, we are aware of two basic classes of models in use in North
America: myopic models, which match available cars to orders that have already been
booked into the system, and models with deterministic forecasts, which add to the set
of known orders additional orders that have been forecasted. We note that the railroad
that uses a purely myopic model is also characterized by long distances, and probably
has customers which, in response to the long travel times, book farther in advance (by
contrast, there is no evidence that even a railroad with long transit times has any more
advance information on the availability of empty cars). These models, then, are basically
transportation problems, with available cars on the left side of the network and known
(and possibly forecasted) orders on the right side.

The freight division of the Swedish National Railroad uses a deterministic time-space net-
work to model the flows of loaded and empty cars and explicitly models the capacities
of trains. However, it appears that the train capacity constraints are not very tight, sim-
plifying the problem of forecasting the flows of loaded movements. Also, since the model
is a standard, deterministic optimization formulation, a careful model of the dynamics of
information has not been presented, nor has this data been analyzed.

The car distribution problem involves moving cars between the locations that handle cars,
store cars and serve customers. We represent these using:

Ic = Set of locations representing customers.
Ird = Set of locations representing regional depots.
Icl = Set of locations representing classification yards.

It is common to represent the “state” of a car by its location, but we use our more general
attribute vector notation since it allows us to handle issues that arise in practice (and
which create special algorithmic challenges for the stochastic programming community):

Ac = The set of attributes of the cars.
Ao = The set of attributes of an order, including the number of days into the future on

which the order should be served (in our vocabulary, its actionable time).
Rc

t,at′ = The number of cars with attribute a that we know about at time t that will be available
at time t′. The attribute vector includes the location of the car (at time t′) as well as
its characteristics.

Ro
t,at′ = The vector of car orders with attribute a ∈ Ao that we know about at time t which

are needed at time t′.

28

Fig. 3. Car distribution through classification yards

Following the notational convention in equation (7), We let R+,c
0 and R+,o

0 be the initial
vectors of cars and orders at time 0 before any decisions have been made, whereas Rc

0 and
Ro

0 are the resource vectors after the initial decision x0 has been implemented.

It is common to index variables by the location. We use a more general attribute vector a,
where one of the elements of an attribute vector a would be the location of a car or order.
Rather than indexing the location explicitly, we simply make it one of the attributes.

The decision classes are given by:

Dc = The decision class to send cars to specific customers, where Dc consists of the set of
customers (each element of Dc corresponds to a location in Ic).

Do = The decision to assign a car to a type of order. Each element of D0 corresponds to an
element of Ao. If d ∈ Do is the decision to assign a car type, we let ad ∈ Ao be the
attributes of the car type associated with decision d.

Drd = The decision to send a car to a regional depot (the set Drd is the set of regional depots
- we think of an element of Ird as a regional depot, while an element of Drd as a
decision to go to a regional depot).

Dcl = The decision to send a car to a classification yard (each element of Dcl is a classification
yard).

dφ = The decision to hold the car (“do nothing”).

The different decision classes are illustrated in figure 3, where a car can be shipped directly
to a customer, a regional depot, or a classification yard.

Our complete set of decisions, then, is D = Dc ∪ Do ∪ Drd ∪ Dcl ∪ dφ. We assume that

29

we only act on cars (cars are the only active resource class, whereas orders are referred
to as a passive resource class). We could turn orders into an active resource class if we
allowed them to move without a car (this would arise in practice through outsourcing of
transportation). Of these, decisions in Do are constrained by the number of orders that
are actually available. As before, we let xtad be the number of times that we apply decision
d to a car with attribute a given what we know at time t.

The contribution function is:

ctad = The contribution from assigning a car with attribute a to an order for cars of type
d ∈ Do, given what we know at time t. If d ∈ Do, then we assume that the contribution
is a “reward” for satisfying a customer order, minus the costs of getting the car to
the order. For all other decision classes, the contributions are the negative costs from
carrying out the decision.

Since all orders have to be satisfied, it is customary to formulate these models in terms
of minimizing costs: the cost of moving a car from its current location to the customer,
and the “cost” of assigning a particular type of car to satisfy the order. Since rail costs
are extremely complex (what is the marginal cost of moving an additional empty car on
a train?), all costs are basically surrogates. The transportation cost could be a time or
distance measurement. If we satisfy the customer order with the correct car type, then
the car type cost might be zero, with higher costs (basically, penalties) for substituting
different car types to satisfy an order. Just the same, we retain our maximization framework
because this is more natural as we progress to more general models (where we maximize
“profits” rather than minimize costs).

5.3 Engineering practice - Myopic and deterministic models

The most basic model used in engineering practice is a myopic model, which means that
we only act on the vectors Rc

0t′ and Ro
0t′ (we believe that in practice, it is likely that

companies even restrict the vector of cars to those that are actionable now, which means
Rc

00). We only consider decisions based on what we know now (x0ad), and costs that can
be computed based on what we know now (c0ad). This produces the following optimization
problem:

min
x

∑
a∈A

∑
d∈D

c0adx0ad (8)

subject to:

30

∑
d∈D

x0ad =Rc
0a a ∈ A (9)

∑
a∈A

x0ad≤Ro
0ad

d ∈ Do (10)

x0ad ∈ Z+ (11)

Equation (10) restricts the total assignment of all car types to a demand type ad, d ∈ Do,
by the total known demand for that car type across all actionable times. The model allows
a car to be assigned to a demand, even though the car may arrive after the time that the
order should have been served. Penalties for late service are assumed to be captured in
c0ad.

It is easy to pick this model apart. First, the model will never send a car to a regional
depot or classification yard (unless there happens to be a customer order at precisely that
location). Second, the model will only send a car to an order that is known. Thus, we
would not take a car that otherwise has nothing to do and begin moving to a location
which is going to need the car with a high probability. Even worse, the model may move a
car to an order which has been booked, when it could have been moved to a much closer
location where there probably will be an order (but one has not been booked as yet). If
there are more cars than orders, then the model provides almost no guidance as to where
cars should be moved in anticipation of future orders,

Amidst these weaknesses are some notable strengths. First, the model is simple to for-
mulate and solve using commercial solvers. Second, the model handles all three types of
substitution extremely easily (especially important is substitution across time, something
that models often struggle with). But, perhaps the most important feature is that the so-
lution is easy to understand. The most overlooked limitation of more sophisticated models
is that their solutions are hard to understand. If the data were perfect, then we would
argue that the user should simply trust the model, but the limitations of the data preclude
such a casual response.

The first generalization used in practice is to include forecasts of future orders, which we
would represent using the vector Ro

tt′ for t ∈ T ph, where T ph is the set of time periods in
our planning horizon. The details of the process of forecasting future orders are, of course,
not documented. The process of forecasting would generally have to be made at some level
of aggregation (daily/weekly, customer level or regionl, and the car class). Particularly
tricky is handling the time staging of orders. If a forecast is generated for a particular time
t′ in the future (using, for example, standard time series forecasting techniques applied to
a historical dataset showing customer orders by time period), then we would be forecasting
the total orders for time t′, and then adding in the orders to be satisfied at time t′ that are
known now. We assume that we have a forecast Ro

tt′ representing the orders that would be
placed at time t to be satisfied at time t′.

31

We let Ro
tt′ be a point forecast of future demands for t ≥ 1, t′ ≥ t, with Ro

0t′ , as before,
the orders we know about now. We could also make a forecast of cars that will become
available in the future, but this is still not normally done. As a result, our model using a
deterministic forecast is given by:

min
x

∑
a∈A

∑
d∈D

c0adx0ad (12)

subject to:

∑
d∈D

x0ad =Rc
0a a ∈ A (13)

∑
a∈A

x0ad≤
∑

t∈T ph

Ro
tad

d ∈ Do (14)

x0ad ∈ Z+ (15)

Equation (14) includes demands that are known now (Ro
0a) and all orders that are fore-

casted to become known within the planning horizon. Note that we are using forecasted
orders, but not forecasted cars. One model in industrial practice separately forecasts future
cars becoming available, but these forecasts are independent of decisions being made now.
To model this process, we would replace equation (13) with:

∑
d∈D

x0ad =
∑

t∈T ph

Rc
ta a ∈ A

This approach assumes we are using an exogenous forecast of cars in the future, which
ignores the impact of current decisions on future car supplies.

It would be possible to use a deterministic, time staged model over a planning horizon, but
this would actually be fairly hard to solve, since it would be a moderately large integer
multicommodity flow problem with time windows on the loads (it is the time windows
that really complicates the formulation).

Models that incorporate forecasted demands have the immediate advantage of providing
recommendations for cars which would otherwise not be assigned in a myopic model. The
model will send cars to locations which normally book new orders, allowing the railroad
to start the process of moving the car, rather than waiting until the last minute. Since
we are only using a point forecast, the model will not be able to send cars to a location
where they might be needed. This can be a problem when we are in a period where there
is excess supply. This model can recommend letting cars sit at a location where there is

32

absolutely no chance of them being used, rather than moving them to a location where
they might be used.

Our model does not include forecasts of empty cars. The common rationale for leaving
these forecasts out is that they are so uncertain (it is not unusual for practitioners to
ignore information which cannot be reasonably approximated by a point forecast). It also
ignores many other operational issues such as train capacities (which we have already
identified to be highly uncertain), yard capacities (which determines how many cars can
be stored at a location) or the value of cars at the end of the horizon (which we could
overcome with a multistage model).

There are a number of limitations of these simple models, but we would argue that a serious
practical limitation is that the model will never recommend sending a car to a regional
depot or classification yard. In one application with which we are familiar, the model will
recommend sending a car to a particular customer (perhaps to serve a forecasted order).
In the process of routing the car to the customer, the car will have to go through a regional
depot. The railroad will then route the car to the depot, reoptimizing the assignment of
the car to new orders as they become available. This is a highly heuristic way of accounting
for uncertainty.

5.4 No substitution - a simple recourse model

Our first effort o incorporate uncertainty is a simple recourse model where we replace the
decision class to assign cars to a specific order and instead allow us to send cars to a
particular customer (or equivalently, to a customer location). The difference is that if a
customer only places one order, then in the first model we can only send him one car. In
our simple recourse model, we may send more cars to the customer location at time t than
has been ordered at time t′ in the hopes that new orders will come in later. For this case,
we define:

Ro
t,ct′ = The number of orders for customer c that we first learn about at time t that are

actionable (must be served) at time t′.
Ro

t,c = All the orders for customer c known at time t.
= (Ro

t,ct′)t′≥t.

Of course, Ro
0 are the orders we know about now, while (Ro

t)t>0 are the forecasted orders
for the future. Unlike our first models, we are now going to explicitly model the uncertainty
in the forecast of future orders. Looking at equation (14), we see that we only need the
total forecast of future demands. For this reason, it is simpler to define:

33

R̄o
1,c =

∑
t∈T ph\{0}

∑
t′∈T ph\0

Ro
t,ct′

R̄o
1c is a random variable representing all “future” demands, which would be derived from a

forecasting model. Note that we have aggregated not only on all orders that would become
known in the future (t), but we have also aggregated across the dates when the orders
would need to be satisfied (t′). Let:

Rc
0,id

= The number of cars (indicated by the superscript c) sent to customer id, d ∈ Dc, where
the decision is made at time 0 but the cars can be used at time 1 (the second stage).

=
∑

a∈A x0ad

The decisions x0ad must be made before the orders (Ro
ti)t>0 become known. In our simple

recourse model, we assume that a car sent to customer c cannot then, at a later time, be
sent to another customer. It is either used to satisfy an order (within our planning horizon)
or it sits idle. Let:

coi = The (positive) contribution from satisfying an order for customer i ∈ Ic.
chi = The contribution (typically negative) from sending a car to customer i and then having

it sit.

Now let:

xo
1i = The number of cars assigned to serve an order (after they arrive at customer i).
xh

1i = The number of cars that are held at customer i.

xo
1 and xh

1 are random variables defined by:

xo
1c(R

c
0,c, R̄

o
1c(ω)) = min{Rc

0,c, R̄
o
1c(ω)}

xh
1c(R

c
0,c, R̄

o
1c(ω)) = max{0, Rc

0,c − R̄o
1c(ω)}

We should note that our choices for xo
1c(R

c
0,c, R̄

o
1c(ω)) and xh

1c(R
c
0,c, R̄

o
1c(ω)) seem a bit

obvious, but they are in fact the result of a trivial optimization problem.

Rc
0,c1 is a function of the first stage decisions x0. Given x0, the expected second stage

reward is given by:

34

C̄0,1(R
c
0(x0)) = Expected costs using the information available in time period 0

that would be incurred in time period 1.

=E

{ ∑
c∈Ic

(
cocx

o
1c(R

c
0c(x0), R̄

o
1c) + chcx

h
1c(R

c
0c, R̄

o
1c)

)}

=
∑
c∈Ic

(
C̄0,c1(R

c
0c(x0))

)
The functions C̄0,c1(R

c
0c) are concave. If the random demands are discrete, then it is also

possible to show that C̄0,c1(R
c
0c) is piecewise linear, concave, with the breakpoints at in-

teger values of Rc
0c. Since these functions are computed as expectations of scalar random

variables, computing them is quite easy once the distribution of demands is known. Of
course, forecasting future demands is in practice fairly tricky, primarily because of the
process of customers booking orders in advance.

We can now formulate our problem as follows:

min
x0

{
c0x0 + C̄0,1(R

c
0(x0))

}
(16)

subject to:

∑
d∈D

x0ad =R+,c
0a a ∈ A (17)

∑
a∈A

x0ad≤R+,o
0ad

d ∈ Do (18)

x0ad ∈ Z+ (19)

This is a convex nonlinear programming problem with network constraints. If the demands
are discrete, producing piecewise-linear concave reward functions for each shipper, then
we can use a standard trick for converting these problems into pure networks, as shown in
figure 4.

5.5 Shipping to regional depots - a separable recourse model

The major weakness of the simple recourse model is that it does not capture the ability of
the railroad to send cars to a regional depot, and then wait until the last minute to send
cars from the depot to the customer. In fact, it is generally not possible to send a car to
a customer unless the customer has specifically asked for the car. A more realistic model
is to assume that the car has been sent to a local yard (which we refer to as a regional
depot) where it is stored waiting for customers.

35

Fig. 4. The simple recourse problem as a pure network

In this section we present a more general model which captures the ability of a railroad
to send cars to a regional depot, after which it can be distributed to customers. We must,
however, introduce one key simplification (which we relax later), which is that while we
can model general substitution rules between car types and order types in the first stage,
we are not going to allow any substitution between car types in the second stage. One way
to mitigate this approximation is to aggregate car types into more aggregate categories,
and then assume that there is no substitution between major car categories.

We show in this section how we can solve this more general model, producing a solution
that requires solving a network with the same structure as that produced for the case of
simple recourse (figure 4). We begin by assuming that the demands from different shippers
are statistically independent, and then present a more general result which uses a technique
that we will use for harder problems.

5.5.1 The case of independent demands - an exact result

We begin by setting up some notation that we need for both models. For this work, it is
easier to index decisions and contributions by the spatial location. This notation is clearer,
although not as general.

For each regional depot there is a set of customers in this region. We represent this using:

Ic
r = The subset of customers in region r ∈ Ird. We further assume that customers in Ic

r

36

can only be served using box cars at depot r.
x1ri = The number of cars sent from r ∈ Ird to i ∈ Ic

r to satisfy customer orders that become
known in the second stage (here the destination i plays the role of the decision d in
our earlier notation).

c1ri = The contribution from sending cars from r ∈ Ird to i ∈ Ic
r to satisfy customer orders

that become known in the second stage.
Ro

1c = Random variable giving the number of orders for customer c in the second stage.
Rc

0r(x0) = Total number of cars sent to region r as a result of decisions made in the first period.

Both x1 and Ro
1 are random variables. For a given realization of the second stage orders,

we would find ourselves solving:

Q(Rc
0r, R

o
1r(ω)) = max

x1

∑
r∈Ird

∑
i∈Ic

r

c1rix1ri(ω) (20)

subject to:

∑
i∈Ic

r

x1ri(ω) + x1rdφ(ω) =Rc
0r ∀r ∈ Ird (21)

x1ri(ω)≤Ro
1i(ω) ∀i ∈ Ic

r , r ∈ Ird (22)

x1ri(ω)≥ 0 ∀i ∈ Ic
r , r ∈ Ird (23)

where, as a reminder, dφ is the “do nothing” decision. Problem (20)-(23) decomposes by
regional depot, where the problem for each regional depot is easily solved as a sort. For a
given region r ∈ Ic

r , assume that

co1 ≥ co2 ≥ . . . ≥ co|Ic
r | ≥ chr

where |Ic
r | is the number of customers in region r. We have ordered the customers so that

customer 1 is the most attractive, 2 is the second most attractive, and we have assumed
that satisfying any customer is better than doing nothing (this assumption is easy to
relax). Clearly, we would like to assign as much capacity as possible to the most valuable
customers. We want to find the expectation of E[Qr(R

c
0r, R

o
1r)] = Qr(R

c
0r). We are in

particular interested in the slopes QR(Rc
0r + 1)−Qr(R

c
0r), since these form the coefficients

on the arcs which give the marginal value of each additional unit of flow. We solve this
using the following simple observation. Let s = Rc

0r, and let E(s, i) be the event that results
in the sth unit of flow being assigned to the ith−most valuable customer. Define:

R̄o
1(J) =

∑J
j=1R

o
1,j

= Cumulative number of orders made by the top J customers.

37

The probability of the event E(s, J), then, is given by:

Prob[E(s, J)] =Prob[(R̄o
1(J − 1) < s) ∩ (R̄o

1(J) ≥ s)]

=Prob[R̄o
1(J − 1) < s] + Prob[R̄o

1(J) ≥ s]

−Prob[(R̄o
1(J − 1) < s) ∪ (R̄o

1(J) ≥ s)] (24)

The events (R̄o
1(J − 1) < s) and (R̄o

1(J) ≥ s) are collectively exhaustive, so the last
probability in equation (24) is equal to one. This allows us to reduce (24) to:

Prob[E(s, J)] =Prob[R̄o
1(J − 1) < s]− (1− Prob[R̄o

1(J) ≥ s])

=Prob[R̄o
1(J − 1) < s]− Prob[R̄o

1(J) < s]

Thus, the probability that the sth unit of flow is assigned to the J th option is simply the
difference between two cumulative distributions. These are easy to compute if the demands
across customers are independent. Now let vr(s) be the expected value of the sth unit of
flow in depot r, given by:

vr(s) =
∑
i∈Ir

coiProb[E(s, i)] + chr

1−
∑
i∈Ir

Prob[E(s, i)]


The values vr(s) give the expected marginal value of each additional unit of flow sent into
a regional depot.

Using the marginal values vr(s), our first stage problem is again a pure network very
similar to the one used for simple recourse, but now with the property that the decision
to send flow to a regional depot is considered explicitly. Our model will now send cars
either directly to customers (to serve orders that have already been booked) or to regional
depots for later assignment to orders that become known in the future.

Earlier, we considered the problem where we would send cars directly to the customer
before knowing the customer demand. We would then incur an overage or underage penalty
after learning the outcome. This strategy is referred to as simple recourse. In this section,
we send a car to a regional depot; then, after we learn the demand, we decide which
customers to allocate cars to. Since we are assigning cars from a single node over several
links, this strategy has been referred to as nodal recourse.

Our analysis has been simplified in part by the assumption that the demands are inde-
pendent (making it possible to find the partial cumulative distributions) and to an even
greater degree by the assumption that each customer can be served by a single regional

38

Fig. 5. The separable recourse problem as a pure network

depot. We first generalize our analysis to relax the assumption of independent demands,
where we use a technique that will also allow us to relax the assumption that each customer
is served by a single regional depot.

5.5.2 The general case - Monte Carlo methods

We have seen that in both the simple recourse case and the regional depot (nodal recourse)
case, the problem reduces to finding piecewise linear, concave functions characterizing the
value of cars at a location. Now we are going to introduce another technique for estimating
these concave functions based on Monte Carlo sampling, which does not require making
any independence assumptions between the demands of different customers.

Our second stage problem consists of finding:

Q(Rc
0) =EQ(Rc

0, R
o
1) (25)

Our strategy is to solve this iteratively. At each iteration, we would choose an outcome ω.
For this outcome, the conditional second stage function is given by:

39

Q(Rc
0, R

o
1(ω)) = max

x1(ω)

∑
r∈Ird

∑
i∈Ic

r

c1rix1ri(ω) (26)

subject to:

∑
i∈Ic

r

x1ri(ω) + x1rdφ(ω) =Rc
0r ∀r ∈ Ird (27)

x1ri(ω)≤Ro
1i(ω) ∀i ∈ Ic

r , r ∈ Ird (28)

x1ri(ω)≥ 0 ∀r ∈ Ird, i ∈ Ic
r (29)

Equations (26)-(29) are pretty easy to solve for a sample realization. Let q̂1r(ω) be the dual
variable for constraint (27), reflecting the marginal value of another car. We would like to
use this sample gradient information to build an approximation of Q(Rc

0). The simplest
strategy, of course, is to build a linear approximation of the form:

Q̂(Rc
0) = q̂ ·Rc

0 (30)

but these are notoriously unstable. Although techniques are available to help these tech-
niques (proximal point strategies, auxiliary functions), we are going to try to build a
nonlinear function similar to the exact functions that we have seen so far. The simplest
that we have seen starts with a piecewise linear function and then “tilts” it using stochastic
subgradients. For example, we could start with any concave function such as:

Q̂0(R) = ρ0

(
1− e−ρ1R

)
Q̂0(R) = ln(R + 1)

Q̂0(R) =−ρ0(R− ρ1)
2

where R is a scalar. As an alternative, we could initialize the function by assuming inde-
pendence between the demands. Continuous functions can be converted to piecewise linear
functions by extrapolating the function between integer values of R. Let q̃n = q(ωn) be a
stochastic subgradient of Q (given by the dual variable of equation (27)), and let Rn be
the resource vector at the nth iteration. We can then update our approximation Q̂ using
the following updating equation:

Q̂n+1(R) = Q̂n(R) + αn
(
q̃n −∇Q̂n(Rn)

)
·R (31)

This strategy, dubbed the “SHAPE” algorithm, is provably convergent when the func-
tion Q(R) (and its approximations Q̂n(R)) are continuously differentiable, but in trans-

40

portation, we are typically managing discrete resources, and we are interested in integer
solutions.

When we are using piecewise linear functions, we can get an even better estimate by using
left and right gradients of Q(Rc

0, R
o
1(ω)) rather than a simple subgradient. Let q̃n+ and

q̃n− be the right and left gradients, respectively, of Q(Rc
0, R

o
1(ω)). Then we can perform a

two-sided update using:

Q̂n+1(R) =

 Q̂n(R) + αn
(
q̃n+ −∇Q̂n(Rn)

)
·R R ≥ Rn

Q̂n(R) + αn
(
q̃n− −∇Q̂n(Rn)

)
·R R < Rn

(32)

There is another class of strategies that we refer to broadly as structured adaptive func-
tional estimators (or “SAFE” algorithms). In our problem, we are trying to estimate
piecewise linear, concave functions which can be represented by a sequence of slopes that
are decreasing monotonically. At each iteration, we obtain stochastic gradients that allow
us to update estimates of these slopes, but it is important to maintain the concavity of
our function or, equivalently, the monotonicity of the slopes. We briefly review two strate-
gies for performing this estimation. The first is referred to as a leveling technique since
violations of concavity are fixed by leveling the estimates of the slopes (see below). The
second is called a separable, projective approximation routine (SPAR), since we maintain
monotonicity in the slopes by performing a projection of the updated function onto the
space of concave functions.

Both approaches begin by representing the piecewise linear function Q(R) by its slopes as
follows. Let:

qr =Q(r + 1)−Q(r)

be the right derivative of Q(R) at R = r. We can then write:

Q(R) =Q(0) +
R−1∑
r=0

qr

Let q̂n
r be an estimate of qr at iteration n. As before, let q̃n be a stochastic gradient of

Q at iteration n, and assume they have the property that E[q̃n
r] = qr. Assume that at

iteration n we sample r = Rn(ω). We could estimate the slopes using the simple updating
equations:

41

q̂n+1
r =

 (1− αn)q̂n + αnq̃n if r = Rn(ω)

qn
r Otherwise

(33)

If we assume assume that we are going to sample all the slopes infinitely often, then it
is not hard to show that limn→∞ q̂n

r = qr. But this updating scheme would not work in
practice since it does not maintain the concavity of the function Q̂n(R). We know from
the concavity of Q(R) that q0 ≥ q1 ≥ . . . ≥ qr. It is apparent that equation (33) would
not maintain this relationship between the slopes. Within an algorithm, this forces us to
solve nonconcave optimization problems, which is quite hard. We note that concavity is
automatically maintained in equation (31) since we are updating a concave approximation
with a linear updating term. Concavity is also maintained in equation (32), since we are
guaranteed that q̃n− ≥ q̃n+.

The first of our two approaches maintains concavity (monotonicity in the slopes) by using a
technique that we call leveling. Here, all we are doing is identifying a violation of concavity
after a basic update (as in equation (33)), and then adjusting the neighbors of the updated
slope so that concavity is maintained. As before, let Rn(ω) be the point that we sample in
iteration n. The updating equations are given by:

q̂n+1
r =



αnq̃n(ω) + (1− αn)q̂n
r if Rn(ω) = r

αnq̃n(ω) + (1− αn)q̂n
i if Rn(ω) = i < r and αnq̃n(ω) + (1− αn)q̂n

i < q̂n
r

αnq̃n(ω) + (1− αn)q̂n
i if Rn(ω) = i > r and αnq̃n(ω) + (1− αn)q̂n

i > q̂n
r

q̂n
r otherwise

(34)

The second method starts with the estimate of the slopes given by equation (33) and then
performs a projection onto the space of functions whose slopes that are monotonically
decreasing. We start by letting the left hand side of (33) be denoted by the vector q̄n+1

which clearly may violate concavity. We can now think of Q as the space of concave
functions, and let ΠQ be the nearest point projection onto the space Q. This allows us to
represent the process of converting the vector q̄n+1 as the projection:

q̂n+1 = ΠQ(q̄n+1) (35)

The projection ΠQ is the solution to the quadratic programming problem:

42

Fig. 6. Maintaining concavity by the leveling method

min
q
‖q − q̄n‖2 (36)

subject to:

qr+1 − qr≤ 0 (37)

Solving this projection problem is very easy. Assume that after the basic update, we have
an instance where q̄n

r−1 < q̄n
r . Let r̄ = arg minr′<r{q̄n

r′ < q̄n
r } be the smallest index such

that q̄n
r̄ < q̄n

r . Now find the average over all these elements:

q̄n
[r̄,r] =

1

r − r̄ + 1

r∑
r′=r̄

q̄n
r′

Finally, we let

q̂n+1
r′ =

 q̄n
[r̄,r] if r̄ ≥ r′ ≥ r

q̄n
r Otherwise

43

Both the leveling method and the projection method produce convergent algorithms from
two perspectives. First, if all the slopes are sampled infinitely often, then we obtain that
limn→∞ q̂n

r = qr for all r a.s. But, we are not going to sample all the slopes infinitely often.
What we want to do is to use the approximation Q̂n as an approximation of the second
stage to determine the solution to the first stage. Thus, our algorithm is going to proceed
by solving:

xn
0 = arg max

x0
c0x0 + Q̂n(R0(x0)) (38)

subject to our first stage constraints:

∑
d∈D

x0ad =R+,c
0,a a ∈ A (39)

∑
a∈A

x0adδ1,a′(0, a, d) =Rc
0,a′ a′ ∈ A (40)∑

a∈A
x0ad≤R+,o

0,ad
d ∈ Do (41)

x0ad ∈ Z+ (42)

The problem (38)-(42) is a pure network identical to that shown in figure 5. Once we obtain
xn

0 , we find a sample realization ωn and solve the optimization problem in (26) again. The
duals from this problem are used to update the value function, and the process repeats
itself.

Our algorithm, then, does not sample the entire domain for R0, but rather only those
that are produced by solving our first stage approximation. Fortunately we can show that
this algorithm will visit the optimal solution infinitely often. A side benefit is that we
are solving sequences of pure networks which readily yield integer solutions. Integrality
can be a major headache in transportation applications, but we have now designed an
algorithm which always produces integer solutions. Of central importance in this regard is
the fact that our algorithm never performs smoothing on the decision variables, as would
be required if we used stochastic linearization methods.

At this point it may seem that we are simply solving very special cases. In fact, as we soon
show, we actually have all the machinery we need to solve very general instances of this
problem.

44

5.6 Shipping to classification yards - a network recourse model

The next level of generalization is the challenge of working with what we call “classification
yards.” For the purpose of this presentation, we are going to assume that we can send cars
from classification yards to any customers in the network (for the moment, we are not
going to allow ourselves to send cars to regional depots, since this would take us past our
basic two-stage model). For the moment, we are going to continue to assume that once cars
reach a classification yard that there is no substitution between car types: if a customer
order is for car type k, then we must provide car type k. But we are going to assume that
a single customer can be served from more than one depot.

This problem is known to the stochastic programming community as a two-stage stochastic
program with network recourse. The reason is that, unlike our previous models, the second
stage is now a general network problem (as opposed to the much simpler problems posed
by simple or nodal recourse). Solving a network problem in the second stage is almost
as difficult as solving a general linear program, which means that we should consider
algorithms designed for general two-stage stochastic linear programs.

The research community has developed a number of algorithmic strategies over the years.
The question of whether an algorithmic strategy works has to be answered in three levels: 1)
Does the algorithm appear to work in theory? Does it capture the mathematical properties
of the problem? 2) Does it produce reasonable numerical results in laboratory experiments?
For example, using datasets reflecting specific classes of problems, we would like to know if
it converges quickly, producing stable, high quality solutions. 3) Does it work in practice,
producing recommendations that are acceptable to those who have to implement them?

As of the writing of this chapter, there is a strong handle on the theory, but numerical
testing is extremely limited (given the broad diversity of problems). For example, showing
that it works well on car distribution problems for one railroad will not always convince
another railroad that it will work on their network! Container management problems (in
trucking, rail and intermodal applications) come in a variety of sizes and characteristics.
The dynamics of short-haul regional truckload carriers are completely different from those
of long-haul national carriers. Experiments in pure transportation applications do not
tell us whether it would work in other resource allocation settings such as supply chain
management and distribution problems. And we are not even talking about applications
outside of transportation and logistics. In short, each subcommunity (and these can be very
specialized) needs to see numerical work to demonstrate effectiveness on its own problem
class.

Given the very limited amount of laboratory testing of the different algorithmic strategies
(even within general transportation problems), our discussion focuses on the qualities of

45

different algorithms and their potential strengths and weaknesses for our problem. We
cannot definitively state what will and will not work for our problem class, but we can
discuss the qualities of different approaches. In particular, we are interested in the degree
to which a technique allows us to exploit the underlying structure of the transportation
problem. Many transportation problems require integer solutions, and also exhibit near-
network structure. Algorithms which allow us to exploit this network structure are more
likely to yield integer solutions from LP relaxations, or at least provide tight LP relaxations.

5.6.1 Scenario methods

Perhaps the best known algorithmic strategy in stochastic programming is scenario pro-
gramming, popular because of its conceptual simplicity, generality, and use of general-
purpose optimization algorithms. But, its effectiveness for transportation applications is
doubtful.

Let Ω̂ be a (not too large) sample of outcomes (future car orders, future car supplies,
as well as travel times). Further let p̂(ω) be the probability of outcome ω ∈ Ω̂. We can
approximate our original problem using the method of scenarios:

max
x0,x1

c0x0 +
∑
ω∈Ω̂

p̂(ω)c1x1(ω) (43)

subject to:

First-stage constraints:

∑
d∈D

x0ad =Rc
0a a ∈ A (44)

∑
a∈A

x0ad≤Ro
0ad

d ∈ Do (45)∑
a∈A

∑
d∈Da

x0adδ1,a′(0, a, d)−Rc
0,a′1 = 0 a′ ∈ A (46)

x0ad ∈ Z+ a ∈ A, d ∈ D (47)

Second-stage constraints:

46

∑
d∈Dc

a

x1ad(ω) + x1adφ(ω) =Rc
0,a ∀a ∈ A, ∀ω ∈ Ω̂ (48)

∑
a∈A

x1ad(ω)≤Ro
1cd

(ω) d ∈ Dc, ∀ω ∈ Ω̂ (49)

x1ad(ω)≥ 0 ∀a ∈ A, d ∈ Dc
a, ∀ω ∈ Ω̂ (50)

We note that our decision class D only allows us to assign cars to a known order, or to
reposition cars to a general or regional depot. As a result, the second stage problem is
primarily one of assigning cars from the general and regional depots to orders that became
known in the second stage.

Scenario methods have been very popular in financial applications, but we feel that there
are specific characteristics of financial applications that are not shared in transportation
applications, and vice versa. Financial applications are characterized by very complex
stochastic processes with high levels of interdependence reflecting the dependence of ran-
dom outcomes on a relatively smaller number of common factors. It is easier, then, to
reasonably approximate the future with a smaller number of scenarios. Also, financial
applications typically do not have integer variables.

Transportation applications, on the other hand, are characterized by a large number of
relatively independent random variables. The optimization problems, which are typically
integer, are often so large that deterministic problems are hard (although they often have
imbedded network structures). The formulation in (43)-(50) has the effect of taking a
computationally intractable problem and blowing it up into a problem that is many times
larger. Furthermore, many transportation problems exhibit a natural network structure
that is destroyed by the representation of the second stage problem.

5.6.2 Benders decomposition

Benders decomposition is an appealing algorithm that replaces the very large problems
posed in scenario optimization with sequences of relatively small problems of the form
(which we state here as a minimization problem as is standard practice in the literature):

min
x0

c0x0 + z (51)

subject to the first stage constraints (44)-(47) which we represent compactly using:

A0x0 =R0 (52)

x0≥ 0 (53)

47

and the constraints:

z − βix0≥αi, ∀ i = 1, ..., n (54)

where βi and αi are generated by solving the dual of the second stage problem, which for
compactness we can write as:

min
x1

c1x1(ω)

subject to:

A1x1(ω) =R1(ω) +B0x0

x1(ω)≥ 0

Different algorithms have been proposed for generating cuts. The first algorithm of this
class is the so-called “L-shaped” decomposition, which works on a finite set of outcomes
(which cannot be too large, since we have to solve a linear program for each outcome). This
concept was generalized by the stochastic decomposition algorithm which generates cuts
from a potentially infinite sample space. A sketch of the algorithm is given in figure 7. This
algorithm converges almost surely to the optimal solution, but the rate of convergence on
practical applications remains an open question.

The CUPPS algorithm (outlined in figure 8) requires a finite sample space which can be
quite large (for example, thousands or tens of thousands of scenarios). The critical step in
the stochastic decomposition is equation (56) which requires smoothing on the coefficients
of the cuts. The critical step in the CUPPS algorithm is equation (57) which requires a
simple arithmetic calculation over the entire sample space. Since equation (57) is quite
simple, it is not hard to execute even for tens of thousands of scenarios, but it prevents
the algorithm from ever being applied rigorously to complete sample spaces (for realistic
problems) which can be of the order 1010 or even 10100. From a practical perspective, it is
not clear if this is useful.

We need to keep in mind that Benders decomposition is probably limited (in transportation
applications) to the types of resource allocation problems that we have been considering
(since these can be reasonably approximated as continuous linear programs). However,
there are unanswered experimental questions even for this special problem class. First,
there is the usual issue of rate of convergence. Real car distribution problems may have
over 100 regional depots and thousands of customers (for our model, it is the number of
regional depots that really impacts the second stage problem). If there are 50 car types (a
conservative estimate) and 100 depots, then (realizing that we do not have all car types at

48

Step 1. Solve the following master problem:

xn
0 = arg min{c0x0 + z : A0x0 = R0, z − βn

t x ≥ αn
t , t = 1, . . . , n− 1, x ≥ 0}

Step 2. Sample ωn ∈ Ω and solve the following subproblem:

min{c1x1 : A1x1 = R1(ωn) + B0x
n
0 , x1 ≥ 0}

to obtain the optimal dual solution:

v(xn
0 , ωn) = arg min

v
{(R1(ωn) + B0x

n
0)v : AT

1 v ≤ c1}

Augment the set of dual vertices by:

Vn = Vn−1
⋃
{v(xn

0 , ωn)}

Step 3. Set:

vn
t = arg max{(R1(ωt) + B0x

n
0)v : v ∈ Vn} for all t = 1, . . . , n

Step 4. Construct the coefficients of the nth cut to be added to the master problem by:

αn
n + βn

nx0 ≡
1
n

n∑
k=1

(
R1(ωk) + B0x0

)
vn
k (55)

Step 5. Update the previously generated cuts by:

αn
k =

n− 1
n

αn−1
k , βn

k =
n− 1

n
βn−1

k , k = 1, . . . , n− 1 (56)

Fig. 7. Sketch of the stochastic decomposition algorithm

all locations) we can still anticipate upwards of a thousand resource states for the second
stage problem. How quickly does Benders decomposition converge for problems of this
size? The problem is that a single cut may not improve our approximation of the value of
cars in a particular location.

A second issue with Benders decomposition is that real applications require integer solu-
tions. When the flows are relatively large, solutions are easily rounded to obtain reasonable

49

Step 1. Solve the following master problem:

xn
0 = arg min{cx + z : A0x0 = R0, z − βn

k x ≥ αn
k , k = 1, . . . , n− 1, x ≥ 0}

Step 2. Sample ωn ∈ Ω and solve the following dual subproblem:

v(xn, ωn) = arg min{(Ro(ωn) + B0x
n
0)v : AT

1 v ≤ c1}

Augment the set of dual vertices by:

Vn = Vn−1
⋃
{v(xn, ωn)}

Step 3. Set:

vn(ω) = arg max{(Ro(ω) + B0x
n
0)v : v ∈ Vn} for all ω ∈ Ω (57)

Step 4. Construct the coefficients of the nth cut to be added to the master problem by:

αn
n + βn

nx0 ≡
∑
ω∈Ω

p(ω) (R1(ω) + B0x0) vn(ω)

Fig. 8. Sketch of the CUPPS algorithm

approximations to the discrete version of the problem. In actual applications, there can be
many instances where flows (to small locations, or of unusual car types) are quite sparse
and fractional solutions become more problematic. In these cases, fractional solutions can
involve flows that are less than one, and simple rounding may produce infeasible solutions.
At a minimum, dealing with fractional solutions can be a nuisance.

Despite these questions, Benders decomposition is a promising technique that needs to be
tested in the context of specific applications.

5.6.3 Stochastic linearization techniques

A powerful set of techniques is based on linear approximations of the recourse function.
These fall into two groups. The first uses pure linear approximations, but performs smooth-
ing on the first stage variables to stabilize the solution. The second group introduces some
sort of nonlinear stabilization term.

50

The pure linearization strategy solves sequences of problems of the form:

x̂n
0 = arg min

x0
c0x0 + q̄n−1 ·R1(x0) (58)

To calculate q̄n, let q̃n as before be our stochastic gradient obtained as the dual variable
of the resource constraint from the second stage using a Monte Carlo realization ωn. We
then smooth these gradients to obtain:

q̄n = (1− αn)q̄n−1 + αnq̃n (59)

Having obtained the solution x̂n
1 , we then smooth this as well:

x̄n
1 = (1− βn)x̄n−1

1 + βnx̂n
1 (60)

For both equations (59) and (60), we would normally require the usual conditions on
the stepsizes for stochastic problems, namely that

∑∞
n=0 α

n = ∞ and
∑∞

n=0(α
n)2 < ∞,

although we note in passing that this is not normally satisfied by the stepsize rules used
in practice.

Stochastic linearization techniques are clearly the simplest to use, but are unlikely to
work in practice simply because of the lack of stability. Stability is imposed on the so-
lution primarily through the use of declining stepsizes, but this is an artificial form of
stability. Furthermore, the smoothing on the first stage variables performed in (60) is a
serious practical problem because it completely destroys integrality. Rounding is hard for
large problems because it can be difficult ensuring conservation of flow in the presence of
substitutable resources.

Despite these weaknesses, techniques based on linear approximations are attractive for
transportation applications since they retain the structure of the original problem. If the
first stage is a network problem, then adding a linear adjustment term retains this property.
Linear approximations are also easy to compute and store. We may be able to overcome
the instability of pure linearization techniques by employing any of a variety of nonlin-
ear stabilization terms. One notable example is proximal point algorithms, which solve
sequences of problems of the form:

xn
0 = arg min

x0
c0x0 + q̄n−1 ·R1(x0) + θψ(x0, x̄

n−1
0)

where ψ(x, x̄n−1) is a distance metric such as ψ(x, x̄n−1) = ‖x − x̄n−1‖2. x̄n is computed
using:

51

x̄n = (1− βn)x̄n−1 + βnxn

Note that at the last iteration, the final solution is xn, not x̄n. x̄n is used only to stabilize
the solution.

In engineering practice, we can be creative in the construction of the distance metric
ψ(x, x̄n−1). If it is separable in x, then we may find ourselves solving a separable, convex
optimization problem. If we are particularly interested in integer solutions, we can con-
struct a piecewise linear function defined on discrete values of x (even if x̄n−1 is fractional).

A second type of nonlinear stabilization strategy is the SHAPE algorithm first presented in
section 5.5.2. This is a type of auxiliary function algorithm where we start with an artificial
auxiliary function Q̂0(R), and then update it using stochastic gradients as demonstrated
in equation (31). An attractive feature of this algorithm is that the auxiliary function
can (and should) be chosen to retain the structure of the first stage problem as much
as possible. For our car distribution problem (and similar applications), piecewise linear,
separable approximations are particularly attractive.

5.6.4 Nonlinear functional approximations

Our last class of strategies tries to explicitly approximate the recourse function, without
any guarantee of convergence to the exact function. We do not include algorithms such
as the one-sided SHAPE algorithm (equation (31)) in this group because there is no
explicit attempt to approximate the recourse function. We also do not include Benders
decomposition simply because we feel that this strategy is in a class by itself. But we do
include both the two-sided SHAPE algorithm (equation (32)) and the structured adaptive
functional estimators.

We first introduced these algorithms in the context of a recourse function Q(R) which
could be written as a separable function of the resource vector R. Now consider what
would happen if we apply the exact same algorithms to a nonseparable problem. We still
produce a separable approximation of Q, and we still solve sequences of networks that are
identical to figure 5. The important difference is that we are solving sequences of sepa-
rable approximations of otherwise nonseparable functions. For continuously differentiable
problems, this can be an optimal strategy (in the limit). For nondifferentiable problems
(as we are considering) the result is an algorithm that is very near optimal with a much
faster rate of convergence than has been achieved using Benders decomposition.

52

Fig. 9. Illustration of second stage substitution between car types and locations

5.6.5 Extension to substitution across car types

In the previous section, we retained our assumption that there was no substitution between
car types in the second stage. However, the substitution between classification yards (spa-
tial substitution) produced a problem with network recourse (we had to solve a transship-
ment problem in the second stage). Now consider what happens if we allow substitution
between car types, which produces the second stage network illustrated in figure 9. We
quickly see that while this expands the set of options for a car, it is still a network, and
is mathematically equivalent to the problem which only allows spatial substitution. In ad-
dition, we are also implicitly allowing temporal substitution. In the second stage, we will
forecast demands that are actionable on different days, as well as cars that will become
available on different days. However, we are allowing general assignments of cars to de-
mands that may require cars to be held to meet the demand, or require demands to wait
until the car arrives.

We see, then, that we can use the same algorithmic strategy for handling substitution
between car types as we did for geographic substitution. But this avoids the more practical
question: will it work? It is much more convincing to argue that spatial problems will

53

produce approximately separable recourse functions than would arise in the case with
other forms of substitution. For example, it is quite likely that the cost of substituting
other box cars in the same car group is quite small. In fact, this is the reason that a
railroad might reasonably ignore car subgroups and just model car groups.

For two-stage problems, there is a strong reason to believe that separable approximations
will work well, even when the recourse function is not even approximately separable. The
logic behind this argument is that for n sufficiently large, Q̂n will stabilize, and therefore so
will xn

0 . As xn
0 (approximately) approaches a limit point, Rn

1 (xn
0) will approach a limit point,

allowing us to produce an accurate (but not perfect) piecewise linear approximation Q̂n
j (Rj)

of the jth dimension of Q(R), at the point R = Rn
1 (xn

0). Thus, a separable approximation
only needs to be a good local approximation to provide good results.

5.6.6 Summary

The choice of the best algorithm for two-stage resource allocation problems remains an
open question. Two-stage problems are an important foundational problem, but in trans-
portation applications, the usual goal is to solve multistage problems. However, it is im-
portant to study the performance of an algorithm in a two-stage setting first, and it is
difficult to believe that an algorithm that does not work well for two-stage problems would
turn out to work well in a multistage application. But the converse may not be true; an
algorithm that does work well for a two-stage problem may not work well in a multistage
setting. It is possible for an algorithm (such as the separable, nonlinear functional approx-
imations) to exploit the limiting behavior of the first stage decisions, a property that we
lose immediately in the context of multistage problems.

Our belief is that while scenario methods are unlikely to prove attractive in practice, the
other three major classes of techniques (Benders decomposition, stochastic linearization
with nonlinear stabilization strategies, or nonlinear functional approximations) all deserve
serious study. We believe that nonlinear functional approximations are going to work the
best for two-stage problems because a) they attempt to explicitly approximate the re-
course function and b) they exploit the structure of problems that arise in transportation.
However, we have not yet addressed some of the more difficult dimensions of transporta-
tion applications (some of which are touched on below). Nonlinear approximations can
work the best in laboratory experiments, but are much more difficult to use than linear
approximations. Pure linear approximations are too unstable, but linear approximations
with nonlinear stabilization terms (proximal point algorithms or auxiliary functions) may
offer an attractive alternative. All of these approximations are separable, and it is simply
not clear how well these will work in multistage applications.

54

5.7 Extension to large attribute spaces

Up to now, we have considered a problem where there are |K| car types spread among |I|
locations. Using our earlier notation, the attribute vector of a car would be represented
by a = (k, i). Thus, our attribute space A has |A| = |K| × |I| elements. A large railroad
might have several hundred regional depots and 50 to 100 car types, with a total of several
thousand combinations. Large, but not hard to enumerate on modern computers.

Now consider what a real car distribution problem looks like. While there are, in fact, 50
to 100 real car types, these cars are allocated among several dozen pools which represent
groups of cars controlled by individual shippers. The allocation of cars to pools is negotiated
periodically between the shipper and the railroad, and cars can be moved from one pool to
another, reflecting the evolving needs of the shippers. Cars are also characterized by the
railroad that owns them (when they are not in a pool). Box cars sometimes carry dirty
freight that limits their ability to carry cargo (such as food) that requires a clean car. For
this reason, cars carry the attribute of the commodity type that they last carried. Finally,
some cars may have equipment problems that require maintenance. These problems may
range from minor issues that do not affect the use of the car to more serious equipment
problems.

When we use this full vector of attributes, we now find that there are not several thousand
possible attributes, but several million. Now we cannot even generate the entire attribute
space. This creates an interesting problem. In our optimization model, we may wish to
consider acting on a car with what is now a multiattribute vector a with decision d,
producing a car with attribute vector a′. Since we are not able to enumerate the space A,
we may not have an approximation for Q̂n

a′(Ra′). As a result, we have to devise a strategy
for approximationg Q̂n

a′(Ra′).

We are not able to address this issue in depth, but it is important to understand some of
the problems that arise. First, it is easy to see that we should try to make sure that our
initial approximation dQ̂0

a′(Ra′)/dRa′

∣∣∣
Ra′=0

is an optimistic estimate of ∂Q(R)/∂Ra′|R=0.

If we did not do this, then a low estimate might result in us choosing not to make the
decision d that produces a resource with attribute a′. Since we never visit that resource
state, we never improve our approximation.

In practice, the use of optimistic estimates of the value of a resource may not work. We
have found that initial approximations that are guaranteed to be optimistic are actually
too optimistic. Consider choosing between decisions d′ and d′′. Assume that decision d′

produces a resource with attribute a′ while decision d′′ produces a resource with attribute
a′′. Further assume that we have generated the attribute a′ (and therefore have an approx-

55

imation Q̂n
a′(Ra′)), but we have never generated the attribute a′′. If we use an optimistic

approximation for Q̂n
a′′(Ra′′), then we would choose d′′ just because we have never tried

it before. The result is the steady exploration of every possible decision, and a virtual
enumeration of the attribute space A.

A more practical approach is to assume that we have access to an aggregation function
G(a) 7→ â where â ∈ Â is an aggregation of the original attribute space. We assume that
Â is not too large and can be enumerated. We further assume that Q̂n

â(Râ) is a “good”
approximation of Q̂n

a(Ra) when G(a) = â. We then make sure that we repeatedly sample
gradients and update Q̂n

â(Râ) for all â ∈ Â.

We are not aware of any formal convergence theory for this approach (or for any other
algorithm for this problem class). But real problems in transportation are characterized by
a much richer vector of attributes than is normally considered by the academic community.

6 Multistage resource allocation problems

We now turn to the challenge of solving multistage problems. In multistage problems,
we have to capture the sequential decision-making process as information (and decisions)
evolve over time. For transportation problems, we encounter the reusability of resources;
once a vehicle moves a load, it is available to be used again.

We could motivate our multistage problem using our rail car distribution example, but it
is useful to bring other applications into the picture. Examples include:

1) Fleet management for truckload trucking - In truckload trucking, a truck moves an entire
load of freight from origin to destination. Uncertainty plays a major role in the long haul
truckload market, where loads can take between one and four days to deliver. Customers
sometimes request trucks the same day the order is made, but more often call in one
or two days in advance. In sharp contrast with the rail industry, the truckload carrier
does not have to accept every load, and this is one of the major challenges. Emerging
electronic market places, where loads are posted on web sites, open the possibility of
taking loads that do not have to move for several days. This is a classic problem of
decision-making under uncertainty.

2) Driver management for long-haul less-than-truckload motor carriers - LTL carriers face
the problem of timing the movement of loads over the network, requiring the careful
management of drivers.

3) Management of jets in the fractional ownership industry - In this business, high net
worth individuals and business executives will own a fraction of a jet. This gives them

56

access to the entire fleet of jets. They may call the company with as little as eight hours
notice and request that a jet move them from a local airport to any other airport. After
the move, the fleet operator will move the jet to another location.

4) Routing and scheduling transport aircraft for the air mobility command - The AMC
works like a large trucking company, moving freight for the military using large transport
aircraft. They are typically used in support of emergency situations where requests for
freight movement arise dynamically.

Compared to our rail car distribution problem, these applications are characterized by
relatively shorter travel times and less flexibility to satisfy customer orders at times other
than when they were requested.

Multistage problems are, of course, much harder than two-stage problems, but we are going
to approach them by building on the tools we have already introduced. Our strategy for
solving multistage problems is to solve them as sequences of two-stage problems. Students
of dynamic programming will see strong similarities in our modeling approach. But mul-
tistage problems do introduce a fresh set of modeling and algorithmic issues that simply
do not arise in two-stage problems.

We start in section 6.1 with a formulation of the problem. Then, Section 6.2 outlines the
general algorithmic strategy. Section 6.3 describes the implementation in the context of
single commodity flow problems. Section 6.4 outlines the challenges that arise when we
solve multicommodity problems in a multistage setting. Finally, section 6.5 describes the
complications that are introduced when we model the property that it takes more than
one time period to go from one location to another.

6.1 Formulation

We present the basic multistage problem with somewhat more generality than we have
used previously. We first define the exogenous information arriving to our system:

R̂t = Vector of new arrivals in period t, where R̂t = (R̂o
t , R̂

c
t).

ξt = Complete vector of new information arriving in period t, including both R̂t as well
as other information about system parameters (travel times, costs, and parameters
governing the physics of the problem).

For our purposes, we are only interested in the resource state Rt, and the only information
process we are modeling at the moment is the arrival of new resources, R̂t. Using this
notation, our history of states, information and decisions (given earlier in equation (7))
would look like:

57

ht = {R+
0 , x0, R0, R̂1, R

+
1 , x1, R1, R̂2, R

+
2 , x2, R2, . . . , R̂t, R

+
t , xt, Rt, . . .} (61)

There are three perspectives of the state of our system:

Rt = Vector of resources available in period t after decisions xt have been made.
Kt = What is known at time t after the new information ξt has been incorporated. Kt

includes Rt plus what we know about parameters that govern the dynamics of the
system.

It = Set of information available at time t for making a decision. It includes Kt, but it
might also include forecasts of future activities (activities which are not “known” now,
but are the result of a forecasting exercise).

Our process is controlled by the decisions we make:

xt = Decisions which are made after new information in period t has become known.
Xπ

t (It) = The decision function of policy π.

Our decisions are chosen to maximize the expected total contribution over a planning
horizon. Our contribution function is expressed as:

ct(xt, Kt) = The contribution generated in period t given decision xt, and what is known, Kt.

When resources are allocated in time t, they have to satisfy flow conservation equations of
the form:

∑
d∈D

xtad =Rt−1,at + R̂t,at

where we assume that we can only act on resources that are actionable now (Rtt). The
physical dynamics of the system are given by:

Rt,a′t′ =Rt−1,a′t′ +
∑
a∈A

∑
d∈Da

δt′,a′(t, a, d)xtad ∀a′ ∈ A, t′ ≥ t+ 1. (62)

It is often useful to express flow conservation and system dynamics in matrix form, which
we do using:

Atxt =Rt−1 + R̂t (63)

Rt −Btxt = 0 (64)

58

For reasons that are made clear in section 6.2, we have written our equations directly
in terms of the incomplete resource vector Rt. The complete resource vector is simply
R+

t = Rt−1 + R̂t.

The informational dynamics can be written generally as:

Kt+1 =UK(Kt, ξt+1) (65)

which is how we would represent the process of updating demand forecasting equations,
parameter estimation equations, and the storage of other types of information.

The basic statement of the multistage problem is now given by:

max
π∈Π

E

{∑
t∈T

ct(X
π(It), Kt)

}

subject to flow conservation (equation (63)), resource dynamics (equation (64)) and infor-
mational dynamics (equation (65)). There may also be upper bounds on flows representing
physical constraints.

The challenge, now, is choosing a function Xπ(It). Popular choices include myopic policies
(It = Kt), or rolling horizon procedures, where It = (Kt, Ω̂t) where Ω̂t represents a forecast
of future events made with the information known at time t. If |Ωt| = 1 then we are using
a point estimate of the future and we obtain classical deterministic methods for handling
the future. In the next section, we discuss how adaptive dynamic programming methods
can be used.

6.2 Our algorithmic strategy

Our strategy for solving multistage problems is based on techniques from approximate
dynamic programming. Since this approach is not familiar to the stochastic programming
community, some background presentation is useful. Recall from section 6.1 (and in par-
ticular equation (61) that we can measure the state of our system before or after we make
a decision. It is common in the dynamic programming and control community to write
the optimality equations using the state before we make a decision, producing optimality
equations of the form:

Q+
t (R+

t) = arg max
xt

ct(X
π(It), R

+
t) + E

{
Q+

t+1(R
+
t+1)|R+

t

}
(66)

59

Classical dynamic programming techniques are computationally intractable for this prob-
lem class. Solving equation (66) using classical discrete dynamic programming techniques
encounters three “curses of dimensionality”: the state space, the outcome space and the
action space. Each of these variables are vectors (and potentially vectors of high dimen-
sionality). Computing the value functions using a backward recursion requires computing
equation (66) for each possible value of the state variable. Computing the expectation
requires summing over all the outcomes in the outcome space. Finally, since the expected
value function may not have any special structure, solving the optimization problem re-
quires evaluating all possible values of the decision vector xt.

We overcome this problem using the following strategy. First, recognizing that we do not
knowQ+

t+1, we replace it with an appropriate approximation that for the moment we denote

by Q̂+
t+1(R

+
t+1). Next, we recognize that we cannot compute the expectation in (66). The

common strategy is to replace the expectation with an approximation based on a sample
taking from the outcome space:

Q+
t (R+

t) = arg max
xt

ct(X
π(It), R

+
t) +

∑
ω̂∈Ω̂

p(ω̂)Q+
t+1(R

+
t+1(ω̂)) (67)

Equation (67) can be exceptionally difficult to solve for the types of high dimensional, dis-
crete resource allocation problems that arise in transportation. It is particularly inelegant
when we realize that it is often the case that the myopic problem (maximizing ctxt) is a
pure network, which means the introduction of the approximate value function is making
a trivial integer program quite difficult (the LP relaxation is not a good approximation).

Equation (67) is quite easy to solve if we use a linear approximation for Q̂t+1. In this case:

Q̂+
t+1(R

+
t+1) = q̂+

t+1 ·R+
t+1

= q̂+
t+1 · (Rt + Atxt + R̂t+1) (68)

Taking conditional expectations of both sides of (68) gives:

E{Q̂+
t+1(R

+
t+1)|R+

t }=E{q̂+
t+1 · (Rt + Atxt + R̂t+1)|R+

t }
= q̂+

t+1Rt + q̂+
t+1Atxt + E{q̂+

t+1R̂t+1|R+
t } (69)

The only term on the right hand side of (69) involving the expectation is not a function of
xt, so it is only a constant term and can be dropped. The resulting optimization problem is
identical to the original myopic optimization problem with a linear adjustment term which
would never destroy any nice structural properties of the original problem (for example,
network structure).

60

So, a linear approximation allows us to avoid the problem of taking multidimensional
expectations. But what if we use a nonlinear approximation? Now the presence of the
expectation presents a serious computational complication. We can circumvent the problem
by formulating our optimality recursion around the incomplete state variable Rt. This gives
us optimality equations of the form:

Qt−1(Rt−1) =E
{
arg max

xt
ctxt +Qt(Rt(xt))|Rt−1

}
(70)

Again, we propose to replace the recourse function Qt(Rt) with an approximation Q̂t(Rt).
Note the shift in the time index, which reflects the information content of each variable. We
still face the problem of computing (at least approximately) the expectation. However, we
are not really interested in computing the expectation. Instead, we need an action xt which
depends on both Rt−1 and the new arrivals R̂t. For this reason, we would make a decision
contingent on a single sample realization, allowing us to write our decision function using:

Xπ
t (Rt−1, R̂t(ω)) = arg max

xt
ctxt + Q̂t(Rt(xt, ω)) (71)

subject to:

∑
d∈D

xtad =Rc
ta + R̂c+

ta (ω) a ∈ A (72)

∑
a∈A

xtad≤Ro
tad

+ R̂o+
tad

(ω) d ∈ Do (73)

xtad ∈ Z+ (74)

Xπ
t is an approximate decision function which can be viewed as a class of policy (in the

language of Markov decision theory), where the policy is determined by the choice of
Q̂t. Because we have formulated the recourse function in terms of the incomplete state
variable, there is no need to directly approximate the expectation (this is being done
indirectly through the estimation of Q̂t). We now face the challenge of determining Q̂t.
Fortunately, we only have to use the techniques that we described earlier for the two stage
problems. Linear approximations remain the simplest to use, but current experimental
evidence suggests that piecewise linear, separable approximations are both relatively easy
to solve and also provide much higher quality solutions.

Our overall algorithmic strategy is shown in figure 10. We refer to this as the “single-pass”
version of the algorithm. We initialize Q̂t for all t. We then simulate forward in time,
using dual variables to update the approximation of Q̂t, sampling new information as the
algorithm progresses.

61

STEP 0: Initialization:
Initialize Q̂0

t , t ∈ T .
Set n = 0.

STEP 1: Do while n ≤ N :
Choose ωn ∈ Ω

STEP 2: Do for t = 0, 1, . . . , T − 1:
STEP 2a: Solve equation (71) to obtain xn

t = Xπ
t (Rn

t , Q̂
n−1
t+1) and the duals q̂n

t of the
resource constraint (72).
STEP 2b: Update the resource state: Rn

t+1.

STEP 2c: Update the value function approximations using Q̂n
t .

STEP 3: Return the policy Xπ
t and Q̂N .

Fig. 10. Single pass version of the adaptive dynamic programming algorithm

STEP 0: Initialize Q̂0
t , t ∈ T .

Set n = 0.
STEP 1: Do while n ≤ N :

Choose ωn ∈ Ω
STEP 2: Do for t = 0, 1, . . . , T − 1:

STEP 2a: Solve equation (71) to obtain xn
t = Xπ

t (Rn
t , Q̂

n−1
t+1) and the duals q̃n

t of the
resource constraint (72).
STEP 2b: Update the resource state: Rn

t+1.
STEP 3: Do for t = T − 1, T − 2, . . . , 1, 0:

STEP 3a: Compute marginal value of a resource, q̄n
t , using Q̂n

t+1 and the optimal basis
from the forward pass.
STEP 3b: Update the value function approximations, Q̂n

t ← UQ(Q̂n−1
t , q̄n

t , R
n
t).

STEP4: Return policy Xπ
t and Q̂N .

Fig. 11. Double pass version of the adaptive dynamic programming algorithm

The single pass version of the algorithm is the easiest to implement, but it may not work
the best. The problem is that it takes a full forward iteration to pass information back one
time period. An alternative is to use a two-pass version of the algorithm, where there is a
forward pass making decisions, and a backward pass updating dual variables. This version
is described in figure 11.

These algorithms do not describe specifically how to update the functional approximations
Q̂n. For the single-pass version of the algorithm, this updating process is identical to that
used for the two-stage problem. We simply use the dual variables for the flow conservation

62

Fig. 12. Optimal network basis from the forward pass

constraint to update Q̂n just as we did in section 5.5.2. As we have seen, there are a number
of ways to update the value function, so we represent this in general using the notation:

Q̂n
t ← UQ(Q̂n−1

t , q̄n
t , R

n
t)

Updating the value function in the two-pass version is a bit more involved, but the payoff
is an updating process that possesses one particularly nice theoretical property. In addi-
tion, it appears to work better in practical applications. For the pedagogical purposes of
this chapter, we are going to outline the basic idea graphically. Recall that we are solving
sequences of pure networks at each time t. At each point in time, we obtain not only an
optimal solution but also an optimal basis. Figure 12 shows the sequence of optimal bases
over three time periods. Recall that the network structure of our one-period problems con-
sists of links representing decisions in time period t plus links that represent our piecewise
linear value functions. We are interested only in the portion of the basis that consists of
links in time period t (with coefficients from the vector ct), and not in the links which
represent the approximation Q̂. We note that as a result of our network structure, each
basis path from a resource node consists of one or more links in time period t, finally
ending in a node in a future time period.

After building the basis paths in the forward simulation, we now have a set of paths
extending through the entire horizon. We then compute the cost of a path from a resource

63

node t for attribute vector a until the end of the horizon. Let q̄n
ta be the cost of the path

from resource node a at time t until the end of the horizon along this basis path. These
path costs have a very nice property. Let:

F π
t (Rt, ω

n) =
T∑

t′=t

ctX
π
t (It(ω

n)) (75)

be the costs of a policy π (determined by the functional approximation Q̂n) for outcome
ωn in iteration n, starting in time period t. Then we have:

Theorem 2 Let q̄n
t = (q̄n

ta)a∈A be the vector of path costs from time t to the end of the hori-
zon, given outcome ωn and functional approximations {Q̂n

t }t∈T computed from a backward
pass. Then q̄t satisfies:

F π
t (Rt, ω

n)− F π
t (R′

t, ω
n) ≤ q̄n

t · (Rt −R′
t)

Furthermore, if the basis paths in each period t are flow augmenting paths into the super-
sink, then q̄n

t is a right gradient of F π
t (Rt, ω

n).

This is a very nice result. These paths are not too hard to compute and provide accurate
estimates of the future value of a resource. It turns out that the ability to compute right
derivatives is very important. If we just use the dual variables, we overestimate the value
of a resource in the future, producing unwanted empty moves.

With our ability to compute valid stochastic gradients of the cost function, we are ready
to apply all the tricks we learned for two-stage problems for computing the approximate
value functions, Q̂n

t . The forward pass/backward pass logic is easy to execute and compu-
tationally tractable. The Monte Carlo sampling logic avoids problems with expectations.
This almost looks too good to be true.

Multistage problems, however, have a few more surprises for us. We begin by discussing
the problem of computing expectations, even when we use approximations of the recourse
function. We next focus on the issue of problem structure. Keep in mind that transporta-
tion problems can be very large, and we are still interested in integer solutions. The first
challenge that arises in multistage problems is that resources are reusable (box cars do not
simply vanish after we use them). This introduces structural problems that did not occur
with two-stage problems, which we review in the context of both single and multicom-
modity flow problems. We then briefly discuss one of the more annoying, but unavoidable,
features of transportation problems: multiperiod travel times.

64

Fig. 13. Network structure of a one-period single commodity problem

6.3 Single commodity problems

The difference between the two-stage problem and the one-period problem in a multistage
application is that the assignment of a resource to a task produces a resource in the
future. In two-stage problems, once the car was assigned to an order in the second stage,
it vanished from the system. In multistage problems, we find that we have to solve the
type of network depicted in figure 13, which is a pure network. This can be solved with
commercial LP solvers or specialized network algorithms. Assuming that the functions
Q̂n

t+1(R) is piecewise linear, with breakpoints defined for integer values of R, our pure
network has integer data (upper bounds and resources) and as a result simplex-based
algorithms will return integer solutions.

Pure networks have another attractive property. Linear programming codes will return
a dual variable q̃at for the resource constraint (72). It is far more desirable to obtain
explicit right and, if possible, left gradients, which we can denote q̃+

t and q̃−t . With pure
networks, left and right gradients can be found by solving flow augmenting path problems
into and out of (respectively) the supersink. A right gradient gives us a precise estimate
of a particular slope of the recourse function. The computation of explicit left and right
gradients is very important in problems with large attribute spaces, where the values of
Rta can be relatively small. If A is small relative to the number of resources being managed
(implying that the values of Rta are much greater than one), then the issue is unlikely to
be noticeable.

The pure network structure actually arises in a larger class of problems. Assume that
we are modeling resources with attribute a, and recall from section 3 that aM(t, a, d) is
the terminal attribute function, giving the attributes of a resource with attribute a after

65

decision d has been applied to it. Now define:

Definition 3 A resource allocation problem has the Markov property if aM(t, a, d) =
aM(t, a′, d), ∀a, a′ ∈ A.

The Markov property for resource allocation problems implies that the attributes of a
resource after it has been acted on is purely a function of the decision. Classical single
commodity flow problems exhibit this property because a truck in location i which is then
assigned to move a load from i to j, is now a truck at location j. If all the trucks are the
same, then the attribute of the truck (its location) is purely a function of the attribute of
the decision which was to move a load to j. If there were different types of trucks that could
serve the load (a multicommodity problem), then the attribute of the truck after moving
the load continues to have the attribute of the truck before the load (a characteristic that
has nothing to do with the decision).

It is apparent that classical multicommodity problems which allow substitution of different
commodity types for the same task will never have the Markov property, but multiattribute
problems (where the attribute vector a consists purely of dynamic attributes), can possess
this property. Consider a chemical trailer that can move basic argon gas or purified argon
gas. Only “clean” trailers can move purified argon gas. A clean trailer can move basic
gas, but then it is no longer clean. There is no substitution for purified argon gas, and
any truck moving basic argon gas is no longer clean (although it can be put through a
cleansing process). Thus, the attributes of the truck after a trip are determined completely
by the characteristics of the trip.

6.4 Multicommodity problems

When we encountered single commodity problems, we found that the single period prob-
lems were pure networks if the approximation of the recourse function were linear, or
piecewise linear, separable. Now we consider what happens when we try to solve mul-
ticommodity problems. Recall that we let I be a set of locations and K be the set of
commodities. We follow the standard notation of multicommodity flow problems and let
Rk

ti be the number of resources of type k in location i, and let xk
tdi be the number of

resources of type k in location i that we act on with decision d at time t.

Section 6.4.1 shows that multistage, multicommodity problems are especially easy to solve
if we use linear approximations for the recourse function. The only issue is that the solution
quality is not that high. Then, section 6.4.2 outlines the complications that arise when we
use piecewise linear, separable approximations.

66

6.4.1 The case of linear approximations

When we replace the value function Qt(Rt) with an approximation Q̂t(Rt), we obtain the
decision function:

Xπ
t (It) = arg max

x

∑
i∈I

∑
d∈D

ctidxtid + E
{
Q̂t(Rt(xt))|Rt−1

}
(76)

If we use a linear approximation for Q̂, then equation (76) reduces to:

Xπ
t (It) = arg max

x

∑
i∈I

∑
d∈D

ctidxtid +
∑
t′>t

∑
j∈I

q̂t,jt′ (Rt,jt′(xt, ωt)) (77)

= arg max
x

∑
i∈I

∑
d∈D

ctidxtid +
∑
t′>t

∑
j∈I

q̂t,jt′Rt,jt′(xt, ωt) (78)

where:

Rt,jt′ =
∑
i∈I

∑
d∈Di

δt′,j(t, i, d)xtid (79)

Substituting equation (79) into (78) gives:

Xπ(It) = max
x

∑
i∈I

∑
d∈D

ctidxtid +
∑
t′>t

∑
j∈I

q̂t,jt′
∑
i∈I

∑
d∈D

δt′,j(t, i, d)xtid (80)

= max
x

∑
i∈I

∑
d∈D

ctidxtid +
∑
i∈I

∑
d∈D

∑
t′>t

∑
j∈I

δt′,j(t, i, d)q̂t,jt′xtid

 (81)

It is easy to see that:

∑
t′>t

∑
j∈I

δt′,j(t, i, d)q̂t,jt′xtid = q̂t,iM
tid

,t+τM
tid
xtid (82)

where iMtid is our terminal attribute function (using location indices instead of attribute
vectors) and τM

tid is the time required to complete the decision. This allows us to reduce
(81) to:

Xπ(It) = max
x

∑
i∈I

∑
d∈D

(
ctid + q̂t+1,iM

tid
,t+τM

tid

)
xtid (83)

67

Fig. 14. Network structure of a one-period multicommodity problem

Equation (83) demonstrates that a linear approximation of the recourse function is the
same as adding a price to the cost of each assignment, with the same structure as the
original one-period problem. So, solving multicommodity flow problems with linear ap-
proximations is no harder than solving single commodity problems.

6.4.2 The case of nonlinear approximations

The situation is somewhat different when we are using nonlinear functional approxima-
tions. Our one-period problem now takes on the network structure shown in figure 14
which is itself a multicommodity flow problem, if we are using nonlinear functional ap-
proximations. We note, however, that these are not especially large multicommodity flow
problems, since they are for a single time period. Perhaps the most significant practical
problem that might arise is the loss of integrality. In fact, we have found that a commercial
LP package solving a continuous relaxation of the problem returns integer solutions 99.9
percent of the time (the rare instance of a fractional solution is quickly solved with branch
and bound or simple rounding heuristics).

Perhaps the more practical challenge of multicommodity flow problems is that we do lose
the ability to find left and right gradients using flow augmenting path calculations. As we
pointed out before, this is not necessary for all problem classes, but we have worked on
problems with large attribute spaces where dual variables from the LP solver are simply

68

not good enough. In this case, we are resorting to performing numerical derivatives (in-
crementing the right hand side and solving the problem again). Since the optimal basis is
often optimal for the perturbed problem, this procedure can be quite fast.

6.5 The problem of travel times

One of the most annoying characteristics of transportation is the property that it takes
time to complete a decision. Using the vocabulary of discrete time models, we refer to
these problems as having “multiperiod” travel times. More generally, we would refer to
these as “multiperiod transfer times,” since there are many activities in transportation
that do not actually involve moving from one location to another (drivers have to go on
rest, trailers have to be cleaned, locomotives have to be maintained). But, the concept of
traveling between locations is easy to visualize.

The implication of multiperiod travel times is that after acting on a resource at time t,
the resource is committed to an activity in time period t+ 1 and we cannot act on it. At
the same time, we cannot ignore it, because it will eventually complete its movement, and
we have to take this into account when we make decisions in time period t + 1. Figure
15 illustrates the issue in the context of fleet management. Assume that we will need
containers at location c at time t = 6, and we can move them there from either a, which
is five time periods away, or from d, which is only two time periods away. Because a is
farther away, we will first look at the problem of the shortage of containers at c for time
t = 6 at time t = 1. At this point, we would not have considered moving containers from
location d, since this decision would not be made until t = 4. Seeing the shortage, we
might move containers the longer distance from a to c, rather than waiting until time
t = 4 and moving them from the closer location at d.

The modeling of multiperiod travel times is the same as the modeling of lagged information
processes. Earlier in the chapter, we introduced the notation Rtt′ which gives the vector of
resources that we know about at time t which become actionable at time t′. The difference
between t′ and t is the information lag. Lags can arise when customers call in orders in
advance. In the case of our rail car distribution problem, it can arise when a shipper tells
the carrier that a freight car will become empty in three days. Information lags also arise
whenever the travel time from one location to another is more than one time period.

The problem of multiperiod travel times is unique to multistage stochastic models, and
furthermore it is unique to the usage of nonlinear functional approximations. With a
nonlinear function, location a “sees” the steeper part of the slope of the function at c,
since we have not yet made the decision to move cars from d. The result is something
that we call the “long haul bias,” which arises in any application where resources can be

69

Fig. 15. Multiperiod travel times imply that decisions to move vehicles at different points in time
can produce available capacity at the same time in the future.

committed in the future.

The standard solution for problems of this type is to use an augmented state variable.
Assume that a container started moving from i to j, departing at time t, on a trip that
requires time τij. Now let the variable s be the remaining time in the trip, so at time t+1,
we would have s = τij − 1. Using our multiattribute notation, the remaining trip time s
simply becomes a new dimension of the attribute vector a. Given this representation, we
can solve multiperiod problems using the same techniques that we have described up to
now.

This particular solution creates practical problems in transportation applications. Prob-
lems in trucking and rail, for example, can have trip times that range from 30 minutes to
three days (for movements from the midwest to the west coast). We can often work with
time steps of two or four hours, producing trips that are often 10 to 20 time periods in
length. The result is an attribute space A that is now approximately 10 times bigger (a
dramatic increase in the size of the problem). Since a single movement is now broken into
10 or 20 time steps, pure forward pass algorithms become completely unworkable, although
we can partly overcome the slow backward communication of duals using shortcuts that
take advantage of the properties of the problem.

The augmented state representation has to be viewed as a brute force solution to the
problem of multiperiod travel times which can actually hide nice structural properties.

70

For example, it is not readily apparent using this representation that the problem of
multiperiod travel times vanishes when we use linear functional approximations. When
Q̂C,t+6 is a linear function, both locations a and d “see” the same slope. If they both send
containers in response to an attractive slope, then the sample gradient of the function at
location c will be reduced, and the location will become less attractive. Over sufficient
iterations, the model should discover the slope that attracts capacity from closer locations
but not farther ones.

It is beyond the scope of our presentation to fully describe the solution to the “multiperiod
travel time” problem when using nonlinear functional approximations, but we note that it
involves replacing the single functional approximation Q̂t′ with a family of functions Q̂tt′

which are used to describe the impact of decisions made at time t on future points in time
t′ > t. This approach produces solutions that are comparable in quality to those obtained
using nonlinear approximations with single-period travel times, but as of this writing, the
theory behind this approach is immature.

We again see that linear approximations avoid complexities that arise in the context of non-
linear approximations. But, the jury is still out regarding the approach that will produce
the best results in the laboratory, and implementable results in the field.

7 Some experimental results

There is surprisingly little work comparing different stochastic programming approaches.
This is especially true of multistage problems, but it is even true of the much more ma-
ture two-stage problem. Furthermore, the work on two-stage problems has not been done
explicitly in the context of resource allocation problems (they are simply characterized
as two-stage linear programs) which makes it difficult to generate a library of datasets
which focus on the specific dimensions of resource allocation problems (such as number
of locations, number of commodity types, repositioning costs in the second stage, and so
on). As a result, we do not have a standard library of test datasets for either two-stage or
multistage resource allocation problems.

This chapter has described the use of a relatively new class of approximation strategies
that are especially well suited to resource allocation problems. These approximations fo-
cus on using linear or separable, nonlinear approximations of the recourse function. Many
resource allocation problems require integer solutions. Separable, nonlinear functions can
be constructed as piecewise linear approximations which produces first stage problems
that are either pure networks, or integer multicommodity flow problems with very tight
LP relaxations. In this section, we provide some preliminary comparisons between these

71

approximation strategies and a variant of Benders decomposition called the CUPPS algo-
rithm.

Section 7.1 describes some experiments that were performed in the context of two-stage
problems. Section 7.2 then presents some results for multistage problems.

7.1 Experimental results for two-stage problems

Virtually all problems in transportation and logistics involve multistage problems, but as
our discussion has demonstrated, multistage problems are typically solved as sequences of
two-stage problems. As a result, we have to begin with an understanding of how well we
can solve two-stage problems.

We undertook a series of preliminary experiments focusing on questions regarding rate of
convergence, scalability and solution quality. We used a randomly generated dataset (which
allowed us control over its characteristics), and compared SPAR (which uses separable,
piecewise linear approximations) and CUPPS (based on Benders decomposition). Our
evaluation strategy consisted of running each algorithm for a fixed number of training
iterations, and then comparing solution quality over a series of testing iterations.

Our datasets were created very simply. N locations were uniformly generated over a 100
× 100 square. Initial supplies of resources were randomly generated and spread around
these locations. The resources and demands were generated in such a way that ensured
that the expected number of resources equaled the expected number of demands (our work
has shown that this is when the problems are the most difficult, the most interesting and
the most realistic). Demands (in the form of loads of freight to be moved) were randomly
generated with both an origin and a destination, where the contribution from covering a
demand was set at $1.5 per mile, where the length of the load is given by the distance from
the origin to the destination. Transportation costs in the first stage are fixed at $1 per
mile, while transportation costs in the second stage are fixed at $2 per mile. This provides
an incentive to reposition in the first stage before we know what the demands are.

Our first experiments studied the rate of convergence of each algorithm on a dataset
with 30 locations. Figure 16 shows the objective function for SPAR and CUPPS averaged
over 50 testing iterations, as a function of the number of training iterations. With 950
training iterations, the methods are virtually identical. However, as the number of training
iterations diminishes, SPAR seems to perform better, suggesting that it has a faster rate
of convergence.

This conclusion is supported in figure 17 which compares SPAR and CUPPS as a function

72

Fig. 16. The effect of the number of training iterations on SPAR and CUPPS, illustrating the
faster convergence for SPAR

of the number of locations. For each run, we used 200 training iterations, and the algorithms
were run on problems with 20, 30, 40 and 90 locations. The results show that SPAR
and CUPPS work similarly for smaller problems, but that SPAR works better (with 200
training iterations) for larger problems. This suggests that the SPAR-class algorithms
exhibit a faster rate of convergence, especially as the problem size grows.

We finally looked at the results for every observation within the test sample to get a sense
of the distribution of the difference between SPAR and CUPPS. To our surprise, we found
that SPAR and CUPPS provide almost identical results for every outcome for smaller
datasets. For larger datasets, SPAR outperformed CUPPS on every outcome.

7.2 Experimental results for multistage problems

The solution of multistage problems for our applications consist of solving sequences of
two-stage problems. The question now is, how well does this work? Should we expect
that an optimal or near-optimal algorithm for two-stage problems will work similarly on

73

Fig. 17. SPAR vs. CUPPS for two-stage problems, illustrating better results for SPAR when the
problem size grows

multistage problems?

The biggest difference between two-stage and multistage problems for our problem class is
that the sequences of two-stage problems that we solve in a multistage setting have random
initial starting states. When we solve a two-stage problem, the initial state is (normally)
deterministic. This means that the optimal solution to the first stage is deterministic,
which means that our approximation for the second stage has to be accurate only in the
vicinity of the optimal solution of the first stage. In the case of multistage problems, the
initial resource state at some time t in the future depends on previous decisions, while the
approximation of the recourse function for this problem is fixed, and must perform well
over a range of initial states. As a result, the demands on the accuracy of the recourse
function for the second stage are much higher.

A major difficulty that arises in the evaluation of approximations for multistage problems
is identifying a good benchmark. Optimal solutions are simply not obtainable, and tight
bounds are not readily available. For this reason, we use two strategies. First, it is useful
to see how well a stochastic algorithm works on a deterministic problem. This need arises
since it is typically the case that a company will want to test how well the algorithm works

74

Fig. 18. SPAR outperforms CUPPS as the problem size grows for every outcome in the testing
dataset

Simulation Horizon
Locations 15 30 60

20 100.00% 100.00% 100.00%
40 100.00% 99.99% 100.00%
80 99.99% 100.00% 99.99%

Table 1
Percentage of integer optimal value obtained using SAFE for second set of deterministic experi-
ments with single-period time windows (network problems)

by running it on past history (which is deterministic). Deterministic formulations tend to
be the benchmark, and if a stochastic algorithm does not work well on a deterministic
problem, it raises the question of how it can be a good method for a stochastic problem.

The second strategy we use is to compare against deterministic rolling horizon procedures
using stochastic data. Again, this is the most common strategy used in engineering practice
for solving stochastic problems.

We first ran the SPAR algorithm on a deterministic, single commodity problem which can

75

be formulated as a pure network. A significant assumption is that the time at which a load
had to be moved was fixed (so-called tight time windows). Table 1 reports these results
for problems with 20, 40 and 80 locations. These results indicate that the algorithm is
effectively returning optimal solutions.

We then ran the algorithm on four stochastic datasets and compared against a rolling
horizon procedure (RHP). The RHP used a point forecast of the future to make decisions
for the current time period. Tests were run with different planning horizons to ensure that
we were using the best possible planning horizon for the RHP. The results are shown in
figure 19 which shows that the SPAR algorithm is producing results that are significantly
better than a deterministic RHP.

Further research is needed before we understand the true value of a stochastic formulation.
Our rolling horizon experiments were performed assuming that there was no advance
information. The value of a stochastic model also depends on the economics of making the
wrong decision (the recourse).

Fig. 19. Comparison of SPAR approximations to rolling horizon procedures for 20 location
datasets and different substitution rules

76

8 A list of extensions

This chapter has introduced a basic problem class, discussing along the way practical algo-
rithmic strategies, but steadily introducing issues that address the richness of transporta-
tion problems. Our notational framework, which at first may seem clumsy to researchers
accustomed to even simpler notation, is designed to provide a natural bridge between the
classical notation of mathematical and stochastic programming, but provide for some of
the issues that arise in practice. Our progression of problems, from two-stage to multistage,
from single commodity with no substitution through multicommodity and heterogeneous
resource allocation problems, was designed to bring the reader through a list of issues that
add to the realism of the model being considered.

We have brought the reader to the edge of realistic problems that rise in practice, but
real problems of the type that arise in freight transportation have even more surprises to
delight and frustrate the research community. In this section, we provide a hint of problems
that remain to be addressed. All of the issues listed below represent forms of inaccurate
information.

a) Random travel times - Not only are there multiperiod travel times, it is normally the
case that the travel time is random. A travel time may be uncertain even when a decision
is made.

b) Advance information - Customers place orders in advance. Railroads might let you know
that they will give you empty cars in three days. A driver might tell you that he will
start in a week. We need to model the presence of information that is known, but not
actionable.

c) Demand backlogging and the “now vs. later” problem - If we do not serve the customer
request now, we may be able to serve it later (at a price). We can assign a driver to
a distant load now, or wait for a closer load to be called in later. We need to identify
when we should make a decision now (to serve a request) or wait until later.

d) Multiple, reusable layers - Perhaps the most challenging problem is the presence of
multiple resource layers. (Recall that customer demands can also represent a kind of
resource layer). The simplest example arises with backlogging demands: if we do not serve
a demand now, it is still in the system in the next time period. In freight transportation,
we may have to manage drivers, tractors and trailers, or locomotives, boxcars and crews.
It is possible to model some freight transportation operations with four or five layers,
and most of them are reusable.

e) User noncompliance - An overlooked dimension of most models is that what the model
is recommending is not what is being implemented. So the costs and contributions that
we are adding up in the computer are not the costs and contributions we are getting in
the field. The difference between what a model recommends and what is implemented

77

in the field is a source of randomness that draws into question the value of so-called
optimal solutions that ignore this source of randomness.

f) Multiagent control - Large problems are typically broken into smaller problems which are
managed by different people. Decisions made by one person need to anticipate the impact
on another. But it is impossible to predict what someone else will do with certainty. This
is not the same as the user compliance problem, but it is another instance of solving a
problem where the randomness is in predicting what someone will do.

g) Data errors - We all know about data problems and recognize that we have to fix them,
but we overlook the fact that the presence of data errors is again a source of noise.
If data errors are going to require humans to override model recommendations, then
so-called “optimal” solutions are no longer optimal (even within a single stage).

h) Incomplete information - Random variables arise when we have information that is
not known now, but can be measured later. There are problems where information is
unknown but can never be measured directly, which means we could never estimate a
probability distribution. But the missing information is captured in historical databases
of past decisions.

9 Implementing stochastic programming models in the real world

We close our discussion of stochastic problems by raising some of the issues that arise
when we try to implement stochastic programming models in practice. In the beginning
of this chapter, we made the argument that explicit models of uncertainty produce more
realistic behaviors, often exactly the behaviors that humans will mimic (perhaps with less
precision) but deterministic models will overlook.

Humans have an innate ability to deal with imperfect information and noise. We allow
more time to make an appointment. We provide slack time in airline schedules to allow
for possible delays. We own extra trucks and locomotives to account for breakdowns,
congestion and spikes in demand. Trucking companies have large rooms of people planning
operations who spend 90 percent of their time collecting and verifying data, and only 10
percent actually making decisions. We would expect that planners would quickly embrace
models which capture the uncertainty that they spend so much time dealing with.

Surprisingly, this is not the case. Stochastic models arise because of the need to forecast
an activity in the future, a forecast that is made with uncertainty. And yet in the business
world, the word “forecast” is synonymous with the concept of a “point forecast.” When
we ask for a forecast of the number of box cars needed in a region next week, we do not
want to be told “somewhere between 70 and 100.” When we ask for a forecast, we expect
an answer such as “85.”

78

Fig. 20. Recourse functions for deterministic and stochastic functions

At the heart of any stochastic programming application is a distributional forecast, an
explicit recognition that a range of outcomes is possible. As much as people in operations
have learned to deal with uncertainty, they uniformly have difficulty working with models
which capture this uncertainty. Often this is because they are looking either for a specific
recommendation of what to do right now (which even a stochastic model should do) or a
plan of what should be done in the future. It can be said that a plan is a (point) forecast of
a decision. Even for events in the future, people want to be told what is going to happen
(even if they realize a plan has uncertainty, they are still looking for a specific estimate of
what is going to happen).

Consider the practical difficulty of testing a stochastic model. In a deterministic model,
we expect the model to move exactly the number of freight cars that are needed. If a
deterministic model moved 60 cars to satisfy orders for 50, we might reasonably conclude
that there was some sort of bug in the software. Yet this might be exactly the right answer
for a stochastic model. But how do we know that we are getting optimal behavior, or
simply the result of a programming error?

For this reason, we have found that we usually first test a stochastic programming model
by solving a deterministic problem, and comparing the solution against a standard solver
for deterministic problems. It seems obvious that an algorithm that can solve a stochastic
problem should also be able to solve a deterministic problem, but this can be harder than
it looks. Figure 20 shows a recourse function for deterministic and stochastic models. As
a rule, stochastic problems are smoother and better behaved. As a result, linear approx-
imations can work quite well. However, these same techniques will not work as well on
the sharply angled function produced when we replace our range of possible outcomes
with a point forecast. While we can argue that we should not have to test our stochastic
algorithm on a deterministic model, this is a powerful debugging and testing tool, and we
have found that it is necessary to develop techniques that work well on deterministic as
well as stochastic problems.

79

10 Bibliographic notes

The techniques in this chapter have their roots in stochastic approximation methods (Rob-
bins & Monro (1951), Blum (1954), Dvoretzky (1956), Gladyshev (1965)), stochastic gradi-
ent methods (Ermoliev (1988)), general stochastic linear programming (Birge & Louveaux
(1997), Infanger (1994), Kall & Wallace (1994)) and dynamic programming (both classical
methods, reviewed in Puterman (1994), and approximate methods, such as those covered
in Bertsekas & Tsitsiklis (1996), Sutton & Barto (1998)). For reviews of these topics, the
reader is referred to the introductory chapters in this volume.

Applications in transportation and logistics represented some of the earliest motivations
for stochastic programming. Dantzig (1955) used fleet management (in an airline setting)
as an early motivation for stochastic programming. Ermoliev et al. (1976) formulated the
planning of empty shipping containers as a stochastic program.

There has been a rich history of research in fleet management in the context of the “car
distribution problem” of railroads. Most of this work consists of deterministic linear pro-
gramming models (Feeney (1957), Leddon & Wrathall (1967), Gorenstein et al. (1971),
Misra (1972), White (1972), Herren (1973), Herren (1977), White & Bomberault (1969),
Haghani (1989), Mendiratta (1981), Mendiratta & Turnquist (1982)). Dejax & Crainic
(1987) provide a thorough review of the research in fleet management at the time, cover-
ing both rail and intermodal container applications. Crainic et al. (1993) provide a general
stochastic, dynamic model for container distribution.

Jordan & Turnquist (1983) provide a stochastic formulation of the empty car distribution
problem. In their model, a car could be assigned to at most one demand, and cars could not
be repositioned more than once. This structure allowed the problem to be formulated as
a nonlinear programming problem. Powell (1986) extended this methodological approach,
using the trucking industry as the context, to multistage problems with reusable resources.
This formulation involved forming deterministic decision variables which specified the per-
centage of the supply of trucks at a node that would be moved loaded or empty from
one location to another. This line of research, however, was unable to properly model the
recourse strategy where a truck might be assigned to choose from a set of loads going out
of a location to various destinations.

Powell (1987) solved this problem in a way that produced a pure network formulation
for the first stage subproblem (see Powell (1988) for an overview of different ways of
formulating the problem). A major strength of the technique was that it produced nonlinear
functions of the value of vehicles in the future. The ideas behind this research produced
a series of articles that approximated the recourse function by using the structure of
the underlying recourse function (Powell & Frantzeskakis (1992), Frantzeskakis & Powell

80

(1990), Powell & Cheung (1994b), Powell & Cheung (1994a), Cheung & Powell (1996)).
These papers introduced concepts such as nodal recourse (the recourse is to allocate flow
over different links out of a node), tree recourse (the recourse is to optimize flows over
a tree) and other restricted recourse strategies aimed at approximating more complex
problems. Although the results were promising, this line of research required approximating
the future in a way that prevented the techniques from being applied to the most general
(and realistic) problems.

Powell & A. (1998) (see also Carvalho & Powell (2000)) took a different tact and solved the
problem as a sequence of network problems, using linear approximations of the value of the
future. This approach was computationally quite easy, and scaled to much harder problems.
Powell et al. (2002b) showed how the technique could be applied to the heterogeneous
resource allocation problem, which is a more general problem than the multicommodity
flow problem (the resource attribute space is much larger). The use of linear approximations
to represent the future, however, produced instabilities that were solved by the use of
control variables that limited the amount of flow that could be moved from one location
to another. This worked very well for single commodity problems, but did not scale well
to multicommodity or heterogeneous resource allocation problems.

Godfrey & Powell (2001) introduce an adaptive sampling technique, dubbed the CAVE
algorithm, that produces nonlinear approximations of a recourse function using stochastic
gradients. The method is easy to apply and produces piecewise linear, separable approx-
imations of a recourse function. Furthermore, all it requires is the dual variable from a
second stage problem, and does not require that the problem have any particular structure.
Experimental work suggested that the algorithm might be optimal for two-stage problems,
but at a minimum it produced results that were extremely close to optimal for both de-
terministic and specially structured stochastic problems. Godfrey & Powell (2002a) apply
it to stochastic, multistage problems and demonstrate very good results relative to rolling
horizon procedures. Godfrey & Powell (2002b) investigated the case of resource alloca-
tion where the travel time from one location to another can be multiple periods. A naive
application of the CAVE algorithm produced extremely poor results, and a variation is
suggested that provides results that are comparable to the single period travel time case.

Topaloglu & Powell (2002) applies similar techniques to stochastic multicommodity flow
problems. This problem class introduces the additional complexity that multicommodity
problems, combined with nonlinear approximations of the future, produce sequences of
(usually integer) multicommodity flow problems. The method appears to work well on
both both deterministic and multistage stochastic integer multicommodity flow problems.

The SPAR algorithm is part of a broader class of algorithms that use stochastic gradients
but maintain structural properties such as concavity. This strategy was first suggested in

81

Godfrey & Powell (2001) as the CAVE algorithm, but the SPAR algorithm, introduced by
Powell et al. (2002a), offers several provable convergence results and appears to also work
better experimentally (see Topaloglu & Powell (2002) for the use of these techniques for
multistage problems). Auxiliary function methods (Culioli & Cohen (1990) and Cheung &
Powell (2000)) maintain concavity by starting with a concave function and using stochastic
gradients to update the function (effectively tilting it).

References

Bertsekas, D. & Tsitsiklis, J. (1996), Neuro-Dynamic Programming, Athena Scientific,
Belmont, MA.

Birge, J. & Louveaux, F. (1997), Introduction to Stochastic Programming, Springer-Verlag,
New York.

Blum, J. (1954), ‘Multidimensional stochastic approximation methods’, Annals of Mathe-
matical Statistics 25, 737–744.

Carvalho, T. A. & Powell, W. B. (2000), ‘A multiplier adjustment method for dynamic
resource allocation problems’, Transportation Science 34, 150–164.

Cheung, R. & Powell, W. B. (1996), ‘An algorithm for multistage dynamic networks with
random arc capacities, with an application to dynamic fleet management’, Operations
Research 44(6), 951–963.

Cheung, R. K.-M. & Powell, W. B. (2000), ‘SHAPE: A stochastic hybrid approximation
procedure for two-stage stochastic programs’, Operations Research 48(1), 73–79.

Crainic, T., Gendreau, M. & Dejax, P. (1993), ‘Dynamic stochastic models for the alloca-
tion of empty containers’, Operations Research 41, 102–126.

Culioli, J.-C. & Cohen, G. (1990), ‘Decomposition/coordination algorithms in stochastic
optimization’, SIAM Journal of Control and Optimization 28, 1372–1403.

Dantzig, G. (1955), ‘Linear programming under uncertainty’, Management Science 1, 197–
206.

Dejax, P. & Crainic, T. (1987), ‘A review of empty flows and fleet management models in
freight transportation’, Transportation Science 21, 227–247.

Dvoretzky, A. (1956), On stochastic approximation, in J. Neyman, ed., ‘Proc. 3rd Berkeley
Sym. on Math. Stat. and Prob.’, Berkeley: University of California Press, pp. 39–55.

Ermoliev, Y. (1988), Stochastic quasigradient methods, in Y. Ermoliev & R. Wets, eds,
‘Numerical Techniques for Stochastic Optimization’, Springer-Verlag, Berlin.

Ermoliev, Y., Krivets, T. & Petukhov, V. (1976), ‘Planning of shipping empty seaborne
containers’, Cybernetics 12, 664.

Feeney, G. (1957), Controlling the distribution of empty cars, in ‘Proc. 10th National
Meeting, Operations Research Society of America’.

Frantzeskakis, L. & Powell, W. B. (1990), ‘A successive linear approximation procedure for
stochastic dynamic vehicle allocation problems’, Transportation Science 24(1), 40–57.

Gladyshev, E. G. (1965), ‘On stochastic approximation’, Theory of Prob. and its Appl.
10, 275–278.

Godfrey, G. & Powell, W. B. (2002a), ‘An adaptive, dynamic programming algorithm for
stochastic resource allocation problems I: Single period travel times’, Transportation
Science 36(1), 21–39.

82

Godfrey, G. & Powell, W. B. (2002b), ‘An adaptive, dynamic programming algorithm for
stochastic resource allocation problems II: Multi-period travel times’, Transportation
Science 36(1), 40–54.

Godfrey, G. A. & Powell, W. B. (2001), ‘An adaptive, distribution-free approximation for
the newsvendor problem with censored demands, with applications to inventory and
distribution problems’, Management Science 47(8), 1101–1112.

Gorenstein, S., Poley, S. & White, W. (1971), On the scheduling of the railroad freight
operations, Technical report 320-2999, ibm philadelphia scientific center, IBM.

Haghani, A. (1989), ‘Formulation and solution of a combined train routing and makeup,
and empty car distribution model’, Transportation Research 23B(6), 433–452.

Herren, H. (1973), ‘The distribution of empty wagons by means of computer: An analytical
model for the Swiss Federal Railways (SSB)’, Rail International 4(1), 1005–1010.

Herren, H. (1977), ‘Computer controlled empty wagon distribution on the SSB’, Rail In-
ternational 8(1), 25–32.

Infanger, G. (1994), Planning under Uncertainty: Solving Large-scale Stochastic Linear
Programs, The Scientific Press Series, Boyd & Fraser, New York.

Jordan, W. & Turnquist, M. (1983), ‘A stochastic dynamic network model for railroad car
distribution’, Transportation Science 17, 123–145.

Kall, P. & Wallace, S. (1994), Stochastic Programming, John Wiley and Sons, New York.
Leddon, C. & Wrathall, E. (1967), Scheduling empty freight car fleets on the louisville and

nashville railroad, in ‘Second International Symposium on the Use of Cybernetics on
the Railways, October’, Montreal, Canada, pp. 1–6.

Mendiratta, V. (1981), A dynamic optimization model of the empty car distribution pro-
cess, Ph.D. Dissertation, Department of Civil Engineering, Northwestern University.

Mendiratta, V. & Turnquist, M. (1982), ‘A model for the management of empty freight
cars’, Trans. Res. Rec. 838, 50–55.

Misra, S. (1972), ‘Linear programming of empty wagon disposition’, Rail International
3, 151–158.

Powell, W. B. (1986), ‘A stochastic model of the dynamic vehicle allocation problem’,
Transportation Science 20, 117–129.

Powell, W. B. (1987), ‘An operational planning model for the dynamic vehicle allocation
problem with uncertain demands’, Transportation Research 21B, 217–232.

Powell, W. B. (1988), A comparative review of alternative algorithms for the dynamic
vehicle allocation problem, in B. Golden & A. Assad, eds, ‘Vehicle Routing: Methods
and Studies’, North Holland, Amsterdam, pp. 249–292.

Powell, W. B. & A., C. T. (1998), ‘Dynamic control of logistics queueing network for
large-scale fleet management’, Transportation Science 32(2), 90–109.

Powell, W. B. & Cheung, R. (1994a), ‘A network recourse decomposition method for
dynamic networks with random arc capacities’, Networks 24, 369–384.

Powell, W. B. & Cheung, R. (1994b), ‘Stochastic programs over trees with random arc
capacities’, Networks 24, 161–175.

Powell, W. B. & Frantzeskakis, L. (1992), ‘Restricted recourse strategies for stochastic,
dynamic networks’, Transportation Science 28(1), 3–23.

Powell, W. B., Ruszczynski, A. & Topaloglu, H. (2002a), Learning algorithms for sepa-
rable approximations of stochastic optimization problems, Technical report, Princeton
University, Department of Operations Research and Financial Engineering.

Powell, W. B., Shapiro, J. A. & Simão, H. P. (2002b), ‘An adaptive dynamic programming

83

algorithm for the heterogeneous resource allocation problem’, Transportation Science
36(2), 231–249.

Puterman, M. L. (1994), Markov Decision Processes, John Wiley and Sons, Inc., New
York.

Robbins, H. & Monro, S. (1951), ‘A stochastic approximation method’, Annals of Math.
Stat. 22, 400–407.

Sutton, R. & Barto, A. (1998), Reinforcement Learning, The MIT Press, Cambridge, Mas-
sachusetts.

Topaloglu, H. & Powell, W. B. (2002), Dynamic programming approximations for stochas-
tic, time-staged integer multicommodity flow problems, Technical report, Princeton Uni-
versity, Department of Operations Research and Financial Engineering.

White, W. (1972), ‘Dynamic transshipment networks: An algorithm and its application to
the distribution of empty containers’, Networks 2(3), 211–236.

White, W. & Bomberault, A. (1969), ‘A network algorithm for empty freight car alloca-
tion’, IBM Systems Journal 8(2), 147–171.

84

	Introduction
	Applications and issues
	Some sample problems
	Sources of uncertainty
	Special modeling issues in transportation
	Why do we need stochastic programming?

	Modeling framework
	Resources
	Processes
	Controls
	Modeling state variables
	The optimization problem
	A brief taxonomy of problems

	A case study: freight car distribution
	The two-stage resource allocation problem
	Notational style
	Modeling the car distribution problem
	Engineering practice - Myopic and deterministic models
	No substitution - a simple recourse model
	Shipping to regional depots - a separable recourse model
	Shipping to classification yards - a network recourse model
	Extension to large attribute spaces

	Multistage resource allocation problems
	Formulation
	Our algorithmic strategy
	Single commodity problems
	Multicommodity problems
	The problem of travel times

	Some experimental results
	Experimental results for two-stage problems
	Experimental results for multistage problems

	A list of extensions
	Implementing stochastic programming models in the real world
	Bibliographic notes

