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Abstract

We propose a dynamic model for optimizing the ows of atcars that considers explicitly the
broad range of complex constraints that govern the assignment of trailers and containers to a
atcar. The problem is formulated as a logistics queueing network which can handle a wide range
of equipment types and complex operating rules. The complexity of the problem prevents a practical
implementation of a global network optimization model. Instead, we formulate a global model with
the speci�c goal of providing network information to local decision makers, regardless of whether
they are using optimization models at the yard level. Thus, our approach should be relatively easy
to implement given current rail operations. Initial experiments suggest that a atcar eet that is
managed locally, without the bene�t of our network information, can achieve the same demand
coverage as a eet that is 10 percent smaller, but which is managed locally with our network
information.



We consider the problem of managing a eet of railroad atcars over a network in a real-time

setting. A local terminal manager must determine how to assign a set of trailers and containers

to the available atcars that can move this equipment. The challenge is that there are several

dozen types of atcars, and many types of trailers and containers. Each atcar is best designed for

moving a certain con�guration of trailers and containers. For example, some atcars do not have

the proper connections to hold a container. Other atcars might hold four 45 foot containers, but

only two refrigerated 45 foot containers. Other atcars can only hold two containers, and it does

not matter if they are refrigerated or not. The yard manager needs to �nd groups of trailers and

containers with the same destination that best utilize the hitch capacity of each atcar.

The problem of assigning trailers and containers (or, more simply, boxes) to atcars at a yard

to maximize hitch utilization is itself a challenging problem. It can be solved greedily or using

an optimization procedure (see, for example, Feo & Gonzaliez-Velarde (1995)). However, both

approaches are myopic and ignore the ability of the destination to properly utilize the equipment.

For example, we may only have containers at a yard, but we have a atcar that can hold a trailer

(a special hitch is needed to accommodate trailers). If the container is going to a destination that

originates a lot of trailers, then we want to favor atcars that can carry trailers.

In this paper, we focus on methods that contribute network information into local yard decisions.

It is often the case that di�erent atcars can be used to move a set of trailers and containers to a

destination which, from the perspective of the local yard operation, appear equally e�cient. For

example, a yard manager might use a atcar that can move either trailers or containers to move

two containers to their destination. That destination, however, may have little use for atcars that

move trailers, whereas another yard desperately needs this equipment type. It is the goal of this

paper to introduce network level information to improve the decisions made at a local level so that

they better optimize an entire network.

Railroads were the �rst transportation industry to use optimization models to describe their

networks and the ow of empty cars. However, these models were quite simple. The �rst work

that uses a space{time network is by White & Bomberault (1969) (see also Shan (1985), and the

survey by Assad (1987)). Chih (1986) develops a multicommodity network ow model for railcar

distribution that uses decomposition techniques to reduce the ows of multiple car types to single

commodity network ows. Joborn (1995) presents a multicommodity network ow model that

considers capacity restrictions on trains for repositioning of empty freight cars.
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Not surprisingly, there appears to be very little optimization literature focused on intermodal

transportation. Crainic, Gendreau & Dejax (1993) present a sequence of dynamic models (single

commodity deterministic, multicommodity deterministic, single commodity stochastic) for empty

allocation of containers. These models determine the number of empty containers that must be

relocated among several locations. However, they do not deal with determining how containers will

be repositioned, and if by rail, how to assign them to atcars. The only work that we are familiar

with that deals explicitly with the problem of assigning trailers and containers to atcars is Feo &

Gonzaliez-Velarde (1995), which considers only the local problem at a single yard, at a single point

in time.

For our work, we take advantage of a new formulation of the dynamic eet management problems

developed by Powell & Carvalho (1997a) called the logistics queueing network (LQN). This approach

is extended to multicommodity problems in Powell & Carvalho (1997b). An important feature of

this modeling approach is the exibility it provides in modeling complex operations by decomposing

large dynamic problems into sequences of very small problems that deal with one location at a time,

one time period at a time. This paper tests this feature by showing how it can be used to plan what

is perhaps the most complex eet management problem that arises in any practical application:

the management of a eet of atcars for a railroad.

This paper makes the following research contributions: 1) We introduce the �rst computation-

ally tractable model for optimizing the ows of atcars over space and time which explicitly handles

the complex constraints governing the assignment of trailers and containers onto atcars. Features

of the system include integer solutions, real{time implementation and explicit handling of both

central and local decision making. 2) We show that the new model can reduce costs by three to

�ve percent over myopic decisions that focus purely on maximizing atcar utilization at each yard.

3) We present an integrated framework for simultaneously optimizing the ows of a railroad's own

trailers, the trailers and containers of customers and the movement of atcars.

This paper represents both an extension of the methodology in Powell & Carvalho (1997a)

and Powell & Carvalho (1997b) and an application to intermodal operations. Reference Powell

& Carvalho (1997a) considers a single commodity problem where a single resource (such as a

trailer) serves a single task (such as a load of freight), and where the resources are homogeneous

(for example, all the trailers are the same). Reference Powell & Carvalho (1997b) considers the

multicommodity case, where the resources are heterogeneous, representing, for example, di�erent
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types of boxcars. However, it is still assumed that one resource serves one task. In this paper,

we consider the problem where one resource (a atcar) may serve multiple tasks (several trailers

and containers) with complex rules governing what combinations of trailers and containers can be

assigned to a particular atcar.

The paper is organized in eight sections. In the �rst section we provide background material

into the intermodal atcar management problem. In section 2 we propose a modular framework

that results in two interconnected dynamic resource allocation models, one to optimize the ows of

trailers and containers owned by the railroad, and the second to optimize the ows of the atcars.

Optimizing the ows of trailers and containers is a direct application of the LQN methodology given

in Powell & Carvalho (1997b), which is reviewed in section 3. The application of this method to

optimizing the ows of railroad-owned trailers and containers is given in section 4. The second model

matches atcars to sets of boxes and is described in section 5. Section 6 describes the experiments

that were performed to tune the algorithm and estimate the value of network information on local

decision making. In section 7 we discuss implementation issues. Finally, we present the conclusion

in section 8.

1 Problem Description

There are a variety of issues that arise in atcar management that need to be appreciated. In this

section, we provide brief discussions of network operations, atcar equipment characteristics, trailer

and container characteristics, and yard operations. We also provide a summary of the problem of

managing boxes owned by the railroad that must also be repositioned, competing for space on

available atcars.

Network operations

The rail network is represented by a set of services representing trains moving between origi-

nating, transfer and terminating points in the railroad. A train service may start at terminal A

with D as a termination, with intermediate stops at B and C where cars may be added or dropped.

A terminal may be interior to the network, where freight may originate or terminate, or be trans-

ferred from one train to the next. If the terminal is at a port, we might expect a high volume of

container tra�c that is transferring with ships. If it is inland but at a common point with another

railroad, there might be a high volume of rail interchange tra�c, which has the characteristic of
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being very di�cult to forecast (because of the di�culty railroads have in sharing information).

Inland terminals could be expected to have a high percentage of trailers as freight is brought to a

yard by truck.

Decision making in a railroad is typically made hierarchically. Some decisions are made centrally,

governing primarily the repositioning of empty atcars. Others are made locally. In particular, the

decision of what atcar to use for a particular set of trailers and containers requires a knowledge

of local yard operations that is not available centrally. The solution approach we propose in this

paper is especially well adapted to supporting decision making in a decentralized environment.

Yard operations

The process of physically loading boxes on atcars starts with the yard supervisor forming a

train out of a sequence of atcars. Some of these may already have boxes on them, while the rest

will be empty. The yard superviser tries to load trailers and containers to contiguous blocks of

atcars with a common destination. This is not always possible, but represents a major priority

for yard supervisors. Since atcars arrive and are stored in segments that are already connected

together, the goal of keeping these cars hitched, and sending them to the same destination, is the

single most important factor limiting the exibility of the local yard master.

Flatcar characteristics

An important characteristic of the atcar management problem is the tremendous variety of

atcars, along with the variety of trailers and containers that the atcars need to move. Figure 1

illustrates some di�erent loading con�gurations of boxes on atcars. Flatcars feature slots where

containers may be loaded, with atcars ranging between one and as many as seven slots (using

spine cars). It may be possible to double stack containers within a slot (of course, you cannot

double stack trailers). It may also be possible to put two short (28 foot) containers on the bottom,

and a single long container on the top, allowing as many as three containers to be put into a single

slot. Using two short containers in one slot may not be possible if they are refrigerated, since the

refrigeration unit adds to the length of the container. Other rules govern the con�guration, such

as the restriction that you cannot put an empty container on the bottom when they are double

stacked. Finally, the only atcars that can carry trailers are those that have special hitches to keep

the trailers from rolling.

Railroads have tended in the past to purchase atcars that are productive for certain markets,
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Figure 1: Several types of atcars loaded with trailers and containers.

creating a tremendous mix of atcar types. In one dataset, we counted over 100 distinct types of

atcars, with over 40 appearing regularly.

A di�erent dimension to modeling atcars is their availability. At any point in time, atcars

may be sitting available at a yard, enroute empty to a di�erent location, enroute loaded to a

destination, or it may be in the possession of another railroad (with, we assume, an unknown

status). A container that is enroute empty from, say, A to D can, in principle, be rerouted at

an intermediate terminal, whereas a loaded container must �nish its task (boxes are not unloaded

enroute and reloaded onto a di�erent atcar). Loaded atcars may be destined to a location on

a railroad's own network, or it may be headed o�-line. In the latter case, we assume the atcar

is \lost" to the system. Finally, atcars that are o�-line, in the control of another railroad, may

suddenly \reappear" at an interchange point, either empty (at which point they are immediately

available) or loaded (in which case they will become available at some point interior to the railroad

at a later time). One of the challenges of managing atcars is estimating the availability of atcars

entering the system from o�-line.

Trailers and containers
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There is also a wide variety of trailers and containers. Containers have two standard widths and

heights and several standard lengths, varying from 20 to 57 feet. Trailers also have two standard

widths and heights, and lengths varying from 26 to 53 feet, and may be refrigerated. The real

world adds to this diversity; after being used for several years, containers might be involved in

small accidents and undergo repairs, losing a few inches or feet in the process.

The demand for atcars arises in the form of requests to move boxes (loaded or empty) between

pairs of terminals. Requests to move boxes may be immediate (move the box the same day it is

requested) or may be made a week or more in advance. Frequently, the requests to move boxes

immediately are often high priority, from your most important customers. When we make decisions

about moving atcars loaded or empty, we have to look a week or more into the future in order

to incorporate downstream e�ects. As a result, we must combine known customer requests with

forecasted demands.

In our work, we use a special forecasting system developed speci�cally for estimating daily

freight demand (see Godfrey & Powell (1995)). The system incorporates multiple calendar e�ects

and estimates booking pro�les that gives the number of days into the future that a customer will

call in a request. This allows us, then, to combine both known and forecasted requests to move

boxes, over horizons that extend a week or more into the future.

Railroad-owned equipment (ROE)

The problem of deciding how to move atcars is typically coupled with the problem of planning

the movements of boxes owned by the same railroad. We call these boxes railroad-owned equipment

(ROE), which can be leased to customers. The steps that railroad{owned boxes go through in the

process of moving loaded is shown in �gure 2. After terminating in an empty pool, the trailer may

wait for reassignment, or be repositioned empty to another pool. At any given rail terminal, there

must be a stock of empty trailers to satisfy customer requests. Once a box is assigned to a request,

this box is removed from the stock to be loaded by the customer. It returns to the railroad a few

days later to transport the freight to its destination. Most often, a box is then returned to the

pool of empty boxes. A box can also be loaded at the same location where it was unloaded and

bypass the stock of empty boxes. The demand for empty boxes is not evenly distributed across

the network. The railroad must manage the supply of empty boxes at each terminal, relocating

them when necessary. Thus, these empty boxes compete for space on atcars with other trailers

and containers.
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Figure 2: Steps in a loaded movement for railroad{owned trailers.

In theory, the allocation of empty ROE equipment, and the management of empty atcars, is

a problem that should be solved jointly. While this is possible, it was not our feeling that it could

be successfully implemented at this point in time. Instead, we solved the problem sequentially. We

�rst optimize the movements of ROE equipment, and then add the planned movement of empty

equipment to the customer-driven demands to move loads.

The management of railroad{owned equipment is a classical dynamic eet management problem.

The decision variables for the ROE model are the number of empty trailers of each type that must

be moved between each terminal pair at each time period. The objective function is to maximize

the return that results from satisfying requests, given by a revenue (or reward) from satisfying

a request minus variable operating costs. The problem has been widely studied over the last 40

years, with models and algorithms proposed by Feeney (1957), White (1972), Herren (1973),Herren

(1977), Turnquist (1986), Mendiratta (1981), Chih (1986), Shan (1985), and Powell (1988). A

review of a broad range of dynamic models for eet management is given in Powell, Jaillet & Odoni

(1995).

The ROE model is most often formulated as a static, myopic model which ignores all future

events. In practice, there are two forms of uncertain information that can and should be incorpo-

rated. The �rst is customer demands that are not known at a particular point in time. The second

is the ow of empty trailers and containers as they enter the system either from customers or from

other railroads. We incorporate both types of future events.
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Figure 3: Modules for the railroad{owned equipment model.

2 Modeling Approach

As explained in section 1, to keep the complexity of the overall problem at an acceptable level,

we work with two dynamic assignment models: one assigns trailers to customer requests and the

other assigns atcars to boxes. While the ROE model is similar to the multicommodity LQN, a

special LQN model is presented for the atcar assignment in order to deal with the consolidation

of trailers and containers on atcars.

In the context of resource allocation, the requests for trailers can be viewed as tasks that must be

satis�ed by resources, which are the empty trailers themselves. Even though trailers have di�erent

widths and heights, requests for empty trailers only specify length. We have chosen to use one

multicommodity LQN model in order to allow for size substitutions.

Figure 3 shows the modules that compose the ROE model. We use historical patterns (of

both customer requests and the exogenous arrivals of empty trailers) to �t a statistical forecasting

model. We then use the forecasting model to generate a forecast of future events (either new

demands entering the system, or the availability of new capacity). In our work, we generate only

a single forecast (equivalent to a deterministic model) but our methodology does not \abuse" our
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Figure 4: Modules for the atcar model.

ability to see the future. We could easily do repeated samples and obtain an explicit stochastic

model.

The output of the ROE model consists of a series of recommended movements for the empty

trailers. These movements satisfy requests that are on hold and replenish the stock of containers

at some locations based on the expectation that requests will appear and will be fed to the atcar

model.

In the atcar model, the movement of a box is regarded as a task and the atcar is the resource

to accomplish it. As in the ROE model, we look at the problem of assigning tasks to resources

over a planning horizon. As the information on boxes available within the whole horizon is not

available, we must rely on historical data to generate a random sample of boxes that will become

available within the planning horizon. Thus, the atcar model works with three types of demand

(see �gure 4). The �rst type is the set of real demands, i.e., loaded boxes waiting to be moved,

either belonging to the railroad or to a third party. The second type of demand is composed of the

requests for moving empty trailers belonging to the railroad that come out of the ROE model. The

third set of demands is the random realization of demands that comes out of the forecast module.

The atcar model does not distinguish whether a given box is real or forecasted.

The resource set for the atcar model is composed of the available atcars and those that may

become available in the future. The atcar model provides three kinds of output. First, it outputs
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suggested atcar ows, by type, terminal pair and departure time. Second, it outputs suggested

ow of empty trailers, again by type, terminal pair and departure time. This kind of output is

somewhat like the output of the ROE model, but now validated by the \competition" for space on

the atcars. Third, it outputs marginal values of atcars by type, terminal and time. The module

containing the atcar model is described in section 5.

3 Summary of the LQN Solution Approach

We have introduced a new approach, the Logistics Queueing Network (LQN) approach, to solve

dynamic resource allocation problems in Powell & Carvalho (1997a). This approach is extended

to consider di�erent types of resources in Powell & Carvalho (1997b). It is shown that it delivers

integer solutions that are very close to the optimal value at a fraction of CPU time needed by linear

solvers. In this section we present a short summary of this approach for multicommodity problems,

which we then directly apply to the solution of the railroad{owned equipment problem. We then

use this solution approach to devise an method for optimizing the ows of atcars, which is a much

harder problem.

Our modeling approach is to optimize activities over discrete time intervals t = (0; 1; : : : ; T ),

where T is the length of the planning horizon. Points in space are represented using the indices i

and j, and a point in space time is represented by (i; t). The travel time from i to j, represented

by �ij , gives the number of time periods required to travel from i to j. A movement from city i at

time t to city j, arriving at time t+ �ij , is represented by the link (ijt). If x is a vector, then xijt is

the (ijt)th element of this vector, and xt is the subvector consisting of all the elements (ijt) for a

single t. Commas are used to separate indices only when an expression is involved, as in xi;j;t+�ij .

We now introduce the following notation:

� C is the set of terminals i in the network.

� A is the set of vehicle types.

� �aij is the travel time for vehicle type a 2 A between terminal i 2 C and terminal j 2 C.

� N is the set of nodes (i; t); i 2 C, t � T , in the dynamic network.

� B is the set of load types.
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� �ab is the indicator variable giving feasible load/vehicle pairs, where �ab = 1 if vehicle

type a can be assigned to load type b.

� L is the set of loads l of all types available within the planning horizon, T .

� Lb is the set of loads l of type b, for each type b 2 B, available within the planning

horizon, T .

� Tl is the set of feasible departure times for satisfying load l 2 L, otherwise known as

the departure time window.

� Lbijt is the set of loads l 2 Lb with origin i and destination j having t as a feasible

departure time.

� Rait is the net inow (Rait > 0) or outow (Rait < 0) of vehicles of type a at terminal

i at time t.

� ralt is the pro�t generated by choosing vehicle type a and time t to satisfy load l.

� caij is the cost of repositioning one empty vehicle type a over link (i; j; t).

The decision variables are

� xalt = 1 if load l is served by vehicle type a at time t, and 0 otherwise.

� zl = 1 if load l is never served within the time window, and 0 if the load l is served

within the time window. zl plays the role of a slack variable.

� yaijt is the number of vehicles type a being repositioned empty along link (i; j; t). If

i = j, yaiit represents the number of vehicles of type a in inventory at terminal i from

time t to time t+ 1.

� waijt is the total ow of vehicles of type a on the link (i; j; t) .

The problem is formulated as a mixed{integer linear program. The objective function we are

maximizing is stated as:

G(x; y) =
TX

t=0

X
i2C

X
j2C

X
a2A

0
B@X

b2B

X
l2Lb

ijt

raltxalt � caijyaijt

1
CA (1)
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This problem can be formulated as:

max
x;y

G(x; y) (2)

subject to:

X
t2Tl

X
a2A

�abxalt + zl = 1 8 l 2 Lb 8 b 2 B (3)

X
b2B

X
l2Lb

ijt

�abxalt + yaijt � waijt = 0 8 i; j 2 C; 8 t � T ; 8 a 2 A (4)

X
j2C

waijt �
X
j2C

wajit��aij = Rait 8 (i; t) 2 N ; 8 a 2 A (5)

yaijt ; waijt � 0 (6)

xalt = (0; 1) (7)

where constraints (3) restrict the maximum number of vehicles to be assigned to each load to one

and constraints (4) and (5) enforce ow conservation for each vehicle type at each node.

The LQN approach results from: 1) stating the objective function in a recursive form, 2)

approximating the future value function at each time stage as a linear function of the number of

vehicles available at each node and 3) constraining the unbounded decision variables (in this case,

y) by upper bounds. The result is a decomposition of the problem (2) {(7) into local problems. To

present the solution algorithm, we �rst de�ne:

� �Lit is the set of loads l with origin i, which are available to move at time t and have

not been moved at a time prior to time t at a given solution.

� L0it is the set of loads l with origin i, where t is the beginning of the time window Tl.

Thus, L0it is the set of loads that �rst become available to move at time t.

� Lfit is the set of loads l with origin i, where t is the end of the time window Tl. L
f
it is

the set of loads that will expire from the system if they are not moved at time t.

� Vait is the number of vehicles of type a available at node (i; t).

� uaijt is the upper bound on yaijt.

� �ait is the spatial potential function for vehicles, i.e., it is a measure of how desirable is

to have one more vehicle of type a at a node (i,t).
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In the recursive form, the objective function for stage t appears as

Gt(Vt ;Lt ) =
X
i2C

git(x; y; Vit ;Lit ) + Gt+1(Vt+1 ;Lt+1 ) (8)

where git represents the value of the decisions taken at node (i; t). We use an approximation for

the value function Gt+1 such that

Ĝt(Vt ;Lt ) =
X
i2C

git(x; y; Vit ;Lit ) + �t+1Vt+1 (9)

This results in the decomposition of the problem. The local problem at node (i; t) is represented

by:

max
xt;yt

X
j2C

X
a2A

0
B@X

b2B

X
l2Lb

ijt

(ralt + �a;j;t+�aij)xalt � (caij � �a;j;t+�aij)yaijt

1
CA (10)

subject to:

X
a2A

�abxalt � 1 8l 2 �Lit (11)

yaijt � uaijt 8j 2 C; 8a 2 A (12)
X
l2 �Lit

X
a2A

xalt +
X
j2C

yaijt � Vait 8a 2 A (13)

xalt ; yaijt � 0 (14)

where the set of loads, �Li;t+1, and the number of vehicles, Va;i;t+1, available at the next time period

are computed by:

�Lk;t+1 = f �Lkt n fL
s
kt [ L

f
ktgg [ L

0
k;t+1 8k 2 C (15)

Va;k;t+1 = Vakt �
X
j

wakjt +
X
i

waikt+1��aij +Rait+1 8k 2 C; 8a 2 A (16)

where the set Lsk;t is the set of loads with origin i that were assigned a vehicle at time t.

Each local problem is equivalent to a static assignment problem, involving the assignment of a

vehicle of type a to a task of type b. In order to improve speed, we do not solve the local problem

to optimality but use a greedy heuristic (see Powell & Carvalho (1997b)) to �nd a good feasible
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problem  at  all  nodes

CONTROL  ADJUSTMENT

Adjust  upper  bounds  u

 and  smooth  gradients.

BACKWARD  PASS

Compute  gradients  of  Gt

    with  respect  to  V.

Figure 5: The basic algorithm for the LQN approach.

solution. In this heuristic, we compute all assignment costs cab and store them in a heap. We then

chose the link with the lowest cost and assign a ow of one as long as it is feasible to do so (that

is, assuming vehicle a has not yet been assigned and that the load b has not yet been covered).

For the atcar problem, this heuristic proved essential, since we assign a con�guration of boxes to

a atcar. For this problem, there does not exist an equivalent assignment problem.

Two kinds of variables control the solution of the local problems: the upper bounds on empty

moves, u, and the spatial potential function, �. These control variables can be adjusted with the

help of gradients of the objective function with respect to the supply of vehicles at each node. This

results in the iterative algorithm outlined in �gure 5. The forward pass consists of solving the local

problem at each node. The backward pass consists of �nding values for the gradients �it, de�ned

as

�ait =
@Ĝt

@Vait
(17)

A brief description of the forward pass, backward pass and control adjustment follows.

Forward Pass: The forward pass starts by solving the local problem (10){(14) for each terminal

for the �rst time period. Then equations (15) and (16) are used to �nd the number of vehicles and

the sets of loads available at each node for the second time period. Then the local problems for the

second time period can be solved. This procedure continues to the end of the planning horizon.

Backward Pass: This module computes approximations for the gradients �ait by using �nite

di�erences. These gradients capture the incremental value of another vehicle of type a at time
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(i; t). We �rst show how the right gradient is computed. In order to represent the perturbation on

the vector of vehicles available at node (i; t), we de�ne the following notation:

~Vit(a) = Vit + ea (18)

where ea is a unit vector with the only positive component in position a (that is, we assume we

have one more vehicle of type a at node (i; t). Then the following indicator variables are computed:

@xa0lt

@V +

ait

= X+

a0lt = xa0lt( ~Vit(a); �t+1; uit;Lit)� xa0lt(Vit; �t+1; uit;Lit) (19)

@ya0ijt

@V +

ait

= Y +

a0ijt = ya0ijt( ~Vit(a); �t+1; uit;Lit)� ya0ijt(Vit; �t+1; uit;Lit) (20)

Z+

a0iit = ~ya0iit( ~Vit(a); �t+1; uit;Lit)� ~ya0iit(Vit; �t+1; uit;Lit) (21)

where ~y represents the slack variables for equations (13).

It is possible that the additional vehicle in node (i; t) will satisfy a load that would otherwise

be on hold, which results in an increase in the corresponding X variable. It is possible that it

be repositioned to another location, which results in an increase in the corresponding Y variable.

Finally, the increased marginal supply may be simply held in inventory, resulting in an increase

in Z. Due to the multicommodity nature of the problem, there may also happen substitutions,

resulting in increases or decreases in several X and Y variables. The right gradient is approximated

by

�+ait '
X
j2C

X
l2 �Lijt

X
a02A

X+

a0lt

0
@ra0lt + �+

a0;j;t+�a0ij
+
X
t0>t

X
a002A

x̂a00lt0(�ra00lt0 + �+
a00;i;t0

� ��
a00;j;t0+�a00ij

)

1
A

+
X
j2C

X
a02A

Y +

a0ijt

�
�ca0ij + �+a0;j;t+�a0ij

�
+
X
a02A

Z+

a0iit �
+

a0;i;t+1 (22)

where

x̂a00lt0 = xa00lt0(Vi;t0; �t0+1; ui;t0;Lit0) (23)

Equation (22) has three components. The �rst one captures the perturbations on loaded move-

ments at time t, and at times t0 > t. The second captures perturbations from changes in the

repositioning decisions and the third changes from inventory decisions.
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The left gradient is computed in the same fashion, but it is only de�ned where Vait > 0. We

de�ne the following notation:

�Vit(a) = Vit � ea (24)

Then compute the following indicator variables:

@xa0lt

@V �
ait

= X�
a0lt = xa0lt(Vit; �t+1; uit;Lit)� xa0lt( �Vit(a); �t+1; uit;Lit) (25)

@ya0ijt

@V �
ait

= Y �
a0ijt = ya0ijt(Vit; �t+1; uit;Lit)� ya0ijt( �Vit(a); �t+1; uit;Lit) (26)

Z�a0iit = ~ya0iit(Vit; �t+1; uit;Lit)� ~ya0iit( �Vit(a); �t+1; uit;Lit) (27)

The left gradient is approximated by

��ait '
X
j2C

X
l2 �Lijt

X
a02A

X�
a0lt

0
@ra0lt + ��a0;j;t+�a0ij

+
X
t0>t

X
a002A

x̂a00lt0(�ra00lt0 + ��a00;i;t0 � �+a00;j;t0+�a00ij
)

1
A

+
X
j2C

Y �
a0ijt

�
�ca0ij + ��a0;j;t+�a0ij

�
+ Z�a0iit �

�
a0 ;i;t+1 (28)

The calculation is basically the same as the right gradient, except that we use the left derivatives

for x and y (equations (25), (26) and (27)), and we use the left derivatives �� reecting that we

are coming from the left rather than the right side.

Control Adjustment: The gradients computed in the backward pass of iteration n are used to

update the pro�t potential function for iteration n+ 1 according with:

�n+1ait = �nait + (1� )�nait (29)

where  is the smoothing factor such that 0 <  � 1.

The gradients are also used to update the upper bounds. We de�ne the following:

�+aijt0 =

�
�caij + �+a;j;t0+1 � ��ait0 if �caij + �+a;j;t0+1 � ��ait0 > 0
0 otherwise

(30)

To measure the value of decreasing an upper bound, we de�ne:

��
aijt0

=

�
caij � ��

a;j;t0+1
+ �+

ait0
if caij � ��

a;j;t0+1
+ �+

ait0
> 0

0 otherwise
(31)
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It is shown in Powell & Carvalho (1997a) that �+aijt0 and ��aijt0 are actually approximations to

the right and left gradients of Ĝ with respect to uaijt0 . The upper bound adjustment consists of

�nding the highest value among all �+aijt and ��aijt. In case the highest value is a member of �+, the

corresponding upper bound is increased by one unit, otherwise it is decreased by one unit.

In section 4 we return to the LQN methodology to highlight the di�erences between the standard

multicommodity model and the ROE model. In section 5 we build upon the standard multicom-

modity model to describe the atcar model.

4 The Railroad Owned Equipment Model

This model is very similar to the multicommodity LQN presented in section 3. The major di�erence

is that once a trailer is assigned to satisfy a request, it vanishes from the network, instead of

appearing at some other terminal. Requests for empty trailers can be satis�ed by assigning an

empty trailer from the stock at the terminal the request originates. Thus, the contribution to the

objective function for satisfying a request is the resulting pro�t. Based on the value of empty

trailers at other terminals, empty trailers can also be assigned to be repositioned, resulting in a

contribution to the objective function equivalent to the negative of the repositioning cost.

The the LQN algorithm for the ROE model is composed of the same three steps given in �gure

5 that run iteratively. We take advantage of the notation de�ned in section 3 to highlight the

di�erences between the ROE model and the multicommodity model presented in that section. We

now provide a brief description of particular features of this model.

Forward Pass : This step �nds a feasible solution for the problem of assigning empty trailers

to requests over the entire horizon. It consists of solving the local problem for each terminal, for

each time period within the planning horizon. For the ROE model, the objective function of the

local problem (10) is replaced by

max
xt;yt

X
a2A

0
B@X

b2B

X
l2Lb

it

raltxalt �
X
j2C

(caij � �a;j;t+�ij)yaijt

1
CA (32)

Backward Pass : Notice that, as opposed to the model in section 3, trailers are assigned to

requests and then disappear from the network. Therefore, in the gradient computation, there
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is no downstream e�ect of having an additional trailer satisfying a demand at any given node.

Downstream e�ects only appear if the trailer is assigned to move to another terminal or is kept in

inventory. This simpli�es the backward pass considerably.

Equation (22) is replaced by

�+ait '
X
l2 �Lit

X
a02A

X+

a0lt

0
@ra0lt +

X
t0>t

X
a002A

x̂a00lt0(�ra00lt0 + �+a00it0)

1
A+

X
j2C

X
a02A

Y +

a0ijt

�
�ca0ij + �+a0;j;t+�a0ij

�
(33)

where

x̂a00lt0 = xa00lt0(Vit0; �t0+1; uit0;Lit0) (34)

and equation (28) is replaced by

��ait '
X
l2 �Lit

X
a02A

X�
a0lt

0
@ra0lt +

X
t0>t

X
a002A

@xa00lt0

@Va0it

(�ra00lt0 + ��a00it0)

1
A+

X
j2C

Y �
a0ijt

�
�ca0ij + ��a0 ;j;t+�a0ij

�
(35)

No customization is needed for the control adjustment.

5 Flatcar Model

To describe the model for the atcar problem, we take advantage of the notation de�ned in section 3

and adapt it to describe the atcar model. Thus, in this section

� A is the set of atcar types.

� K is the set of boxes k, real and forecasted, of all types, within the planning horizon,

T . The set K plays the same role as the set L does in the basic LQN formulation,

containing the set of loads that need to be moved.

� Tk is the set of feasible times for moving box k 2 K.

� �Kit is the set of boxes k 2 K at terminal i available to be moved at time t.
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� K0it is the set of boxes k at terminal i, becoming available at time t.

� Ks
it is the set of boxes k at terminal i, departing at time t.

� Rait is the net number of atcars type a becoming available at terminal i at time t.

� rakt is the pro�t generated by choosing atcar type a to move box k at time t.

� caij is the cost of moving atcar type a over link (i; j; t).

� Vait is the number of atcars type a available at node (i; t).

To represent the feasible combinations of boxes that can go on each atcar, we take advantage

of the fact that larger atcars may be divided into slots which can be independently �lled. Most

often, each slot will take one box. The maximum number of boxes any slot could possibly take

is three in the event double stacking is allowed. In our particular problem, we divided the boxes

in 28 types. Slots that take one box can therefore be �lled at most in 28 manners, usually in less

than 10 due to width and length constraints and the presence or absence of a hitch. The largest

number of ways to �ll a slot that takes three boxes is 80. We generate and sort the elements of the

list of feasible combinations for each slot type in advance, considering the physical limitations of

each slot (width, length, presence of hitches, refrigeration and ability to handle double{stacking).

We de�ne Fas as the set of feasible combinations for a given slot s in a atcar type a.

For this model we have the following decision variables:

� xakt = 1 if box k is moved on a atcar type a starting at time t.

� waijt is the total number of atcars of type a being moved along link (i; j; t).

The objective function is composed of the sum of the contributions of the decisions taken at

each terminal at each time period within the planning horizon.

F (x; w) =
TX
t=0

X
i2C

X
a2A

0
@X

l2Kit

raltxalt �
X
j2C

caijwaijt

1
A (36)

Using the LQN approach, we do not solve the whole problem at once, but solve several local

problems that yield feasible values for the decision variables x and w. The decision variables that

control the local problems are:
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� �ait is the spatial potential function for atcars type a at terminal i at time t.

� uaijt is the upper bound on the number of atcars type a that can be moved empty

from terminal i to terminal j starting at time t.

The objective function for the local problem for node (i; t) that must be maximized is:

fit(x; w; Vit; u; �) =
X
a2A

0
@X

l2 �Kit

raltxalt �
X
j2C

(caij + �a;j;t+�ij)waijt

1
A (37)

The local problem is subject to the following constraints. The upper bounds on moving empty

atcars must be obeyed:

yaijt � uaijt 8 a 2 A; 8 j 2 C (38)

where yaijt represents the number of atcars of type a moving empty from terminal i to terminal

j departing at time t.

Each demand available at node (i; t) can be satis�ed only once:

X
a2A

xalt � 1 8 l 2 �Kit (39)

One cannot dispatch more atcars than available:

X
j2C

waijt � Vait 8 a 2 A (40)

All the assignments of boxes to atcars must be feasible. The complexity of the consolidation

procedure would result in a very large integer program, even for a single local consolidation problem

at a given node. We use instead a greedy heuristic to �nd a near optimal integer solution for each

local problem. This heuristic satis�es the three types of constraints mentioned above and produces

feasible assignments.

The heuristic consists of creating a matrix M = fMa;jg where Ma;j is the value of the best

feasible assignment of boxes destined to terminal j to a atcar type a. Let Kijt be the set of boxes

available at terminal i at time t bound to terminal j. Each element Ma;j is calculated using:

Ma;j =
X

k2Kijt

~xakt rakt � caij + �a;j;t+�ij (41)
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where the vector ~x is obtained by enumerating the feasible combinations of boxes on atcar type a

and ~xakt = 1 if box k is in the combination with the highest �ll and ~xakt = 0 otherwise.

The �rst component in (41) is obtained by looking at all the combinations of boxes available

at node (i; t) bound to terminal j that could possibly be transported by atcar type a. This

component gives the \pro�t" of the combination that has the highest �ll (de�ned as sum of the

lengths of the boxes in the combination) among all the feasible combinations of boxes. The second

component is the transportation cost of moving a atcar of type a from terminal i to terminal j.

The �rst two components, then, give the direct \contribution" of a particular assignment of boxes

to a atcar. The third component uses the spatial potential function to estimate the value of the

atcar at the destination. Without this component, we would have a standard, myopic model.

Later, we will compare local decision making without network e�ects to local decision making with

network e�ects by simply excluding or including the third term in equation (41).

The variable ~x is a function of Kijt and the atcar type. Let Lk be the length of box k. Given

the set Kijt and the slot s, we �nd the combination of boxes that returns the highest �ll by solving:

~xsakt =

�
1 if k 2 ~P, where ~Pasj =argmaxf

P
k02P Lk0 8P , P 2 Fas and P 2 Kijtg

0 otherwise
(42)

After ~x is computed for a given slot s, a temporary copy of Kijt is updated by removing from Kijt

the elements from ~P. After ~x is computed for all the slots of a atcar,

~xakt =
X
s

~xsakt (43)

If no combination of boxes can be placed on a atcar, the possibility of sending an empty atcar

of that type on that leg is considered. If uaijt > 0, the empty trip is priced as

M e
a;j = �a;j;t+�ij � caij (44)

After all the elements of the matrixM have been computed, we select the highest valued element

and validate its assignment. Let a0 and j 0 be the indices of the largest element in M . Then:

xa0kt = ~xa0kt 8k 2 ~Pa0sj0 ; 8s (45)

wa0ij0t  wa0ij0t + 1 (46)
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The matrix of assignment values must then be updated. One fewer atcar of the type that has

been selected will be available:

Va0it  Va0it � 1 (47)

Boxes bound to that destination that are contained in the chosen assignment become unavailable:

Kijt  Kijt n ~Pa0sj0 (48)

The values in the matrix which are in the row and the column of the selected assignment need

updating, which can be done by using equation (41). The procedure stops when all values in the

matrix are zero. The result is a sorted list of tasks which are feasible and are implemented within

the simulation.

This approach provides a greedy, heuristic solution to the problem of assigning boxes to atcars.

Its primary advantages are computational speed (we will need to solve this problem thousands of

times in a run of our model) and the ability to explicitly consider any operational constraint which

a�ects the ability to assign a set of boxes to a atcar. Note that our solution is intended only to

provide an estimate of the value of a particular type of atcar at a particular terminal, at a point

in time. A more optimal solution would likely be of little value since we do not have information on

the location of atcars within a yard, and the sequencing of atcars on the train. This information

is impractical to obtain at a network level at a given instant in time. More importantly, it is not

even available when we are forecasting days or weeks into the future.

We now provide the description of the forward pass, backward pass and control adjustment for

the atcar model.

Forward Pass When assigning boxes to atcars, one must be aware that intermodal trains run

on a �xed schedule. This helps computation times, as it reduces the number of possible departure

times for each box. Instead of having to solve one assignment problem for each time period at each

terminal, the assignment problem needs to be solved only before a scheduled departure at each

terminal. For our particular problem, this reduces the number of local problems that must solved

at each iteration from about 850 to 250.

After all the local problems for a given time period are solved, the number of atcars of each
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type available at each terminal j is updated by

Va;j;t+1 = Vajt �
X
i

wajit +
X
i

wa;i;j;t+1��ij + Ra;i;t+1 8j 2 C; 8a 2 A (49)

Also, the set of boxes available at each terminal is updated using

�Kj;t+1 = f �Kjt n K
s
jtg [ K

0
j;t+1 8j 2 C (50)

Backward Pass As in the multicommodity case, the solution obtained in the forward pass is

used to compute approximations for the gradients of the objective function with respect to Vait,

for each atcar type a whenever there is a scheduled departure at node (i; t). The approximation

consists of computing a �nite di�erence. An additional atcar of type a is added to node (i; t).

The local problem at (i; t) is resolved and the increase in the objective function value of the local

problem is taken as the approximation for the gradient. As before (see equation (18)) we represent

a perturbation to the supply of atcars at node (i; t), using ~Vit(a) = Vit + ea.

The right gradient is approximated by

�+ait ' fit(x; w; ~Vit(a); u; �)� fit(x; w; Vit; u; �) (51)

The left gradient is approximated in the same fashion, but it is only de�ned where Vait > 0.

Again using �Vit(a) = Vit � ea, we approximate the left gradient using:

��ait ' fit(x; w; Vit; u; �)� fit(x; w; �Vit(a); u; �) (52)

Control Adjustment The control adjustment follows the methodology outlined in section 3.

Gradients of the objective function with respect to u are computed and used in a coordinate search

procedure to update u.

At the end of iteration n, the spatial potential function is updated according to:

�n+1ait = �n+1ait + (1� )�nait (53)

where the value of the smoothing factor , 0 <  � 1 is chosen experimentally.
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 0.1 0.2 0.3 0.4 0.6

G� 1337 1334 1334 1331 1327

coverage 99.7% 99.1% 99.1% 99.0% 98.7%

Table 1: Total contribution (in thousands of dollars) and percentage of requests covered within the
planning horizon in the ROE model for selected values of .

6 Numerical Experiments

In this section, we �rst describe the calibration of the ROE model, involving the choice of an

appropriate smoothing factor and the total number of iterations that the ROE model should run.

We then proceed to the experiments necessary to calibrate the atcar model, which involve choosing

an appropriate smoothing factor. In this part we also provide some insights into the evolution of

the network within the planning horizon. In the third part of this section we investigate the value

of network information in the atcar model. We show that the LQN approach applied to the atcar

management problem returns solutions that are better than those returned by a myopic assignment

solved over the same planning horizon. Note that we use network information in the planning of

empties; it is only in the choice of which atcar to use locally that we ignore downstream e�ects

(this mimics actual rail operations, which uses an approximation of global network information to

plan empties, but allows local yard supervisors to choose what atcar to use for a particular set of

boxes).

6.1 ROE Model Calibration

The railroad handles two to three thousand requests for trailers every week. The ROE model is

very similar to the multicommodity LQN described in Powell & Carvalho (1997b), which found a

gap of about 3.5 percent between the LQN solution and the optimal value of the linear relaxation of

the equivalent linear program. In fact, for the ROE model we can expect an even tighter bound, as

the problem is not as resource constrained as the typical data sets examined in Powell & Carvalho

(1997b). The planning horizon of the ROE model must match the planning horizon of the atcar

model, which was chosen as 10 days with 4-hour time periods.

Preliminary testing showed that the objective function of the ROE model reaches stable values
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 0.1 0.2 0.3 0.4 0.6

Obj. function 3555 3551 3555 3558 3557

Table 2: Total contribution (in thousands of dollars) in the atcar model for selected values of .

within 300 iterations. Each iteration for data sets with 10-day planning horizons takes on average

4:0 seconds. If the ROE model is set to run in batch, 300 iterations can be run within 20 minutes

using a 256 MHz processor.

Table 1 shows the value of the objective function for the ROE model for selected values of .

As expected, better results are obtained with small values of the smoothing factor. This table also

shows the percentage of requests covered within the planning horizon, which is close to 100 percent,

indicating very good performance. We chose  = 0:1 for the smoothing factor for the ROE model.

6.2 Flatcar Model Calibration

The atcar data set used for calibration is a real snapshot of the rail system. It contains 2300 boxes

that are available to be moved at the beginning of the planning horizon. The demand generator

and the ROE model provide the data for the rest of the planning horizon, comprising more than

16000 boxes forecasted to become available within the 10-day period. There are 21 di�erent types

of atcar in the system.

Preliminary experiments were run with data sets having planning horizons of 5, 10 and 20 days.

We chose to �x the planning horizon at 10 days because it provides a balance between good solution

quality and acceptable speed. Each time period is four hours long, resulting in a planning horizon

of 60 time periods. As with the ROE model, the average cpu time to run each iteration is about

four minutes on a 256 MHz processor. After initial testing, we decided to stop the atcar model

after 100 iterations, giving us run times on the order of 3.6 hours.

We again performed experiments to determine an appropriate value for the smoothing parameter

. The results of these experiments are shown in table 2. These results indicate similar performance

for values of  over the entire range from 0:1 to 0:6, although we do not have a quick explanation

for this unexpected behavior, since we have generally found that values of  over 0:5 do not work

as well as smaller values. We chose to use an intermediate value of  = 0:3.
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Figure 6: Number of backlogged boxes at the end of each day, after 100 iterations.

Figure 6 shows the total number of backlogged boxes at the end of each day after 100 iterations.

We also show the number of atcars that are moved empty each day in the network (�gure 7).

Flatcars that are dispatched partially �lled are not included. For the calibration data set, day 1

corresponds to a Monday. When comparing days 1, 2, 3 to the same weekdays in the following

week (days 8, 9 and 10), we can see truncation e�ects. The truncation of the horizon results in a

greater number of boxes being backlogged on days 8, 9 and 10 because there is little incentive in

the simulation to reposition a atcar in the time periods close to the end of the planning horizon.

Even though in practice the number of atcars being repositioned should be fairly stable but lower

over the weekends, this is not exactly what we observe because of truncation e�ects.

6.3 The Value of Network Information

Here we compare two kinds of runs. The �rst one consists of runs similar to the calibration run for

the atcar model, with the objective function of the local problem as in equation (32), which we

repeat here:

fit(z; w;Nit; u; �) =
X
a2A

0
@X

l2 �Kit

raltzalt �
X
j2C

(caij � �a;j;t+�ij)waijt

1
A (54)

The second type of run is one where network information is not considered when solving the
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Figure 7: Number of empty atcars being dispatched each day, after the hundredth iteration.

local problems. In this case, the objective function for the local problem is

f�it(z; w;Nit; u) =
X
a2A

0
@X

l2 �Kit

raltzalt �
X
j2C

caijwaijt

1
A (55)

Let Flocal represent the value of the global objective function obtained by using equation (55)

as the local problem and Fglobal be its value by using (54). In order to look at the value of network

information, four other snapshots of the system were randomly generated using parameters obtained

from a 3-year historical data �le. Additionally, in each of these data sets we have altered the number

of atcars in the system. We wish to investigate the behavior of our system when the supply of

resources varies. Thus we created four data sets with eets that are 90, 95, 105 and 110 percent of

the size of the eet for our real snapshot. These data were developed by randomly generating new

datasets of atcars. For the smaller datasets, we kept each atcar with a probability of .90 and

.95, respectively. For the larger datasets, we kept each atcar, and generated another one just like

it with probability .05 and .10, respectively.

Table 3 shows the results for both runs for the real data set and the randomly generated

ones with perturbed eet size. Our expectation is that the data sets that have tighter supplies of

resources result in a higher value for network information. That is indeed the fact. The relative

improvement in our objective function rises from 3.1 percent using a eet that is 105 percent of the

base, to 4.7 percent using a eet that is 90 percent of the base.

27



load coverage %

data set Fglobal Flocal gain % global local

90% 3502 3344 4.7 85.8 81.4

95% 3530 3399 3.9 86.8 83.4

std 3555 3431 3.6 88.3 84.2

105% 3562 3452 3.2 89.4 86.9

110% 3530 3423 3.1 90.0 87.5

Table 3: The value of network information in the atcar model.

A more meaningful estimate of potential cost savings is the size of the eet required to achieve

the same level of coverage. Using only local information to choose atcars, we achieve virtually the

same level of utilization (86.9 percent) using a eet that is 105 percent of the base as we do using

global network information and a eet that is 95 percent of the base. These initial experiments

suggest that a atcar eet that is managed locally with the bene�t of our network information can

achieve the same demand coverage with a 10 percent smaller eet as compared to local management

without the bene�t of our network information.

This dramatic conclusion needs to be quali�ed. The result assumes that atcars can be chosen

in a way that solves the local model given by equation (54). In practice, this problem will be

subject to local constraints that will reduce the impact of network e�ects. Of course, changes in

basic railroad operations could reduce the e�ect of these local constraints. On the other hand,

our choice of a relatively short planning horizon (10 days) will underestimate total bene�ts, since

network information will have almost no impact for the last two or three days of the simulation. A

more careful study of the problem should include simulations where the model is solved on a rolling

horizon basis. Such a study could run longer simulations and consider the e�ects of randomness on

the overall quality of the solution. Our belief, however, is that local yard constraints will prove, in

practice, to be the primary factor limiting real-world bene�ts.
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7 Implementation Issues

The modeling framework proposed in this paper is designed to be used in a production setting.

The major challenge limiting the use of global optimization models in railroads is the lack of

quality, timely data in a central database. However, much of this data is available locally, although

sometimes only as head knowledge (that is, the yard supervisor knows the information but it is

not transferred to the computer). For example, we might prefer to send a particular atcar type

to Chicago, considering only global network issues. The yard supervisor, on the other hand, might

realize that the particular atcar in question is buried in the yard and would require a lot of jostling

to retrieve the atcar.

Our modeling approach uses two strategies to handle this problem. First, we provide local

decision makers with the information to make better decisions from a network level, allowing him

to choose among \good" alternatives (but using local judgment). Rather than telling the yard

supervisor what to do, we tell him why, and allow him to take other issues into account. Second, we

update the system in real{time, recognizing that the decision made locally is likely to be di�erent

than what the model is recommending. Both strategies are critical to providing a robust system

that will work well in the presence of missing or inaccurate data. A theme of this approach might

be called \global perspective, local control."

The LQN methodology lends itself to both strategies. The algorithm itself uses a decentralized

control technology. Each terminal i is assumed to make decisions based on immediate costs plus

the value of capacity at the destination, given by the spatial potential function. The optimizer is

adaptive, allowing frequent updates to the data, independent of whether an \optimal" solution has

been found. At the end of each forward pass, the system looks for updates to the data, that are

passed to the system as transaction �les. Our model considers �ve types of updates:

� Type 1: New atcar becomes available.

� Type 2: Flatcar becomes unavailable.

� Type 3: Flatcar is dispatched.

� Type 4: Box is dispatched.

� Type 5: New box becomes available.
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Figure 8: Flatcar LQN model.

The updates are fed to the model before each forward pass (�gure 8). Once the data is updated,

the model continues to optimize from the previous solution. As a result, new information is accepted

by the model every few minutes, although it may take a few iterations for the new solution to settle

down.

For the calibration data set in section 6, the objective function of the atcar model reached

stable values from a cold start after about 70 iterations. Thus, the startup time for the model

to return estimates for the ow of atcars and the spatial potential function is around �ve hours.

Once the atcar model has gone through the startup, it is possible to run it inde�nitely and have

up to date solutions every few minutes (for our problem, cycle times averaged around four minutes

on a 133 MHz Silicon graphics workstation). Even if the process is stopped, the system can be

restarted using the latest solution before the model is shut down. Thus, the �ve hour cold start

occurs once and never needs to be repeated.

The decision variables are not used directly but support decisions made by dispatchers at each

terminal. Gradient information is displayed to give the dispatcher the ability to weight decisions

other than the ones suggested by the model. By supplying gradient information and the suggested

atcar ows, this model adds quantitative data to the qualitative knowledge decision makers have.

In order to illustrate this, we have produced �gure 9. This plot shows the spatial potential function

for selected atcar types and terminals at the beginning of the planning horizon.

These values were obtained after the model had run long enough to output stable solutions and

thus suggested atcar ows, including empty atcars, have been factored in. The values reect

the state of the system according with our standard data and thus may change over time. One

can start by noticing that in this particular example Norfolk is well supplied with atcars, thus

there is no value in sending in more atcars. Table 4 provides a general idea of which boxes these
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Figure 9: Spatial potential function for selected atcar types at selected terminals.

atcars can handle. Clearly, the more exible atcars tend to be more valuable. Type S151 is the

only spine car type showing, and one can see it is more valuable at the terminals close to ports,

Jacksonville and Memphis.

8 Conclusion

This paper documents the successful application of the LQN approach to a complex, real world

problem. We believe the combined problem of atcar and trailer management for intermodal

operations cannot be modeled as a linear program without a high degree of simpli�cation.

The LQN approach has room for considering a range of real world details, returns integer

solutions and can be applied in a real time environment. It provides a new solution and can have

its data base updated every few minutes.

Furthermore, in this paper we compare the overall contribution of the network over the 10{day

planning horizon for two types of runs. We show that the gradient approximations provided by the

LQN approach can be used to improve the total contribution by at least 3.0 percent when compared
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atcar trailer or range of max number double

type container box lengths of boxes stacking

P534 T+C 0 - 57 2 NO

P312 T+C 0 - 48 1 NO

S311 T+C 40 - 53 1 NO

P533 T+C 40 2 NO

S310 C 48 2 YES

P310 T+C 40 1 NO

S151 C 40 - 48 10 YES

Table 4: General features of some atcar types.

to a series of myopic local problems solved over the entire horizon. This improvement, of course,

is dependent on several parameters of the problem, and thus may be higher or lower depending on

the application.

It is interesting to notice that shortages of resources may happen not only when the number

of atcars in the system drops, but also when demand for service increases. Thus the bene�t of

network information on local decisions is the greatest during periods when the railroad may be

having di�culty in meeting target deliveries.
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