
Some Fixed-Point Results
for the Dynamic Assignment Problem

Michael Z. Spivey
Department of Mathematics and Computer Science

Samford University, Birmingham, AL 35229

Warren B. Powell
Department of Operations Research and Financial Engineering

Princeton University, Princeton, NJ 08544

Corresponding Author: Michael Z. Spivey; Department of Mathematics and Computer Science, Samford
University, Birmingham, AL 35299; mzspivey@samford.edu; 205-726-2454

Abstract

In previous work the authors consider the dynamic assignment problem, which involves solving

sequences of assignment problems over time in the presence of uncertain information about the

future. The algorithm proposed by the authors provides generally high-quality but non-optimal

solutions. In this work, though, the authors prove that if the optimal solution to a dynamic assign-

ment problem in one of two problem classes is unique, then the optimal solution is a fixed point

under the algorithm.

Keywords: dynamic assignment problem, fixed point

A dynamic assignment problem consists of solving a sequence of assignment problems over

time. At each time period decisions must be made as to which resources and tasks will or will

not be assigned to each other. Assignments which are made at earlier time periods affect which

assignments can be made during later time periods, and information about the future is often

uncertain. Some examples of dynamic assignment problems include dispatching truck drivers to

deliver loads, pairing locomotives with trains and assigning company employees to jobs.

In Spivey & Powell (2000) we define the dynamic assignment problem and establish several of

its properties. We also develop a computationally tractable algorithm which provides high quality

but generally not optimal solutions to the dynamic assignment problem. Our solution technique is

based on solving the dynamic programming recursion

Vt(St) = max
xt∈Xt

ct · xt + Vt+1(St+1),

where Vt(St) is the value of the system state St given time t, Xt is the available action space given

time t, and ct is the contribution function given time t. We avoid two of the “curses of dimen-

sionality” (those of state and action spaces) by replacing Vt+1(St+1) with a linear approximation

V̂t+1(St+1) = vt+1 ◦ St+1. This approach enables us to solve sequences of assignment problems, an

algorithm which scales easily to large problems.

Testing our algorithm on deterministic instances of two dynamic assignment problem classes

in which all resources are available initially produced unexpected results. In every instance the

linear approximation based on the marginal values of the resources applied to the optimal solution

produced the optimal solution in the subsequent iteration. In other words, if it was the case that

xk
t = x∗t for all t, where the vectors xk

t , x
∗
t are, respectively, the solution in iteration k, time t, and

the optimal solution in time t, then we had

x∗t = xk+1
t = argmaxxt∈Xt

ct · xt + v̂k
t+1 ◦ St+1.

Moreover, this implies that there exists a linear approximation V̂t(St) that produces the optimal

solution.

The purpose of this paper is to prove this, provided the optimal solution is unique. Specifically,

we show that:

• For deterministic instances of two dynamic assignment problem classes, if the optimal solution

is unique then it is a fixed point under the algorithm presented in Spivey & Powell (2000).

2

In Section 1 we define some necessary notation and detail the problem classes for which the

fixed-point results hold. In Section 2 we relate some structural properties of the static assignment

problem and of deterministic dynamic assignment problems that we need to prove the fixed-point

results. Section 3 outlines our solution strategy and algorithm based on approximating the value

function using the values of individual resources. In Section 4 we present the experimental results

that initially indicated that the optimal solution is a fixed point under our algorithm, as well as

some other related results. The proofs of the fixed-point property for the two problem classes are

contained in Section 5.

1 Notation and Problem Classes

We now give some necessary notation and define the problem classes we consider in this paper.

Our notation is based on the model presented in Spivey & Powell (2000).

1.1 Resources and Tasks

We assume only finitely many resources and tasks available. Define:

R = Set of all possible resources.

L = Set of all possible tasks.

For a given time t, we can define:

Rt = Vector of resources available given time t, where Rrt = 1 if resource r is available

at t and 0 if not.

Lt = Vector of tasks available given time t, where Llt = 1 if task l is available at t and

0 if not.

We can also write the available resources and tasks given time t in set notation. These are

induced from Rt and Lt in the following manner:

Rt = {r ∈ R | Rrt = 1}.

3

Lt = {l ∈ L | Llt = 1}.

For the problem classes in this paper the form of randomness we consider is that of arrival times

of tasks (we assume all resources are known initially).

Let Ω be a space of elementary outcomes, and define the following random variables:

L+
t = vector of tasks that become known at time t; L+

lt = 1 if l becomes known at time

t and 0 otherwise.

(In this paper R+
t is always the zero vector; thus we do not define it explicitly. However, we could

have random arrivals of new resources as well as tasks.)

Finally, we define our state variable:

St = (Rt,Lt).

1.2 Actions and System Dynamics

The actions given time t are the decisions to be made about assigning resources and tasks. Define:

xrlt = 1 if resource r is assigned to task l during time t and 0 otherwise.

xt = Vector consisting of xrlt ∀r ∈ R, ∀l ∈ L.

RA
t = Vector of resources assigned during time t, where RA

rt =
∑

l∈L xrlt.

LA
t = Vector of tasks assigned during time t, where LA

lt =
∑

r∈R xrlt.

At each time t we maintain knowledge of the resource and task vectors Rt and Lt.We use these

to specify the system dynamics:

Rt+1 = Rt −RA
t(1)

Lt+1 = Lt + L+
t+1 − LA

t(2)

St+1 = (Rt+1,Lt+1)(3)

The assignments that can be made during time t are constrained by the availability of the

resources and tasks given t. Specifically, the feasible action set Xt(St) is the set of all assignment

4

vectors xt that satisfy the following constraints:

∑
l∈L

xrlt ≤ Rrt ∀r ∈ R,

∑
r∈R

xrlt ≤ Llt ∀l ∈ L,

xrlt ∈ {0, 1} ∀r ∈ R, ∀l ∈ L.

Later we develop specific techniques for making assignments. For now, define a policy:

π : S → x.

A policy is simply a function that maps states to decisions. We use policies to determine the action

to take when a system is in state S.

1.3 Objective Function

Define

crlt = contribution for assigning resource r to task l given time t.

Then the contribution for taking action xt given time t is:

ct · xt =
∑

r∈R
∑

l∈L crlt xrlt.

For a state St and a policy π, define, for each t:

F π
t (St) = E

[T+1∑
t′=t

ct′ · xπ
t′

∣∣∣St

]
.

And define:

F ∗
t (St) = max

π
F π

t (St).

The solution to our dynamic assignment problem can be found by solving:

F ∗
0 (S0) = max

π
F π

0 (S0).

5

1.4 Problem Classes

Spivey & Powell (2000) consider general dynamic assignment problems with the following charac-

teristics:

• Once assigned, resources and tasks disappear from the system.

• Once a resource/task pair becomes known, it is available for assignment, and the upper bound

and contribution for that pair are known immediately.

• The contribution for a resource/task pair is a concave and monotonically decreasing function

of time from the point at which it becomes known until it reaches 0.

We consider the following two special cases:

Problem Class 1:

• All resources are available initially. Tasks arrive over time, with at most one task arriving at

any given time.

• Upon arrival, resources and tasks remain in the system until assigned.

Problem Class 2: Same as Problem Class 1 except that tasks disappear from the system if not

assigned immediately.

2 Some Structural Properties

To establish the fixed-point results we need some structural properties of the static assignment

problem and of deterministic dynamic assignment problems, all of which are either established or

cited in Spivey & Powell (2000). Therefore we state them here without proof.

2.1 Some Properties of the Static Assignment Problem

Given the direct product of sets S ′ = (R′,L′) consisting of resources and tasks to be assigned and

contributions crl for assigning each resource r to each task l, define:

C(S ′) = maxx c · x

6

subject to
∑
l∈L

xrl ≤ 1 ∀r ∈ R′,

∑
r∈R

xrl ≤ 1 ∀l ∈ L′,

xrl ∈ {0, 1} ∀r ∈ R, ∀l ∈ L,

xrl = 0 if r 6∈ R′ or l 6∈ L′.

Given a network S ′ = (R′,L′), define:

X∗(S ′) = the set of optimal assignments for S ′.

x∗(S ′) = an element of X∗(S ′).

l∗(r) = the task assigned to resource r under x∗(S ′). If r is not assigned under x∗, then

l∗(r) is the supersink.

r∗(l) = the resource assigned to task l under x∗(S ′). If l is not assigned under x∗, then

r∗(l) is the supersource.

Cr+(S ′) = C(S ′ ∪ {r}), for r 6∈ R′.

Cr−(S ′) = C(S ′ − {r}), for r ∈ R′.

Crl+(S ′) = C(S ′ ∪ {r} ∪ {l}), for r 6∈ R′, l 6∈ L′.

Cr1r2+(S ′) = C(S ′ ∪ {r1, r2}), for r1, r2 6∈ R′.

C l+(S ′), C l−(S ′), Crl−(S ′) and Cr1r2−(S ′) are defined similarly.

Our proofs rely on the value of adding or removing resources and tasks from a system. A

fundamental result relating these is due to Shapley (1962):

Theorem 1 (Shapley 1962) Given a network S ′,

1.
(
C(S ′ ∪ {r1})− C(S ′)

)
+

(
C(S ′ ∪ {r2})− C(S ′)

)
≥ C(S ′ ∪ {r1, r2})− C(S ′).

2.
(
C(S ′ ∪ {l1})− C(S ′)

)
+

(
C(S ′ ∪ {l2})− C(S ′)

)
≥ C(S ′ ∪ {l1, l2})− C(S ′).

3.
(
C(S ′ ∪ {r})− C(S ′)

)
+

(
C(S ′ ∪ {l})− C(S ′)

)
≤ C(S ′ ∪ {r, l})− C(S ′).

Our proofs also rely on the concept of flow-augmenting paths (see, for instance, Powell (1989)).

Define the contribution of a flow-augmenting path ymn to be

C(ymn) = c · ymn.

7

And define

ymn∗
= arg max

ymn
C(ymn).

Powell (1989) proves that the flow-augmenting paths resulting from adding resources and re-

moving tasks (or vice versa) from the system form a flow-augmenting tree in the network. We also

require the following result:

Theorem 2 (Powell 1989) If SSE is the supersource, SSK the supersink, r a resource and l a

task, we have (assuming the resulting augmented networks are feasible):

1. Cr+(S ′)− C(S ′) = C(yr,SSK∗
)

2. Cr−(S ′)− C(S ′) = C(ySSK,r∗)

3. C l+(S ′)− C(S ′) = C(ySSE,l∗)

4. C l−(S ′)− C(S ′) = C(yl,SSE∗
)

5. Crl+(S ′)− C(S ′) = C(yr,l∗)

6. Crl−(S ′)− C(S ′) = C(yl,r∗)

From this we have a few corollaries Spivey & Powell (2000):

Corollary 1 Given a network S ′, if r is not assigned under the optimal solution x∗, then C(S ′) =

Cr−(S ′).

Corollary 2 Given a network S ′, if r is not assigned under the optimal solution x∗, then, for any

l ∈ S ′, C l−(S ′) = Crl−(S ′).

Corollary 3 Given a network S ′, if r is not assigned under the optimal solution x∗, then, for any

l ∈ S ′, there exists a maximal flow-augmenting path from l to SSE that does not include r.

The versions of Corollaries 1, 2 and 3 for unassigned tasks are also true.

For a network S ′, we define:

8

vr+ = Cr+(S ′)− C(S ′).

vr− = C(S ′)− Cr−(S ′) (provided r ∈ R′).

Define vl+, vl− similarly. By definition, then, we have

vr+(S ′) = vr−(S ′ ∪ {r}).

We also define:

vrl+ = Crl+(S ′)− C(S ′).

vrl− = C(S ′)− Crl−(S ′) (provided r ∈ R′, l ∈ L′).

By definition we also have vrl+(S) = vrl−(S ∪ {r} ∪ {l}).

Then we have:

Corollary 4 Given a network S ′, the following are true:

1. If r (l) is not assigned under an optimal solution x∗, then vr−(vl−) = 0.

2. If r and l are assigned under an optimal solution x∗, then vrl− = crl.

2.2 Some Properties of Deterministic Dynamic Assignment Problems

To establish the fixed-point results we also need the following properties of deterministic dynamic

assignment problems, both of which are established in Spivey & Powell (2000).

Proposition 1 Consider a deterministic dynamic assignment problem in which crlt is a strictly

decreasing function of t. Let τa
rl be the first time resource r and task l are both available. If x∗rlt = 1

for some t in an optimal solution x∗, then x∗rlτa
rl

= 1.

Given a deterministic assignment problem, let S̄t = (R̄t, L̄t) be the underlying network given

time t under the optimal solution x∗; i.e., R̄t = {r ∈ R : x∗rlt′ = 0 ∀l,∀t′ < t}, L̄t = {l ∈ L : x∗rlt′ =

0 ∀r, ∀t′ < t} and crl = cr,l,max{τa
rl

,t}∀r ∈ R̄t,∀l ∈ L̄t. Let R̄t
− = R̄t−{r : x∗rlt = 1 for some l ∈ L̄t}

and L̄t
− = L̄t − {l : x∗rlt = 1 for some r ∈ R̄t}. Then let S̄t

− = (R̄t
−
, L̄t

−). Both S̄t and S̄t
− are

subnetworks of the equivalent network formulation S ′.

9

Then we have:

Corollary 5 C(S̄t
−) = C(S̄t+1).

3 Solution Strategy and Algorithm

We define the value function as follows:

Vt(St) = max
xt∈Xt

{
ct · xt + E[Vt+1(St+1)|St]

}
; t = 0, . . . , T,(4)

= 0; t = T + 1.

Our solution strategy is based on approximating the value function Vt(St). In Spivey & Powell

(2000) we consider three main classes of approximations: 1) the greedy or myopic approximation,

2) separable linear approximations and 3) two-index nonseparable approximations. The second and

third classes are based on approximating the values of resources and tasks: The second considers

individual resources and tasks while the third focuses on the values of resource/task pairs. It is the

approximation in the second class which uses the values of individual resources that gives us the

fixed-point results in this paper.

We consider the value of a resource to be the change in the total system contribution resulting

from adding or removing the resource from the system. As this is a marginal effect of the resource

on the system contribution we refer to the value as a resource gradient.

vrt(St) =

{
Vt(St)− Vt(St − {r}) if r ∈ St,
Vt(St ∪ {r})− Vt(St) if r 6∈ St.

The value or gradient of a task is defined correspondingly.

We can approximate Vt(St) with the resource and task gradients in the following ways:

V̂ r
t (St) =

∑
r∈Rt

vrt,(5)

V̂ l
t (St) =

∑
l∈Lt

vlt,(6)

V̂ r,l
t (St) =

∑
r∈Rt

vrt +
∑
l∈Lt

vlt.(7)

10

Approximating the value function (4) requires approximating E[Vt+1(St+1)|St]. Using the re-

source gradients approximation V̂ r
t+1(St+1) for E[Vt+1(St+1)|St] yields (see Spivey & Powell (2000)

for details):

V̂ r
t (St) = max

xt∈Xt

{ ∑
r∈R

∑
l∈L

(crlt − vr,t+1) · xrlt

}
.(8)

We now present our algorithm. The algorithm is based on our linear approximation (8) of

Vt(St). For each iteration k and time t we formulate and solve a network problem consisting of the

available resources and tasks, the assignment contributions, the upper bounds on the assignment

arcs and the resource gradients from the previous iteration. The resource gradients take the form

of contributions on the arcs from the resources to the supersink; in effect, they are contributions for

not assigning the resources. After solving the network problem we remove the assigned resources

and tasks from the system and proceed to the next time period (or iteration, if we are in the final

time period).

We represent the resource gradients in the following manner:

v̂k
rt = the gradient approximation of resource r directly obtained during iteration k, time

t, and

v̄k
rt = the smoothed gradient approximation of resource r given time t after iteration k.

In particular, for smoothing function αk, v̄k
rt = αk v̂k

rt + (1− αk) v̄k−1
rt .

Our algorithm is as follows:

Step 0. Determine a maximum number of iterations K. Set v̂0
rt = 0 and v̄0

rt = 0 for all r and

t. Set k = 1, t = 0.

Step 1. For the current k and t, solve the assignment problem

V̂ r,k
t (St) = maxxt

{ ∑
r∈R

∑
l∈L

(crlt − v̄k−1
r,t+1) · xrlt

}
(9)

subject to
∑
l∈L

xrlt ≤ Rrt ∀r ∈ R,

∑
r∈R

xrlt ≤ Llt ∀l ∈ L,

xrlt ∈ {0, 1} ∀r ∈ R, ∀l ∈ L.

11

Step 2. (Transition.) Once the argmax xt in Step 1 is determined, let Rt+1 = Rt −RA
t . For

Problem Class 1, Lt+1 = Lt + L+
t+1 − LA

t , and for Problem Class 2, Lt+1 = L+
t+1, as tasks are not

persistent.

Step 3. If t < T then t = t + 1 and go to Step 2.

Step 4. (Backwards calculation of resource gradients.) Let N be the network consisting

of all resources and tasks available at iteration k and times t′ ≥ t. Let crl = cr,l,τa
rl
. Then, for the

current k and t, and for each r and l that become available by time t (even if one or both were

assigned before time t), calculate v̂k
rt according to one of the following cases:

1. If r is available given time t, then v̂k
rt = C(N)− Cr−(N).

2. If r is not available given time t, then v̂k
rt = Cr+(N)− C(N).

Step 5. (Smoothing.) For each r, set v̄k
rt = αk v̂k

rt + (1 − αk) v̄k−1
rt (for some smoothing

function αk).

Step 6. If t > 0 then t = t− 1 and go to Step 4.

Step 7. If k < K then k = k + 1 and go to Step 1 else stop.

The gradients v̂k
rt for iteration k can be calculated in one of two ways: 1) with flow-augmenting

paths, or 2) numerically. The numerical calculations involve calculating both C(N) and Cr−(N)

(or Cr+(N) and C(N), if r is not available) and taking the difference. These calculations can be

quite fast if one uses the solution of C(N) as a warm start when calculating Cr−(N) and Cr+(N).

The algorithm has two stages in each iteration: a forward pass and a backward pass. In

the forward pass the stochastic process is realized and assignments are made. The gradients are

calculated in the backward pass. As the gradients are not calculated until after the entire stochastic

process is realized we can use the information from times later than t when calculating the gradients

during time t. Since this calculation involves more information than just that available given time

t we believe that we are more accurately capturing the values of the gradients than if we were

to calculate them during the the initial forward pass. This does not violate non-anticipativity

restrictions because the gradients from iteration k are not used until iteration k + 1, when all

information from iteration k is known anyway.

Another issue is that the backwards calculation of gradients requires an underlying basis solution

12

from which to determine which resources are available at each time period. The most straightfor-

ward basis solution to use is the one from the current iteration; i.e., to calculate the gradients for

iteration k we use the solution from iteration k. However, at the time the gradients are calculated

all of the information from iteration k, including the history of the entire stochastic process, is

known. Thus we do not have to use the solution from iteration k as our basis solution; we could

even use the post-optimal solution as the basis.

There are three basic versions of the algorithm tested in Spivey & Powell (2000): with resource

gradients only, with resource and task gradients and with arc gradients. Of these three, the resource

gradients version gives the worst results on the DAP class discussed in that paper. However, for

the problem classes under discussion in this paper using the resource gradients is actually sufficient

to produce the fixed-point results. This could be because the purpose of a gradient at a particular

point in time is to decide whether or not to hold a resource and/or task over to the next time period,

with the hope of assigning the resource and/or task for a higher contribution at some later point.

In both problem classes under discussion all resources are available at time 0 and contributions

decrease monotonically. For the class in which tasks are persistent, it is thus the case that holding

a task l at time t will never result in l being assigned at a time later than t to a resource for a

contribution higher than one at t. For the class in which tasks are not persistent, it makes no sense

to hold tasks for a higher contribution later because they disappear if not immediately assigned.

Thus it seems intuitive that for these problem classes using resource gradients only is sufficient.

4 Experimental Results

To test our algorithm on Problem Classes 1 and 2 we developed a basic set of twenty problems.

We represented resources and tasks as random points on a grid and defined the contribution for

assigning a resource and a task to be an inverse function of the distance between their corresponding

grid points.

In presenting our results we refer to an “optimal solution” and a “myopic solution.” “Optimal

solution” is the posterior optimal solution. “Myopic solution” is that found by solving the assign-

ment problem at each time period using only the resources and tasks available given that time and

with v̄ = 0.

Tables 1 and 2 compare the use of the resource gradients algorithm on deterministic instances

13

of the two problem classes: The first gives the results for Problem Class 1, in which resources are

persistent, and the second the results for Problem Class 2, in which resources are not persistent.

The first column in each table is a measure of the size of the data set. The second and third columns

give the results after one iteration using the post-optimal and myopic solutions, respectively, as

the basis solutions from which to calculate the gradients. The fourth column shows the solution

converged to by the algorithm using the myopic solution as the basis solution in the first iteration

and the current solution as the basis solution in each subsequent iteration, with a step size of 0.05.

All numbers are given as a percent of the post-optimal solution.

The results in column two were a huge surprise. We did not expect that using the optimal

solution as the basis from which to calculate the gradients would produce the optimal solution

in the subsequent iteration, much less on every data set. These results suggested the fixed-point

property that we were eventually able to prove and that we present in Section 5.

We also wished to determine if producing the optimal solution in one iteration is a function of

using the optimal as the basis solution or simply of using resource gradients. We ran more tests

using the myopic solution as the basis. Column three in Tables 1 and 2 presents these results.

We can see that using the myopic solution as the basis does not, in general, produce the optimal

solution in the subsequent iteration. Thus achieving the optimal solution in one iteration is not

simply a function of using resource gradients.

Column four shows the convergence results using the myopic solution as the basis solution in the

first iteration and the current solution as the basis solution on subsequent iterations. The purpose

of this experiment was twofold: to test the convergence properties of the algorithm and to see if the

myopic solution is, like the optimal, a fixed-point. The results are virtually identical for the two

problem classes. They are also near-optimal for most data sets, with a mean of 99.2 and a median

of 99.7. Only on four data sets in each problem class did the algorithm converge to a solution less

than 99% of optimal. Moreover, in most cases the results in columns three and four are different.

Thus the myopic solution is not, in general, a fixed point, unlike the optimal solution.

5 Fixed-Point Proofs

We now prove the following:

14

Theorem 3 For a deterministic dynamic assignment problem in Problem Class 1, if the optimal

solution is unique then it is a fixed point under our algorithm.

Proof: Let x∗ be the optimal solution, and let xOPT be the solution produced by the gradients

derived from the optimal solution. We wish to show that xOPT = x∗. The proof will be by

induction. The base case t = 0 does not need to be dealt with explicitly because when t = 0 the

assumption in the induction step is true by default; thus the proof in the base case is identical to

the proof in the induction step.

Given time t there are five parts of the proof. We need to show that, under x∗:

1. If task l is not assigned during time t, then

(a) v̂r,t+1 > crlt for all r available and unassigned during t, and

(b) if r′ is assigned during t to l′, then

i. cr′lt < cr′l′t, and

ii. for any r′′ available during t, cr′′l′t + cr′lt < cr′l′t + v̂r′′,t+1.

2. If task l is assigned during time t to r, then

(a) v̂r,t+1 < crlt, and

(b) for any r′ available and unassigned during t, cr′lt + v̂r,t+1 < crlt + v̂r′,t+1.

Since all resources are available initially and at most one task l′ becomes available during t, by

Proposition 1 there can be at most one assignment under the optimal solution; namely, l′ possibly

being assigned to some r. The items enumerated above cover the cases:

1(a). If l is not assigned during time t under x∗, then no resource unassigned during t under x∗

is assigned to l during t under xOPT .

1(b)i. If l is not assigned and r′ is assigned to l′ during time t under x∗, then it is better to

assign r′ to l′ than to l during t (i.e., r′ will not be assigned to l during t) under xOPT .

1(b)ii. If r′′ and l are not assigned and r′ is assigned to l′ during time t under x∗, then it is

better to assign r′ to l′ and hold r′′ and l than to assign r′ to l and r′′ to l′ during t (i.e., r′ will

not be assigned to l and r′′ to l′ during t) under xOPT .

Thus, in Case 1, if l is not assigned during t under x∗ then it will not be assigned during t under

xOPT .

15

2(a). If r and l are assigned to each other during time t under x∗, then it is better to assign r

to l than to hold r and l during t (i.e., r and l will not both be held during t) under xOPT .

2(b). If r and l are assigned to each other and r′ is not assigned during time t under x∗, then

it is better to assign r to l and hold r′ than to assign r′ to l and hold r during t (ie., l will not be

assigned to any resource other than r during t) under xOPT .

Therefore, in Case 2, if l is assigned to r during time t under x∗ then l will be also be assigned

to r under xOPT .

These cover all cases.

Given time t, suppose that xOPT
t′ = x∗t′ for all t′ < t. Then, since ROPT

0 = R, by the induction

step we have ROPT
t = {r ∈ R : x∗rlt′ = 0 ∀l, ∀t′ < t}. Also by the induction step we have

LOPT
t = {l ∈ L : ∃ t′ < t 3 l ∈ L+

t′ ∪ LOPT
0 , x∗rlt = 0 ∀r ∀t} ∪ L+

t . We wish to show that xOPT
t = x∗t .

Case 1. Let S̄t
−
, S̄t+1 be as in Corollary 5. Let l ∈ LOPT

t and suppose x∗rlt = 0 ∀r. Then

l ∈ L∗t+1, and, by Proposition 1, l is not assigned under x∗.

Part a. Let r ∈ ROPT
t and suppose r ∈ R∗

t+1. Then r, l ∈ S̄t
−
, S̄t+1. Let x̄t

rl− be the optimal

assignment vector under S̄t
−−{r, l}. Then x̄t

rl− is feasible for S̄t
−, as S̄t

−−{r, l} ⊂ S̄t
−. Moreover,

x̄t
rl− + 1rl (where 1rl is a vector of zeros with a one in element (r, l)) is feasible for S̄t

−. Thus by

uniqueness we have

ct · (xrl−
t + 1rl) < C(S̄t

−)

⇒ ct · xrl−
t + crlt < C(S̄t

−)

⇒ Crl−(S̄t
−) + crlt < C(S̄t

−).

Since R̄t
− = R̄t+1 and L̄t

− = L̄t+1, the set of feasible assignments for S̄t
− and S̄t+1 are the

same. Because cr,l,t+1 ≤ crlt ∀r ∈ R̄t+1, ∀l ∈ L̄t+1, for any feasible assignment xt+1 we have

ct+1 · xt+1 ≤ ct · xt+1. Removal of the same resources and tasks from S̄t
− and S̄t+1 results in

two networks with the same two properties; e.g., S̄t
−−{r, l} and S̄t+1 −{r, l}. In particular, then,

Crl−(S̄t+1) ≤ Crl−(S̄−t) for any r ∈ R̄t+1, l ∈ L̄t+1. By Corollary 5 we also have C(S̄t
−) = C(S̄t+1).

Thus the above inequality gives us Crl−(S̄t+1) + crlt < C(S̄t+1). Since l is not assigned under

x∗, by Corollary 2 we have Crl−(S̄t+1) = Cr−(S̄t+1). Thus Cr−(S̄t+1) + crlt < C(S̄t+1). Since

v̂r,t+1 = C(S̄t+1)− Cr−(S̄t+1), we have crlt < v̂r,t+1.

Part bi. Suppose r′ ∈ ROPT
t is assigned to some l′ during time t under x∗. Let x′ be a solution

16

to the problem such that x′rlt′ = x∗rlt′ ∀r ∀l ∀t′ except that x′r′lt = 1 and x′r′l′t = 0 where x∗r′lt = 0 and

x∗r′l′t = 1. By uniqueness, c ·x∗ > c ·x′, which implies cr′lt ·x∗r′lt+cr′l′t ·x∗r′l′t > cr′lt ·x′r′lt+cr′l′t ·x′r′l′t.

Thus cr′l′t > cr′lt.

Part bii. Let r′, r′′ ∈ ROPT
t . Suppose r′ is assigned to some l′ during time t under x∗ and

r′′ ∈ R∗
t+1. First, we show that v̂r′′,t+1 = vr′′(S̄t

−). By the definition of the transition function,

S̄t+1 = S̄t
− except that contributions between some resources and tasks are higher in S̄t

−. In

particular, the contributions that change are exactly those between resources and tasks that are

available both during time t and time t + 1 under x∗. By Proposition 1, the only tasks available

during times t and t + 1 are those that are never assigned under x∗. By repeated application of

Corollary 2 (effectively, removing all tasks that are never assigned) we thus have that Cr′′−(S̄t
−) =

Cr′′−(S̄t+1). By Corollary 5 we also have C(S̄t
−) = C(S̄t+1). Therefore,

vr′′(S̄t
−) = C(S̄t

−)− Cr′′−(S̄t
−)

= C(S̄t+1)− Cr′′−(S̄t+1)

= v̂r′′,t+1.

Now we show that cr′lt + cr′′l′t − vr′′(S̄t
−) < cr′l′t. By Corollary 3 there exists a maximal flow-

augmenting path ySSK,r′′∗ in S̄t
− that does not include l. Moreover, ySSK,r′′∗ does not include l′

(as l′ 6∈ S̄t
−). Therefore the paths 1r′lt and ySSK,r′′∗ + 1r′′l′t are disjoint. Thus we have a feasible

flow-augmenting path from r′ to l′ in S̄t
− consisting of the arcs (r′, l), (l, SSE), (SSE, SSK),

the arcs defined by ySSK,r′′∗ , and (r′′, l′). This path defines a feasible solution x∗(S̄t
−) + 1r′l +

1l,SSE + 1SSE,SSK + ySSK,r′′∗ + 1r′′l′ to S̄t. Since x∗(S̄t) is unique, we have ct · (x∗(S̄t
−) + 1r′l +

1l,SSE + 1SSE,SSK + ySSK,r′′∗ + 1r′′l′) < ct · x∗(S̄t), provided the two solutions are distinct. Since

xr′l′t = 1 in x∗(S̄t) but not in the other solution, they are distinct. By Corollary 4 we have C(S̄t) =

C(S̄t
−)+cr′l′t. Thus cr′l′t > cr′lt +C(ySSK,r′′∗)+cr′′l′t, which implies cr′l′t > cr′lt−vr′′(S̄t

−)+cr′′l′t.

Since v̂r′′,t+1 = vr′′(S̄t
−), we therefore have cr′l′t + v̂r′′,t+1 > cr′lt + cr′′l′t.

Case 2. Let l ∈ LOPT
t , r ∈ ROPT

t , and suppose x∗rlt = 1.

Part a. First, we show that v̂r,t+1 ≤ vr(S̄t
−). Let yr,SSK∗

be a maximal flow-augmenting path

from r to SSK in S̄t+1. Since, by the proof of Corollary 5, S̄t
− and S̄t+1 have the same optimal

assignments, yr,SSK∗
is a feasible flow-augmenting path from r to SSK in S̄t

−. Either yr,SSK∗

contains a task unassigned in S̄t+1 or not. If not, then by an argument similar to that in Case

1bii the contribution for each link in yr,SSK∗
in the network S̄t+1 is the same as the contribution

17

for the associated link in S̄t
−. Since yr,SSK∗

is a feasible flow-augmenting path from r to SSK

in S̄t
−, we have v̂r,t+1 ≤ vr(S̄t

−). If yr,SSK∗
contains a task l′ unassigned in S̄t+1, then in order

to be feasible yr,SSK∗
must contain the mirror link (l′, SSE) and a link (r′, l′) for some resource

r′. Moreover, we can now see that yr,SSK∗
can contain at most one such unassigned task, as

otherwise the supersource would occur twice in the path, creating a cycle and contradicting the

tree of flow-augmenting paths described in Powell (1989). Thus yr,SSK∗
consists of a path from

r to r′ containing no unassigned tasks, the link (r′, l′), the mirror link (l′, SSE) and a path from

SSE to SSK. We have already seen that the path from r to r′ and the path from SSE to SSK

contain no tasks unassigned in S̄t+1; thus as in an earlier argument the contribution for each link

in these paths is the same as that for the associated link in S̄t
−. Since cr′l′,t+1 ≤ cr′l′t we have that

the length of yr,SSK∗
in S̄t

− is greater than or equal to its length in S̄t+1. And because yr,SSK∗
is

feasible for S̄t
− this gives us v̂r,t+1 ≤ vr(S̄t

−). In either case, then, v̂r,t+1 ≤ vr(S̄t
−).

Now we show that vr(S̄t
−) < crlt. Let yr,SSK∗

be a maximal flow-augmenting path from r to

SSK in S̄t
−. This path helps define a feasible solution x∗(S̄t

−)+yr,SSK∗−1SSE,SSK +1SSE,l to S̄t.

Since x∗(S̄t) is unique, we have ct ·(x∗(S̄t
−)+yr,SSK∗−1SSE,SSK +1SSE,l) < ct ·x∗(S̄t), provided the

two solutions are distinct. Since xrlt = 1 in x∗(S̄t) but not in the other solution, they are distinct.

Therefore we have C(S̄t
−)+vr(S̄t

−) < C(S̄t). By Corollary 4 we have C(S̄t) = C(S̄t
−)+ crlt. Thus

vr(S̄t
−) < crlt.

Since v̂r,t+1 ≤ vr(S̄t
−) we now have v̂r,t+1 < crlt.

Part b. Let r′ ∈ ROPT
t and suppose r′ ∈ R∗

t+1. We have that x∗(S̄t
− − {r′} ∪ {r}) + 1r′l is

a feasible solution for S̄t. Since x∗(S̄t) is unique, ct · (x∗(S̄t
− − {r′} ∪ {r}) + 1r′lt) < ct · x∗(S̄t),

provided the two solutions are distinct. Since xrlt = 1 in x∗(S̄t) but not in the other solution, they

are distinct. By Corollary 4 we have C(S̄t) = C(S̄t
−)+crlt. Thus Cr′−,r+(S̄t

−)+cr′lt < C(S̄t
−)+crlt.

By Shapley’s Theorem we have

Cr+(S̄t
−)− Cr′−(S̄t

−) ≤ C(S̄t
−)− Cr′−(S̄t

−) + Cr′−,r+(S̄t
−)− Cr′−(S̄t

−)

⇒ Cr+(S̄t
−) ≤ C(S̄t

−)− Cr′−(S̄t
−) + Cr′−,r+(S̄t

−)

⇒ Cr+(S̄t
−) < C(S̄t

−)− Cr′−(S̄t
−) + C(S̄t

−) + crlt − cr′lt

⇒ Cr+(S̄t
−)− C(S̄t

−) + cr′lt < C(S̄t
−)− Cr′−(S̄t

−) + crlt

⇒ vr(S̄t
−) + cr′lt < vr′(S̄t

−) + crlt

⇒ v̂r,t+1 + cr′lt < v̂r′,t+1 + crlt.

18

(The last statement is due to the fact that v̂r,t+1 ≤ vr(S̄t
−), by Case 2a, and v̂r′,t+1 = vr′(S̄t

−), by

Case 1bii.)

Since we have proven both cases, we have xOPT
t = x∗t . By induction, then, xOPT

t = x∗t ∀t, and

therefore xOPT = x∗.

We now prove the fixed-point property for the second problem class.

Theorem 4 For a deterministic dynamic assignment problem in Problem Class 2, if the optimal

solution is unique then it is a fixed point under our algorithm.

Proof: The proof is similar to that for Theorem 3. Let x∗ be the optimal solution, and let xOPT

be the solution produced by the gradients derived from the optimal solution. We wish to show that

xOPT = x∗. The proof will be by induction. As in Theorem 3, the base case t = 0 does not need

to be dealt with explicitly.

Given time t there are three parts of the proof. We need to show that, under x∗:

1. If task l is not assigned during time t, then v̂r,t+1 > crlt for all r available and unassigned

during t.

2. If task l is assigned during time t to r, then

(a) v̂r,t+1 < crlt, and

(b) for any r′ available and unassigned during t, cr′lt + v̂r,t+1 < crlt + v̂r′,t+1.

Case 1b in Theorem 3 does not occur because the tasks are not persistent. Thus if task l is available

during time t, LOPT
t = L+

t = {l}, and there is no other task l′ available to be assigned.

Given time t, suppose that xOPT
t′ = x∗t′ for all t′ < t. Then, since ROPT

0 = R, by the induction

step we have ROPT
t = {r ∈ R : x∗rlt′ = 0 ∀l, ∀t′ < t}. Since tasks are not persistent, LOPT

t = L+
t .

We wish to show that xOPT
t = x∗t . Let l ∈ LOPT

t . Either l is assigned under x∗ or not.

Case 1. Suppose l is not assigned under x∗. Then R∗
t = R∗

t+1, as {l} = L∗t . Let r ∈ ROPT
t .

Then r ∈ R∗
t+1, as ROPT

t = R∗
t by induction hypothesis, and R∗

t = R∗
t+1, from above. Let S̄t

−
, S̄t+1

be as in Corollary 5. Let x̄t
rl− be the optimal assignment vector under S̄t

− − {r, l}. Then x̄t
rl− is

19

feasible for S̄t
−, as S̄t

− − {r, l} ⊂ S̄t
−. Moreover, x̄t

rl− + 1rl (where 1rl is a vector of zeros with a

one in element (r, l)) is feasible for S̄t
−. Thus by uniqueness we have

ct · (xrl−
t + 1rl) < C(S̄t

−)

⇒ ct · xrl−
t + crlt < C(S̄t

−)

⇒ Crl−(S̄t
−) + crlt < C(S̄t

−).

Consider the networks S̄t
−−{r, l} and S̄t+1−{r}. Since tasks are not persistent, these networks have

identical resource and task sets. Since cr′,l′,t+1 ≤ cr′l′t ∀r′, ∀l′, we have that, for any assignment

xt+1 feasible for S̄t+1 − {r}, ct+1 · xt+1 ≤ ct · xt+1. Thus we must have Cr−(S̄t+1) ≤ Crl−(S̄−t).

Since l is not assigned under x∗, l is not assigned in the optimal solution for S̄−t (see proof of

Corollary 5). Thus, by Corollary 1, C l−(S̄−t) = C(S̄−t). Since L̄t+1 = L̄−t −{l}, by Corollary 5 and

previous we have C(S̄t+1) = C(S̄t
− − {l}) = C l−(S̄−t) = C(S̄−t). Thus the above inequality gives

us Cr−(S̄t+1) + crlt < C(S̄t+1). Since v̂r,t+1 = C(S̄t+1)− Cr−(S̄t+1), we have crlt < v̂r,t+1.

Case 2. Suppose l is assigned under x∗ to some resource r. Since tasks are transient, r and l

must be assigned during time t.

Part a. First, we show that v̂r,t+1 ≤ vr(S̄t
−). Let yr,SSK∗

be a maximal flow-augmenting path

from r to SSK in S̄t+1. Since l 6∈ S̄t
− we have L̄t

− = L̄t+1. Thus, by the proof of Corollary 5, S̄t
−

and S̄t+1 have the same optimal assignments, and therefore yr,SSK∗
is a feasible flow-augmenting

path from r to SSK in S̄t
−. Either yr,SSK∗

contains a task unassigned in S̄t+1 or not. If not,

then by an argument similar to that in Case 1bii of Theorem 3 the contribution for each link in

yr,SSK∗
in the network S̄t+1 is the same as the contribution for the associated link in S̄t

−. Since

yr,SSK∗
is a feasible flow-augmenting path from r to SSK in S̄t

−, we have v̂r,t+1 ≤ vr(S̄t
−). If

yr,SSK∗
contains a task l′ unassigned in S̄t+1, then in order to be feasible yr,SSK∗

must contain the

mirror link (l′, SSE) and a link (r′, l′) for some resource r′. Moreover, we can now see that yr,SSK∗

can contain at most one such unassigned task, as otherwise the supersource would occur twice in

the path, creating a cycle and contradicting the tree of flow-augmenting paths described in Powell

(1989). Thus yr,SSK∗
consists of a path from r to r′ containing no unassigned tasks, the link (r′, l′),

the mirror link (l′, SSE) and a path from SSE to SSK. We have already seen that the path from

r to r′ and the path from SSE to SSK contain no tasks unassigned in S̄t+1; thus as in an earlier

argument the contribution for each link in these paths is the same as that for the associated link

in S̄t
−. Since cr′l′,t+1 ≤ cr′l′t we have that the length of yr,SSK∗

in S̄t
− is greater than or equal to

20

its length in S̄t+1. And because yr,SSK∗
is feasible for S̄t

− this gives us v̂r,t+1 ≤ vr(S̄t
−). In either

case, then, v̂r,t+1 ≤ vr(S̄t
−).

Now we show that vr(S̄t
−) < crlt. Let yr,SSK∗

be a maximal flow-augmenting path from r to

SSK in S̄t
−. This path helps define a feasible solution x∗(S̄t

−)+yr,SSK∗−1SSE,SSK +1SSE,l to S̄t.

Since x∗(S̄t) is unique, we have ct ·(x∗(S̄t
−)+yr,SSK∗−1SSE,SSK +1SSE,l) < ct ·x∗(S̄t), provided the

two solutions are distinct. Since xrlt = 1 in x∗(S̄t) but not in the other solution, they are distinct.

Therefore we have C(S̄t
−)+vr(S̄t

−) < C(S̄t). By Corollary 4 we have C(S̄t) = C(S̄t
−)+ crlt. Thus

vr(S̄t
−) < crlt.

Since v̂r,t+1 ≤ vr(S̄t
−) we now have v̂r,t+1 < crlt.

Part b. Let r′ ∈ ROPT
t such that r′ 6= r. Since r is assigned to l during t under x∗, r′ ∈ R∗

t+1.

First, we show that v̂r′,t+1 = vr′(S̄t
−). By the definition of the transition function, S̄t+1 = S̄t

−

except that contributions between some resources and tasks could be higher in S̄t
−
. In particular,

the contributions that change are exactly those between resources and tasks that are available both

during times t and t + 1 under x∗. But since tasks are not persistent, there are no resource/task

pairs available during times t and t + 1 under x∗. Thus the networks S̄t+1 and S̄t
− are actually

identical. And therefore C(S̄t
−) = C(S̄t+1), as well as Cr′−(S̄t

−) = Cr′−(S̄t+1). Thus,

vr′(S̄t
−) = C(S̄t

−)− Cr′−(S̄t
−)

= C(S̄t+1)− Cr′−(S̄t+1)

= v̂r′,t+1.

We have that x∗(S̄t
− − {r′} ∪ {r}) + 1r′l is a feasible solution for S̄t. Since x∗(S̄t) is unique,

ct ·(x∗(S̄t
−−{r′}∪{r})+1r′lt) < ct ·x∗(S̄t), provided the two solutions are distinct. Since xrlt = 1 in

x∗(S̄t) but not in the other solution, they are distinct. By Corollary 4 we have C(S̄t) = C(S̄t
−)+crlt.

Thus Cr′−,r+(S̄t
−) + cr′lt < C(S̄t

−) + crlt. By Shapley’s Theorem we have

Cr+(S̄t
−)− Cr′−(S̄t

−) ≤ C(S̄t
−)− Cr′−(S̄t

−) + Cr′−,r+(S̄t
−)− Cr′−(S̄t

−)

⇒ Cr+(S̄t
−) ≤ C(S̄t

−)− Cr′−(S̄t
−) + Cr′−,r+(S̄t

−)

⇒ Cr+(S̄t
−) < C(S̄t

−)− Cr′−(S̄t
−) + C(S̄t

−) + crlt − cr′lt

⇒ Cr+(S̄t
−)− C(S̄t

−) + cr′lt < C(S̄t
−)− Cr′−(S̄t

−) + crlt

⇒ vr(S̄t
−) + cr′lt < vr′(S̄t

−) + crlt

⇒ v̂r,t+1 + cr′lt < v̂r′,t+1 + crlt.

21

(The last statement is due to the fact that v̂r,t+1 ≤ vr(S̄t
−), by Case 2a, and v̂r′,t+1 = vr′(S̄t

−),

from above.)

Since we have proven both cases, we have xOPT
t = x∗t . By induction, then, xOPT

t = x∗t ∀t, and

therefore xOPT = x∗.

Acknowledgement

This research was supported in part by grant AFOSR-F49620-93-1-0098 from the Air Force Office

of Scientific Research.

References

Powell, W. B. (1989), ‘A review of sensitivity results for linear networks and a new approximation

to reduce the effects of degeneracy’, Transportation Science 23(4), 231–243.

Shapley, L. S. (1962), ‘Complements and substitutes in the optimal assignment problem’, Naval

Research Logistics Quarterly 9, 45–48.

Spivey, M. Z. & Powell, W. B. (to appear), The dynamic assignment problem, Transportation

Science.

22

Table 1: Results for Problem Class 1

Data Set Size One Iteration Convergence
Optimal Start Myopic Start Myopic Start

5 100 100 100
10 100 99.0 99.0
15 100 100 100
20 100 98.3 100
25 100 100 100
30 100 98.7 99.7
35 100 99.4 100
40 100 96.5 99.7
45 100 99.8 99.8
50 100 98.8 99.6
55 100 99.4 99.6
60 100 95.2 95.2
65 100 99.8 99.8
70 100 98.0 98.4
75 100 96.9 96.9
80 100 99.4 99.7
85 100 98.3 99.7
90 100 95.5 99.9
95 100 99.0 99.3

100 100 98.5 98.5
MEAN 100 98.5 99.2

MEDIAN 100 98.9 99.7

23

Table 2: Results for Problem Class 2

Data Set Size One Iteration Convergence
Optimal Start Myopic Start Myopic Start

5 100 100 100
10 100 99.0 99.0
15 100 100 100
20 100 98.3 100
25 100 100 100
30 100 95.1 97.7
35 100 99.4 100
40 100 86.8 99.7
45 100 99.8 99.8
50 100 95.5 99.6
55 100 99.4 99.6
60 100 95.2 95.2
65 100 96.8 99.8
70 100 95.5 99.4
75 100 96.9 96.9
80 100 99.4 99.7
85 100 98.3 99.7
90 100 95.3 99.7
95 100 97.5 99.3

100 100 98.5 98.5
MEAN 100 97.3 99.2

MEDIAN 100 97.9 99.7

24

