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Abstract

We consider the problem of distributing goods from one or more plants through a set of

warehouses in anticipation of forecasted customer demands. Two results are provided in this

paper. First, we present a methodology for approximating stochastic distribution problems that

are computationally tractable for problems of realistic size. Comparisons are made to standard

deterministic formulations and shown to give superior results. Then, we compare logistics

networks with varying degrees of redundancy represented by the number of warehouses which

serve each customer. Overlapping service regions for warehouses provides additional 
exibility

to handle real-time demands. We quantify the expected savings that might result from such

strategies.



1 Introduction

Distribution problems involve the allocation of goods or resources to storage areas in anticipa-

tion of forecasted market demands. A classic example is the movement of inventory from plant

to warehouse in anticipation of future customer demands. Decisions of how much to store at

each warehouse must be made prior to knowing what the actual demands are. For example, a

major retailer keeps inventories of refrigerators in local warehouses for quick delivery. A cus-

tomer choosing a refrigerator on Saturday can then schedule delivery the following Monday.

Such a fast response requires that inventories be stored in advance of the purchase decision.

Stochastic distribution problems arise in other settings as well. Railroads, motor carriers

and shipping companies need to manage large 
eets of containers (or trailers or rail cars) to

maintain inventories which can meet shipper demands. As containers become empty, they

need to be repositioned empty from one storage location (often referred to as trailer pools

or container yards) to the next in anticipation of shipper needs. While the terminology is

di�erent, the structure of the problem is the same as that faced by manufacturers or retailers.

These problems fall within the framework of multilocation inventory and distribution plan-

ning. Static, deterministic models can be found in many logistics books (e.g. Robeson and

House [15],Ballou [4], Graves et al. [6]). These models focus on determining warehouse size

and location, customer allocation to warehouses and transportation planning. Dynamic models

consider the operational planning of inventories to meet forecasted demands over a speci�ed

planning horizon. Deterministic versions of these models have been in use for some time (see,

for example, Klingman and Mote[11]), and have been studied in depth within the research

community (Aronson and Chen [3], Aronson [1]), although it is not clear how widely these

models have been adopted in practice. One limitation that is often cited is that the models are

not able to handle uncertainties in forecasted demands. This calls into question the value of

solving models with long planning horizons, such as those posed in Aronson and Chen [2],[3].

Considerably less progress has been made on formulating and solving stochastic, multiloca-

tion inventory models. Karmarkar [8],[9], provides bounds and approximations of the expected

recourse function for stochastic, (convex) multilocation inventory problems. More recently

Shapiro [17] notes that stochastic versions of these problems are computationally intractable.

Standard methods based on stochastic dynamic programming su�er from the \curse of dimen-
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sionality" and therefore have seen limited practical application. An alternative approach is to

formulate a stochastic linear program (Wets [20]) which can then be solved using specialized

methods for large scale linear programs (Rockafellar and Wets [16], Lustig et al. [12]). It is not

clear, however, how many scenarios are required to provide an accurate solution, and problems

with even a modest number of scenarios can create extremely large linear programs. While

this approach is quite general, it does little to take advantage of the structure of the problem.

In this paper, we formulate the multilocation inventory problem with uncertain demands as

dynamic networks. Furthermore, we model the uncertain demands in the problem as random

arc capacities. This formulation allows us to take advantage of the recent results by Powell

and Cheung ([14], [13]) which present algorithms for approximating the expected recourse

function for networks with random arc capacities. This network model is used for dynamic 
eet

management problems which have been solved as sequences of two-stage stochastic networks

by Cheung and Powell[5].

There is a close similarity between classical distribution problems in logistics and 
eet

management problems. In 
eet management, empty vehicles must be allocated in anticipation

of future shipper demands. However, vehicles are reusable, and vehicles are \consumed" by

allowing the shipper to move the vehicle loaded from one city to the next, at which point

the vehicle becomes empty again and available for reuse. By contrast, standard distribution

problems move product which is consumed and leaves the network permanently. Both problems

can be modeled as networks with random arc capacities, but the characteristics of the networks

are di�erent.

This paper makes the following contributions:

1. The multilocation inventory problem with uncertain demand forecasts is formulated as a

stochastic programming problem using the framework of dynamic networks with random

arc capacities. Two stage and multistage formulations of these problems are proposed.

These formulations provide a fresh perspective to the classical multilocation inventory

problem and may leading to new classes of solution techniques.

2. We investigate how the methods developed by Powell and Cheung ([14], [13]) for 
eet

management problems can be adapted in the context of multilocation inventory planning.

In particular, we show that the two-stage stochastic distribution problem can be solved
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easily using standard network algorithms.

3. Using a two-stage model, we evaluate the e�ectiveness of using overlapping service areas

for distribution problems. These experiments allow us to test the hypothesis that a

spatially distributed set of inventories can work as e�ectively as a single inventory as

long as the fraction of customers served by more than one warehouse exceeds a certain

percentage.

Section 2 formulates the distribution problem as a two-stage stochastic program. In this

section, we show how the methods developed in [14] and [13] can be applied to �nd an approx-

imate solution. Next, section 3 considers a dynamic version of the distribution problem and

shows how a backward recursion can be used to solve the problem. Finally, section 4 uses the

two-stage formulation �rst to test the quality of the approximation, and second to evaluate

the e�ectiveness of 
exible distribution strategies.

2 Two-stage distribution planning

One of the most fundamental models for discrete time stochastic multilocation inventory prob-

lem is the newsboy model. In our context, the newsboy model considers �rst the 
ow of goods

from plants to customers and second the costs associated with the overage and the underage in

meeting the customer demands. The objective of this model is to minimize the transportation

cost and the expected underage costs and overage costs. This model can be formulated as a

stochastic program with simple recourse and thus can be solved by using classical nonlinear

programming techniques.

However, in some situations where consolidation facilities are involved (warehouses in our

case), the newsboy model may not apply. Consider a two-stage decision process: (1) we must

ship goods from plants to warehouses before customer demands are realized; (2) only after

we know the exact customer demands, we then ship the goods from warehouses to customers.

In other words, after the customer demands are realized, when a warehouse do not have

enough inventory to meet the demand for a customer, the unsatis�ed demand may be met by

the shipment from another warehouse. The newsboy model does not capture these recourse

actions.
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We consider the multilocation inventory problem as a two-stage stochastic network. The

�rst stage involves the shipments from plants to warehouses whereas the second stage involves

the shipments from warehouses to customers. The challenge in these problems is that customer

demands are not known with certainty. Therefore, decisions in stage one must be made before

customer demands are revealed. When customer demands become available, the second stage

decisions are then made. The objective is to �nd the best distribution plan, on \average," to

ship products from plants to warehouses while hedging against uncertain customer demands.

Models as such can be generalized in a multi-echelon setting(Zangwill[22]). The resulting

model can be applied to other problems such as production planning (Karmarkar[7, 8, 9] and

Karmarkar and Patel[10]).

2.1 Problem formulation

Let � be a random vector de�ned over a probability space (
;F ; P ) where 
 is the set of

elementary outcomes !, F is the event space and P is the probability measure. We have the

following notation:

Deterministic parameters:

P = set of indexes representing plants, with i 2 P ;

W = set of indexes representing warehouses, with j 2 W ;

C = set of indexes representing customers, with k 2 C;

cij = cost of shipping a unit of product from plant i to warehouse j;

qjk = cost of shipping a unit of product from warehouse j to customer k;

rk = penalty cost per unit of unsatis�ed demand for customer k;

Ri = amount of goods produced at plant i;

uij = capacity of shipment from plant i to warehouse j;

ujk = capacity of shipment from warehouse j to customer k;

Decision variables:

xij = amount of goods shipped from plant i to warehouse j;

yjk = amount shipped from warehouse j to customer k;

sj = amount of products available at warehouse j;

=
X
i2P

xij

zk = amount of goods received by customer k;
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=
X
j2W

yjk

Random parameters:

�k = random demand of customer k;

�k(!) = a realization of the demand of customer k;

Note that sj and zk are simply de�nitional variables which give the total 
ow into a warehouse

or customer.

We assume the customer demands �k to be independent, discrete, and �nite random vari-

ables. Furthermore, we assume that no backlogging is allowed to meet the unsatis�ed demands.

This assumption is reasonable for the distribution planning of very short-cycle products, such

as fresh vegetables. In this situation, the lost revenue for the unsatis�ed demands are repre-

sented by the penalty cost, zk. We feel that this model will also serve an approximation of

multistage distribution problems with backlogging, where our underage cost can be used to

approximate the value of refusing a demand now (with the possibility of being satis�ed later).

Today, transportation companies often use a one period transportation problem to solve the

equipment repositioning problem, which is just a deterministic version of our model. In this

sense, we are extending, in a computationally tractable fashion, the state of the art in this

problem area.

In the following, we take the convention that a variable with no subscript represents a

vector. Furthermore, we let x(!), y(!) and z(!) be the vectors of decision variables for a

particular realization of customer demand �(!). Assuming zero inventory at warehouses, the

two-stage formulation of a static distribution network can be written as follows. The stage 1

problem is given by:

min
x

X
i2P

X
j2W

cijxij + �Q(s) (1)

subject to: X
j2W

xij = Ri 8i 2 P

X
i2P

xij = sj 8j 2 W

xij � uij 8i 2 P ; j 2 W

(2)

where �Q(s) = E!Q(s; �(!)) is the expected cost of the following stage 2 problem. The function

�Q(s) is also known as the expected recourse function. For a given realization �(!) and a �xed
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vector s, the total cost of the stage 2 problem is obtained by solving a minimization problem:

Q(s; �(!)) = min
y(!)

X
j2W

X
k2C

qjkyjk(!) +
X
k2C

rk(�k(!)� zk(!)) (3)

subject to: X
k2C

yjk(!) = sj 8j 2 W

X
j2W

yjk(!) �zk(!) = 0 8k 2 C

yjk(!) � ujk 8j 2 W ; k 2 C

zk(!) � �k(!) 8k 2 C

(4)

In general, suppliers will not ship more than what customers ask. We represent this situ-

ation by zk(!) � �k(!) (the last set of constraints in (4)). When the demand for customer k

is not met, then a penalty cost of rk will be incurred. As a result, in the objective function of

the stage 2 problem, we have the term
P

k2C rk(�k(!)� zk(!)) representing the total penalty

cost for unsatis�ed demands.

Let us consider the objective function (3). Notice that �k(!) is not a decision variable

and thus can be taken away from the objective function from the optimization point of view.

Therefore, we can replace (3) with

Q(s; �(!)) = min
y(!)

X
j2W

X
k2C

qjkyjk(!)�
X
k2C

rkzk(!) (5)

The revised problem is a two-stage network where all parameters in stage 1 are deterministic

and some arc capacities in stage 2 are random variables (representing the customer demands).

Such a two-stage network is depicted in Figure 1. Note that in Figure 1, we also have a dummy

customer. There is an arc joining each warehouse to the dummy customer where the arc 
ow

is simply the excess supply to the warehouse and the arc cost is the inventory cost at this

warehouse. However, for simplicity, we do not explicitly distinguish this dummy customer

with other customers in our mathematical formulation.

2.2 Basic solution approach

Our ability to solve the two-stage stochastic problem depends on our ability to approximate

the expected recourse function �Q(s) in (1). Due to the embedded minimization in expectation,
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Figure 1: Two-stage stochastic network formulation of static distribution planning.

obtaining the exact expected recourse function is generally intractable. However, the special

structure of our problem enables the development of specialized techniques. Powell and Cheung

[14] introduce a procedure to compute �Q(s) exactly when the stage 2 problem consists of

trees with random arc capacities. Moreover, Powell and Cheung [13] develop a method to

approximate �Q(s) when the stage 2 problem is a network with random arc capacities. The

application of these techniques has appeared in [5].

The main idea of these methods is to replace the complicated expected recourse function

�Q(s) by a tractable function Q̂(s) which is convex, piecewise linear and separable in s, that is

Q̂(s) =
X
j2W

Q̂j(sj)

The convexity and the piecewise linearity are the properties of the expected recourse function

(see Wets[21]), while we impose an approximation of separability to simplify our calculations.

Each component Q̂j(sj) of Q̂(s) has an intuitive interpretation: it measures the expected

marginal value for each unit of goods available in warehouse j. Since �Q(s) is convex and

piecewise linear, we would like the components Q̂j(sj) to be convex and piecewise linear as well,
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Figure 2: Representation of a convex, piecewise linear function by a set of links.

re
ecting the diminishing return of each incremental unit of available goods. As illustrated

in Figure 2, each piecewise linear, convex function Q̂j(sj) can be represented by a set of

deterministic links, which we refer to as the recourse links. Except for the last link which is

uncapacitated to ensure the feasibility, all links have arc capacities of one unit. The cost of the

�rst link is the slope of Q̂j(1) and the cost of the second link is the slope of Q̂j(2) and so on.

These links capture the impact of the stage 1 decisions in stage 2. We then augment the stage 1

problem by adding these links to the terminal nodes (representing warehouses). The resulting

augmented stage 1 problem is a pure network which can be solved by standard network 
ow

algorithms e�ciently. Figure 3 shows the augmented stage 1 problem of the network in Figure

1.

Notice that this approach captures the future interaction of activities as simple functions,

allowing the stage 1 decisions to be made in real time. Furthermore, the network structure of

the augmented stage 1 problem naturally leads to an integer solution as a minimum cost 
ow

problem which is desirable in many applications.

The core of this approach is to obtain the separable function Q̂(s). In the following, we focus

on two methods for obtaining Q̂(s). Section 2.3 describes a solution method for the special

class of problems with a single warehouse per customer. This method takes advantage of the

problem structure and allows us to �nd �Q(s) exactly. Then, section 2.4 describes a method
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for problems with several warehouses per customer. This method produces an approximation

solution which can be iteratively improved.

2.3 Tree problems

This section considers a special class of two-stage distribution planning problems where each

customer receives goods from only one warehouse. In such a problem, the stage 2 problem

consists of a set of trees where each tree is rooted at a node representing warehouse. This root

node is the only entry point for 
ow entering the tree. Links in the trees have deterministic

cost coe�cients but may have random arc capacities. The spatial separability of this problem

makes the expected recourse function separable, that is,

�Q(s) =
X
j2W

�Qj(sj) (6)

where �Qj(sj) is the expected total cost of the tree rooted at j 2 W where the amount of goods

available at warehouse j is sj .

The separability of the recourse function together with the special structure of trees allow

us to compute each component �Qj(sj) exactly. Powell and Cheung[14] develop an algorithm

to obtain the expected recourse function for trees with random arc capacities. Our recourse

problem is simply the special case of two-level trees where arc capacities in the �rst level are

deterministic and arc capacities in the second level are random. Thus, the method of [14] can

be applied. Below, we show how to obtain the expected recourse function for a tree rooted at

node j parametrically as a function of the supply to the root node.

One mathematical way to express a tree is the path-
ow formulation where a path k is

de�ned as a sequence of arcs joining the root node j to a customer k. Since we are now

focusing on a particular tree, for simplicity, we suppress the index j unless otherwise speci�ed.

De�ne

P = the set of all paths,

Np = jPj,

ck = cost of the path for customer k,

�(l; k) = probability that the lth unit of goods available in the warehouse j is
shipped to customer k,
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�(l) = expected marginal cost for the lth unit of goods available at ware-
house j.

Following the de�nition of �(l; k) and �(l), we know that the expected recourse function

�Qj(sj) can be obtained by �rst calculating �(l) for any l:

�(l) =

NpX
k=1

ck � �(l; k) (7)

and then summing up all �(l) for l = 1; 2; :::; sj:

�Qj(sj) =

sjX
l=1

�(l) =

sjX
l=1

NpX
k=1

ck � �(l; k) (8)

Equations (7) and (8) imply that knowing the probabilities �(l; k) is su�cient to obtain �Qj(sj).

Therefore, in the remainder of this section, we concentrate on the calculation of �(l; k).

Let, for a given realization �(!):

 k(!) = capacity of path k under realization �(!),

Zk(!) = the total capacity of the �rst k paths under realization �(!).

By de�nition, we have

Zk(!) =
kX

m=1

 m(!): (9)

Without loss of generality, assume that all paths are ranked according to their cost, from

the least to the most, that is

c1 � c2 � � � � � ck � � � � � cNp

Powell and Cheung[14] shows that an optimal strategy for assigning 
ow to paths is to put as

much 
ow as possible on the lowest cost paths. Equivalently, if the paths are ranked in the

order of their cost, then the lth unit of goods will be shipped over path k if and only if the

total capacity of the �rst k � 1 paths is less than l and the total capacity of the �rst k paths

is at least l. Therefore, the probabilities �(l; k) can be characterized as:

�(l; k) = PfZk � l \ Zk�1 < lg (10)

= PfZk � lg � PfZk�1 � lg: (11)
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8><
>:

0:3 if k = 0
0:5 if k = 1
0:2 if k = 2

Figure 4: An example of a tree recourse problem.

Notice that the path capacity  k is simply a truncation of �k:

 k = minfujk; �kg (12)

Since we assume that �k are independent,  k are also independent. Consequently, the random

variable Zk is a sum of independent random variables. Hence, we can obtain the distribution

of Zk by using convolution of independent random variables.

To illustrate the idea, consider the example in �gure 4. First, we compute the distributions

of the path capacities Zk, k = 1; 2; 3. Since  1 = minfu1;2; �4g,  1 is equivalent to truncating

�4 at 2. Similarly,  2 is equivalent to truncating �5 at 1. Thus, the probability distributions

of  k, k = 1; 2, are:
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Pf 1 = lg =

8><
>:

0:1 if l = 0
0:2 if l = 1
0:7 if l = 2

Pf 2 = lg =

(
0:3 if l = 0
0:7 if l = 1

Whereas, the last path is uncapacitated, that is, Pf 3 = 1g = 1. By using convolution (see

equation (9)), the probability distributions of Zk, k = 1; 2, are:

PfZ1 = lg =

8><
>:

0:1 if l = 0
0:2 if l = 1
0:7 if l = 2

PfZ2 = lg =

8>>><
>>>:

0:03 if l = 0
0:13 if l = 1
0:35 if l = 2
0:49 if l = 3

and PfZ3 =1g = 1. With equation (11), the values of �(l; k) can be obtained as:

�(l; k) k=1 2 3

l = 1 0.90 0.07 0.03

2 0.70 0.14 0.16

3 0.00 0.49 0.51

4 0.00 0.00 1.00

Thus, by using (7) and (8) , the expected marginal values �(l) and the expected recourse

function are:

k �(k) �Qj(k)

1 9.35 9.35

2 7.70 17.05

3 2.45 19.50

� 4 0.00 19.50

The above procedure is quite e�cient. The numerical experiments in [14] show that the

exact expected recourse functions for trees with more than one thousand random arc capacities

can be found in a few seconds.

13



2.4 Network recourse problems

In the previous section, we assume that each customer receives goods from only one warehouse.

This assumption produces the tree-structured distribution planning problem which can be

solved exactly. Let us now consider a more general case where each customer can receive

goods from several warehouses. In this case, the stage 2 problem is no longer separable. This

problem is known as a special class of stochastic programs with network recourse (see Wallace

[19]). Except for very small problems, obtaining exact expected recourse functions �Q(s) are

numerically intractable.

Extending the technique for solving tree problems to solving network recourse problems,

Powell and Cheung[13] introduce a decomposition approach called the network recourse de-

composition method (NRD). Instead of obtaining the exact expected recourse function, this

method seeks to obtain a convex, separable approximation of the expected recourse function.

The method involves decomposing the stage 2 network into a set of trees whose expected

recourse function can be obtained using the method described in the previous section.

Recall that our basic approach is to approximate the expected recourse function by a

separable function of s (the supply to warehouses). Thus, we decompose the stage 2 problem

by warehouses so that each component of the separable function can be obtained individually.

This leads to the notion of a multicommodity formulation of problem (3) { ( 4 ). Let us de�ne

the goods available at warehouse j as the commodity of type t(j). Let

y
t(j)
jk = amount of commodity t(j) being shipped from warehouse j to customer k

z
t(j)
k = amount of commodity t(j) received by customer k

Furthermore, for an outcome !, let Tt(j)(!) be the set of fy
t(j)
jk (!); z

t(j)
k (!)g satisfying the

conditions: 8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

X
k2C

y
t(j)
jk (!) = sj 8j 2 W

X
j2W

y
t(j)
jk(!) �zk(!) = 0 8k 2 C

y
t(j)
jk (!) � ujk 8j 2 W ; k 2 C

z
t(j)
k (!) � �k(!) 8k 2 C

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(13)
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In other words, (13) represents the constraint set for each commodity t(j) with the bundle

constraints:

zk(!) � �k(!) 8k 2 C

replaced by the looser constraints

z
t(j)
k (!) � �k(!) 8k 2 C

With such de�nitions and notation, the recourse problem ( 3) { ( 4 ) can be rewritten as

a multi-commodity problem:

Q(s; �(!)) = min
y(!)

X
j2W

X
k2C

qjky
t(j)
jk (!)�

X
k2C

rk
X
j2W

z
t(j)
k (!) (14)

subject to:

fyt(j)(!); zt(j)(!)g 2 Tt(j)(!) 8j 2 W (15)X
j

z
t(j)
k (!) � �k(!) 8k 2 C (16)

Clearly, problem (14) { (16) is separable up to the bundle constraints (16). Moreover, each

set of constraints (15) de�nes a tree rooted at a node j which represents a warehouse. Therefore,

without constraints (16), the expected value of Q(s; �(!)) can be obtained parametrically (with

respect to s) using the technique described in the previous section.

A natural strategy to decouple the bundle constraints (16) is using relaxation. Assume

that for a �xed vector s and a realization �(!), we relax the bundle constraints (16) through

a vector of penalties �. Consequently, problem (14) { (16) can be relaxed to:

L(s; �; !)

= min
fyt(j);zt(j)g2Tt(j)

X
j2W

X
k2C

�
qjky

t(j)
jk (!)� rkz

t(j)
k (!)

�
+
X
k2C

�Tk

0
@X
j2W

z
t(j)
k (!)� �k(!)

1
A(17)

Rearranging the terms, we have

L(s; �; !) =
X
j2W

min
fyt(j);zt(j)g2Tt(j)

X
k2C

�
qjky

t(j)
jk (!) + (�rk + �k)z

t(j)
k (!)

�
� �T �(!) (18)

When we take the expectations of both sides of (18), we have

E!L(s; �; !) = E!

8<
:
X
j2W

min
fyt(j);zt(j)g2Tt(j)

X
k2C

�
qjky

t(j)
jk

(!) + (�rk+�k)z
t(j)
k

(!)
�
� �T�(!)

9=
;
(19)

15



Interchanging expectation and summation, we get

E!L(s; �; !)

=
X
j2W

E!

8<
: min
fyt(j) ;zt(j)g2Tt(j)

X
k2C

�
qjky

t(j)
jk (!) + (�rk+�k)z

t(j)
k (!)

�9=
;� �TE!�(!) (20)

=
X
j2W

Q̂j(sj ; �)� �TE!�(!) (21)

where

Q̂j(sj ; �) = E!

8<
: min
fyt(j);zt(j)g2Tt(j)

X
k2C

�
qjky

t(j)
jk (!) + (�rk+�k)z

t(j)
k (!)

�9=
; (22)

Notice that each component Q̂j(sj ; �) is simply the expected recourse function of the tree

associated by commodity t(j) where the link costs are modi�ed by �. � puts a penalty on a

customer when too many warehouses are trying to satisfy the same demand. Since L(s; �; !)

is a relaxed problem of Q(s; !), we know that

L(s; �; !) � Q(s; !)

for any value of s, � and !. Thus, this inequality is still true in expectation, meaning that

Q̂(s; �) = E!L(s; �; !) � E!Q(s; !) = �Q(s) (23)

Therefore, the relaxation procedure produces a lower bound, Q̂(s), of �Q(s). This result suggests

that a tighter lower bound can be obtained by using a �� in (22) (instead of an arbitrary �)

where

�� = argmax
�
Q̂(s; �) (24)

The parameter �� can be obtained by using the standard subgradient method (see, for example,

Shor [18]). Notice that Q̂(s; �) consists of a separable term
P

j Q̂j(sj ; �) and a constant term

�TE!�(!), where the constant can be dropped without altering the decisions being made.

Although this method can provide a lower bound of the expected recourse function, the

main objective of this method is to capture the shape of the expected recourse function by

a set of convex, piecewise linear functions Q̂j(sj ; �). When we represent these functions by

sets of recourse links and add these links to the terminal nodes in stage 1, the augmented

stage 1 problem is a pure network problem. For the purpose of capturing the shape, numerical

experiments in [13] suggests that problem (24) not need be solved exactly; a few iterations of

the subgradient method can produce a reasonably good approximation.
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3 Multi-stage distribution planning

In contrast to static distribution problems where decisions are made once after realizing the

random coe�cients, dynamic distribution problems require decisions to be made over time.

Consider a distribution planning problem with an N -stage planning horizon where a stage is

de�ned as a period of time during which the customer demands are realized at once and where

decisions must be made prior to realization of future demands. In this problem, decisions in

stage 1 are made before the demands in stage 2 are revealed. Decisions in stage 2 are made

before the uncertain demands in stage 3 are revealed. Thus, we can formulate these problems

as multistage stochastic programming problems with recourse. In the following, we provide

the formulation and describe a solution methodology.

3.1 Formulation

In a multi-stage distribution planning problem, an elementary outcome ! 2 
 consists of a

set of outcomes !2; : : : ; !t; : : : ; !N where !t represents an outcome in stage t. We denote by

�(t) the vector of customer demands in stage t. We add the time dimension to all previously

de�ned coe�cients and variables to re
ect the time dependency. For example, cij(t) is now

interpreted as the cost of shipping a unit of product from plant i to warehouse j in stage t and

yjk(t; !t) denotes the amount of products being shipped from warehouse j to customer k in

stage t when the realization of customer demands is �(t; !t). To ensure feasibility, we assume

all unshipped products from a plant or a warehouse can be held at their current locations as

inventory for the next stage. Let

xii(t) = inventory in plant i in stage t;

cii(t) = holding cost per unit of product in plant i in stage t;

yjj(t) = inventory in warehouse j in stage t;

qjj(t) = holding cost per unit of product in warehouse j in stage t;

Figure 5 illustrates a dynamic distribution problem in the time-space framework.
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Figure 5: Multi-stage stochastic network formulation of dynamic distribution planning.
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For simplicity, let ŝ(t) be a state vector representing the inventory level of the plants and

warehouses, that is,

ŝ(t) = [x11(t); : : : ; xii(t); : : : ; xjCjjCj(t); s1(t); : : : ; sj(t); : : : ; sjWj(t)]

Assuming there is no inventory in warehouses at the beginning, the stage 1 problem is given

by:

min
x

X
i2P

X
j2W

cij(1)xij(1) + �Q2(ŝ(1)) (25)

subject to: X
j2W

xij(1) + xii(1) = Ri(1) 8i 2 P

X
i2P

xij(1) = sj(1) 8j 2 W

xij(1) � uij(1) 8i 2 P ; j 2 W

(26)

where Ri(1) is the planned production level at plant i.

The expected recourse function �Q2(ŝ(1)) = E!2Q2(ŝ(1); !2) is recursively de�ned as follows.

For a given realization of demands �(t; !t), the stage t problem is given by:

Qt(ŝ(t�1); !t) = (27)

min
x;y;z

X
i2P

X
j2W

cij(t)xij(t)+
X
j2W

X
k2C

qjk(t)yjk(t; !t)�
X
k2C

rk(t)zk(t; !t)+ �Qt(ŝ(t); !t+1)

subject to:

X
j2W

xij(t) + xii(t) = Ri(t) + xii(t�1) 8i 2 P

X
k2C

yjk(t; !t) = sj(t� 1) 8j 2 W

X
i2P

xij(t) + yjj(t)� sj(t+1) = 0 8i 2 P

X
j2W

yjk(t; !t)� zk(t; !t) = 0 8k 2 C

xij(t) � uij(t) 8i 2 P ; j 2 W

yjk(t; !t) � ujk(t) 8j 2 W ; k 2 C

zk(t; !t) � �k(t; !t) 8k 2 C

(28)
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where Ri(t) is the planned production level at plant i in stage t.

The �rst four sets of constraints represent 
ow conservation while the remaining three are

capacity constraints. As depicted in �gure 5, we can see that the recourse problem in each

stage is a transshipment network, where the arcs representing customer demands have random

arc capacities (the last set of constraints in (28)).

Notice that the function �Q2(s(1); !2) consists of a recursive sequence of minimization prob-

lems recursively embedded in expectation. For real world applications, the number of possible

realizations can be in the range of 101000 (practically in�nite). Thus, obtaining expected

recourse functions for multi-stage problems is generally believed to be much more di�cult,

especially with a large number of stages. Below, we describe a method which avoids the curse

of dimensionality arising from the number of stages.

3.2 Backward recursion

When we solve a two-stage distribution planning problem, either the tree recourse logic or

the network recourse decomposition method produces a separable function parametrically as

a function of s(1). The merit of these techniques is that we can obtain the approximation

of the expected recourse function without knowing the actual value of s(1) in advance. This

feature motivates the use of the network recourse decomposition recursively when we are solving

multi-stage problems.

Cheung and Powell[5] introduce a backward recursion procedure called the successive convex

approximation method for solving multi- stage stochastic networks in the area of dynamic 
eet

management. The idea is to apply NRD successively, starting from the last stage back to the

second stage. We can adopt this technique in solving dynamic distribution problems.

The idea of this backward recursion is illustrated in �gure 6. The stages t� 1, t and t+ 1

of a multi-stage network is given in �gure 6a. Suppose we have obtained the approximation of

the expected recourse function for stage t + 1 (see �gure 6b), we can represent this function

by sets of deterministic links. We add these links to the terminal nodes in stage t, forming an

augmented stage t problem (see �gure 6c). Notice that the augmented stage t problem is a

network with random arc capacities. Thus, we can apply NRD to this network and obtain an

approximation of the expected recourse function for stage t (see �gure 6d). Next, the resulting
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Stochastic bundling

(b)

i Q        (s  (t)) 

Figure 6: A step in SCAM. (a) Recourse problems in stage t�1, t and t+1. (b) Approximations
for stage t+1 problem. (c) Augmented stage t problem. (d) Decomposition by origins, producing
trees. (e) Augmented stage t�1 problem.
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function is represented by sets of deterministic links which are then added to the terminal

nodes in stage t� 1. Again, the augmented stage t� 1 problem is a network with random arc

capacities (see �gure 6e). We repeat this step starting from stage N back to stage 2. As a

result, we have an augmented stage 1 problem which is a pure network which can be solved

easily.

4 Numerical investigation

We have now presented methods for solving distribution problems under uncertainty. In this

section, we consider the class of two-stage distribution planning problems. We perform a

series of numerical experiments to address two questions, one methodological, and the other

substantive. First, we undertake comparisons between three competing solution approaches

to estimate the quality of the solution provided by each approach. And second, we use our

solution method to evaluate the e�ectiveness of using multiple warehouses to serve a single

customer.

Section 4.1 outlines the experimental design used to address these two questions. Next,

section 4.2 describes our random problem generator. Finally, section 4.3 summarizes the results

of the experiments and discusses areas for further research.

4.1 Experimental design

Our experimental methodology is as follows. We �rst use a random problem generator to

generate locations of the plant(s), warehouses and customers. Although these randomly gen-

erated problems are designed only to provide an indication of the performance of the models,

care was taken in the design of the generator to produce problems with appropriate variabil-

ity (by contrast, more naive problem generators run the risk of generating datasets that are

unrealistically uniform).

Next, for each problem, we tested three methods for approximating the expected recourse

function. These are:

1. Deterministic model - In this case, we use the expected customer demands to form a

deterministic distribution model encompassing plant to warehouse and warehouse to
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customer. This model can be solved as a pure network.

2. Tree recourse algorithm - Customers served by more than one warehouse are duplicated

into multiple copies of the same customer, one associated with each warehouse that

serves the customer. Each duplicated customer has the same original demand. With this

modi�cation, 
ows from a warehouse to customers forms a tree. We then use the tree

recourse algorithm described in section 2.3 to calculate the expected recourse function.

3. Network recourse decomposition - Finally, we use the network decomposition strategy

given in section 2.4 to provide a more accurate estimate of the expected recourse function.

Once we have an approximation of the expected recourse function, the �rst stage problem is

solved to determine the 
ows from plants to warehouses.

Once the 
ows into each warehouse are found, we then use Monte Carlo simulation to

generate 1000 observations of customer demands. For each observation, we solve the problem

of shipping from warehouse to customer optimally as a network problem. The total cost of a

particular solution, then, is obtained by adding the shipping costs from plant to the warehouses

to the average shipping cost from warehouses to customers. Since the average cost of shipping

from warehouse to customer is derived using Monte Carlo methods, our total cost for a solution

is a random variable.

To address the more substantive question of the e�ectiveness of using multiple warehouses,

we generated a series of networks which varied in terms of the number of warehouses which

served each customer. Two strategies were used to generate these networks. In the �rst, we

limited every customer to at most two warehouses, and varied the percentage of customers

that are served by two warehouses, given by rp. For example, rp = 50 means that 50 % of the

customers are served by two warehouses while the other 50 % are served by a single warehouse.

However, there is no restriction on the size of the shipment from a warehouse to a customer.

In the second strategy, we allowed a customer to be served by every warehouse within a given

radius (subject to the constraint that the closest warehouse was always included) and then

varied the radius to obtain di�erent values for the average number of warehouses serving each

customer, denoted by rs. In both datasets, rp = 0 and rs = 1 produces networks with one

warehouse per customer, which results in a tree from plant to warehouses to customers. Using

the tree recourse method, this problem can be solved optimally. For problems where customers
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can be served by two or more warehouses, we have to resort to approximations.

4.2 Problem generator

The random problem generator creates a set of points representing the locations of plants,

warehouses and customers in a 1000 by 2000 mile area. Let Np, Nw and Nc be the numbers of

plants, warehouses and customers respectively. To obtain the locations of the plants, the area

is �rst partitioned into Np grids (equally large rectangles). Then, a point is uniformly chosen

within each grid to represent a plant's location. The locations for warehouses and customers

are similarly obtained. We set the transportation cost to $1 per mile per truck. Thus, the cost

cij for the shipment from point i to point j is simply the Euclidean distance between point i

and point j.

We assume that goods can be shipped from any plant to any warehouse. On the other

hand, each customer may only be served by a speci�c set of warehouses. First, each customer

received goods from its closest warehouse. Second, each warehouse serves all customers within

a radius of D miles.

To generate customer demands, we �rst divide the area into Nr regions uniformly and

assign pro�t potential for these regions. The pro�t potential �n is drawn uniformly between

0.2 and 1.8, representing the customer's ability to generate demand in this region. Next, we

generate a set of Poisson random variables vk with mean mk which are given by

mk =
NrX
n=1

�
�kn�n

�
� �

where

�kn =

8>>><
>>>:

1 if customer k is in region n

0 otherwise

� = is an exponential random variable with mean m̂

Then, the demand �k of customer k is obtained by truncating vk at v0k where Pfvk > v0kg <

0:0001.

The penalty of each unsatis�ed demand at customer k was denoted by r which is chosen af-

ter a number of calibrating runs. Finally, the production of plants, Ri are directly proportional
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Name Np Nw Nc r d m̂

P1 2 25 100 2000 0.7 0.22

P2 1 12 120 2000 0.7 0.5

P3 4 25 400 1200 0.6 0.3

P4 4 12 150 1500 0.6 0.5

P5 1 8 150 2000 0.7 0.45

Table 1: Characteristics of test problems

to the customer demands. Speci�cally,

Ri =

NcX
k=1

mk

Np

� d 8i

where d > 0.

The parameters used for our test problems are given in table 1.

4.3 Experimental results

A series of simulations was undertaken using the �ve basic networks described above. Table

2 describes the results with the restriction that every customer be served by at most two

warehouses. Column rp gives the percent of customers served by two warehouses. For example,

rp = 0 means that all customers are served by one warehouse while rp = 100 means that all

customers are served by two warehouses. The next three columns gives the expected total

logistics costs obtained using each of the three approximations. These columns include the

plant to warehouse distribution cost, plus the expected costs from warehouse to customer

obtained using Monte Carlo simulation. The last column gives the average standard error

in these estimates as a result of the Monte Carlo component. Table 3 gives the results of

the experiments where each customer is served by all the warehouses within a given radius

(including the closest warehouse, if this does not fall within the radius). The average number

of warehouses per customer is given in the column marked rs. In this table, the standard error
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Figure 7: Performance of a stochastic model using up to two warehouses per customer

from each of the three models is shown alongside the expected logistics costs.

These tables are used to address both the quality of the solution algorithms, as well as the

issue of the e�ectiveness of using multiple warehouses. First, we note for the case rp = 0 in

table 2 and rs = 1 in table 3, we have an instance of a tree out of each warehouse, which can

be solved exactly using the tree recourse algorithm. In this case, the tree recourse algorithm

and the network recourse decomposition method give identical results.

To assess the quality of di�erent solution algorithms, we present the results in tables 2

and 3 as the relative improvement over the deterministc models. Figure 7 shows the relative

improvement produced using a stochastic model (and the NRD algorithm) for the case with

at most two warehouses per customer, while �gure 8 gives the same information for multiple

warehouses. From the two �gures, we can see that the tree recourse algorithm outperformed
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mean
Problem rp(%) DETM TREE NRD stand. error

P1 0 -19036 -20580 -20580 93
20 -20469 -22643 -22798 94
40 -22137 -23155 -23155 95
60 -22860 -23740 -23740 95
80 -23351 -23962 -23842 90
100 -24034 -25030 -25251 91

P2 0 -39058 -41931 -41931 153
10 -39834 -42557 -42557 151
20 -40881 -43035 -43035 152
30 -41295 -43593 -43593 158
40 -42093 -43136 -43797 168
50 -43473 -42838 -43092 159
60 -42708 -44814 -45082 158
70 -43508 -44868 -45304 160
80 -45019 -44893 -46239 172
90 -45350 -44893 -46394 175
100 -45593 -45571 -46587 169

P3 0 -20499 -21041 -21041 88
20 -21251 -21339 -21746 102
40 -22441 -22892 -22892 92
60 -23269 -22798 -23236 98
80 -23887 -23816 -23816 89
100 -24445 -24588 -24588 78

P4 0 -33382 -34629 -34629 97
20 -36797 -37614 -37576 98
40 -38090 -38868 -38678 96
60 -39280 -40270 -40068 98
80 -40786 -42120 -41782 93
100 -41218 -43278 -43635 92

P5 0 -51880 -54985 -54985 141
20 -53325 -55747 -55747 147
40 -55339 -55691 -56495 142
70 -56140 -56831 -57211 127
100 -57734 -57814 -58138 97

Table 2: Expected distribution costs with at most two warehouses per customer, given the
percent of customers served by two warehouses
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stand. stand. stand.
Problem rs DETM error TREE error NRD error

P1 1.0 -19007 140 -20586 124 -20586 124
1.2 -19953 134 -21174 144 -21420 135
1.5 -21978 138 -23053 128 -23053 128
2.0 -23051 140 -23641 135 -24035 132
2.5 -23421 144 -24555 129 -24517 126
3.0 -23601 144 -24705 129 -24675 126
3.5 -23661 145 -24816 128 -24627 127
4.0 -23661 145 -24816 128 -24627 127
4.5 -23661 145 -24816 128 -24627 127
5.0 -23661 145 -24816 128 -24627 127

P2 1.0 -39102 174 -41975 141 -41975 141
1.2 -41091 172 -42997 152 -42653 125
1.5 -43245 177 -43056 179 -41224 136
2.0 -43339 186 -43022 189 -43942 176
2.5 -44160 184 -43265 194 -44305 105
3.0 -45158 182 -45010 191 -46516 151
3.5 -45158 182 -45010 191 -46407 145
4.0 -45158 182 -45010 191 -46407 145
4.5 -45158 182 -45010 191 -46407 145

P3 1.0 -20564 93 -21060 86 -21060 86
1.2 -22136 98 -22039 108 -22111 103
1.5 -22874 93 -22325 109 -22849 101
2.0 -23675 87 -23277 101 -23854 91
2.5 -24062 82 -23444 100 -23988 90
3.0 -24140 80 -24052 90 -24021 90
3.5 -24493 77 -24652 78 -24652 78
4.0 -24500 77 -24659 78 -24659 78
4.5 -24500 77 -24659 78 -24659 78
5.0 -24505 77 -24664 78 -24664 78

P4 1.0 -33364 143 -34592 135 -34592 135
1.2 -35389 153 -36013 150 -36385 142
1.5 -37945 151 -38426 155 -35327 148
2.0 -39740 139 -40593 146 -41139 131
2.5 -40812 134 -41816 140 -41598 128
3.0 -41252 137 -42666 137 -42482 133
3.5 -41403 137 -43059 131 -43241 124
4.0 -41859 138 -43202 131 -43473 123
4.5 -41624 141 -43345 131 -43562 122
5.0 -41896 139 -43368 130 -43634 122

P5 1.0 -49785 192 -52573 122 -52573 122
1.2 -50819 209 -53043 160 -53573 146
1.5 -52451 207 -53008 190 -54252 159
2.0 -53947 210 -53418 229 -55892 159
2.5 -57573 107 -57818 108 -58081 95
3.0 -57872 102 -57945 105 -57725 105
3.5 -57872 102 -57946 105 -57726 105
4.0 -57872 102 -57946 105 -57726 105
4.5 -57887 101 -57956 104 -58337 85
5.0 -57887 101 -57956 104 -58337 85

Table 3: Expected distribution costs given the average number of warehouses serving each
customer
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Figure 8: Performance of a stochastic model using multiple warehouses per customer
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Figure 9: Relative improvement using up to two warehouses per customer

the deterministic model in 64 out of 83 runs, while the NRD algorithm outperformed the deter-

ministic model in 71 out of 83 runs. In terms of total cost, the stochastic model outperformed

the deterministic model by 5.5 percent on average. It suggests that the explicit consideration of

the stochastic aspects of the customer demands can produce a substantial savings. From these

results, we speculate that we have a very high quality solution to the stochastic distribution

problem, especially when we use the NRD algorithm to solve the stochastic model.

On the other hand, when we compare the two methods of solving the stochastic model, we

found that the NRD algorithm outperformed the pure tree recourse algorithm by approximately

0.5 percent. Given the relative simplicity of the tree recourse algorithm, it is not clear that

the additional complexity of the NRD algorithm is warranted.

We now turn to the more substantive question of the economics of using multiple warehouses

for at least some percentage of the customers. Using the data from tables 2 and 3, we calculated

the relative improvement in total logistics costs (using the NRD algorithm) as a function of

the number of warehouses serving each customer. Figure 9 shows the results for the case with
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Figure 10: Relative improvement using multiple warehouses per customer

at most two warehouses per customer, and �gure 10 shows the results for multiple warehouses

(can be more than two) per customer. These �gures both suggest an almost linear improvement

in total costs as the number of warehouses per customer increases from a base of one up to two.

In �gure 10, however, when the number of warehouses per customer is beyond two, the rate of

improvement drops o� sharply. For example, problem p5 increases up to 2.5, and then levels

out, while, problem p4 continues to show improvement up to 3.5 warehouses per customer. In

any case, using more than two warehouses per customer does not warrant a signi�cant savings.

In practice, on the other hand, using more warehouses can induce substantial administative

costs.

The results here are somewhat surprising, and raise some questions that deserve further

study. Some observations that can be derived from this data are:

1. Standard distribution networks use one warehouse per customer. Most companies prefer

a one-to-one relationship between customers and warehouses for practical reasons, which

of course are not captured by this study. However, we suspect that if a survey were con-
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ducted of distribution systems to determine the average number of warehouses that serve

each customer, the answer would be a number signi�cantly less than two. This limited

study suggests that large improvements can be attained in a real-time environment by

connecting most customers with two warehouses.

2. The improvements that are attained as the system approaches two warehouses per cus-

tomer are large, and surprising. A line of investigation is that whether most of the savings

of using multiple warehouses would be attained when only a portion of customers are

served by multiple warehouses.

3. Further research is required to understand the factors that a�ect the performance of the

design of di�erent logistics networks under uncertainty. It is quite likely that performance

is sensitive to choosing speci�c customers for assignment to multiple warehouses. Also,

we have not investigated the sensitivity to other parameters, such as holding cost and

the opportunity cost of lost sales. Finally, we need to better understand the stochastic

properties of actual customer demands, and determine the sensitivity of the solution to

the characteristics of the demand process.
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