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1. INTRODUCTION

Complex operational problems, such as those that arise in transportation and
logistics, have long been modeled using simulation or optimization. Typically,
these are viewed as competing approaches, each offering benefits over the other.
Simulation offers significant flexibility in the modeling of complex operational
conditions, and in particular is able to handle various forms of uncertainty. Op-
timization offers intelligent decisions that often allow models to adapt quickly
to new datasets (simulation models often require recalibrating decision rules),
and offer additional benefits such as dual variables. In the desire for good solu-
tions, optimization seeks to find the best solution, but typically requires making
a number of simplifications.

We encountered the competition between simulation and optimization in
the context of modeling the military airlift problem faced by the analysis group
at the Airlift Mobility Command (AMC). The military airlift problem deals
with effectively routing a fleet of aircraft to deliver loads of people and goods
(troops, equipment, food, and other forms of freight) from different origins to
different destinations as quickly as possible under a variety of constraints.
In the parlance of military operations, loads (or demands) are referred to as
requirements. Cargo aircraft come in a variety of sizes, and it is not unusual
for a single requirement to need multiple aircraft. If the requirement includes
people, the aircraft has to be configured with passenger seats. Other issues
include maintenance, airbase capacity, weather, and the challenge of routing
aircraft through friendly airspaces.

There are two major classes of models that have been used to solve the
military airlift (and closely related sealift) problem: cost-based optimization
models [Morton et al. 1996; Rosenthal et al. 1997; Baker et al. 2002], and rule-
based simulation models, such as MASS (Mobility Analysis Support System)
and AMOS (Air Mobility Operations Simulator), which are heavily used within
the AMC. The analysis group at AMC has preferred AMOS because it offers
tremendous flexibility, as well as the ability to handle uncertainty. However,
simulation models require that the user specify a series of rules to obtain re-
alistic behaviors. Optimization models, on the other hand, avoid the need to
specify various decision rules, but they force the analyst to manipulate the be-
havior of the model (the decisions that are made) by changing the objective
function. While optimal solutions are viewed as the gold standard in modeling,
it is a simple fact that for many applications, objective functions are little more
than coarse approximations of the goals of an operation.

Our strategy should not be confused with simulation-optimization, which is
well-known within the simulation community (see, for example, the excellent
reviews Swisher et al. [2003] and Fu [2002]). This strategy typically assumes
an often myopic parameterized policy, where the goal is to find the best settings
for one or more parameters. For our class of applications, we are trying to con-
struct a simulation model that can directly compete with a math programming
model, while retaining many of the important features that classical simula-
tion methods bring to the table. For example, we need decisions that consider
their impact on the future. At the same time, we need a model that will handle
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uncertainty and a high level of detail, features that we take for granted in
simulation models.

This article proposes to bring together the simulation and optimization com-
munities who work on transportation and logistics. We do this by combining
math programming, approximate dynamic programming, and simulation, with
a strong dependence on machine learning. From the perspective of the simula-
tion community, it will look as if we are running a simulation iteratively, during
which we can estimate the value of being in a state (dynamic programming), and
we can also measure the degree to which we are matching exogenously speci-
fied patterns of behavior (a form of supervisory control from the reinforcement-
learning community). At each point in time, we use math programming to solve
sequences of deterministic optimization problems. Math programming allows
us to optimize at a point in time, while dynamic programming allows us to
optimize over time. The pattern matching allows us to bridge the gap between
cost-based optimization and rule-based simulation.

This strategy has the effect of allowing us to build a family of decision func-
tions with up to four classes of information: (1) the physical state (what we know
about the system now), (2) forecasts of exogenous information events (new cus-
tomer demands, equipment failures, weather delays), (3) forecasts of the impact
of decisions now on the future (giving rise to value functions used in dynamic
programming), and (4) forecasts of decisions (which we represent as patterns).
The last three classes of information are all a form of forecast. If we just use
the first class, we get a classical simulation using a myopic policy, although
these come in two flavors: rule-based (popular in simulation) and cost-based
(popular in the transportation community when solving dynamic problems). If
we use the second information class, we obtain a rolling-horizon procedure. The
third class of information uses approximate dynamic programming to estimate
the value of being in a state. The fourth class allows us to combine cost-based
logic (required for any optimization model) with particular types of rules (for
example, “we prefer to use C-17s for loads originating in Europe”). This class
introduces the use of proximal point algorithms. We claim that any existing
modeling and algorithmic strategy can be classified in terms of its use of these
four classes of information.

The central contribution of this article is to identify how simulation and
optimization can be combined to address complex modeling problems that arise
in transportation and logistics, illustrated using the context of a military airlift
application. This problem class has traditionally been solved using classical
deterministic optimization methods or simulation, with each approach having
significant strengths and weaknesses. We show how cost-based and rule-based
logic can be combined within this broad framework. We illustrate these ideas
using an actual airlift simulation to show that we can vary the information
content of decisions to produce decisions with increasing levels of sophistication.

We begin in Section 2 with a review of the field of modeling military mobility
problems (this is how this community refers to this problem class). More than
just a literature review, this section allows us to contrast the modeling styles of
different communities, including deterministic math programming, simulation,
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and stochastic programming. In Section 3 we provide our own model of the airlift
problem, providing only enough notation to illustrate the important modeling
principles. Section 4 shows how we can create different decision functions by
modeling the information available to make a decision. We also discuss rule-
based and cost-based functions, and show how these can be integrated into
a single, general decision function that uses all four classes of information. In
Section 5 we simulate all the different information classes, and show that as we
increase the information (that is, use additional information classes) we obtain
better solutions, measured in terms of throughput, a common measure used in
the military, and realism—reflected by our ability to match desired patterns of
behavior. Section 6 concludes the article.

2. MODELING OF MILITARY MOBILITY PROBLEMS

This section provides a summary of different modeling strategies for mili-
tary mobility problems: air and sea. After providing a review of the military
mobility literature in Section 2.1, we briefly summarize the three primary
modeling strategies that have been used in this area: deterministic linear pro-
gramming (Section 2.2), simulation (Section 2.3), and stochastic programming
(Section 2.4). The modeling of mobility problems is unusual in that it has been
approached in detail by all three communities. We present these models in only
enough detail to allow us to contrast the different modeling styles.

2.1 The History of Mobility Modeling

Ferguson and Dantzig [1955] is one of the first to apply mathematical models
to air-based transportation. Subsequently, numerous studies were conducted
on the application of optimization modeling to the military airlift problem.
Several mathematical modeling formulations for military airlift operations are
described by Mattock et al. [1995]. The RAND Corporation published a very
extensive analysis of airfield capacity in Stucker and Berg [1999]. According
to Baker et al. [2002], research on air mobility optimization at the Naval Post-
graduate School (NPS) started with the Mobility Optimization Model (MOM).
This model is described in Wing et al. [1991] and concentrates on both sealift
and airlift operations. Therefore, the MOM model is not designed to capture the
characteristics specific to airlift operations, but it is a good model in the sense
that it is time-dependent. THRUPUT, a general airlift model developed by
Yost [1994], captures the specifics of airlift operations but is static. The United
States Air Force Studies and Analyses Agency in the Pentagon asked NPS to
combine the MOM and THRUPUT models into one model that would be time
dependent and would also capture the specifics of airlift operations [Baker et al.
2002]. The resulting model is called THRUPUT II, described in detail in Rosen-
thal et al. [1997]. During the development of THRUPUT II at NPS, a group
at RAND developed a similar model called CONOP (CONcept of OPerations),
described in Killingsworth and Melody [1997]. The THRUPUT II and CONOP
models each possessed several features that the other lacked. Therefore, the
Naval Postgraduate School and the RAND Corporation merged the two models
into NRMO (NPS/RAND Mobility Optimizer), described in Baker et al. [2002].
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Crino et al. [2004] introduced the group-theoretic tabu search method to solve
the theater distribution vehicle routing and scheduling problem. Their heuristic
methodology evaluates and determines the routing and scheduling of multi-
modal theater transportation assets at the individual asset operational level.

A number of simulation models have also been proposed for airlift problems
(and related problems in military logistics). Schank et al. [1991] review several
deterministic simulation models. Burke et al. [2004] at the Argonne National
Laboratory developed a model called TRANSCAP (Transportation System
Capability) to simulate the deployment of forces from Army bases. The heart
of TRANSCAP is the discrete-event simulation module developed in MODSIM
ITII. Perhaps the most widely used model at the Air Mobility Command is
AMOS which is a discrete-event worldwide airlift simulation model used in
strategic and theater operations to deploy military and commercial airlift
assets. It was once the standard for all airlift problems in AMC, and all airlift
studies were compared with the results produced by the AMOS model. AMOS
provides for a very high level of detail, allowing AMC to run analyses on a
wide variety of issues.

One feature of simulation models is their ability to handle uncertainty, and
as a result there has been a steady level of academic attention toward incor-
porating uncertainty into optimization models. Dantzig and Ferguson [1956]
is one of the first to study uncertain customer demands in the airlift prob-
lem. Midler and Wollmer [1969] also takes into account stochastic cargo re-
quirements. This work formulates two two-stage stochastic linear programming
models: a monthly planning model, and a daily operational model for the flight
scheduling. Goggins [1995] extended Throughput II [Rosenthal et al. 1997] to
a two-stage stochastic linear program to address the uncertainty of aircraft
reliability. Niemi [2000] expands the NRMO model to incorporate stochastic
ground times through a two-stage stochastic programming model. To reduce
the number of scenarios for a tractable solution, the model assumes that the
set of scenarios is identical for each airfield and time period and a scenario is
determined by the outcomes of repair times of different types of aircraft. The
resulting stochastic programming model has an equivalent deterministic lin-
ear programming formulation. Granger et al. [2001] compared the simulation
model and the network approximation model for the impact of stochastic fly-
ing times and ground times on a simplified airlift network (one origin aerial
port of embarkation (APOE), three intermediate airfields and one destination
aerial port of debarkation (APOD)). Based on the study, they suspect that a
combination of simulation and network optimization models should yield much
better performance than either one of these alone. Such an approach would
use a network model to explore the variable space and identify parameter val-
ues that promise improvements in system performance, then validate these
by simulation. Morton et al. [2002] developed the Stochastic Sealift Deploy-
ment Model (SSDM), a multi-stage stochastic programming model to plan the
wartime, sealift deployment of military cargo subject to stochastic attack. They
used scenarios to represent the possibility of random attacks.

A related method in Yost and Washburn [2000] combines linear program-
ming with partially observable Markov decision processes to a military attack
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problem in which aircraft attack targets in a series of stages. They assume that
the expected value of the reward (destroyed targets) and resource (weapon) con-
sumption are known for each policy where a policy is chosen in a finite feasible
set. Their method requires that the number of possible states of each object be
small and the resource constraints be satisfied on the average. In the military
airlift problem, the number of possible states is very large, as are the number of
actions and outcomes. As a result, we could not have the expected value of the
reward before we solve the problem. In general, we require that the resource
constraints are strictly satisfied in a military airlift problem.

2.2 The NRMO Model

The NRMO model has been in development since 1996 and has been employed
in several airlift studies. For a detailed review of the NRMO model, including
a mathematical description, see Baker et al. [2002]. The goal of the NRMO
model is to move equipment and personnel in a timely fashion from a set of
origin bases to a set of destination bases using a fixed fleet of aircraft with
differing characteristics. This deployment is driven by the movement and de-
livery requirements specified in a list called the Time-Phased Force Deployment
Document (or Dataset) (TPFDD). This list essentially contains the cargo and
troops, along with their attributes, that must be delivered to each of the bases
of a given military scenario.

Aircraft types for the NRMO runs reported by Baker et al. [2002] include
C-5, C-17, C-141, Boeing 747, KC-10, and KC-135. Different types of aircraft
have different features, such as passenger and cargo-carrying capacity, airfield
capacity consumed, range-payload curve, and so on. The range-payload curve
specifies the weight that an aircraft can carry given a distance traveled. These
range-payload curves are piecewise linear concave.

The activities in NRMO are represented using three time-space networks:
the first one flows aircraft, the second the cargo (freight and passengers) and
the third flows crews. Cargo and troops are carried from the onload aerial port
of embarkation (APOE) to either the offload aerial port of debarkation (APOD)
or the forward operating base (FOB). Certain requirements need to be delivered
to the FOB via some other means of transportation after being offloaded at the
APOD. Some aircraft, however, can bypass the APOD and deliver directly to
the FOB. Each requirement starts at a specific APOE dictated by the TPFDD
and then is either dropped off at an APOD or a FOB.

NRMO makes decisions about which aircraft to assign to which require-
ment, which freight will move on an aircraft, which crew will handle a move,
as well as variables that manage the allocation of aircraft between roles such
as long range, intertheater operations and shorter, shuttle missions within a
theater. The model can even handle the assignment of KC-10s between the role
of strategic cargo hauler and midair refueler.

In the model, NRMO minimizes a rather complex objective function that
is based on several costs assigned to the decisions. There are a variety of
costs, including hard operating costs (fuel, maintenance) and soft costs to
encourage desirable behaviors. For example, NRMO assigns a cost to penalize
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deliveries of cargo or troops that arrive after the required delivery date.
This penalty structure charges a heavier penalty the later the requirement
is delivered. Another term penalizes the cargo that is simply not delivered.
The objective also penalizes reassignments of cargo and deadheading crews.
Last, the objective function offers a small reward for planes that remain at an
APOE, as these bases are often in the continental US and are therefore close
to the home bases of most planes. The idea behind this reward is to account
for uncertainty in the world of war and to keep unused planes well positioned
in case of unforeseen contingencies.

The constraints of the model can be grouped into seven categories: (1) demand
satisfaction; (2) flow balance of aircraft, cargo and crews; (3) aircraft delivery ca-
pacity for cargo and passengers; (4) the number of shuttle and tanker missions
per period; (5) initial allocation of aircraft and crews; (6) the usage of aircraft of
each type; and (7) aircraft handling capacity at airfields. A general statement
of the model (see Baker et al. [2002] for a detailed description) is given by:

T

i 1
(Xt)’?:l%)f’l T ; Ct Xt ( )

subject to

t
Agxy — Z B rixt— = Ry, t=0,1,...,T, (2)
=1
Dtxtgut, t=0,1,...,T, (3)
x >0, t=0,1,...,T, 4)
where,

t = the time at which an activity begins,
the time required to complete an action,

ﬂ
Il

A; = incidence matrix giving the elements of x; that represent
departures from time ¢,
B, ., = incidence matrix giving the elements of x; that represent
flows arriving at time ¢,
D; = incidence matrix capturing flows that are jointly con-
strained,
u; = upper bounds on flows,
R; = the resources available at time ¢,
x; = the decision vector at time ¢, where an element might be x;;;
telling us if aircraft i is assigned to requirement j at time
(3
¢; = the cost vector at time .
NRMO is implemented with the algebraic modeling language GAMS [Brooke
et al. 1992], which facilitates the handling of states. Each state is identified by

an index combination of elements drawn from sets of aircraft attributes such
as time periods, requirements, cargo types, aircraft types, bases, and routes.
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An example of an index combination would be an aircraft of a certain type de-
livering a certain requirement on a certain route departing at a certain time.
Only feasible index combinations are considered in the model so that the com-
putation becomes tractable. The information in the NRMO model is captured
in the TPFDD, which is known at the beginning of the horizon.

NRMO requires that the behavior of the model be governed by a cost model
(which simulators do not require). The use of a cost model minimizes the need
for extensive tables of rules to produce good behaviors. The optimization model
also responds in a natural way to changes in the input data (for example, an
increase in the capacity of an airbase will not produce a decrease in overall
throughput). But linear programming formulations suffer from weaknesses. A
significant limitation is the difficulty in modeling complex system dynamics.
For example, a simulation model can include logic such as, “if there are four
aircraft occupying all the parking spaces, a fifth aircraft will have to be pulled
off the runway where it cannot be refueled or repaired.” In addition, linear
programming models cannot directly model the evolution of information. This
limits their use in analyzing strategies that directly affect uncertainty (What
is the impact of last-minute requests on operational efficiency? What is the cost
of sending an aircraft through an airbase with limited maintenance facilities,
where the aircraft might break down?).

2.3 The AMOS Model

AMOS is a rule-based simulation model. A rough approximation of the rules
proceeds as follows. AMOS starts with the first available aircraft, and then
tries to see if the aircraft can move the first requirement that needs to be moved
(there is logic to check if there is an aircraft at the origin of the requirement, but
otherwise the distance the aircraft has to travel is ignored). Given an aircraft
and requirement, the next problem is to evaluate the assignment. For simple
transportation models, this step is trivial (e.g. a cost per mile times the number
of miles). For more complex transportation problems (managing drivers), it is
necessary to go through a more complex set of calculations that depend on the
hours of service. For the military airlift problem, moving an aircraft from, say,
the East Coast to India, requires moving through a sequence of intermediate
airbases that have to be checked for capacity availability. This step is fairly
expensive, so it is difficult to evaluate all possible combinations of aircraft and
requirements. If AMOS determines that an assignment is infeasible, it simply
moves to the next aircraft in the list.

We note that it is traditional to describe simulation models such as this with
virtually no notation. We can provide a very high level notational system by
defining:

S; = the state vector of the system at time ¢, giving what we
know about the system at time ¢, such as the current status
of aircraft and requirements;

X7™(S;) = the function that returns a decision, x;, given information
S;, when we are using policy 7, where 7 is simply an index
identifying the specific function being used;
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Fig. 1. The single attack scenario tree used in SSDM.

x; = the vector of decisions at time ¢ (just as in the NRMO
model);
W, = exogenous information arriving between ¢ — 1 and ¢;

SM(S,, x;, W;.11) = the transition function (sometimes called the system
model) that gives the state S; 1, at time ¢ + 1, given that
we are in state S;, make decision x;, and observe new ex-
ogenous information W; .

Given a policy (that is, a decision function X7(S;)), a simulation model can be
viewed as consisting of nothing more than the two equations:

Xt < Xﬂ(St), (5)
St+1 < SM(St, Xty Wt+1(60))- (6)

A more complete model would specify the state variable and transition function
in greater detail. Note that we do not have an objective function.

2.4 The SSDM Model

The Stochastic Sealift Deployment Model (SSDM) [Morton et al. 2002] is a mul-
tistage stochastic mixed-integer program designed to hedge against potential
enemy attacks on seaports of debarkation (SPODs) with probabilistic knowl-
edge of the time, location and severity of the attacks. They test the model on a
network with two SPODs (the number actually used in the Gulf War) and other
locations such as a seaport of embarkation (SPOE) and locations near SPODs
where ships wait to enter berths. To keep the model computationally tractable,
they assumed only a single biological attack can occur. Thus, associated with
each possible outcome (scenario in the language of stochastic programming) is
whether or not an attack occurs. We assume that there is a finite set of scenar-
ios 2, and we let v € Q be a single scenario. If scenario w occurs, t(w) is the
time at which it occurs. They then let 7(w) = {0, ..., t(w) — 1} be the set of time
periods preceding an attack that occurs at time #(w). This structure results in a
scenario tree that grows linearly with the number of time periods, as illustrated
in Figure 1. The stochastic programming model for SSDM can then be written:

T
min Y3 plw)ke (@ (o), )

xt(w),t=0,...,T,0eQ e =0
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subject to

t
A (@) = Y Aoyt r(@) = Ri@) t=0,1,...,T, weQ,
=1
Bix;(w) < us(w), t=0,1,...,T, weQ,
x(w) = x(0), forallt € T(w)NT(o), weQ, (8)
x:(w) > 0 and integer, forallt =0,1,...,7T, we Q.

Here o is the index for scenarios. The probability of scenario w, is given by
p(w). The variables ¢, 7, Ay, Ay_. s, By, and R, are the same as introduced in the
NRMO model. We let u;(w) be the upper bound on flows, where the capacities
of SPOD cargo handling are varied under different attack scenarios. The cost
vector for scenario w is given by ¢;(w), and x;(w) is the decision vector. We let
R,(w) be the exogenous supply of aircraft that first become known at time ¢.
The nonanticipativity constraints (8) say that if scenarios w and " share the
same branch on the scenario tree at time ¢, the decision at time ¢ should be the
same for those scenarios.

In general, the stochastic programming model is much larger than a deter-
ministic linear programming model and still struggles with the same difficulty
in modeling complex system dynamics. Multistage stochastic programming no-
toriously explodes in size when there are multiple stages, and multiple scenar-
ios per stage. This particular problem exhibited enough structure to make it
possible to construct a model that was computationally tractable. As a result,
the SSDM model was able to make it possible to formulate the optimization
problem while capturing the uncertainty in the potential attacks.

2.5 An Overview of the Optimizing-Simulator

In the remainder of this article, we are going to describe a way to optimize
complex problems using the same framework as that described by Equations
(5) and (6). The only difference will be in the construction of the decision function
X7™(S;). In many simulation models, this function consists of a series of rules.
Typically, these rules are designed to mimic how decisions are actually made,
and there is no attempt to find the best decisions.

It is easy to envision a decision function that is actually a linear program,
where we optimize the use of resources using what we know at a point in time,
but ignoring the impact of current decisions on the future. This is an example of
a cost-based policy, and like a rule-based policy, it would also be called a myopic
policy, because it ignores the future. Alternatively, we could optimize over a
horizon ¢,¢ +1,...,¢ + T, and then implement the decision we choose at time
t. This is classically known as a rolling-horizon procedure. There are other
techniques to build ever more sophisticated decision functions that produce
both more optimal behaviors (as measured by an objective function) and more
realistic behaviors (as measured by the judgment of an expert user).

As indicated by Equations (5) and (6), the decision function (which contains
the optimizing logic) and the transition function (which contains the simulation
logic) communicate primarily through the state variable. The decision function

ACM Transactions on Modeling and Computer Simulation, Vol. 19, No. 3, Article 14, Publication date: June 2009.



The Optimizing-Simulator: An lllustration Using the Military Airlift Problem . 14:11

uses the information in the state variable to make a decision. The transition
function uses the state variable, the decision, and a sample of new information,
to compute the state variable at the next point at which we will make a deci-
sion. We note that ¢ indexes the times at which we make decisions. Physical
events (the movement of people, equipment, and other resources) and the ar-
rival of information (phone calls, equipment failures, price changes) all occur
in continuous time.

We are going to illustrate the optimizing-simulator in the context of a mili-
tary logistics problem defined over a finite planning horizon. The most sophis-
ticated logic requires that this process be run iteratively, where the decision
functions adaptively learn better behaviors. This logic is implemented using
the framework of approximate dynamic programming, where at each iteration
we are updating our estimates of the value of being in a state (for example, the
value of having a C-5 in Europe). The logic scales for very large-scale problems,
because the optimization logic never tries to simultaneously optimize over all
time periods (as is done in linear programming models such as NRMO). In-
stead, the logic solves sequences of much smaller optimization problems, which
makes it possible to scale to very large applications.

3. MODELING THE MILITARY AIRLIFT PROBLEM

We adopt the convention that decisions are made in discrete time, while infor-
mation and physical events occur in continuous time. Time ¢ = 0 represents the
current time. Any variable indexed by ¢ has access to all the information that
has arrived prior to time ¢. By assuming that information arrives in continuous
time, we remove any ambiguity about the measurability of any random vari-
ables. We model physical processes in continuous time since this is the most
appropriate model (we derive no benefits from modeling physical events in dis-
crete time). For transportation problems, decision epochs (the points in time
at which decisions are made) are always modeled using uniform time intervals
(e.g. every 4 hours) since transportation problems are always nonstationary,
and there are numerous parallel events happening over networks. We are go-
ing to assume that we are modeling the problem over a finite horizon defined
by the decision epochs 7 = {0, 1, ..., T}.

We divide our model in terms of the resources involved in the problem (air-
craft and requirements), exogenous information, decisions, the transition func-
tion, and functions used to evaluate the solution.

Aircraft and requirements.

a = The attribute vector describing an aircraft, such as
C-17(aircraft type)
50 Tons(capacity)

EDAR(current airbase)

40 Tons(loaded weight)

A = the set of all possible values of a,
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Ry, = the number of resources that are known at time ¢ and before
the decision at time ¢ is made, and will be actionable with
attribute vectora’ € A attime¢’ > ¢. Here, ¢ is the knowable
time and ¢’ the actionable time,

Rtt’ = (Rtt/a/)a’eAa
R, = (Ry)pst.

We refer to R; as the resource state vector. A significant issue in practice, and
in this article, is the distinction between the knowable time (when a random
variable or event becomes known) and the actionable time, which is when a
resource is available to be acted on. If it is time 100, and an aircraft is expected
to arrive at time 120 (the estimated time of arrival), then we know all the
information that would have arrived by time 100 (by definition), but we cannot
act on the aircraft until time 120, when it arrives.

Requirements (demands, customers) are modeled using parallel notation.
We let b be the attributes of a requirement, 3 the space of potential attributes,
D, is the number of demands we know about at time ¢ with attribute b, which
are available to be moved at time ¢’. The demands are captured by the vector
D;. For our problem, once a demand is served it vanishes from the system, but
unserved demands are held to a later time period.

For our purposes, we define the state variable S; = (R;, D;) to be the physical
state. This is very common in operations research, but other communities will
interpret S; to be the information state at time ¢, or more generally as the state
of knowledge.

Exogenous information. Exogenous information represents any changes to our
state variable due to processes outside of our control. These are represented
using:

W, = the exogenous information becoming available between
t — 1 and ¢, such as new customer arrivals, travel delays
and equipment failures,

o = asample path, where Wi(w), Wo(w), ..., is a sample realiza-
tion of the exogenous information,
Q = set of sample paths,

R;;,, = the number of new resources that first become known be-
tween ¢t — 1 and ¢, and will first become actionable with
attribute vector ¢’ € A at time ¢’ > ¢,

Rtt/ = (Rtt/a/)a’eA;
R, = (Ry)pst.

Similarly, we let Dy, be the new customer demands that arrive between ¢ — 1
and ¢, with D, being the vector of customer demands. We would let the ex-
ogenous information be W, = (R;, D,), and W,(w) would represent a sample
realization of R, and D,. We note that the stochastic programming commu-
nity (represented by the model in Section 2.4) refers to a scenario, whereas the
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simulation community refers to a sample path o (or equivalently, the sample
realization of the information).

Decisions. Useful notation for modeling the types of resource allocation prob-
lems that arise in freight transportation is to define:

D = the set of types of decisions that can be applied to aircraft
(such as move to another location, repair, reconfigure),
X:qqa = the number of times that we apply a decision d € D to an
aircraft with attribute vector a € A at time ¢,

% = (Xtad JaeA,deD-

For the moment, we are going to leave open precisely how we make a decision,
but central to this article is the information available when we are making a
decision. We model this using:

I; = the data used to make a decision,

X[ (I;) = the function that returns decision x;, given the information
I;. We assume that this is a member of a class of functions
(policies), where we represent a member of this class using
e Il

It is very common in the dynamic programming community to assume that
the state S;, captures all the information needed to make a decision. While
this representation is very compact, it hides the specifics of the information
being used to make a decision. For example, we might have a forecast model
fir = 0:0 + 6,1t — t), which allows us to forecast some quantity (e.g. a demand)
made at time ¢ (using the parameter vector 6; = (6;9, 6;1)), which is known at
time ¢. In theory, we could think of the model f;; as part of our state variable
(this would be consistent if we used S; to be the state of knowledge). We are
going to view the forecast model as a source of information that allows us to
compute a forecast of future demand, but we are going to distinguish between
the model (part of our state of knowledge) and the forecast itself. We then have to
decide if we want to use the forecast when we make a decision. Many companies
go through precisely this thought process when they hire a consulting firm
to develop a set of forecast models. If we have such a model, we then might
compute a forecast D; = 0y + 6;1(t’ — t), using the parameter vector 6;, and
then make D,; part of our information vector I;. It is our position that D, is
not part of the state variable, but it is information that can be used to make a
decision.

Transition function. To streamline the presentation, we are going to use a sim-
ple transition function that describes how the system evolves over time. We
represent this using:

Sip1= SM(St, %, Wegr).

This function captures the effect of decisions (moving aircraft from one location
to another) and information (failures, delays) on the supply of aircraft in the
future, and the demands. Later, we need to specifically capture the evolution
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of the aircraft, captured by the resource vector, R,. We can capture this in a
similarly general way by writing:

Ry 1= RM(Rt, %, Wegr).

In a math programming model, this is normally written as a set of linear equa-
tions. For example, we might write a stochastic version of Equation (2) describ-
ing the evolution of the resource vector for aircraft as:

R = Ay + Rt+1, 9

where A, is an incidence matrix that captures the results of the decisions, x;.
R, represents exogenous (stochastic) changes to the resource vector. This
could represent new aircraft arriving to the system, failed/destroyed aircraft
leaving the system, and random changes to the status of an aircraft.

Evaluating the solution. To make the link with optimization, we assume there
is a cost function (we can use contributions if we are maximizing) that provides
a measure of the quality of a decision. This is defined using:

ciad = the contribution of applying decision d to an aircraft with
attribute a € A4 at ¢,
¢; = (Ctad )aeAA,dED;‘*a
Ci(x;) = the total contribution due to x; in time period #.

It is important to recognize that we cannot assume that the solution that pro-
vides the highest contribution always provides the most acceptable answers.
Freight transportation problems are simply too complex to be captured by a
single objective function.

The overall optimization problem is to find the policy 7 that maximizes the
total contributions over all the time periods. This can be represented as:

ell
4 teT

max E [Z Ct(X;’(It))} : (10)

Our challenge now is to define the decision function. The classical strategy is to
find a function (policy) that solves the optimization problem. Our perspective is
that we want to find a function that most accurately mimics the real system. In
particular, we want to design decision functions that use the information that
is actually available.

4. A SPECTRUM OF DECISION FUNCTIONS

To build a decision function, we have to specify the information that is avail-
able to us when we make a decision. There are four fundamental classes of
information that we may use in making a decision:

—The physical state. This is our current measurement of the status of all the
physical resources that we are managing.
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—Forecasts of exogenous information processes. Forecasts of future exogenous
information. We can use traditional point forecasts (producing deterministic
models) or distributions, giving us stochastic programs such as that illus-
trated in Section 2.4.

—Forecasts of the impact of decisions on the future. These are functions that
capture the impact on the future, of decisions made at one point in time.

—Forecasts of decisions. Patterns of behavior derived from a source of expert
knowledge. These represent a form of forecast of decisions at some level of
aggregation.

For notational simplicity, we let R; represent the physical state (the state of
all the resources we are managing), although it would also include customer
demands, and any information about the state of the network (which might be
changing dynamically). We let Q2 be a forecast of future exogenous information,
where ©Q may be a set of future realizations (providing the basis for a stochastic
model), or a single element (the point forecast). We let V, represent the function
that captures the future costs and rewards, and we let p be a vector representing
the likelihood of making particular types of decisions.

The design of the four classes of information reflects differences in both
the source of the information, and what the information is telling us (which
also affects how it is used). The physical state comes from measurements
of the system as it now exists. Forecasts come from forecast models, which
are estimated from historical data. Forecasts project information that has
not yet arrived, whereas the physical state is a measurement of the state
of the system as it now exists. The values V;, are derived from dynamic
programming algorithms, and quantify (typically in some unit of currency)
costs or rewards that might be received in the future. Forecasts of deci-
sions are based on expert knowledge or past history, and are given in the
same units as decisions, although these are typically at a more aggregate
level.

For each information set, there are different classes of decision functions
(policies). Let IT be the set of all possible decision functions that may be speci-
fied. These can be divided into three broad classes: rule-based, cost-based, and
hybrid (which combine both rule-based and cost-based). These are described as
follows:

Rule-based policies:
[1%B = The class of rule-based policies (missing information on costs).

Cost-based policies:

[MMP = The class of myopic cost-based policies (includes cost information).
[T1EH — The class of rolling horizon policies (includes forecasted information).
In the case of deterministic future events, we get a classical determin-
istic, rolling horizon policy, which is widely used in dynamic settings.
[MAPP — The class of approximate dynamic programming policies. We use a

functional approximation to capture the impact of decisions at one
point in time on the rest of the system.
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Hybrid policies:
MMEK = The class of policies that use expert knowledge. This is represented
using low-dimensional patterns expressed in the vector p. Policies in
[MZX combine rules (in the form of low-dimensional patterns) and costs,

and therefore represent a hybrid policy.

In the following sections, we describe the information content of different
policies. The following shorthand notation is used:

RB = Rule-based (the policy uses a rule rather than a cost function). All
policies that are not rule-based use an objective function.

MP = Myopic policy which uses only information that is known and action-
able now.

R = A single requirement.
RL = A list of requirements.
A = A single aircraft.
AL = A list of aircraft.
KNAN = Known now, actionable now: policies that use information about only
those resources (aircraft and requirements) that are actionable now.
KNAF = Known now, actionable future: policies that use information about
resources that are actionable in the future.

RH = Rolling horizon policy, which uses forecasts of activities that might
happen in the future.
ADP = Approximate dynamic programming: refers to policies that use an
approximation of the value of resources (in particular, aircraft) in the
future.

EK = Expert knowledge: policies that use patterns to guide behavior.

These abbreviations are used to specify the information content of a policy.
The remainder of the section describes the spectrum of policies that are used
in the optimizing-simulator.

4.1 Rule-Based Policies

Our rule-based policy is denoted (RB:R-A) (rule-based, one requirement, and
one aircraft). In the Time-Phased Force Deployment Document (TPFDD), we
pick the first available requirement and check whether the aircraft that be-
comes available the earliest can deliver the requirement. In this feasibility
check, we examine whether the aircraft can handle the size of the cargo in
the requirement, as well as whether the en route and destination airbases can
accommodate the aircraft. If the aircraft cannot deliver the requirement, we
check the second available aircraft, and so on, until we find an aircraft that can
deliver this requirement. If it can, we upload the requirement to that aircraft,
move that aircraft through a route and update the remaining weight of that
requirement. After the first requirement is finished, we move to the second re-
quirement. We continue this procedure for the requirement in the TPFDD until
we finish all the requirements. See Figure 2 for an outline of this policy.
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Step 1: Pick the first available remaining requirement in the TPFDD.
Step 2: Pick the first available remaining aircraft.
Step 3: Do the following feasibility check:
Can the aircraft handle the requirement?
Can the en route and destination airbases accommodate
the aircraft?
Step 4: If the answers are all yes in Step 3, deliver the
requirement by that aircraft through a route chosen from
the route file and update the remaining weight of
that requirement.
Step 5: If that requirement is not finished, go to Step 2.
Step 6: If there are remaining requirements, go to Step 1.

Fig. 2. Policy (RB:R-A).

This is a rule-based policy—it does not use a cost function to make the de-
cision. We use the information set I; = Ry, in policy (RB:R-A), that is, only
actionable resources at time ¢ are used for the decision at time ¢.

4.2 Myopic Cost-Based Policies

In this section, we describe a series of myopic, cost-based policies that differ in
terms of how many requirements and aircraft are considered at the same time.

Policy (MP:R-AL). In policy (MP:R-AL) (myopic policy, one requirement and a
list of aircraft), we choose the first requirement that needs to be moved, and then
create a list of potential aircraft that might be used to move the requirement.
Now we have a decision vector instead of a scalar (as occurred in our rule-based
system). As a result, we now need a cost function to identify the best out of
a set of decisions. Given a cost function, finding the best aircraft out of a set
is a trivial sort. However, developing a cost function that captures the often
unstated behaviors of a rule-based policy can be a surprisingly difficult task.

There are two flavors of policy (MP:R-AL): known now, and actionable
now (MP:R-AL/KNAN), as well as known now, actionable in the future
(MP:R-AL/KNAF). In the policy (MP:R-AL/KNAN), the information set I; =
(Ry, C;) is used and in the policy (MP:R-AL/KNAF), the information set I, =
(Riest, Cr) = (Ry, Cy) is used. We explicitly include the costs as part of the
information set. Solving the problems requires that we sort the aircraft by their
contribution and choose the one with the highest contribution.

Policy (MP:RL-AL). This policy is a direct extension of the policy (MP:R-AL).
However, now we are matching a list of requirements to a list of aircraft, which
requires that we solve an optimization model instead of a simple sort. In our
case, this is a small integer program (it might have hundreds or even thousands
of variables, but we have found these can be solved very quickly using commer-
cial solvers). Our experimental work has shown us that problems become much
harder when they are solved over longer time horizons. We use this optimization
problem to balance the needs of multiple requirements and aircraft.

There are again two flavors of policy (MP:RL-AL): known now, and action-
able now (MP:RL-AL/KNAN), as well as known now, actionable in the future
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Requirements Aircrafts Requirements Aircrafts Requirements Aircrafts

KN
H »>
H

)

(a) Policy (RB:R-A). A rule- (b) Policy (MP:R-AL). (¢) Policy (MP:RL-AL).

based policy considers only  The policy (MP:R-AL) con- The policy (MP:RL-AL)

one aircraft and one require- siders one requirement but  works with a requirement list

ment at a time. sorts over a list of aircraft. and an aircraft list all at the
same time.

Fig. 3. [Illustration of the information content of myopic policies.

(MP:RL-AL/KNAF). In the policy (MP:RL-AL/KNAN), the information set is
I, = (R4, Cy), and in the policy (MP:RL-AL/KNAF), the information set is
I, = (Ry)yst, C) = (R, Cy). If we include aircraft and requirements that
are known now but actionable in the future, then decisions that involve these
resources represent plans that may be changed in the future.

The myopic policy 7 € ITM? for time ¢ is obtained by solving the following
subproblem:

X7 (R;) = argmax Cy(x;).
X €N

Figure 3 illustrates the information considered in three examples of myopic
policies. In Figure 3(a), rules are used to identify a single aircraft and a sin-
gle requirement, after which the model determines if the assignment is feasible
(there is no attempt to compare competing assignments). Figure 3(b) illustrates
the most trivial cost-based policy, where we choose a single requirement, and
then evaluate different aircraft to find the best. (The transition from the rule-
based policy in 3(a) and the cost-based policy in 3(b) proved to be so difficult that
the air force stayed with a rule-based policy when they undertook a complete
rewrite of their simulator.) Figure 3(c) considers multiple aircraft and require-
ments, introducing the need for an optimization algorithm to determine the
best assignment.

4.3 Rolling Horizon Policy

Our next step is to bring into play forecasted activities. A rolling horizon policy
considers not only all aircraft and requirements that are known now (and pos-
sibly actionable in the future), but also forecasts of what might become known,
such as: a new requirement will be in the system in two days. In the rolling
horizon policy, we use information regarding states and costs arising during the
planning horizon: I; = {(Rs )=, Colt', t" € TP h}. The structure of the decision
function is typically the same as with a myopic policy (but with a larger set of
resources). However, we generally require the information set I; to be treated
deterministically, for practical reasons. As a result, all forecasted information
has to be modeled using point estimates. If we use more than one outcome,
we would be solving sequences of stochastic programs. We may present the
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subproblem for time ¢ under policy 7 € ITF*H:
X7 (Ry)yeq) = argmax y " Cpp(yp).

teTPt

4.4 Approximate Dynamic Programming Policy

Dynamic programming is a technique that is used to optimize over time. If we
have a deterministic problem, we would wish to solve:

machtxt, (11D

subject to the types of constraints used in the NRMO model in Section 2.2.
This is the sort of problem that is solved using standard optimization models.
Depending on the nature of the problem, we might be able to use a commercial
solver, or we may have to resort to heuristics [Crainic and Gendreau 2002]. If
we wish to introduce uncertainty, we would let C(S;, x;) be the contribution we
earn at time ¢ if we are in state S;, and make decision x;. Since the state is
random, we have to find a function (or policy), X7 (S;), that solves:

mell

T
max]EiZC(St,X”(St))} ) (12)
=0

It is well known [Puterman 1994] that the optimal policy satisfies Bellman’s
equation, given by:

Vt(St) = ineaj( {C(St, xt) +E [Vt+1(St+1)|St]} , (13)

where X; is the feasible region for time period ¢, and V;(S;) is the value of being
in state S;, and following the optimal policy until the end of the horizon. Solving
this equation using the classical techniques of discrete dynamic programming
is well known to be computationally intractable for problems where S; is a vec-
tor (for our problems, S; can be a very high-dimensional vector). A strategy that
helps circumvent this is to introduce an approximate value function, which we
call V;,1(R;;1). A challenge we face is that we need a value function approx-
imation that allows us to use math programming algorithms such as linear
programming to solve (13), which introduces two issues. The first is the choice
of the structure of the value function. To illustrate the concepts, we are going
to use a linear approximation of the form:

Viz1(Riy1) = Z U100 Bit1,a- (14)
a’eA

Later we argue that this is actually the right approximation for the specific
issues we wish to address in this problem, but for the moment we use it simply
for illustrative purposes. One advantage of a linear approximation is that it
does not destroy any nice problem structure that the underlying problem may

have (in freight transportation, these are often large integer programs).
The second challenge is the presence of the expectation in (13). The stochastic
programming model (SSDM) in Section 2.4 represents an instance where the
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expectation is handled by solving over a set of scenarios, but this worked because
of the highly structured nature of the problem. In most applications, the number
of scenarios grows exponentially in multiperiod applications.

This problem can be circumvented by first introducing the idea of the post-
decision state variable, and then choosing value function approximations that
are suited to the application. To illustrate, we define the post-decision resource
vector by rewriting the transition Equation (9) in two steps,

R;C = Atxt, (15)
Riy1 = RY +Rt+1- (16)

Here, R} is the resource state vector resulting directly from making a decision,
x¢. Thus, if we send an aircraft from Chicago to Berlin at time ¢ = 10, then
at time ¢ = 10, this is an aircraft that will arrive in Berlin (but it is still in
Chicago). Rt+1 is the new information we will learn between time ¢ and ¢ + 1
(when we make our next decision), which can include travel delays, equipment
failures, and exogenous changes to the fleet.

Next, we break Bellman’s Equation into two steps:

Vt(Rt) = j;nea.{é( (C(Rt,xt)—i—Vtx(Rf)),
VEARY) = EVipa(Ret),

where R; . is a random variable at time ¢, given by Equation (16). As a rule,
we cannot compute V*(R}) exactly, so we replace it with an approximation,
Vi(R¥). For our study, a linear value function such as (14) was appropriate,
since it allowed us to capture the behavior that dispatchers did not want to
send a particular type of aircraft into a region. Estimating these slopes is es-
pecially easy. Approximate dynamic programming works by stepping forward
in time. In iteration n, we would follow the sample path represented by ",
making decisions using the value function from the previous iteration, given
by V"1(R¥). If we have R}, aircraft with attribute a, we would find x; subject
to, among other constraints, the flow conservation constraint:

Y %taa = R},

deD
Let 97, be the dual variable for the flow conservation constraint. We could then
use this dual to update the value function around the previous post-decision
state variable, which is to say:

D;Lfl,a =1- Ol)l_);l:ll,a + aﬁt?a’
where « is a stepsize between 0 and 1.

We have used linear approximations as an illustration, but for this project, it
was actually the correct functional form given what we were trying to achieve.
Consider the example of a requirement that has to move from England to
Australia using either a C-17 or a C-5B, two types of cargo aircraft. A problem
is that the route from England to Australia involves passing through airbases
that are not prepared to repair a C-5B if it breaks down, which might happen

with a 10 to 20 percent probability. When a breakdown occurs, additional costs
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are incurred to complete the repair, which also delays the aircraft, possibly
producing a late delivery, and penalties for a late delivery. Furthermore, the
amount of delay, and the cost of the breakdown, can depend on whether there
are other comparable aircraft present at those airbases at the time. These costs
depend purely on the type of aircraft, and not the quantity, which means that
a linear architecture is perfect. For different types of questions, other architec-
tures may be more appropriate (see, for example, Tsitsiklis and Van Roy [1996];
Bertsekas and Tsitsiklis [1996]; Judd [1998]; and Powell [2007]).

Now that we have a value function approximation, take a look at the infor-
mation being used to make a decision. Not only do we use resources R;, and
demands D;, (what we have been calling our state variable), we are also using
the value function approximation, V;(R¥) (in the form of the slopes (&;)). There
are very few in the operations research community who would view o; as part
of the state variable, but it is clearly a piece of information that we are now
using to make a decision. If we use approximate dynamic programming, we ob-
tain this information, but this is a choice. In their current simulator (AMOS),
the mobility command makes an explicit choice not to use this information,
presumably because it does not improve the accuracy of their model.

4.5 Expert Knowledge

All mathematical models require some level of simplification, often because of a
simple lack of information. As a result, a solution may be optimal but incorrect
in the eyes of a knowledgeable expert. In effect, the expert knows how the
model should behave, reflecting information that is not available in the model.
We represent expert knowledge in the form of low-dimensional patterns, such
as “avoid sending C-5Bs on routes through India.” Simulation models easily
capture this sort of knowledge within their rules, but typically require that the
rules be stated as hard constraints, as in “never send C-5Bs on routes through
India.”
Following Marar and Powell [2002], we define:

= an attribute vector a at some level of aggregation,

QU
I

a type of decision at some level of aggregation,

paq = the fraction of instances in which decision d should be ap-
plied to a resource with attribute vector @ according to ex-
pert knowledge,
p = (pad)a,d
Pag(x) = fraction of time that the decision x made by the model rep-
resents acting on resources of type a with decisions of type
d,
H(p(x), p) = a pattern metric that measures the distance between the
model patterns and the exogenous patterns.

Keeping in mind that the attribute vector a can be quite detailed (“a C-5B loaded
with freight headed to South Korea, arriving at time 51.2”) while a decision can
be the assignment of an aircraft to move a specific load of freight. By contrast,
patterns are typically specified at some level of aggregation. Thus, we may be
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concerned about “loaded C-5Bs headed to Europe.” For this reason, we index
patterns by an aggregated attribute vector a (“loaded C-5B”) and an aggregated
decision (“moving to Europe”).

The pattern metric H(p(x), p) might be written:

H(px), p) =Y Y (paa®) — paa)*.
a d

We could incorporate patterns into the cost model as:

X7(8:,0) = arginf)gi(C(St,xt) —0H(px), p)), a7
where 6 > 0 serves the role of scaling pattern deviations into a cost. When we
combine a cost function with a goal of matching an exogenous pattern, it is
necessary to convert the degree to which we are reaching that goal into a cost-
based term. As a rule, we will never perfectly match these exogenous patterns,
so 0 captures the importance we place on this dimension.

We represent the information content of an expert knowledge-based decision

as It = {Rt> Cta Vt> 10}

4.6 Discussion

Mathematically, an optimizing-simulator can be represented as:

x <« X7(I) = argmax (C(S¢, x0) + Vi(R}) — 0H(p(x), p)) , (18)
St+1 <~ SM(Styxt’RH—l)’ (19)

where SY(.) is the transition function computed for a sample realization of
W; 1. We note that the choice of W; 1 has to be guided by a probability law in
some form. It is possible to include different elements of the objective function
in order to form different decision functions in the optimizing-simulator. Obvi-
ously, if nothing were in the objective function, the optimizing-simulator would
be just a simple simulation model. In the optimizing-simulator, the math pro-
gramming model in (18) is much smaller than that of the optimization model,
since it only solves the optimization problem for one time period at a time in-
stead of the optimization problem (as in Equation (10) or Equation (1)—(4)) for
all time periods.

In this section we have introduced a series of policies, each characterized by
increasing information sets. The policies are summarized in Table I, listed in
order of the information content of each policy. Research has shown that the
approximate dynamic programming policy (ADP) can compete with linear pro-
gramming solvers on deterministic problems. For single and multi-commodity
flow problems, the results are near optimal, and they significantly outperform
deterministic approximations on stochastic datasets [Godfrey and Powell 2002;
Topaloglu and Powell 2002; Spivey and Powell 2004]. Since the algorithmic
strategy involves repeatedly simulating the system, these results are achieved
without losing the generality of simulation, but the simulation must be run
iteratively. Like any cost model, the policy based on the (ADP) information
set means that analysts can change the behavior of the model primarily by
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Table I. Information Classes and Decision Functions for Different Policies

[ Policy | Information Classes | Decision Functions |
Rule-based I; = Ry (RB:R-A)
Myopic cost-based, one requirement | I; = (R, Cy) (MP:R-AL/KNAN)

to a list of aircraft, known now and
actionable now

Myopic cost-based, onerequirement | I; = (Ry)y>¢, Ct) (MP:R-AL/KNAF)
to a list of aircraft, known now and
actionable in the future

Myopic cost-based, a list of require- | I; = (Ry, Cy) (MP:RL-AL/KNAN)
ments to a list of aircraft, known
now and actionable now

Myopic cost-based, a list of require- | I; = (Ry)y>¢, Ct) (MP:RL-AL/KNAF)
ments to a list of aircraft, known
now and actionable in the future

Rolling horizon I = {(Rypr)prsy, Cyr, (RH)
¢, e TP

Approximate dynamic It = {(Ry)pr=t, Cr, Vi) (ADP)

programming B

Expert knowledge I = {(Ry)y=t, Ct, Vi, p} (EK)

changing costs. The final information set, p (used in the EK policy), allows us
to manipulate the behavior of the model by changing the exogenous patterns.
Needless to say, the imposition of exogenous patterns will not, in general, im-
prove the results of the model as measured by the cost function (or even other
statistics such as throughput). However, it will reduce the real costs if the expert
specifies reasonable patterns.

The optimizing-simulator framework makes it possible to optimize (by which
we mean use intelligent decisions) problems that are much larger and more
complex than can be tackled using traditional optimization frameworks (deter-
ministic or stochastic). This optimizing behavior is handled through the frame-
work of approximate dynamic programming, which has a rigorous theoretical
foundation. An advantage of ADP is that it never attempts to optimize large
problems over all time periods at once, as is done with traditional linear pro-
gramming models such as NRMO. But it does require that we step through
the entire problem iteratively. We have found that the application of ADP to
problems in transportation and logistics (see also Powell and Topaloglu [2005]
and Simao et al. [2008]) can provide a high quality solution with as little as 50
iterations, but sometimes requires several hundred iterations. When the fleet
size is decreased relative to the number of demands being served, more itera-
tions are required. Of course, if we choose a myopic policy (ignoring the impact
of decision on the future), then we may only need a single iteration.

It is useful to compare the features of the optimizing simulator to the other
models that have been developed for this problem class: NRMO, AMOS, and
SSDM. Table II compares each method along various dimensions in terms of
their ability to model different characteristics of the problem, rather than the
algorithm. The primary distinguishing feature of these models is how they have
captured the flow of information, but they also differ in areas such as model
flexibility, and the responsiveness to changes in input data. The optimizing sim-
ulator (O-S) representation can produce a linear programming model such as
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Table II. Characteristics of NRMO, AMOS, SSDM and O-S Models

Model NRMO AMOS SSDM 0-S
Category Large-scale lin- Simulation Multi-stage Optimizing-
ear programming stochastic simulator
programming
Information | Requires Assumes Actionable time General
[processes knowing all actionable time equals knowable modeling of
information equals knowable time. knowable and
within 7 at time time. May, but actionable
0. Cannot doesn’t, time. At time
distinguish distinguish t, know the
between between knowable information
knowable time ¢ time ¢ and that is
and actionable actionable time actionable at
time ¢’ > ¢t. t'>t. time ¢’ > ¢t.
|Attribute Multi-commodity | Multi-attribute Homogeneous General
Space flow (attribute (location, fuel ships and cargo, resource
includes aircraft level, extendable to
type and maintenance) multiple ship
location) types
Complexity Linear systems Complex system Simple linear Complex
of system of equations dynamics systems of system
dynamics equations dynamics
Information | Deterministic Sequential Multiple Sequential
[process information scenarios information
process process
Decision Cost-based Rule-based Cost-based Span from
Selection rule-based to
cost-based
Information | Assumes that Myopic, local Assumes General
Modeling everything is information knowing the modeling of
known. probability information
distribution of
scenarios.
Model Reacts to data Noisy response to Similar to LP, but | Can react with
Behavior changes changes in input produces robust intelligence;
intelligently, but data allocations. will display
not necessarily some noise
robustly across characteristic
random events. of simulation;
robust.
Modeling Physical Decisions in Physical and Decisions in
time activities in discrete time, information discrete time,
discrete time physical activities processes in physical and
in continuous time | discrete time information
processes in
continuous
time
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NRMO if we ignore evolving information processes, or a simulation model such
as AMOS, if we explicitly model the TPFDD as an evolving information process
and code the appropriate rules for making decisions. As such, the O-S repre-
sentation provides a mathematical representation that spans optimization and
simulation.

5. NUMERICAL EXPERIMENTS

We now undertake to demonstrate the spectrum of simulations by showing how
increasing the level of information when we are making a decision improves
the overall quality of the solution. We undertake these experiments using an
unclassified TPFDD dataset for a military airlift problem. The problem is to
manage six aircraft types (C-5A, C-5B, C-17, C-141B, KC-10A, and KC-135) to
move a set of requirements of cargo and passengers between the USA and Saudi
Arabia, where the total weight of the requirements is about four times the total
capacities of all the aircraft. In the simulation, a typical delivery trip (pick up
plus loaded movement) needs four days to complete, thus all requirements need
roughly 16 days to be delivered if the capacities of all the aircraft are used. The
simulation horizon is 50 days, divided into four hour time intervals. Moving
a requirement involves being assigned to a route that will bring the aircraft
through a series of intermediate airbases for refueling and maintenance. One
of the biggest operational challenges of these aircraft is that the probability of a
failure of sufficient severity to prevent a timely takeoff ranges between 10 and
25 percent. A failure can result in a delay or even require an off-loading of the
freight to another aircraft. To make the model interesting, we assume that an
aircraft of type C-141B (regardless of whether it is empty or loaded) has a 20
percent probability of failure, and needs five days to be repaired if it fails at an
airbase in region E (airbase code names starting with E are located primarily
in Northern Europe). All other aircraft types or airbases are assumed to be able
to repair the failures without delay.

The TPFDD file does not capture the time when the information about a
requirement becomes known. For our experiments, we assumed that require-
ments are known two days before they have to be moved. Aircraft, on the other
hand, are either actionable now (if they are empty and on the ground) or are
actionable at the end of a trip that is in progress. We assume that there are
three types of costs involved in the military airlift problem: transportation costs
(2 cents per mile per pound of capacity of an aircraft), aircraft repair costs
(6 cents per period per pound of capacity of a disabled aircraft) and penalties
for late deliveries (4 cents per period per pound of requirement delivered late).

We have such a rich family of models that it would become clumsy if we com-
pared all the policies introduced in Section 4. To focus on the main idea of this
article, we run the optimizing-simulator on the following policies: (1) rule-based,
one requirement to one aircraft (RB:R-A), (2) cost-based, one requirement to a
list of aircraft that are knowable now, actionable now (MP:R-AL/KNAN), (3)
cost-based, a list of requirements to a list of aircraft that are knowable now,
actionable now (MP:RL-AL/KNAN), (4) the same policy but with aircraft that
are knowable now, actionable in the future (MP:RL-AL/KNAF), and (5) the
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Costs of different policies
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Fig. 4. Costs of different policies.

approximate dynamic programming policy (ADP). These five classes should
provide improved solutions as they are added. We did not explicitly test rolling
horizon procedures since this would have required generating a forecast of fu-
ture events from the TPFDD. This would be straightforward in the context of
a civilian application such as freight transportation where historical activities
would form the basis of a forecast, but a historical record does not exist for these
applications.

We use three measures of solution quality. The first is the traditional measure
of the objective function. It is important to emphasize that this is an imperfect
measure, since some behaviors may not be reflected in a cost function. The
second measure is throughput, which is of considerable interest in the study
of airlift problems. Our cost function captures throughput indirectly through
costs that penalize late deliveries. Finally, when we study the use of expert
knowledge, we measure the degree to which the model matches exogenously
specified patterns.

Figure 4 shows the costs for each of the first five policies. Policy (RB:R-A) is
rule-based, one requirement to one aircraft. Policy (MP:R-AL/KNAN) is cost-
based, one requirement to a list of aircraft that are knowable now actionable
now. Policy (MP:RL-AIL/KNAN) is cost-based, a list of requirements to a list of
aircraft that are knowable now, actionable now. Policy (MP:RL-AL/KNAF) is
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Throughput curves of policies
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Fig. 5. Throughput curves of different policies.

cost-based, a list of requirements to a list of aircraft that are knowable now ac-
tionable in the future. Policy (ADP) is the approximate dynamic programming
policy. The total cost is the sum of transportation costs, late delivery costs, and
aircraft repair costs. The late delivery costs decrease steadily as the information
set increases. The repair cost is significantly reduced in policy (ADP) since this
policy learns from the early iterations and avoids sending aircraft to airbases
that lead to longer repair times. However, the detour increases the transporta-
tion cost of policy (ADP) slightly compared to policy (MP:RL-AL/KNAF). The
overall total costs are decreasing as we expected, since the information sets are
increasing.

The throughput of each of the five different policies (RB:R-A), (MP:R-
AL/KNAN), (MP:RL-AL/KNAN), (MP:RL-AI/KNAF), and (ADP), are plotted
in Figure 5, which shows cumulative pounds delivered over the simulation.
Also shown is the cumulative expected throughput curve, which represents
the cumulative total tonnage that has been requested to move. The cumula-
tive expected throughput curve assumes that every unit of demand is moved
instantaneously, so this represents the best that the system can do.

The throughput also follows this sequence, from the right to the left. It is clear
that the richer the information class, the faster the delivery—i.e. the closer to
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Table III. Areas Between the Cumulative
Expected Throughput Curve and the
Throughput Curves of Different Policies

Policy pounds * day
(RB:R-A) 472,868,381
(MP:R-AL/KNAN) 344,977,669
(MP:RL-AL/KNAN) 303,568,943
(MP:RL-AL/KNAF) 281,365,953
(ADP) 234,915,133

the left is the throughput curve. Since some of the throughput curves cross
each other, we calculate the area between the expected throughput and the
throughput curves of different policies and list them in Table III. These areas
actually measure the lateness of the delivery of different policies. The smaller
the area is, the faster the delivery is. We may see that from policy (RB:R-A) to
(ADP), the areas are decreasing from 473 million to 235 million (pound Days).

We tested the inclusion of expert knowledge by using an exogenous pattern
to control the percentage of C-5As and C-5Bs through region E. Starting with
the best myopic policy (MP:RL-AL/KNAF), we found that C-5As and Bs went
through region E 18.5 percent of the time. We then imposed a single exogenous
pattern on the (attribute, decision) pair (@ = C-5A or C-5B, d = region E).
We then varied the exogenous pattern p;; from 0 to 0.5 in steps of 0.10. For
example, p;7 = 0.3, indicates that as recommended by the expert, C-5As and
C-5Bs should be sent through region E in 30% of the instances in which a
decision is to be applied to them.

Choosing the correct value of the pattern weight, 6, (which determines the
deviation of the final solution from the solution that exactly matches the exoge-
nous pattern) is a matter of subjective judgment. If the cost function has been
carefully designed, then some amount of deviation may still be acceptable. For
each value of p; 7, we varied 6 over the values 0, 3, 5, 10, 100, 1000.

The results are shown in Figure 6, which maps the observed pattern from
the model to the expert-recommended pattern. The horizontal line corresponds
to & = 0, and we also show a 45 degree dashed line representing the case that
the model matches the pattern exactly. For the remaining runs, varying 6 for
different values of p;; produces a series of lines that are bounded by the no-
pattern and the exact-match lines. Note that matching an exogenous pattern
will typically produce a lower objective function (or higher costs). The point of
matching patterns is to produce a behavior that is not captured by the objective
function.

These results indicate that we can retain the ability that exists in traditional
simulators to guide the behavior of the cost model using simple rules. It is
important to emphasize, however, that our exogenous patterns are restricted
in their complexity. A rule must be a function of the (attribute, decision) pair
(@,d), which means that the rule may not reflect, for example, information
about other aircraft (the cost model must pick this up).

The point of these experiments is not to conclude that one decision function
is better than another, since the objective function (Figure 4) or throughput
(Figure 5) represent only two measures of a solution. It is interesting that as

ACM Transactions on Modeling and Computer Simulation, Vol. 19, No. 3, Article 14, Publication date: June 2009.



The Optimizing-Simulator: An lllustration Using the Military Airlift Problem . 14:29
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of this writing, the analysis group at the air mobility command continues to
use the simplest rule-based logic, even after contracting to have their original
simulation package completely rewritten.

6. CONCLUSIONS

The modeling community in transportation, and in particular in the area of
airlift modeling, has traditionally been divided between simulation, which of-
fers tremendous flexibility as well as the ability to handle uncertainty, and
optimization, which offers high quality solutions but limits our ability to han-
dle uncertainty as well as more complex dynamics. These have been viewed as
competing methodologies, and the communities that promote them have little
overlap.

We have shown, using the context of modeling cargo movements for military
operations, that simulation and optimization can be viewed as different types of
decision functions using different types of information. Decision functions can
be rule-based or cost-based, and we illustrate them by showing how different
types of functions can be created using four classes of information. While there
is a desire, especially in the academic community, to find the best solution (or the
best policy), it is often the case that in practice the goal is a model that mimics
actual operations. This means not only modeling the physics of the problem
(travel times, capacities and constraints), but also the way that decisions are
made. A major limitation that has often been cited by the analysis group at the
airlift mobility command is that optimization models are “too smart.”
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For the airlift problem we considered, we showed that increasing the infor-
mation available to a decision-maker improves the solution quality in terms of
specific metrics. However, the logic anticipates that there may be issues we are
not capturing, and we show how we can design decision functions that allow
an analyst to guide the model using explicit patterns of behavior. These pat-
terns are expressed as a form of goal, rather than the hard rules that are more
common in simulation models.

The academic literature has focused on finding the best decision (for deter-
ministic problems) or the best policy (for stochastic problems). We suggest that a
new line of research falls in the area of model calibration. Companies who want
to use these models to answer high-level policy questions gain confidence when
they feel that the model closely matches the performance of their operation.
For civilian operations, historical data may be available, introducing the new
challenge of designing procedures that produce the best match by manipulat-
ing the policy. This article shows that by controlling the available information,
we can create a broad range of policies, including those that directly compete
with optimization models. An interesting research challenge would be to create
automated procedures that identify the policies that produce the closest match
between model and history.
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