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This paper addresses the solution of large, complex resource allocation problems, examples of which include
large freight transportation companies and supply chain management. Some instances of these problems

involve millions of constraints and tens of millions of variables. Classical formulations focus on modeling the
physical problem alone. In this paper, we focus on modeling the organization of information and decisions, pro-
ducing a natural decomposition based on how decisions are actually made. Restricting the size of a subproblem
to the sizes of problems actually solved by real decision makers, we avoid the computational demands posed
by large problems. The algorithmic challenge is producing high quality solutions that reflect the interaction
between subproblems. Linear approximations have been a widely used tool for decomposition, but these can
produce unstable solutions of only moderate quality. We introduce the concept of using nonlinear approxima-
tions, which creates special technical problems but also produces solutions of very high quality. The strategy
is simulated on two problem classes (fleet management and supply chains) and compared against standard
modeling strategies. Synchronous and asynchronous strategies are also compared.
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1. Introduction
Large-scale, complex operational problems arise in a
variety of settings. Railroads, airlines, and trucking
companies routinely need to coordinate the flows of
people and equipment over large networks. Manufac-
turing enterprises need to manage different elements
of a supply chain. Attempts to model these prob-
lems using classical (usually deterministic) optimiza-
tion methods have been successful only in isolated
pockets (airline crew scheduling is a good example).
The difficulty is that these problems are typically very
large, usually exhibit integer variables, and almost
always exhibit a variety of uncertainties.
Recently, Powell et al. (2001) introduced a flexible

modeling paradigm designed to capture the com-
plexities of large-scale operations. They formalize a
problem class called the dynamic resource transforma-
tion problem (DRTP) with three primary dimensions:
knowledge, processes, and controls. The modeling
strategy emphasizes the representation of the organi-
zation and flow of information and decisions. How-
ever, a DRTP is a model without an algorithm. Since the
problem class is so broad, it is not possible to offer a
single algorithm. Instead, this paper suggests an algo-
rithmic metastrategy that represents an approach that
can be followed for a broad range of DRTPs. The focus

of the strategy is to exploit the natural decomposi-
tion of complex problems into informational subprob-
lems that capture how information and decisions are
organized within a large operation. For example, large
transportation companies are often regionally divided
with an individual in charge of each region. In an
operation such as a railroad, there might be one indi-
vidual in charge of locomotives in one region, while
another is in charge of a subset of boxcars for the
entire country. Each of these individuals would con-
stitute an informational subproblem. Thus, decision
makers may be in the same company or in different
organizations; they may be in the same place or spa-
tially dispersed. There may be different people work-
ing on the same types of decisions in different regions,
or on different types of decisions that affect the same
region.
A challenge of any decomposition scheme is intro-

ducing a coordination strategy so that the individ-
ual components work together to mimic the results
that might be achieved if the entire problem could be
solved at once. The most popular scheme for achiev-
ing this is to use linear approximations to capture the
impact of decisions on different subproblems (see, for
example, Bertsekas and Tsitsiklis 1989 and the refer-
ences cited there). While this is by far the easiest to
implement, it can be unstable. We introduce the use of
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nonlinear functional approximations, which produces
much better results, but also introduces complications
that we describe and resolve.
There are several key attractions of the metastrat-

egy: (1) The subproblems are generally easy to solve
(even hard integer programs can be easy to solve
when they are small). (2) The method scales easily
to ultra-large-scale problems, since the size of a sub-
problem is determined by how the problem is mod-
eled (the organization of information and decisions is
considered a part of the model, not a part of the algo-
rithmic strategy). (3) The approach handles stochastic
information in a simple and natural way. (4) The use
of loosely coupled subproblems means that subprob-
lems can be solved on different computers, without
the fast communication requirements of traditional
parallel computation. In fact, the subproblems may
belong to different groups within a company, or oper-
ate across organizations.
A major contribution of this paper is the pre-

sentation of a methodology for handling nonlinear
functional approximations. Using nonlinear functional
approximations to coordinate different subproblems
introduces special challenges that do not arise in the
context of linear approximations (linear approxima-
tions include the entire class of algorithms based on
Lagrangian relaxation). We can briefly illustrate the
challenge using Figure 1, where we have four regions
(A, B, C, and D) and four time periods (1–4). We are
trying to capture the impact of different regions on
region A at time period 4. Resources may be sent from
region B at time period 1, arriving at time period 4,
or from region C at the same time period (where we
may solve region B before we solve region C). Or, we
may encounter a region such as D that requires only
two time periods to arrive at region A at time 4; as a
result, we are interested in the impact of solving region
D at time 2. Because the functional approximation is
nonlinear, sending resources from region C, time 1 to
region A (arriving at time 4) has an impact on the deci-
sions made at region D, time 2. Sending an extra unit
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Figure 1 Coordinating Subproblems Through Nonlinear Functional
Approximations

of flow from (C,1) to (A,4) may have an impact either
on flows out of (A,4), or on other flows into (A,4).
In our approach, we do not use a single nonlinear

approximation for each subproblem, but a family of
nonlinear approximations. We present the equations
for updating these approximations, and show how
well they work using problems that can be solved
using classical tools. We also show that an apparent
fix to the problem illustrated in Figure 1, which uses
an estimate of the amount of flow into (A,4) from a
closer subproblem such as (D,2), can work poorly.
This paper makes the following contributions. First,

we introduce the concept of informational decom-
position, where the decomposition of the problem
into subproblems is a part of the specification of the
model, not a part of the algorithmic strategy. The con-
cept is similar to multiagent systems, but our rep-
resentation of an informational subproblem is new,
and we have applied it to problems in logistics that
are classically approached as large-scale optimiza-
tion problems. Second, we show how to represent
the interaction between subproblems using nonlinear
functional approximations that capture the impact of
decisions of one subproblem on another. This strategy
requires using a family of functions for each subprob-
lem instead of a single approximation. This approach
is new to the decomposition literature. Third, our
metastrategy handles uncertainty without increasing
the size of the problem since the effects of differ-
ent scenarios are simply averaged into the functional
approximations.
Finally, we study experimentally the performance of

our algorithms on problems from freight transporta-
tion (which requires the movement of resources such
as trucks and trains over a large area such as North
America) and supply chain management. We compare
our results against standard algorithms for these prob-
lems, not as a demonstration that we have a better
algorithm, but to show that we can produce compara-
ble results using a strategy that scales to much larger
and harder problems (as well as one that easily han-
dles uncertainty). The two problem classes are quite
different, and also allow us to illustrate two very dif-
ferent views of communication between subproblems.
We compare strategies for synchronous and asyn-
chronous coordination of subproblems. We also study
in some depth the complexities introduced by the use
of nonlinear functional approximations. We show that
a straightforward implementation of a nonlinear strat-
egy works poorly, and that obvious approaches for fix-
ing these problems do not work. We then introduce
a specialized dual approximation strategy that works
quite well.
Section 2 summarizes the mathematical notation re-

quired to model a DRTP. This representation empha-
sizes the organization and flow of information and
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is central to the development of the metastrategy.
Section 3 then explains our metastrategy and intro-
duces the fundamental equation for linking sub-
problems. Following this, Section 4 suggests how to
specialize the metastrategy to several important appli-
cation classes. This is followed by Section 5, which
discusses the impact of problem decomposition on
the choice of value function. This Section in particu-
lar discusses the role of nonlinear approximations and
gives the updating equations that motivate the use of
a doubly-indexed functional approximation. Section 6
presents computational results to measure the effec-
tiveness of the metastrategy under various decom-
positions, value function approximations, and prob-
lem classes. Our computational work is restricted to
problem classes where we can also find optimal solu-
tions using classical methods. This experimental work
is intended only to provide a measure of the accu-
racy of our approach. The real value is its scalabil-
ity; we do not attempt to solve any ultra-large-scale
problems, nor any problems that involve stochastic
elements, simply because we are not able to obtain
tight bounds on performance. Finally, Section 7 con-
cludes with directions for future research, including
distributed computation.

2. A Mathematical Representation
In this section we briefly outline the mathemati-
cal notation for modeling a DRTP. A more compre-
hensive review is presented in Powell et al. (2001).
What is most important about our representation,
for the purposes of this paper, is the explicit mod-
eling of information, the evolution of information,
and the organization of information within the control
structure.
Any DRTP can be classified along three principal

axes.
1. Knowledge: This includes what we know about

resources being managed (which may include drivers,
loads, product, customers, and demands) as well as
parameters that govern the behavior of the system.
2. Processes: The “physics” of the system. Processes

include system dynamics (how the system evolves
over time), physical constraints on the system, as well
as the nature of the information stream arriving to the
system.
3. Controls: The decision-making process. This cov-

ers how decisions are made.
Each of the following three subsections deals with

one of these items. The presentation of the model is
limited to what is needed to represent the organiza-
tion and flow of information and decisions.

2.1. Knowledge
Our knowledge about our system can be divided into
two groups: the resources that we are managing and
parameters that govern the process being managed.

Resources are represented using

�R = the set of resource classes (e.g., drivers, trucks,
product types, � � ��,

� = the set of resources in class c ∈�R,

ar = the attribute vector of a resource r ∈�c,

�c = the set of possible vector-values for attribute
vectors in layer c ∈�R,

Rcta = the number of resources with attributes
a ∈�c at time t,

Rt = �Rcta�c∈�R	a∈�c �

We represent parameters simply using


t = vector of parameters that govern the dynamics
of the system.

Combined, we represent what we know about the
system at time t using

Kt = �Rt	
t��
As an example, take a freight application. In driver-
scheduling problems, an important resource is a
human driver whose specific attributes describe his
state at any point in time:

a=



aactionable
alocation
adomicile
aduty_hours


=




time
location of the driver

domicile
duty hours


 � (1)

The element aactionable is special, capturing the time at
which the rest of the vector a becomes implementable.
Thus, representing a resource with attribute a implic-
itly includes the time dimension. This compact repre-
sentation will simplify notation later.
Resources in a DRTP usually evolve over time

through sequences of couplings (putting two or more
resources together) and uncouplings (taking them
apart). For example, we might have aP be the
attributes of a pilot and aA be the attributes of an
aircraft. The attribute vector aA would include the
information needed to determine whether the aircraft
needs one pilot or two before it can fly.

2.2. Processes
In this section, we summarize the processes that gov-
ern the dynamics of the system: exogenous informa-
tion processes, decisions, and system dynamics.

2.2.1. Exogenous Information Processes. Most
DRTPs are not solved with static data. Instead, they
face dynamic data that change over time through a
sequence of information updates. How a model han-
dles this sequence of information updates is a critical
determinant of its success in any field implementa-
tion. Our principal interest is to investigate how a
model can handle information updates generated by
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sources outside the system:

�t = the set of all the information elements arriving
to the system in time period t.

Assume that we are modeling over a planning
horizon � ph. The information �t	 t ∈ � ph represents
forecasts of future events. Since the future may be
uncertain, there may be more than one set of potential
future events. Following classical notation, we let

� = a potential sequence of �t	 t ∈� ph,

� = the set of all potential outcomes over � ph.

As information �t arrives, we update our database, to
which we refer as the knowledge base of the system.
We assume that there is a function UK for updating
the knowledge base so that

Kt+1 =UK�Kt	�t+1�� (2)

Such an iterative updating scheme requires K0 as
input.
For the remainder of this paper, we consider only

dynamic updates of resources. All other information
is assumed static. Updates to the resource vector are
represented using

�Rta = the change in the number of resources with
attribute vector a due to exogenous
information arriving at time t.

For the remainder of the paper, we let �Rta represent
exogenous changes to our resource vector, while Rta
represents resources that are in state a at time t as a
result of previous endogenous changes.

2.2.2. Decisions. Specifying the types of controls
in a DRTP determines the makeup of the umbrella
set � of decisions that we have been using up to this
point. The elements of this set are decisions to which
we refer as primal controls. Decisions can generally be
divided into specific classes based on domain-specific
classification schema. Accordingly, we define

�D = the set of decision classes,
�c = the (finite) set of possible decisions d in

class c ∈�D,

�c
a = the subset of �c that can be applied to a

resource with attribute a.

In our freight example, we may define �D =
�move	 sleep� and �move = �move_to_Chicago�. Also
as a matter of computational convenience, sets like
�c
a allow us to specify a set of feasible decisions con-

tingent on the state of the resource a. As a matter
of mathematical necessity, however, we require that⋃
c∈�D �c

a be nonempty for every a, containing at least
the sentinel decision d�. The interpretation of d� is
domain-specific but is generally meant to represent
the “do-nothing” option. For instance, in a freight
context, d� generally requires a driver to sit idle at his
current location in space.

For accounting purposes, we need to represent the
number of times a decision is executed:

xtad = the number of times decision d is applied to
resource a at time t.

Recall that one of the elements of the attribute vector
is aactionable. We can use this element to determine the
time at which an action takes place, allowing us to use
xad instead of xtad. We assume that aactionable refers to a
point in time within our planning horizon, defined by

� ph = set of time instances within our planning
horizon.

Thus, we consider only those attributes a where
aactionable ∈� ph.

2.2.3. System Dynamics. The changes induced
by a decision d can be elegantly modeled using the
modify function M . Given an attribute vector a, the
application of the control d modifies the system as in

M�a	d	Kt� �→ �a′	 c	 ��	 (3)

where

a′ = the attribute vector of resource a after control d
is applied to it,

c = the cost/benefit resulting from the modification,

� = the time required to complete the modification.
We need to consider the impact of a decision d on
other parts of the system. We capture this using the
�-function

�a′�a	d	Kt� = the impact on resource a′ if decision
d is implemented on resource a,

=
{
1 if M�a	d	Kt� �→ �a′	 ·	 ·�,
0 otherwise.

In other words, the �a′ function captures the effect of
the endogenous decision d on the system.

2.3. Controls
All that remains to be defined is the last dimension
of our DRTP paradigm, controls, which comprises the
following three elements.
1. Control structure: Who can make what types of

decisions, and with what information?
2. The decision function: How are decisions made,

and with what information?
3. Measurement and evaluation: What is the eco-

nomic impact of implementing a control?
2.3.1. Control Structure. We represent our control

structure as a set of subproblems denoted by

� = set of subproblems that encompass the problem.
There are three dimensions to a subproblem: the

attribute subspace, which determines what resources
are being controlled; a subset of decision classes,
which determines what types of decisions belong to a
subproblem; and a set of time periods over which the
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subproblem has control. These are represented using:

�q = subset of the attribute space for subproblem q,
where

⋃
q∈� �q =� and �q1

∩�q2
=� when

q1 �= q2. Implicit in the definition of the
attribute space is:

� ih
q = the implementation horizon for subproblem q.

This is the set of time periods during which
subproblem q controls the decisions. Since
time is a dimension of the attribute vector,
we may state that a ∈�q ⇒ aactionable ∈� ih

q .
�D
q = set of control classes associated with

subproblem q. As a rule, a subproblem is
formulated for a specific type of decision,
so the set �D

q is implicit in the formulation
of the problem.

The set of decisions in subproblem q can now be
expressed by

�q = subset of decisions in subproblem q

= �d ∈�c
a	 c ∈�D

q 	 a ∈�q	 aactionable ∈� ih
q ��

We require that the subsets ��q�	 ��q�, and �� ih
q � be, in

their respective dimensions, mutually exclusive and
collectively exhaustive.
Later we will need to capture the impact of deci-

sions in one subproblem on another. For this, we
define the following.
Definition 2.1. The forward-reachable set

→
� q of

subproblem q is the set of subproblems q′ with
resource states a′ ∈�q′ that can be reached by imple-
menting a single, feasible decision d on at least one
state a ∈�q . More precisely, the forward-reachable set
of subproblem q is

→
� q = �q′ ∈ �\q � ∃a ∈�q	 d ∈�q where

M�a	d	 ·� �→ �a′	 ·	 ·�	 a′ ∈�q′�� (4)

Definition 2.2. The backward-reachable set
←
� q of

subproblem q is the set of all subproblems for which
subproblem q is forward-reachable. More precisely,
the backward-reachable set of subproblem q is

←
� q=

{
q′ ∈ �\q � q ∈ →

� q′
}
� (5)

It is important to observe that the definition of the
forward-and backward-reachable sets implies a mas-
ter/slave relationship between subproblems. Later we
provide two very different illustrations of this rela-
tionship. In Section 4 we describe a resource allocation
problemwhere the master sends resources to the slave,
and a multistage lot-sizing problem where the master
requests resources from the slave.

2.3.2. The Decision Function. Earlier we intro-
duced the decision variable xad, which is the number
of times that decision d is applied to resources of type
a. We now define

X 
q �Iq� = a function that determines xad for a ∈�q ,

d ∈�q where:
" = a set of different possible decision

functions, where  ∈",
Iq = the information content of subproblem q

(for policy  , which we suppress for
simplicity).

The information set Iq (which we can think of as
the “IQ” of our subproblem) is composed of three
basic classes of information: what we know now,
what we forecast to become known in the future, and
the impact of decisions made in subproblem q on
other subproblems. As before, what we know now
can be divided into what we know about resources
and what we know about other problem parameters
(costs, speeds, times, and other physical parameters).
Following our earlier notation, we let

Kq = the information in subproblem q

= �Rq	
q�	

�q = updates to the set Kq .
A myopic decision function uses Iq = Kq . Rolling-
horizon models use Iq = �Kq	�q�. If ��q� = 1, then we
are using a deterministic forecast; if ��q�> 1, then we
have a stochastic model.
In this paper, we assume that all the information

in a subproblem becomes available at the same time.
Thus, an element �q ∈ �q would be a sample of all
the information that would be used in subproblem q.
In stochastic models, it is often convenient to assume
that �� ih

q � = 1; when this is not the case, we assume
that all the information for the subproblem becomes
known at once.
Using this assumption, we can introduce notation

to capture the property that the modify function
M�a	d	Kq� is known given �q . This means that the
outcome a′��� is known given �a	d	Kq�. It is conve-
nient, then, to introduce the notation

xaa′��q� =
∑
d∈�q

xad��q��a′�a	d	Kq�	

xqa′��q� = �xaa′��q�	 a ∈�q�	

xqq′��q� = �xqa′	 a
′ ∈�q′�	

xq��q� = �xqq′��q�	 q
′ ∈ →

� q��

Thus, xqq′��q� is the vector of all the flows from sub-
problem q to q′; xq��� is the vector of all the flows out
of subproblem q.

2.3.3. The Objective Function. We define the ob-
jective function of a subproblem q as Cq . This is sim-
ply the cost generated by a decision, as returned by
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the modify function. The total costs generated by sub-
problem q are given by

Cq�xq	�q�=
∑
a∈�q

∑
d∈�q

cad�xad	�q��

We assume that new information arriving to sub-
problem q, represented by �q , is known before we
make decisions in this subproblem. This information
may affect costs, new arrivals, and upper bounds.
If subproblem q encompasses points in time in the
future, we feel that this is a reasonable approxima-
tion. If subproblem q captures “here and now” then
we are assuming that �q is a deterministic, short-term
forecast, which may be updated as new information
arrives that affects q.
If we were to ignore the impact of our decisions on

other subproblems we could solve a sequence of local
subproblems given by the following definition.
Definition 2.3. The local subproblem LSPq for

subproblem q is the following system:

min
xq��q�

Cq�xq	�q� (6)

subject to:∑
a′∈�q

xaa′��q�−
∑
a′∈�q

xa′a��q�=Ra+ �Ra��q� ∀a∈�q (7)

xaa′��q�≤uaa′��q� ∀a	a′ ∈�q (8)
xaa′��q�≥0 ∀a	a′ ∈�q (9)

where Cq is the objective function of subproblem q.
Note that our knowledge base, Kq , is also a func-

tion of �q by virtue of our updating scheme. The con-
straints (7) represent flow conservation. For later time
periods, Ra is determined by decisions made in earlier
time periods.
Problem LSPq encompasses a rich array of prob-

lems. The underlying problem may be a simple
matching of drivers to loads; it may be a set-
partitioning problem involving the assignment of a
pilot to a sequence of flights; it could include the
coupling of drivers, tractors, and trailers, which then
have to pick up goods for delivery to a set of cus-
tomers. We do not claim that LSPq is a simple prob-
lem, but we do assume that it is relatively small.
Generally, we assume that it is no larger than what
a human is probably solving by hand. Most impor-
tantly, the size of a subproblem is limited by the
amount of information available to the subproblem at
a given point in time.

3. The Metastrategy
The metastrategy requires that we generalize the sys-
tem (6)–(9) defining LSPq to one that considers the
impact of decisions in subproblem q on other sub-
problems. The optimization problem for subproblem
q can be rewritten as the global subproblem GSPq .
The major difference between LSPq and GSPq is that
the global subproblem captures the effect of decisions

in subproblem q on other subproblems. We may now
define
Definition 3.1. The global subproblem GSPq for

subproblem q is the following system:

�Vq�Rq�= E
{
max
xq

Cq�xq	�q�+
∑

q′∈ →
� q

�Vqq′�xqq′ ��q�
}
(10)

where �Vqq′ is a family of functional approximations
that capture the impact of decisions made by subprob-
lem q on subproblem q′. Equation (10) must be solved
subject to the local constraints (7)–(9) and equations
that handle flow conservation between subproblems:

Ra =
∑

q′∈ ←
� q

xq′a a ∈�q� (11)

Constraint (11) defines the flows from one subprob-
lem to the next. All the remaining constraints are
buried in (7)–(9), which are part of the subproblem.
In special cases, we can compute the expectation in

(10) exactly (examples can be found in Frantzeskakis
and Powell 1990 and Powell and Cheung 1994). How-
ever, general problems will require choosing a sample
�q ∈�q and then solving GSPq��q� for a sample real-
ization. In this case, we would drop the expectation
and represent the solution as �Vq��q�. For the remain-
der of the paper, we assume that a sampling-based
strategy is required.
Remark. Equation (10) is the heart of our metas-

trategy. There are obvious parallels with dynamic
programming (the recursive computation of value
functions). The most obvious difference is the dou-
ble indexing �qq′� of the value function. The use of a
doubly-indexed functional approximation in the con-
text of multiagent control is new (but motivated by
the work on multiperiod travel times in Godfrey and
Powell 2002b) and is required only when we use non-
linear functional approximations for the value func-
tion. We show in Section 5 how these functions are
updated, and in particular the step that produces the
doubly-indexed approximation.
The design of the function �Vqq′�xqq′ ��q� is essential

to the metastrategy, which is intended to approximate
the impact of subproblem q on subproblem q′. The
challenge is to find an approximation that keeps GSPq
tractable, but provides an accurate approximation of
the impact of one subproblem on another. The func-
tion �Vq is partly a placeholder that we use to capture
information about subproblem q. This information
(which might be a function estimate, or a gradient) is
then used to update our approximation for subprob-
lem q. We represent this updating process using the
mapping

�Vq ←UV � �Vq��q�	 �Vq�� (12)
An important dimension of the metastrategy is the
order in which certain operations take place. In partic-
ular, we have some flexibility in designing the order
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in which subproblems are solved, and the order in
which value functions are updated. We assume that
implicit in the set � is an ordering of subproblems, so
that �= �q1	 q2	 � � � 	 q����. In addition, let

� = the set of value function approximations
= � �V1	 �V2	 � � � 	 �V�� ���

We assume throughout that subproblems are solved
in the order specified in �, while value functions are
updated in the order specified in � . In the simplest
updating strategy, we would update �Vq at the same
time that we solve �Vq , but this will not generally be
the case. In fact, we could consider strategies where
the orderings change as the algorithm progresses,
implying an ordering �k at iteration k.
Our metastrategy, then, is a high-level mathemati-

cal framework for developing specific solution strate-
gies for specific DRTP problem instances. To use the
metastrategy on a specific problem instance, the mod-
eler must perform the following two tasks.
1. Specialize the metastrategy: Fill in the four-tuple

�Q	 �Vq	X 	UV �.
2. Execute the metastrategy: Iteratively solve GSPq

until a stopping criterion is met.

Specializing the Metastrategy. The steps in-
volved in specializing the metastrategy involve
(i) identifying an appropriate decomposition �; (ii) de-
signing a suitable value-function approximation �V ;
(iii) developing the decision function (both the model
and an algorithm to solve it), and (iv) designing the
updating strategy UV .

Executing the Metastrategy. Because we cannot
generally “guess” the correct parameters for �Vq , we
solve GSPq iteratively from a reasonable initial solu-
tion, updating our guess using UV at each iteration,
as outlined in Figure 2. The termination criteria are
left to the modeler’s discretion. Note that in online
modeling situations, the termination check is skipped.
Section 4 presents two illustrations of the metas-

trategy on important practical problems. Examples
of decompositions include decomposition by time
(temporal), time and space (temporo-spatial), and by
resource layer (layered). Different forms of �V are
explored. Common forms include linear and separa-
ble, nonlinear approximations. The decision function

STEP 0: Initialize �Vq for all subproblems q ∈ �.
STEP 1: Choose a q ∈ � following a predetermined ordering

�q1	 q2	 � � � 	 q����:
STEP 1a: Choose a sample �q ∈�q .
STEP 1b: Solve GSPq .

STEP 2: Update the value function approximations,
� �Vq* q ∈ �� using UV .

STEP 3: Terminate if stopping criterion is satisfied.
Otherwise go to STEP1.

Figure 2 Steps in the Metastrategy

X ranges in complexity from simple sort procedures
to Wagner-Whitin (1958) dynamic programming to
the full network simplex. Stochastic linearization as
in Ermoliev (1988) may be sufficient for UV . In gen-
eral, by smoothing �Vq in the dual space we do not
require as frequent dual updates as do other decom-
position and value function approximation techniques
(e.g., Bertsekas and Tsitsiklis 1996).
Generally, the forward-reachable sets

→
� q control

the construction and ordering of �. Similarly, order-
ing the updating of �Vq is generally controlled by each
subproblem’s backward-reachable set

←
� q . However,

different strategies can be devised. Section 6.2 devel-
ops and tests a number of policies for constructing
the functions �V and ordering the set �.

4. Applying the Metastrategy to
Important Problem Classes

In this section we show how the metastrategy can be
applied to two important and very different classes
of DRTPs: fleet management and multistage dynamic
lot-sizing. Section 4.1 decomposes a large-scale fleet
management problem using nonlinear functional
approximations to capture the impact of decisions on
the rest of the system. Nonlinear functional approxi-
mations introduce special challenges that have never
been addressed before. Then, Section 4.2 introduces
a completely different problem class (multistage lot-
sizing), which involves a different type of problem
structure (nonconcave but monotone value functions),
as well as a different type of master/slave struc-
ture that determines the construction of the forward-
reachable sets.

4.1. Fleet Management by Nonlinear
Approximation

Fleet management problems have been studied for
decades as applications of optimization, starting with
early models for freight car distribution (see Dejax
and Crainic 1987 for an excellent review of this litera-
ture). These models typically focus on formulating the
fleet assignment problem as a single large linear (or
integer) program. Recent work (for example, Powell
and Carvalho 1998, Godfrey and Powell 2002a) sug-
gests strategies for decomposing problems over time,
which facilitates incorporating uncertainty. In the case
of problems arising in freight transportation (major
truckload and LTL carriers, large railroads, and con-
tainer shipping companies), these models still fail to
capture the organization of decisions. For example,
it is common for companies to divide responsibility
into smaller regions. We can capture this division of
responsibility using our notation, which specifies who
(which subproblem q) makes what decisions (speci-
fied in the set �q) and to what resources these are
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Figure 3 Fleet Management Subproblem qj with Piecewise Linear �Vqi

applied (defined by resources with attributes in the
set �q).
The specialization, �Q	 �Vqi 	X 	U �V � = �	 × � , lin-

ear, sort, exponential smoothing) has been shown to
work well for moderate and large-scale problems with
real-world data (Powell and Carvalho 1998). How-
ever, linear approximations can be unstable, and will
not provide high quality results for all problems.
An alternative is to use a nonlinear approximation,
which may be a continuously differentiable function if
integrality is not an issue, or a piecewise linear func-
tion if integer solutions are needed. In the latter case,
we might write �Vq�Rq� as

�Vq�r�=
n∑

m=1
vm1�m≤r�	

where 1�X� = 1 if X is “true”, and vm is the incremental
value of the mth unit of flow. Such a function is useful
when we can guarantee concavity, where we would
require vm ≥ vm+1. Normally, we divide the functions
into segments, where values of r between, say, bm and
bm+1 carry the same marginal cost.
When we use a nonlinear function, problem GSPq

can be reduced to a pure network (this is especially
useful if integrality is an issue). A sample network
is illustrated in Figure 3. The supply for node a is
ra ≥ 0. The cost c and upper bound u of each arc are
shown as the pair /c	u0 in bold above the arc. Each
decision is modeled as a separate arc. Of particular
interest is the network representation of �Vqi : a single
node is used to represent �Vqi for each qi ∈

→
� q . The

n outbound arcs from node qi each capture a single
segment of �Vqi , where the arc labeled /vk	 bk+1 − bk0
offers the cost vk to bk+1 − bk units of flow. Because
we require vk−1 ≥ vk, flow will enter arc /vk	 bk+1− bk0
only if arc /vk−1	 bk− bk−10 is saturated.
4.2. Multistage Dynamic Lot Sizing
In this section we consider the classical multistage
lot-sizing problem. The lot-sizing problem is interest-
ing in part because it is an example of a nonconcave
problem (as a result of the integer variables). Also, it
provides an illustration of the forward-reachable set,
which is quite different from the other applications.

The dynamic lot-sizing problem arises in the con-
text of an inventory system that handles N different
types of items. The goal of controlling such a system
is to determine the replenishment quantities for each
item that satisfy demand requirements over some
finite, discrete time horizon � = �1	 � � � 	 T � at mini-
mum system cost. We are given the following basic
data:

csi = setup cost for item i,

chi = per-period holding cost for item i

(charged against end-of-period inventory),
cvti = variable production cost for item i at

time t, and
4i	 i−1 = number of units of item i required for each

unit of item i− 1 (for i > 1).
To demonstrate how we can solve the multistage lot-
sizing problem using our metastrategy, we must first
formulate it as a DRTP.
We begin with layer-one resources, to which we

refer to as “items.” Each item has a “type.” The inven-
tory system has N distinct stages, each stage i capa-
ble of storing only items of type i, which means that
the physical location of the item is synonymous with
its type. The attribute vector of an item is quite sim-
ple, taking the form

a=
[
aactionable
atype

]
	 (13)

where aactionable ∈ � and atype ∈ �1	 � � � 	N �. The count
of items at each stage i is recorded as

R1ti = the inventory of items of type i at the end of
period t.

All units in inventory start off as items of type N . An
item of type i can proceed to its successor stage i− 1
only by undergoing some transformation at stage i
(e.g., assembly or machining). Items at stage i are sub-
jected to demand at each time period t, which must
be satisfied without backordering.
Demands are represented as layer-two resources,

which we call “orders.” The attribute vector for an
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order is also simple, taking the form

a=

 aactionableatype

asource


 	 (14)

where aactionable and atype have the same range as for
item attribute vectors and asource indicates whether the
demand for item i stems from an exogenous source
(external customer demand) or an endogenous source
(internal demand from a successor stage). Exogenous
demand is denoted as

�R2ti = the count of exogenous demand for items of
type i at the end of period t.

In our representation, �qi would represent a realiza-
tion of the exogenous demands � �R1i	 �R2i	 � � � 	 �RTi�. In
our approach, we assume that all the realizations for
a subproblem become known at once. If we wanted
to model the staging of information more carefully,
we would have to create individual subproblems for
each time period as well.
Endogenous demand is denoted as

R2ti = the count of endogenous demand for items of
type i at the end of period t,

where R2t1 = 0 for all t since there is no successor
to stage 1. Since we consider only serial assembly
systems, endogenous demand represents orders from
stage i− 1.
A natural way to decompose the original prob-

lem into subproblems is according to stage. In
other words, � = �q1	 � � � 	 qN �, where each subprob-
lem qi corresponds to stage i, across the entire time
horizon � . The decision problem for subproblem qi
consists of the vector of production decisions xqi =
�x1i	 x2i	 � � � 	 xti	 � � � 	 xTi�. Because no backordering is
allowed, we require R1ti ≥ 0. We assume zero produc-
tion lead time and �R2ti = R1ti = 0 for i = 1	 � � � 	N and
t ≤ 0. Stage N +1 can be thought of as an infinite sup-
ply of raw materials. The role of the decision function
X at each stage i at time t is to choose xti, the num-
ber of items of type i to produce (or buy). Feasibility
at stages 1 ≤ i ≤ N requires that we satisfy demand
�R2ti fully, so that the system dynamics defining R1ti are

R1ti =
{
R1t−1	i+ xti− �R2ti−4i	 i−1xt	 i−1 if 1< i≤N	
R1t−1	i+ xti− �R2ti otherwise.

(15)
Since producing a unit at stage i− 1 implies sending
an order for 4i	 i−1 units to stage i, we have to enforce
the requirement

R2ti = 4i	 i−1xt	 i−1� (16)

We may then write

�R2ti = �R2ti+R2ti (17)

as the “modified demand.” Consequently, we can
rewrite (15) as

R1ti =R1t−1	i− �R2ti+ xti� (18)

Let X 
qi
be the decision function for subproblem qi.

This function determines how to satisfy the demands
of subproblem qi−1 and sends orders to subproblem
qi+1. In our earlier applications, the forward-reachable
set was the set of subproblems to which resources
(vehicles, drivers) were sent. In this application, the
forward-reachable set of subproblem qi is qi+1, which
is the subproblem to which we are sending orders.
This application, then, provides a nice illustration
of the master/slave relationship between a subprob-
lem and the forward-reachable set. So,

→
� qi

= qi+1. The
reason qi−1 is not in the forward-reachable set of qi
is because we are sending items from qi to qi−1 in
response to a request for items made by qi−1. Thus,
we see an instance of the master/slave relationship
implied by the forward-reachable set. Subproblem qi
is placing a demand on qi+1, which makes qi the
master and qi+1 the slave. Note that our formulation
assumes that we satisfy the entire order placed by
qi−1; if this were not the case, we would be sending a
flow of missed requests from qi to qi−1, implying that
both qi+1 and qi−1 would be in the forward-reachable
set of qi.
In classical MRP logic, the production decisions in

stage i ignore their impact on stage i+1. If we ignored
the impact of decisions in stage i on stage i+ 1, the
problem could be solved optimally using a minor
variant of Wagner-Whitin (1958) developed by Eppen
et al. (1969) (“modified Wagner-Whitin”) to handle
time-variant instead of constant marginal produc-
tion costs cvti. Let WW� �R2qi 	 csqi 	 chqi 	 cvqi � �qi � denote a
Wagner-Whitin procedure for subproblem qi using
demands �R2qi , and setup, holding, and variable pro-
duction costs of csqi 	 c

h
qi
, and cvqi , respectively. We also

express the conditioning on �qi to emphasize the pres-
ence of sampling. Our decision function can be writ-
ten as the mapping X * WW�r̃2qi 	 c

s
qi
	 chqi 	 c

v
qi
� �qi � �→

xqi ��qi �.
It is well known that dynamic programming

works well for single-stage (and single-commodity)
problems but does not generalize to multiple stages
(Zangwill 1969). For this purpose, we turn to our
metastrategy. The procedure we outline here was orig-
inally proposed by Graves (1981), purely in the con-
text of deterministic problems with a single item per
stage and zero travel times. Our development makes
it much clearer that the method could be extended to
more general problems with uncertainties in demands,
multiple items per stage, and multiperiod travel times.
For example, Papadaki and Powell (2003) show, in
the context of a batch-service problem, that the use
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of functional approximations actually produces bet-
ter results when the underlying problem is stochastic
(uncertainty has the effect of smoothing out the func-
tion that captures the impact of decisions on other sub-
problems).
Applying the metastrategy, we will make decisions

in stage i using �Vq	 q ∈
→
� qi

to capture the impact of
decisions in qi on other subproblems. In the simplest
case, qi+1 is a different company, in which case �Vqi+1
is simply the pricing structure of the enterprise repre-
sented by qi+1. When it is a different factory within the
same company, then we have access to the production
process, and can develop our own approximation.
Here, we consider only a simple linear approxima-
tion of the form �Vq = vqxq where both vq and xq are
vectors defined over the planning horizon. The real
function is neither concave nor convex, but it is mono-
tone (Puterman 1994 and Papadaki and Powell 2002),
which suggests that a linear approximation might
work well. Papadaki and Powell (2003) show that lin-
ear approximations do, in fact, work quite well for
batch-service problems, especially when the underly-
ing problem is stochastic.
In contrast to the earlier examples, which were all

linear programs where slopes could be obtained from
dual information, this problem involves discrete setup
variables. We could approximate a slope using finite
differences. A more elegant alternative suggested by
Graves (1981) is to assume that a unit change in a
requirement will not result in a change in any setups.
In this case, the marginal impact of an incremental
demand is easy to calculate. For example, assume we
wish to estimate vt	 i+1, which is the cost of an incre-
mental demand in stage i+ 1 at time t. Let t′i+1 be the
last time period prior to t in which there is production
of item i+ 1:

t′i+1 =max
t′∈�

�t′ � xit′ > 0�� (19)

Then

vt	 i+1 = cvt′i+1	i+1+ �t− t′i+1�chi+1
= marginal cost of increasing R1kt	 i+1 by

one unit. (20)

The use of a linear approximation for the value func-
tion creates a very easy subproblem. Recall that cvti
is the variable production cost for stage i at time t.
If we produce an additional unit xti, then we incur a
variable production cost cvti, and we induce a demand
4i+1	i on stage i+1. Using our value function approx-
imation, the cost of this is vi+1	t per unit of item i+ 1.
We can now define a modified variable production
cost for stage i using

c̃vti =
{
cvti+4i+1	ivt	 i+1 if 1≤ i < N	
cvti otherwise.

(21)

STEP 0: Let c̃vti = cti and vti = 0 for i= 1	 � � � 	N and t ∈� .
STEP 1: For i= 1	 � � � 	N do:

STEP 1.1: Sample the exogenous demands �qi
.

STEP 1.2: For t ∈� compute R2ti = 4i	 i−1xt	 i−1 and�R2ti = �R2ti +R2ti.
STEP 1.3: Solve WW� �R2qi 	 csqi 	 chqi 	 c̃vqi ��qi

� for xqi ��qi
�.

STEP 1.4: For t ∈� update R1ti =R1t−1	 i − �R2ti + xti.
STEP 2: For i=N − 1	 � � � 	1 and t = 1	 � � � 	 T set vti by (20) and

then c̃vti by (21).
STEP 3: If convergence criterion is satisfied, STOP;

otherwise goto STEP 1.

Figure 4 Metastrategy Steps for Multistage Dynamic Lot-Sizing

A key insight is to approach the original problem
iteratively, solving subproblem qi at each itera-
tion using the modified Wagner-Whitin algorithm,
WW� �R2qi 	 csqi 	 chqi 	 c̃vqi � �qi � �→ xqi ��qi �, independently of
all other stages. Note that we have replaced the origi-
nal variable cost cvqi with the modified variable cost c̃

v
qi
.

This allows subproblems at different stages to remain
loosely coupled when compared to a simultaneous for-
mulation across all stages and times, such as a raw
integer program. The advantage of such a loose cou-
pling is that the information set 
qi

of each subprob-
lem qi is more tightly constrained, making xqi easier
to deduce.
As with any application of the metastrategy, some

number of iterations are required to solve a dynamic
lot-sizing problem effectively. At each iteration k we
define � = �q1	 q2	 � � � 	 qN � and � = �qN 	 � � � 	 q2	 q1�.
In other words, subproblems are solved by travers-
ing forward-reachable sets in reverse (proper) order,
while value function approximations are updated by
traversing backward-reachable sets in proper order.
The steps for implementing the metastrategy in this
fashion are summarized in Figure 4. Graves (1981)
shows that for deterministic problems, the procedure
converges monotonically, but not necessarily to an
optimal solution. The problem is interesting from the
perspective of our metastrategy because the use of
a linear approximation for a nonconvex problem is
not immediately obvious. Later, we present experi-
mental results that confirm Graves’ earlier work, that
the method does produce better solutions than a pure
MRP solution.

5. Practical Value Function
Approximations

The quality of the solution produced by the meta-
strategy is, of course, tied to the accuracy of the value
function approximations. We can reasonably divide
value functions into three broad classes: zero (that is,
ignoring the impact of decisions on other subprob-
lems), linear, and nonlinear. Within the class of non-
linear approximations, important subclasses include
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separable concave (or convex for minimization prob-
lems), nonseparable concave, and nonconcave. Within
the class of nonconcave functions would be discrete
problems (Bertsekas and Tsitsiklis 1996, Sutton and
Barto 1998). The simplest case, �V = 0, may seem triv-
ial and uninteresting, but it is often the case that this
is what is being used in practice, and hence compar-
isons against this null choice are meaningful.
Of all the nonzero choices, a linear approximation

is always the simplest. It is the easiest to estimate and
never destroys local problem structure. For example,
if LSPq is a network problem, then GSPq will be a
network problem if �Vq′	 q′ ∈

→
� q is linear.

The cardinality of the backward-reachable set,
←
� q ,

plays an important role in the choice of value func-
tion approximation. If � ←

� q� > 1, then linear approx-
imations provide a natural decomposition. Also, we
would be able to replace the doubly indexed func-
tion Vqq′�Rqq′� in (10) with a singly indexed one, which
further simplifies the method. If a nonlinear approx-
imation of subproblem q is used, then it complicates
the problem of solving the subproblems in the set←
� q . Given the importance of this issue, we divide
our discussion between problems where � ←

� q� ≤ 1 and
� ←
� q�> 1.

5.1. Subproblems q with � ←
� q� ≤ 1

Subproblems with backward-reachable sets of low
cardinality are common in coarse-grained decompo-
sitions �q	 q ∈ �. Consider, for example, a temporal
decomposition of a transportation problem, � =
�q0	 q1	 � � � 	 qT �, with unit travel times and a finite time
horizon � = �0	1	 � � � 	 T �. In this case, each subprob-
lem qt corresponds to a single time period t and the
set

←
� qt

is the singleton �qt−1�. Subproblems for times
s < t− 1 are not present in ←

� qt
because of the single-

period travel times. Another example of such sub-
problems occurs in serial assembly systems such as
in multistage dynamic lot-sizing problems. In these
cases, each item must pass through stages �N	 � � � 	1�
in strict sequence, so that the decomposition � =
�qN 	 � � � 	 q1� assigns a subproblem qi to each stage i. In
this case, the backward-reachable set of subproblem qi
is the singleton �qi+1�.
The case when � ←

� q� = 0 is not interesting. It may
occur in real problems, for instance for q0 in a tempo-
ral decomposition or qN in a stage decomposition, but
because

←
� q=� we may set �Vq�Rq�= 0 for all values of

Rq without penalty.
The case when � ←

� q� = 1 is of particular interest,
because we can replace (10) with

�Vq�Rq�= E
{
max
xq

Cq�xq	�q�+ �Vq′�Rq′ ��q�
}
	 (22)

where q′ = →
� q , conditioned on �q . The variable Rq′

is determined completely by xq , so we do not need
the doubly indexed formulation of (10), considerably
simplifying the solution and updating process, even
if �Vq�Rq� is nonlinear.

5.2. Subproblems q with � ←
� q�> 1

Subproblems with backward-reachable sets of high
cardinality are common in fine-grained decomposi-
tions of the attribute space �. A typical example is
a temporo-spatial decomposition � = �	 × � � of a
transportation problem with terminals 	 and time
horizon � . If travel times are deterministic and sta-
tionary, the backward-reachable set

←
� q contains an

element for each terminal 	 that permits travel to
the terminal of subproblem q. In the case of random
or nonstationary travel times, the same terminal may
appear in

←
� q at different points in time.

When � ←
� q�> 1 we can use the natural decomposi-

tion of linear functions to produce a subproblem of
the form

�Vq�Rq�= E
{
max
xq

Cq�xq	�q�+
∑

q′∈ →
� q

�Vq′xqq′
}
	 (23)

where �Vq′ and xqq′ are vectors defined over the ele-
ments a′ ∈�q′ . Here, the value function approximation
is singly indexed, but we only need to consider the
flow from q to q′, contained in the vector xqq′ .
Linear value function approximations can provide

very good results but are often unstable unless they
are coupled with a strategy to stabilize flows from one
iteration to the next. The alternative to linear approx-
imations are nonlinear functions. Assume for simplic-
ity that we are able to work with separable nonlinear
functions so that they are reasonably tractable and
do not significantly complicate the solution of GSPq .
One algorithm with which we have worked is the
CAVE algorithm, which iteratively estimates a con-
cave, separable approximation of the value function
(Godfrey and Powell 2001), adaptable to both contin-
uous and piecewise linear functions. Our discussion
below, however, would apply to any nonlinear-
approximation method.
When we use a nonlinear value function approxi-

mation, we have to face the problem that all the sub-
problems in

←
� q are sending flow into subproblem q.

In this case, we can consider two strategies.
1. Finer-grained primal information content: Use

the more fine-grained primal information content xqq′
when approximating the impact on q′ in addition to
the aggregate vector Rq′ .
2. Finer-grained dual information content: Store the

dual information content for subproblem q′ in a finer
partition �Vqq′ instead of �Vq′ .
We discuss each of these modifications.



Shapiro and Powell: A Metastrategy for Large-Scale Resource Management Based on Informational Decomposition
54 INFORMS Journal on Computing 18(1), pp. 43–60, © 2006 INFORMS

Finer-Grained Primal Information Content. We
try an obvious modification of CAVE, which we call
CAVE-P (short for CAVE-PRIMAL), because it dif-
fers from CAVE in how primal information content
is indexed. CAVE-P records the state of subproblem
q at each iteration k for future use in two forms: Rkq
(which gives the total flow into q from all subprob-
lems) and xkq′q	 q

′ ∈ ←
� q which gives the flow from each

subproblem. At iteration k + 1, the evaluation of �Vq
in the optimality recursion (10) of subproblem qi is
performed on Rkq − xkq′q + xk+1q′q . In effect, we use the
primal state from iteration k to “forecast” the primal
state at iteration k+1. This has the effect of communi-
cating the decisions made in subproblems q′′ ∈ ←

� q at
iteration k to subproblem q′ in iteration k+1 with the
hope of avoiding resource flooding. The procedure
for updating �Vq is the same as the �

←
� q� ≤ 1 case.

Finer-Grained Dual Information Content. We
build a value function �Vqiq for each qi ∈

←
� q . We call

this modification “CAVE-D” (short for CAVE-DUAL)
because it differs from CAVE principally in how dual
information content is indexed. Instead of using a
function �Vq�Rq�, we use a function �Vq′q�xq′q�. We do
not need the flows xq′′q from any other subproblem
q′′ ∈ ←

� q . The computational implications of this modi-
fication are that we must now build � ←

� q� value func-
tion approximations for subproblem q. The procedure
for updating �Vq′q is more complicated than updat-
ing �Vq in the CAVE-P or �

←
� q� ≤ 1 case. The intuitive

approach is to use the subproblem q′ duals p+q′q and
p−q′q to update �Vq′q . Unfortunately, this approach can-
not work because these dual values only indirectly
measure the slope values of �Vq′q . To capture the true
future impact, we use the following adjusted duals to
update �Vq′q :

p̃+q′q = max
q′′∈�←� q

⋂
q�\q′

�p+q′′q�	 (24)

p̃−q′q = min
q′′∈�←� q

⋂
q�\q′

�p−q′′q�	 (25)

where p+/−qq are the duals of the constraint (7) in sub-
problem q. Notice the difference between p+/−q′q and
p̃+/−q′q . The individual duals p

+/−
q′q estimate the local

impact of a decision made in subproblem q′ while
the adjusted duals p̃+/−q′q measure the impact of a deci-
sion made in subproblem q′′ on all subproblems q′′ ∈
�

←
� q

⋂
q�\q′. Taking a maximum to compute p̃+q′q

ensures that it measures the maximal impact of
adding a resource to q from q′. Similarly, the mini-
mization to determine p̃−q′q ensures that it measures
the minimal impact of removing a resource from q.
If p̃+q′q > p̃

−
q′q , we preserve concavity by setting

�p̃+q′q	 p̃
−
q′q�←

{
�p̃−q′q	 p̃

+
q′q� if xq′q > 0	

�p̃+q′q	 p̃
+
q′q� otherwise.

(26)

This also avoids using the ill-defined value of p̃−q′q
when Rq′q = 0 (the function �Vq′q is only defined on �+).
It is not immediately clear whether we should prefer
CAVE-D over CAVE-P for a given problem.

6. Computational Experiments
Our metastrategy offers an approach that is scalable
to very large problems (such as a railroad or truck-
ing company), as well to as stochastic problems. We
reduce problems that are computationally intractable
purely because of their scale to smaller problems that
can, in principle, be solved using known algorithms.
Our claim is that through the use of value functions,
we can obtain solutions that approach those obtained
by global-optimization formulations. Not surprisingly,
we cannot test this hypothesis on either ultra-large-
scale problems, or on stochastic problems. Instead, we
test our method on deterministic problems for which
we can find an optimal solution. We focus on a fleet
management problem (the driver-scheduling problem
considered earlier is much too large to solve to opti-
mality), and the dynamic lot-sizing problem, which
exhibits very different properties. Using the fleet man-
agement problem, we also investigate the behavior
of the algorithm to different types of decomposition
(temporal, spatial/temporal) as well as both syn-
chronous and asynchronous computation.
We aim to answer three key research questions

about the metastrategy
1. Sensitivity to decomposition: How sensitive is

the metastrategy to the decomposition used? What
modifications, if any, are necessary to �V and X to
ensure consistent solution quality across decomposi-
tions. These questions are addressed in Section 6.1.
2. Sensitivity to asynchronous computation: Is the

metastrategy suitable for asynchronous, distributed
computation? We investigate in Section 6.2 how solu-
tion quality and computational effort are affected by
the scheme used to construct and order �k and � k.
Most importantly, how is solution quality affected
when subproblems are solved out of order?
3. Sensitivity to problem class: How sensitive is the

metastrategy to the problem class on which it is used?
What modifications, if any, are necessary to Q, �V , and
X to ensure consistent solution quality across prob-
lem classes? This question is addressed in Section 6.3.
It is important to emphasize that our experiments are
not intended to show that our algorithm is better than
specialized algorithms that have already been devel-
oped for these problems. They are designed only to
provide a measure of solution quality by comparing
the results against an optimal solution.
All computational experiments were performed on

a 300 MHz Pentium II processor with 256 MB of RAM.
Code for the experiments was written in Java 1.1.5
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and compiled using Symantec’s JIT-compiler version
3.00.029. The object-oriented framework for DRTPs
described in Shapiro (1999) was used for rapid proto-
typing of the code.

6.1. Sensitivity to Decomposition: �
We claimed in the introduction that the metastrategy
could be used to effectively solve a DRTP under a
variety of decompositions �. The first step to vali-
dating this claim is to study the performance of the
metastrategy under various decompositions of a fleet
management problem (see Figure 5). For example,
transportation companies are often decomposed spa-
tially (5a), but the evolution of information typically
imposes a temporal decomposition (5b), which can
be even more pronounced if different people handle
decisions at different times during a week (compa-
nies often require two or four separate shifts to cover
operations over an entire week). Figure (5c) depicts a
hybrid of these two. Finally, the decomposition may
be by the type of resource (5d), as might happen in a
railroad where different groups handle different types
of freight cars, while another group handles locomo-
tives for the entire company.
The sensitivity of metastrategy performance to the

type of decomposition used is an important issue. If it
were to perform well only on certain decompositions,
the metastrategy would not be broadly applicable.
For instance, in fleet management problems it is

common to use a temporal decomposition for compu-
tational reasons. In this case � = �qt	 t ∈ � � where qt

(b) Temporal decomposition(a) Spatial decomposition

(c) Temporo-spatial decomposition (d) Resource decomposition
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Figure 5 Potential Decompositions � for Fleet Management

is the subproblem for time t across all space. Not only
does this handily support a rolling-horizon imple-
mentation, but it also makes each subproblem simple.
Solving one time period at a time eliminates coupling
constraints on load coverage allowing us to solve �� �
network-type problems of moderate size. This invari-
ably requires less total computational effort than does
solving one giant IP across time. In other cases, the
nature of the decomposition to be used is not deter-
mined by computational considerations. For instance,
in Section 4.1 we described a temporo-spatial decom-
position � = �	 × � � that creates a single subprob-
lem for each geographical location at each time. This
would arise when a company plans operations locally,
or if a central planner works on one location at a time.
Although a total of �	 ��� � subproblems result, each is
smaller and easier to solve than in the pure temporal
decomposition.
To test the metastrategy thoroughly, we ran experi-

ments on a total of nine fleet management test prob-
lems of varying size and difficulty, as indicated in
Table 1. The loads in these problems are negatively
correlated, which means that locations with many
loads terminating at them have few loads originating
at them. Generally, this leads to either a net deficit or
surplus of vehicles at a given location. As shown in
Cheung and Powell (1996) and Godfrey and Powell
(2002a), negatively correlated demands require more
repositioning moves to obtain a high-quality solution
than do demands that are independent or positively
correlated, so that these problems are actually harder
to solve than their size would indicate.

Temporal Decomposition. This is the simplest
case, with � ←

� q� ≤ 1 for all q ∈ �. We investigate the
two forms of �Vq suggested in Section 5.1: LINEAR and
CAVE (piecewise linear and separable). We are inter-
ested in the best “OPT ratio” achieved over 100 itera-
tions of the metastrategy. The OPT ratio is computed
as the ratio, in percent, of a metastrategy objective-
function value to an LP-optimal upper bound gen-
erated using CPLEX. Table 2 summarizes the results

Table 1 Fleet Management Test Problems (20 Locations, Six-Period
Load Pickup Time Windows, $0.50/Loaded Mile Revenue; LP
Upper Bounds from Godfrey and Powell 2002b)

Repositioning LP Upper
Problem cost/mile Vehicles Loads �� � bound

P1 $0.40 100 1992 30 $604�421
P2 $0.70 100 1992 30 $534�117
P3 $1.00 100 1992 30 $495�740
P4 $0.70 200 1019 15 $282�610
P5 $0.70 200 1992 30 $543�703
P6 $0.70 200 4024 60 $1�080�698
P7 $0.40 400 1992 30 $627�643
P8 $0.70 400 1992 30 $562�947
P9 $1.00 400 1992 30 $528�783
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Table 2 Best OPT Ratio for the Temporal
Decomposition

Problem LINEAR CAVE

P1 98.5 98.6
P2 98.6 98.8
P3 98.8 98.9
P4 97.6 99.1
P5 96.9 99.3
P6 98.0 99.5
P7 94.6 99.4
P8 95.3 99.6
P9 93.9 99.5

for the temporal decomposition. The CAVE form of
�Vq achieves a higher ultimate OPT ratio than does
the LINEAR form on the temporal decomposition.
Evidently the ability to model more than one slope
�8 �Vq/8Rq� across the domain of �Vq allows the CAVE
value function approximation to reflect more accu-
rately the benefit of various decisions. Moreover, the
performance of the CAVE approximation is much
more stable than that of the LINEAR approximation
as indicated in Figure 6. The LINEAR approximation
estimates the same marginal benefit for an extra vehi-
cle at a given location and time regardless of how
many vehicles may already be there. In effect, this
approximation lacks restraint with respect to reposi-
tioning moves, which leads to the wild fluctuations in
solution quality.

Temporo-Spatial Decomposition. This is the more
difficult case, with � ←

� q� > 1 for all q ∈ � (except at
time 0 when � ←

� q� = 0). We investigate four forms
of �Vq : LINEAR and CAVE from Section 5.1, and
CAVE-P and CAVE-D from Section 5.2. The best OPT
ratio achieved over 100 iterations is given in Table 3.
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Figure 6 OPT Ratio of CAVE vs. LINEAR: Temporal Decomposition
of P4

Table 3 Best OPT Ratio for the Temporo-Spatial
Decomposition

Problem LINEAR CAVE CAVE-P CAVE-D

P1 97.7 95.7 95.4 98.4
P2 97.7 95.9 95.3 98.3
P3 97.8 94.0 94.4 98.3
P4 96.9 88.0 87.8 97.9
P5 97.1 89.7 89.2 98.7
P6 97.7 93.2 92.0 98.8
P7 94.7 66.3 66.3 99.2
P8 93.0 78.5 79.0 99.0
P9 96.5 82.5 82.5 98.7

Both CAVE and LINEAR do worse on the temporo-
spatial decomposition than they did on the tempo-
ral decomposition. CAVE’s drastic decline in per-
formance is caused by over-saturation of the high-
slope initial break segments (i.e., resource flooding).
The CAVE-P approximation was designed to pre-
vent resource flooding. Unfortunately, as Table 3
indicates, the performance of this approximation is
no better than that of CAVE. A further modifi-
cation of CAVE-P considered terminals in random
space order at a given time. Although this modi-
fication was intended to allow greater exploration
of the state space on Rq , it produced an OPT
ratio not significantly better than CAVE-P. Conse-
quently, CAVE-P is dropped from further discussion.
The best approximation for the temporo-spatial
approximation turns out to be CAVE-D, which uses
more fine-grained dual information �Vqiq . In fact, the
temporo-spatial performance of CAVE-D is compa-
rable to the performance of CAVE under the sim-
pler temporal decomposition. Figure 7 plots the OPT
ratio, by iteration, of each approximation. Notice
how CAVE-D achieves asymptotic near-optimality
and remarkable stability for the temporo-spatial
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decomposition that only CAVE had previously dis-
played under the temporal decomposition.

6.2. Sensitivity to Asynchronous Computation
This section concentrates on the construction and
ordering of � and � . The set � describes the order
in which subproblems should be solved, while �
describes the order in which value functions should
be updated. Our aim is to determine the sensitivity
of the metastrategy to asynchronous computation, as
indicated by experiments on fleet management prob-
lems. To begin, we must define the following terms
on the decomposition �.
Definition 6.1. A decomposition � has a full order

if it can be uniquely ordered such that any adjacent
elements qi and qj , i �= j , satisfy:
1. Either qi always strictly precedes qj , written

qi ≺ qj , or
2. qi always strictly succeeds qj , written qi � qj .

We interpret “precedes” to mean “should be solved
first” when applied to � and “should be updated
first” when applied to � .
Definition 6.2. A decomposition � has a spartial

order if it can be ordered such that any adjacent ele-
ments qi and qj , i �= j , satisfy:
1. Either qi can precede qj , written qi � qj , with no

qk for which qi ≺ qk � qj , or
2. qi can succeed qj , written qi � qj , with no qk for

which qj ≺ qk � qi.
Writing qi ≺ qj implies that qi must come before qj ,

while writing qi � qj implies that qi may come before
or after qj . Hence, every full order defines one or
more partial orders, but the converse does not hold.
A temporal decomposition, � = �qt	 t ∈ � �, always
possesses a full order by time, where qt ≺ qs when
s > t. A temporo-spatial decomposition, �= �	 ×� �,
possesses only a partial order, because subproblems
cannot generally be ordered across space 	 .
In a completely synchronous environment it makes

sense to use a single ordering of � and � . In an
asynchronous environment, the ordering may change
from one iteration to the next. For this setting, we
let �k and � k be the ordering of each set at itera-
tion k. Thus, at iteration k, we would solve the sub-
problems in the order in which they appear in �k, and
update the value functions in the order in which they
appear in � k. To study the impact of an asynchronous
environment, we choose these sets randomly from
one iteration to the next. By studying the perfor-
mance of the metastrategy under different schemes
for constructing and ordering �k and � k, we hope
to establish its viability as a distributed-optimization
algorithm. In a real distributed computing environ-
ment, we can generally only observe �k and � k—
their construction and ordering will be fixed by
the communications protocol and computer network

topology in effect. In a research paper, we have the
luxury of directly constructing and ordering �k and
� k to simulate different distributed computing envi-
ronments artificially. We assume that all decomposi-
tions possess at least a partial order. This requirement
will become particularly important when computing
the objective function because it is not clear how to
compute such values for iterations performed out of
order.
Recall that the construction phase involves select-

ing a subset of subproblems from � to be solved at
iteration k, while the ordering phase determines the
order with which that subset should be solved. An
obvious analogy can be made with the elements of
a queueing system. We can imagine �k as a queue
of subproblems (customers) waiting to be solved
(served) by the decision function X (the server).
Adding elements to �k during the construction phase
constitutes an arrival phase of the queueing system.
The order in which subproblems are solved during
the ordering phase constitutes the queue discipline
of the queueing system. In optimization over the
Internet this analogy becomes entirely concrete. Our
metastrategy naturally extends to multiagent decision
systems, and we can extend the queueing analogy to
incorporate multiple decision functions in parallel or
tandem.
In our experiments, we assume, without loss of

generality, a single construction and ordering phase
at each iteration. We investigate only one scheme
for governing the construction phase of an iteration,
which we call RANDOM, whereby �k = � but in ran-
dom order (e.g., �q1	 q17	 q3	 � � �� in a temporal decom-
position). This simulates an asynchronous distributed
implementation where each subproblem is solved on
a separate host with possible communication link
failures or drastic differences in speed between hosts.
The single scheme for governing the ordering phase
of an iteration is FIFO. This is classic first-in-first-out,
whereby subproblems in �k are solved in order of
insertion.
We test a single class of construction phases for

� k that we call PRIMAL-LINKED, whereby q ∈ �k ⇒
�Vq ∈ � k. The motivation for this class is that solv-
ing subproblem q will generally reveal new informa-
tion about 8 �V k

q /8R
k
q that we can use to update �V k

q .
We order � k using the FIFO scheme, whereby ele-
ments of � k are updated in order of insertion.
An important question remains: how do we mea-

sure the objective function value at iteration k? When
�k maintains at least a partial order defined on � (e.g.,
�k = �q1	 q2	 � � � 	 qT � in a temporal decomposition), this
is straightforward—use �V0�R0� from (10). However,
when subproblems are solved out of order, their pri-
mal states may not always be jointly feasible, so that
adding their objective functions is like adding apples
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and oranges. We propose two strategies for measur-
ing the objective function.
Audit Iterations: With period : ∈ �++ we per-

form an iteration k with �k = �, in order. The
purpose of such an iteration is merely to estimate
the quality of the current solution produced by the
metastrategy.

• Random: We prohibit dual updates so as not to
bias future iterations in case the audit iteration was to
be done offline in an asynchronous environment.

• Spacer: We allow dual updates.
The point of the spacer iterations is to perform peri-
odic “correct” iterations that both solve the sub-
problems and perform the dual updates based on a
globally-feasible primal state. We use : = 5 through-
out.
Under an asynchronous temporal decomposition,

CAVE does not do terribly well when dual updates
are completely random, as indicated in Table 4.
However, the asynchronous spacer version of CAVE
does better than even the best synchronous LINEAR
implementation (except on P1 and P3). Moreover,
the performance of CAVE remains stable across both
synchronous and asynchronous implementations,
while LINEAR appears decidedly unstable in the
asynchronous implementation. Figure 8 shows the
performance of the linear approximation under an
asynchronous updating strategy, while Figure 9
shows the same plot for CAVE. These results shows
that the LINEAR strategy is much more dependent
on spacer iterations for its success than is its CAVE
counterpart. Because spacer steps require synchro-
nization (and the concomitant synchronization penal-
ties, Bertsekas and Tsitsiklis 1989) this dependence
makes LINEAR less suitable for asynchronous tempo-
ral decompositions than CAVE. Note that our asyn-
chronous iterations have all been of the Gauss-Seidel
variety. It is not clear what the communications over-
head would be for the LINEAR and CAVE approx-
imations. Moreover, the density of the dependency
graphs (essentially

←
� q in dual space and

→
� q in primal

Table 4 Best OPT Ratio: Asynchronous Temporal Decomposition

Asynchronous Asynchronous
Synchronous random spacer

Problem LINEAR CAVE LINEAR CAVE LINEAR CAVE

P1 98.5 98.6 76.9 89.2 81.9 98.4
P2 98.6 98.8 83.7 93.1 84.6 98.6
P3 98.8 98.9 81.0 94.5 86.4 98.7
P4 97.6 99.1 78.9 96.4 84.1 98.6
P5 96.9 99.3 78.9 93.2 82.5 98.9
P6 98.0 99.5 78.7 91.3 81.7 99.1
P7 94.6 99.4 54.7 90.2 71.1 99.2
P8 95.3 99.6 65.4 95.1 69.0 99.1
P9 93.9 99.5 63.6 95.1 70.9 99.0
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Figure 8 OPT Ratio of LINEAR: Asynchronous Temporal Decomposi-
tion of P4

space) may have a significant effect on the speedup
obtained.

6.3. Extension to Multistage Dynamic
Lot-Sizing Problems

Sections 6.1 and 6.2 studied the issues of metastrategy
performance under various decompositions and asyn-
chronous computation schemes on a single problem
class. The goal of this section is not to readdress those
same research questions, but to demonstrate that the
metastrategy can be applied to a completely differ-
ent problem class in a straightforward manner and
yet still deliver high-quality solutions. To this end, we
choose the context of the dynamic lot sizing problems
described in Section 4.2.
First, note that a number of different decomposi-

tions are possible for this problem class. Three logical
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(c) Temporo-stage decomposition
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Figure 10 Potential Decompositions � for Multistage Dynamic Lot
Sizing

alternatives are presented in Figure 10. It is reasonable
to assume that there is a decision maker at each stage
who is forecasting future demands, and then creating
a production plan over a planning horizon. Under this
reasoning, it makes sense to choose a decomposition
by stage. This defines � = �qN 	 � � � 	 qi	 � � � 	 q1� where
subproblem qi corresponds to stage i across all time
periods. Recall that we use the LINEAR value function
approximation �Vqi to measure the impact of orders
placed by subproblem qi−1 (stage i− 1) with subprob-
lem qi. In contrast to the experiments in the previ-
ous sections, which measured the value of layer-one
resource flows between subproblems, we now use
�Vqi to measure the value of level-two resource flows
(orders) between subproblems.
To test the metastrategy, we randomly generated

a series of eight test problems. For each stage i in
a test problem, the setup cost csi was chosen from

Table 5 Results for Deterministic Multistage Dynamic Lot-Sizing Problems (Error Term Fixed at �=
0�05 for All Problems)

Problem N �� � LP LB IP OPT IP Gap metastrategy OPT ratio

P1 5 12 $4�806�0 $12,142.8 152.7 $12,460.2 1.026
P2 5 12 $4�791�5 $12,025.2 151.0 $12,426.6 1.033
P3 5 18 $5�915�0 $15,064.2 154.7 $15,634.7 1.038
P4 5 18 $5�805�3 $14,956.6 157.6 $15,527.4 1.038
P5 10 12 $10�115�2 $25,435.2 151.5 $26,695.2 1.050
P6 10 12 $10�130�2 $25,359.6 150.3 $26,611.2 1.049
P7 10 18 $14�444�7 $33,785.0 133.9 $37,084.0 1.098
P8 10 27 $10�978�6 — — $36,391.8 —

the equally likely outcomes 150, 300, 600, and 1500.
Holding costs were assumed to increase as the items
progress from raw material to finished product. Fol-
lowing this logic, we set the holding cost for the first
stage (stage N ) to chN = 1; the holding cost for each
subsequent stage i ∈ /1	N� was generated according
to the progression

chi = e+
∑
j>i

chj 	 (27)

where e was chosen from the equally likely out-
comes 0.1, 0.5, 1.0, and 2.0. The assumption that hold-
ing costs are strictly increasing is realistic for most
serial lot-sizing systems because holding costs are
cost-of-capital-based, and a positive value is added
to the product at each stage. Variable production
costs cvti were set to zero for all i and t. Initial first-
stage demands zt1 were assumed to be identically
distributed, for a given time t, across all problem
instances. Specifically, the mean E/zt10 was chosen
from the equally likely outcomes 0, 10, 20, 30, 40, 100,
200, and 400. For a particular problem realization �=
�� � � 	�t1	 � � ��, we set

zt1��t1�= E/zt10+=E/zt10>��t1�	 (28)

where > ∼ N�0	1� and = ≥ 0 was the multiplicative
“error” term. Exogenous demands zti for i > 1 were
set to zero for all t.
The dimensions of the test problems are given in

Table 5, with each problem corresponding to a dif-
ferent realization �. The “LP LB” (linear program-
ming lower bound) figure is the optimal objective
function obtained using CPLEX for the linear relax-
ation of each problem. We should emphasize that
CPLEX is not a specialized algorithm for this class,
so comparisons in terms of CPU times or other com-
putational performance measures are not meaning-
ful. But we would argue that specialized algorithms
are generally not scalable to handle larger problems
with multiple product types and uncertainties. By
contrast, because we are solving sequences of rela-
tively smaller subproblems, we can handle these more
difficult problems, even using standard commercial
solvers. The “IP OPT” column in Table 5 indicates the
optimal objective function of the integer formulation.



Shapiro and Powell: A Metastrategy for Large-Scale Resource Management Based on Informational Decomposition
60 INFORMS Journal on Computing 18(1), pp. 43–60, © 2006 INFORMS

Since this is a minimization problem, we redefine the
“OPT ratio” as the ratio, in percent, of the optimal
objective function of the metastrategy to the IP OPT.
We show the results for problems up to the limit that
we could solve using CPLEX, and the results indicate
that for all but one problem, we are within a few per-
cent of the optimal solution.

7. Conclusion
In this paper we present a metastrategy for solving
DRTPs. We show through a series of examples how
the metastrategy can be implemented to solve a broad
variety of important practical problem instances,
including fleet management, driver scheduling, and
multistage dynamic lot-sizing. The method requires
that the user fill in four “hot spots” to specialize the
strategy to a specific application. We do not mean to
minimize the challenge of modeling complex prob-
lems with our strategy but suggest that this list of hot
spots helps organize the steps that are required.
The metastrategy introduces into the basic model

the representation of the organization of decisions and
information. We then solve subproblems that reflect
actual problems that might be solved by humans.
These subproblems can be solved using existing algo-
rithms. The focus of the paper is on strategies for
coordinating the subproblems. In the case of multi-
stage lot-sizing problems, we show that linear approx-
imations can produce very good results. In the
case of resource allocation problems, we demonstrate
the advantage of using nonlinear approximations,
but also the technical challenges that this strategy
introduces.
We believe that the explicit modeling of the orga-

nization of decisions and information represents a
useful strategy when approaching very large-scale
problems such as a supply chain or freight transporta-
tion company. It allows us to exploit the vast array
of algorithms developed in the operations research
community, while retaining the additional realism of
modeling the actual decision-making structure within
an organization (or market).
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