
Clearing the Jungle of Stochastic Optimization

Warren B. Powell

Department of Operations Research and Financial Engineering
Princeton University

Prepared for Informs TutORials, 2014.

(c) Informs

June 8, 2014



Abstract

While deterministic optimization enjoys an almost universally accepted canonical form, stochastic
optimization is a jungle of competing notational systems and algorithmic strategies. This is especially
problematic in the context of sequential (multistage) stochastic optimization problems, which is
the focus of our presentation. In this article, we place a variety of competing strategies into a
common framework which makes it easier to see the close relationship between communities such as
stochastic programming, (approximate) dynamic programming, simulation, and stochastic search.
What have previously been viewed as competing approaches (e.g., simulation vs. optimization,
stochastic programming vs. dynamic programming) can be reduced to four fundamental classes of
policies that are evaluated in a simulation-based setting we call the base model. The result is a single
coherent framework that encompasses all of these methods, which can often be combined to create
powerful hybrid policies to address complex problems.



Contents

1 Introduction 1

2 Modeling a sequential stochastic optimization problem 3

2.1 A dynamic programming “model” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 A stochastic programming “model” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 The five elements of a sequential decision problem . . . . . . . . . . . . . . . . . . . . 5

3 What is a state variable? 9

4 Designing policies 13

4.1 The four classes of policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Approximating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Evaluating a policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 Searching for the best policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Lookahead policies 20

5.1 An optimal policy using the base model . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Building an approximate lookahead model . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 A deterministic lookahead model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 A stochastic lookahead model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.5 Evaluating a lookahead policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.6 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Direct policy search versus Bellman error minimization 28

7 How do we choose a policy? 32

References 33

1



1 Introduction

Arguably one of the most familiar pieces of mathematics in operations research (and certainly in

optimization) is the linear program, almost always written in its canonical form (see, e.g., Vanderbei

(1996))

min
x
cx (1)

subject to

Ax = b, (2)

x ≥ 0. (3)

Often we are solving problems over time (the focus of this paper). If our problem is deterministic,

we would rewrite (1)-(3) as

min
x0,...,xT

T∑
t=0

ctxt (4)

subject to

A0x0 = b0, (5)

Atxt −Bt−1xt−1 = bt, t = 1, . . . , T, (6)

xt ≥ 0, t = 1, . . . , T. (7)

First introduced by Kantorovich in 1939 and then by Koopmans, it was made famous by Dantzig

with the introduction of the simplex method (a nice review of the history is given in Dorfman (1984))

which transformed equations (1)-(3) (or (4)-(7)) from a mathematical statement to a powerful tool

for solving a wide range of problems. While Dantzig is most often credited with inventing the simplex

method, the canonical form of a linear program is widely used (especially for integer programs) even

when the simplex method is not used. The language of equations (1)-(3) is spoken around the world,

by academics and industrial practitioners alike.

Now consider what happens when we introduce a random variable, especially for multiperiod

problems which require solving a sequence of decision problems interspersed with the revelation of

new information. Suddenly, the academic community starts speaking a dozen languages which can

quickly become arcane. It is hard to read more than a handful of papers without running into terms

such as admissible policies, Ft-measurability, sigma-algebras, and filtrations. Not familiar with these

1



terms? Pity you. You may not have what it takes to work in the rarefied world of stochastic

optimization.

But wait... we all seem to make decisions over time, every day, in the presence of all sorts

of uncertainties. Think about the last time you took cash out of an ATM machine, chose a path

through a set of city streets, made an investment, or tried a new restaurant. Companies invest in

new projects, design products, and set pricing strategies. The health community runs tests and

prescribes medications, while scientists around the world design and run experiments to make new

discoveries. All of these are stochastic optimization problems. If this is something we all do, all the

time, why is stochastic optimization so arcane?

After floundering around the fields of stochastic optimization for 30 years, my conclusion is that

we have evolved solution strategies around specific problem classes, with vocabulary and notation that

often disguise common themes. These solution strategies evolve within communities with names such

as dynamic programming, stochastic programming, decision theory, stochastic search, simulation-

optimization, stochastic control, approximate dynamic programming, and reinforcement learning.

While these communities generally co-exist fairly peacefully, there are ongoing debates between the

use of simulation vs. optimization, or stochastic programming vs. dynamic programming. A helpful

referee for a recent paper (Powell et al. (2012b)) offered the advice:

One of the main contributions of the paper is the demonstration of a policy-based modeling framework
for transportation problems with uncertainty. However, it could be argued that a richer modeling
framework already exists (multi-stage stochastic programming) that does not require approximating
the decision space with policies.

This quote highlights one of the more contentious debates in stochastic optimization within the

operations research community: stochastic programming or dynamic programming? It is well known,

of course, that dynamic programming suffers from the curse of dimensionality, so there is no need

to learn this field if you want to work on real problems. Even I concluded this in the 1980s while

looking for methods to solve stochastic fleet management problems. But 20 years later, I finally

cracked these problems with successful systems that are planning driver fleets for one of the largest

truckload carriers in the country (Simao et al. (2009)), and planning locomotives at one of the largest

railroads in the country (Bouzaiene-Ayari et al. (2012)). The same algorithmic strategy was used to

solve a stochastic energy investment problem in hourly increments over 20 years with 175,000 time

periods (see Powell et al. (2012a)). How were these ultra high-dimensional stochastic optimization

problems solved? Dynamic programming. However, an answer such as this perpetuates fundamental

misconceptions about stochastic programming and dynamic programming.

As a hint to where this discussion is going, by the end of this tutorial I will have made the

following points:

• A dynamic program is a sequential (and for our purposes, stochastic) decision problem. Bell-

man’s optimality equation is not a dynamic program; it is a) a way of characterizing an optimal

2



policy and b) an algorithmic strategy for certain classes of dynamic programs.

• A stochastic program (for multistage problems) is, with some exceptions, a lookahead policy

which involves solving a lookahead model (which is itself a dynamic program) for solving a

larger dynamic program. See section 5.6 for a discussion of an exception.

• The optimal solution of a multistage stochastic program is (with rare exceptions) not an optimal

policy. A bound on a (multistage) stochastic program is not a bound on the quality of the

policy (again, with rare exceptions - see section 5.6).

• All properly modeled dynamic programs are Markovian. So-called “history-dependent” prob-

lems are simply dynamic programs with an incomplete state variable. If your system is not

Markovian, you have not properly modeled the state variable.

• With deterministic problems, we are looking for an optimal decision (or vector of decisions).

With (multistage) stochastic optimization problems, we are looking for optimal functions

(known as policies).

• In my experience, every (multistage) stochastic optimization problem can be solved using one

of four classes of policies (or hybrids formed from combinations of these four fundamental

classes). However, it is quite rare to actually find an optimal policy.

In the process of making these points, I will bring all the fields of stochastic optimization together

under a single umbrella which I suggest should be called computational stochastic optimization.

2 Modeling a sequential stochastic optimization problem

For many years, I was jealous of my colleagues working on deterministic integer programming prob-

lems who would present a model (difficult, but doable), and then focus on the challenging problem

of designing efficient, high quality algorithms. I was working on large-scale stochastic optimization

problems in transportation, but I did not enjoy the same type of roadmap to follow when writing

down a model.

Several styles have evolved to model a stochastic optimization problem (keep in mind our focus on

multiperiod, sequential problems). Below, we briefly describe two classical and widely used modeling

styles, drawn from the fields of dynamic programming and stochastic programming. However, we are

going to argue that these are not true models, but rather are closer to algorithms (or more precisely,

policies). We follow this discussion with a presentation of what we feel is the correct way to model

a sequential decision process (that is, a dynamic program), using a format that is actually quite

familiar in control theory.

3



2.1 A dynamic programming “model”

If the idea is to solve a problem with dynamic programming, many authors start by writing down

the canonical form of Bellman’s equation

Vt(St) = min
a∈A

(
C(St, a) + γ

∑
s′∈S

p(s′|St, a)Vt+1(s′)

)
, (8)

where:

St = the state at time t,

a = the (typically discrete) action in set A,

C(St, a) = the cost of being in state St and taking action a,

γ = fixed discount factor,

p(s′|s, a) = the probability of transitioning to state St+1 = s′ if we are in state St = s and take
action a,

Vt(s) = the value of being in state St = s at time t and following the optimal policy from t
onward.

This is the format introduced by Bellman (1957) and popularized by many authors (such as Puterman

(2005), the last of a long line of books on Markov decision processes). The format is elegant and

has enabled a rich theoretical tradition. A well known concept in dynamic programming is that of

a policy which is typically denoted π, where π(s) gives the action that should be taken when we are

in state s. The policy (at time t) might be computed using

π(s) = arg min
a∈A

(
C(s, a) + γ

∑
s′∈S

p(s′|s, a)Vt+1(s′)

)
. (9)

Here, we are using the standard notation π(s) for policy, where equation (9) would produce the

optimal policy (if we could compute it). The most difficult challenge with Markov decision processes

is that researchers often assume that states are discrete, and that value functions and policies use

lookup table representations. This sharply limits its applicability to relatively small problems. Below,

we modify this notation so that we use “π” in a more practical way.

2.2 A stochastic programming “model”

The stochastic programming community often models a stochastic programming model as follows:

min
xt,(xt′ (ω),t<t′≤t+H),∀ω∈Ωt

(
ctxt +

∑
ω∈Ωt

p(ω)
t+H∑
t′=t+1

ct′(ω)xt′(ω)

)
. (10)

4



Here, ω is called a scenario drawn from a sampled set Ωt generated for the problem we are solving

at time t (many authors prefer “s” for scenario, but ω is widely used and avoids the conflict with

standard notation for state). If we have a random sample, the probability of scenario ω might be

p(ω) = 1/|Ωt|. We make one decision xt for time t, but then we have to make a decision xt′(ω) for

each scenario ω in the future. Note that we are writing the problem as if we are sitting at time t, to

be consistent with our dynamic program above.

The constraints are tricky to write out. We start with the time t constraints which we might

write

Atxt = bt, (11)

xt ≥ 0. (12)

We then have to write out constraints for time periods t′ > t, which have to be written for each

scenario ω. These might be written

At′(ω)xt′(ω)−Bt′−1(ω)xt′−1(ω) = bt′(ω), ∀ω ∈ Ωt, (13)

xt′(ω) ≥ 0 ∀ω ∈ Ωt. (14)

Note that we require that xt = xt(ω), a condition that is often imposed as a nonanticipativity

constraint.

While this format is by far the most common, it is important to note that we have modeled the

problem as if we make a single decision at time t (represented by xt), then see a scenario ω that

describes all the random information over the planning horizon t+1, . . . , t+H. Once this information

is revealed, we then choose xt+1, . . . , xt+H . In reality, we choose xt, then see the information Wt+1,

then we would choose xt+1, after which we see Wt+2, and so on. The model given by equations

(10)-(14) is known as a two-stage approximation; it is widely used simply because the multistage

version is completely intractable for most applications (even when we use Monte Carlo sampling).

In a nutshell, scenario trees have their own curse of dimensionality, which is actually worse than the

one suffered by traditional dynamic programs because the entire history is captured.

2.3 The five elements of a sequential decision problem

What is known as a “dynamic programming model” (equation (8)) or the “stochastic programming

model” (equations (10)-(14)) are not actually models, but are actually classes of policies for solving

dynamic programs. Bellman’s equations, in particular, are like complementary slackness conditions

for a linear program. It is not a model, but rather is similar to the optimality conditions for a

dynamic program. Clearly, we need a canonical model for sequential (“multistage”) stochastic deci-

sion problems that parallels our deterministic optimization model given by (4)-(7). This sequential

decision problem is, in fact, a dynamic program, which is a problem that we want to solve by finding

the best policy.

5



There are five fundamental elements to any sequential stochastic optimization problem. These

are:

• State St - This represents what we know (more precisely, what we need to know) at time t

before we make a decision (more on this below).

• Actions - Depending on the community, these might be discrete actions a, continuous controls

u, or decisions x (which are typically vectors, and might be continuous, integer or a mixture).

We defer to later the choice of how a decision is made, but assume that we will design a policy

π. Dynamic programmers will write a policy as π(s) returning an action a (or u or x), but this

leaves open the question of what π(s) looks like computationally. For this reason, we adopt a

different notation. If our decision is action at, we designate the policy as the function Aπt (St)

(or Aπ(St) if our policy is stationary). If we are using decision xt, we use the function Xπ
t (St).

We assume that our policy produces feasible actions (say, xt ∈ Xt), where the feasible region

Xt might be a system of linear equations that depends on the state St.

• Exogenous information Wt - Starting at time 0, we observe exogenous information (prices,

demands, equipment breakdowns) as the sequence W1,W2, . . .. We use the convention that

any variable indexed by t is known at time t. This means that states, actions (decisions) and

information evolve as follows:

(S0, x0,W1, S1, x1,W2, . . . , St, xt,Wt+1, . . . , ST ).

An important concept is the post-decision state which we write as Sxt (or Sat if we are using

action a), which is the information in the system immediately after we make a decision (see

Powell (2011)[Chapter 4] for a thorough discussion of post-decision state variables). Introducing

the post-decision state in our sequence gives us

(S0, x0, S
x
0 ,W1, S1, x1, S

x
1 ,W2, . . . , St, xt, S

x
t ,Wt+1, . . . , ST ).

If the information process evolves exogenously, independently of current states and actions

(true for many, but not all, problems), it is convenient to let ω be a sample realization of the

random variables W1,W2, . . . ,WT . We then let Ω be the set of all possible realizations. For

some models, it is useful to represent the history of the process ht at time t as

ht = (W1, . . . ,Wt). (15)

To allow for the possibility that states and/or actions do affect the information process, some

will model ω as the sequence of states and actions (referred to as the induced stochastic process

in Puterman (2005)), or the sequence comprising the initial state, followed by all xt′ and Wt′

for t′ = 1, . . . , t. Our presentation assumes the information process is purely exogenous, so we

use the representation of history in (15).

6



• The transition function - We write this as St+1 = SM (St, xt,Wt+1), where SM (·) has been

referred to as the system model, plant model, transfer function or just model, but we refer to it

as the transition function, consisting of the equations that describe the evolution of the system

from t to t+ 1. The transition function may include (controllable) systems of linear equations

such as those shown in equation (6). However, it may also represent the exogenous evolution

of prices, weather, and customer demands. For example, let pt be the price of electricity, and

let p̂t+1 be the exogenous change in the price between t and t + 1 (p̂t would be an element of

Wt), we could write

pt+1 = pt + p̂t+1,

or, if we want p̂t+1 to be the relative change, we might write

pt+1 = pt(1 + p̂t+1).

This would be an example of a transition function for an exogenous information process such

as prices.

• The objective function - We assume we are given a cost/reward/utility function that we refer

to generically as the contribution function which may depend on the state St and the action

xt, so we write it as C(St, xt). In some settings, it also depends on the new information Wt+1,

in which case we would write it as C(St, xt,Wt+1), which means it is random at time t. The

engineering controls community and the computer science community often deal with “model-

free” problems where the transition function is unknown and Wt+1 is not observable, but where

the cost depends on the downstream state St+1, in which case the contribution would be written

C(St, xt, St+1), which is also random at time t.

The objective requires finding the policy that minimizes expected costs, which is written

min
π∈Π

Eπ
T∑
t=0

C(St, X
π
t (St)), (16)

where St+1 = SM (St, xt,Wt+1), and where the expectation is over all possible sequences

W1,W2, . . . ,WT , which may depend on the actions taken. The notation Eπ allows for the

possibility that the exogenous information might depend on prior actions (something that is

not allowed in traditional stochastic programming models). The goal here is to find the best

policy, which means that we are looking for the best function for making a decision.

This leaves open the computational question: How in the world do we search over some abstract

space of policies? Answering this question is at the heart of this chapter. We are going to argue

that researchers using different approaches (dynamic programming, stochastic programming,

simulation) get around this problem by adopting a specific class of policies.

There is growing interest in replacing the expectation with various risk measures, which in-

troduces the issue of non-additivity (see Shapiro et al. (2009), Ruszczyski (2010) for thorough

7



discussions). For example, we might replace (16) with

min
π∈Π

Qα

T∑
t=0

C(St, X
π
t (St)), (17)

where Qα(W ) is the α-quantile of the random variable W (feel free to substitute your favorite

risk measure here, see Rockafellar & Uryasev (2013)). Alternatively, we might use a robust

objective which uses

min
π∈Π

max
W∈W

T∑
t=0

C(St, X
π
t (St)), (18)

where the maximum over W ∈ W refers to a search over random variables within an uncertainty

set W (Bandi & Bertsimas (2012)) that defines a set of “worst case” values. We might replace

the set W ∈ W with ω ∈ Ω to be consistent with our notation. See Beyer & Sendhoff (2007)

and Ben-Tal et al. (2009) for further discussions of robust optimization.

It is useful to stop and compare our stochastic model with our deterministic model, which we gave

previously as (4)-(7). Our stochastic objective function, given by equation (16), should be compared

to its deterministic counterpart, equation (4). The linking equations (6) can be written:

Atxt = Rt, (19)

Rt = bt +Bt−1xt−1. (20)

If we let St = Rt, we see that equation (6), in the form of equations (19)-(20), represents the transition

function St = SM (St−1, xt−1, ·). Obviously, there is no deterministic counterpart to the exogenous

information process.

This representation brings out the fundamental distinction between deterministic and stochastic

optimization (for sequential decision problems). In deterministic optimization, we are looking for

the best decisions (see (4)). In stochastic optimization, we are looking for the best policy (see (16)),

which is the same as searching over a class of functions. The operations research community is quite

skilled at solving for high-dimensional vectors of decision variables, but searching over functions is a

less familiar concept. This is going to need some work.

We would like to refer to our representation of states, actions, exogenous information, transition

function and objective function as “the model.” However, in the discussion below we are going to

introduce the concept of the lookahead model which is also widely referred to in the literature as

“the model.” For this reason, we need to make a distinction between the problem we are trying to

solve (“the model”) and any approximations which we may use for the sole purpose of making a

decision (“the policy”) which often involves solving an approximate model.

8



For this reason, we suggest referring to our representation of the problem as the base model, and we

propose to use the objective function (16) (or (17) or (18)) as the expression that represents our base

model, since all the other elements of the model are implied by this single equation. The base model,

of course, represents an approximation of some real (“true”) problem, but these approximations are

the purview of the modeler. Our job, as algorithms specialists, is to do the best we can to solve the

base model, producing the highest quality policy that solves (16) (or (17) or (18)). It is not our job

to question simplifications made in the formulation of the base model, but it is our responsibility to

challenge approximations that might affect the performance of policies when evaluated in terms of

the objective function for the base model (whatever we choose that to be).

This style of modeling problems has not been used in operations research (or computer science),

but is widely used in the engineering controls community (but even popular control theory texts

such as Lewis et al. (2012) do not articulate the elements of a model as we have). The Markov

decision process community prefers to assume that the one-step transition matrix (used in equation

(8)) is given (see Puterman (2005), for example). While it can, in principle, be computed from

the transition function and distributional information on the exogenous information variable Wt, it

is simply not computable for the vast majority of applications. The transition function is widely

used in stochastic programming, but without using the term or the notation (for those familiar with

stochastic programming, this is how scenario trees are built).

The two dimensions of our modelling framework that are least understood are the state variable,

and the concept of searching over policies in the objective function. For this reason, we deal with

these topics in more depth.

3 What is a state variable?

State variables appear to be a concept that everyone understands, but cannot provide a definition.

Bellman (1957) offered “... we have a physical system characterized at any stage by a small set of

parameters, the state variables.” Puterman (2005) introduces state variables with “At each decision

epoch, the system occupies a state.” (Italics are in the original manuscripts). Wikipedia (in 2013)

suggests “State commonly refers to either the present condition of a system or entity,” which is true

but hopelessly vague, or “A state variable is one of the set of variables that are used to describe the

mathematical state of a dynamical system” (using the word you are trying to define in the definition

is a red flag that you do not have a definition). Other top experts have suggested that the state

variable cannot be defined, or they say they have simply given up. I think we can do better.

The graphs in Figure 1 help to illustrate the definition of a state variable. In Figure 1(a), we

show a deterministic graph where a traveler has to get from node 1 to node 11. The traveler is

currently at node 6. Let Nt be the node number of the traveler after t link traversals (t = 2 in the

example). There seems to be a consensus that the correct answer is

St = Nt = 6.

9



1

2

3

4

5

6

7

8

9

10

11

12.6

8.4

9.2 3.6

8.1

17.4

15.9

16.5 20.2

13.5

8.9
12.7

15.9

2.34.5

7.3

9.6
5.7

(a)

1

2

3

4

5

6

7

8

9

10

11

3.6

8.1

11.8

9.7

10.2
12.6

8.4 15.9

(b)

Figure 1: (a) Deterministic network for a traveler moving from node 1 to node 11 with known arc
costs. (b) Stochastic network, where arc costs are revealed as the traveler arrives to a node.

Note that we exclude from our state variable all data that is not changing (the arc costs are all

assumed to be deterministic). Some will insist that the state variable should include the history

(that is, nodes 1 and 3), but for this model, this information is not relevant.

Next assume that we have a stochastic graph, where the probability distribution of the cost of

traversing each arc is known, as depicted in Figure 1(b). However, assume that if the traveler arrives

to node i, he is able to see the actual cost ĉij for each link (i, j) out of node i. Again, there seems

to be broad agreement that the correct answer is

St = (Nt, (ĉNt,·)) = (6, (10.2, 9.7, 11.8)),

where (ĉNt,·) represents the costs on all the links out of node Nt. While our first example illustrates

a physical state (the location of our traveler), this second example illustrates that the state also

includes the state of information (the costs out of the node).

For our final example, we introduce the twist that there are left hand turn penalties for our

stochastic network in Figure 1(b). Now what is the state variable? In the previous example, we saw

that we need to include all the information we need to make a decision. In this example, we need

to know the previous node, that is, Nt−1. With this information, we can tell if the link from our

current node Nt = 6 to node 5 is a left hand turn or not. So, our state variable in this setting would

10



be

St = (Nt, (ĉNt,·), Nt−1) = (6, (10.2, 9.7, 11.8), 3).

If we need Nt and Nt−1, what about the other nodes we have visited? For the same reason that we

did not include the complete path in our first example, we do not need node Nt−2 (and earlier) in

this example simply because they are not needed. This situation would change if we introduced a

requirement that our path contain no cycles, in which case we would have to retain the entire path

as we progress.

There is an astonishing lack of agreement in the definition of a state variable. This question

was posed to a workshop of attendees from computer science and operations research. Two themes

emerged from the responses. The first (popular with the computer scientists) was that a state

variable should be a sufficient statistic, a term drawn from the statistics community (which has

its own definition for this term). The second was that a state variable should be parsimonious.

The concepts of sufficiency and parsimony (said differently, necessary and sufficient), are completely

consistent with the state descriptions given above.

I would conclude from all of these discussions that a state variable should include all the infor-

mation we need, but only the information we need. But to do what? In Powell (2011), I offer the

definition:

Definition 3.1 A state variable is the minimally dimensioned function of history that is necessary

and sufficient to compute the decision function, the transition function, and the contribution function.

It is useful to divide state variables into three broad classes:

• Physical (or resource state) Rt - We typically use “resource state” to describe the status of

people, equipment, products, money and energy (how much and where). We might use the

term “physical state” to describe the attributes of a physical resource (the location and velocity

of an aircraft, the position of the arms of a robot, the temperature of a chemical).

• Information state It - This includes other information such as information about weather, the

costs out of a node, or the elapsed time since the last customer arrived to a queue.

• The knowledge (or belief) state Kt - This comes in the form of a series of distributions about

unobservable parameters. For example, this might be the demand for a product at a particular

price, or the travel time on a path through an unfamiliar city. The knowledge state arises in

communities that use names such as partially observable Markov decision processes (POMDPs),

multi-armed bandit problems (Gittins et al. (2011)), and optimal learning (Powell & Ryzhov

(2012)). We only include these distributions in our state variable if they are changing as we

collect more information (hence the reason we excluded them in our network example above).

11



Figure 2: Illustration of the growing sets of state variables, where information state includes physical
state variables, while the knowledge state includes everything.

Mathematically, the information state It should include information about resources Rt, and the

knowledge state Kt should include everything, as illustrated in Figure 2. However, whether a piece

of data is classified as part of the physical/resource state, or the information state, is not relevant.

We make the distinction only because it seems to help people think about a problem. For example,

many people fall in the trap of equating “state” with “physical state.” We find it is useful to make

a distinction between data (which we list under physical state or information state) and probability

distributions, which we categorize under knowledge state.

Another way to envision the state variable is summing up the contributions while following some

policy, which we might write as

F π0 (S0) = E

{
T∑
t′=0

C(St′ , X
π
t′(St′))

∣∣∣∣∣S0

}
,

which is computed given our initial state S0. We assume states are related by

St+1 = SM (St, X
π
t (St),Wt+1), and the sequence W1,W2, . . . ,WT follows a sample path ω ∈ Ω.

Now assume we want to do the same computation starting at time t, which we would write

F πt (St) = E

{
T∑
t′=t

C(St′ , X
π
t′(St′))

∣∣∣∣∣St
}
. (21)

[Note to probabilists: throughout our presentation, we use the convention that the conditional ex-

pectation E{·|St} means the expectation over the probability space (Ωt,Ft,Pt) where Ωt is the set of

outcomes constructed given we are in a known state St (which is not random at time t), and where

Ft is the sigma-algebra on Ωt, and Pt is the conditional probability measure given that we are in

state St.]

12



We can, of course, write this as

F πt (St) = C(St, X
π
t (St)) + E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣St
}

(22)

= C(St, X
π
t (St)) + E{F πt+1(St+1)|St}. (23)

Now it is apparent that St (or in the case of (23), St+1) has to carry all the information needed

to compute Ft(St) (or Ft+1(St+1)). We have to include in St all the information needed to com-

pute the policy Xπ
t′(St′), the contribution function C(St′ , X

π
t′(St′)), and the transition function

SM (St′ , X
π
t′(St′),Wt′+1), for all t′ = t, ..., T . Not surprisingly, we see no need to include any in-

formation in St that is not needed to compute any of these functions.

While the principles behind this definition seem to have broad support, they carry implications

that run against conventional thinking in the operations research community. First, there is no

such thing as a non-Markovian system, because any properly modeled state variable includes all

the information needed to model the forward trajectory of the system (yes, even G/G/1 queues

are Markovian when properly modeled). (Systems with unobservable states are more subtle - our

experience is that these can be handled by using probability distributions to represent what we know

about an unobservable state.) Second, the oft-repeated statement that “any system can be made

Markovian by adding enough variables” needs to be replaced with the response “if your system is

not Markovian, you do not have a complete state variable, and if you can add information to make

the system Markovian, then you should!”

Finally, there is a surprisingly widespread tendency to assume that state variables have to be

discrete, and if they are multidimensional, the curse of dimensionality kicks in which means they are

not useful. We note that 1) state variables do not have to be discrete, 2) it is not necessary to use

lookup representations for functions, and most important 3) it is important to separate the process

of modeling a problem from the design of a strategy for identifying an effective policy. Model your

problem first with a generic policy Xπ
t (St), and then go looking for a policy (as we do below).

It is time to teach our students what a state variable is, so that they learn how to properly model

dynamic systems.

4 Designing policies

Far more difficult than understanding a state variable is understanding what in the world we mean

by “searching for a policy.” This is the type of statement that is easy to say mathematically, but

seems on the surface to have no basis in practical computation. Perhaps this was the reaction

to Kantarovich’s statement of a linear program, and the reason why linear programming became so

exciting after Dantzig introduced the simplex algorithm. Dantzig made Kantarovich’s linear program

meaningful.

13



First, we need a definition of a policy:

Definition 4.1 A policy is a mapping from a state to a feasible action. Any mapping.

Mathematically, we can think of an arbitrarily complex array of functions, but no one knows how

to calculate these functions. Imagine, for example, that our action is a vector x that might include

thousands of continuous and integer variables that have to satisfy a large set of linear constraints.

How are we going to find a function that accomplishes this? This section is devoted to this question.

4.1 The four classes of policies

I would argue that rather than devise some dramatic breakthrough in functional approximations, all

we have to do is to look at the wide array of tools that have already been used in different applications.

In my own tour through the jungle of stochastic optimization, I have found four fundamental classes

of policies which I call PFAs, CFAs, VFAs, and Lookahead policies.

• Policy function approximations (PFAs) - A policy function approximation represents some

analytic function that does not involve solving an optimization problem. A PFA might be a

lookup table (“turn left at a particular intersection” or “move the knight when the chessboard

is in a particular state”), a rule (“sell if the price goes above θ”), or a parametric model such

as

Xπ(St|θ) = θ0 + θ1St + θ2S
2
t . (24)

Another example of a PFA is an (s, S) inventory model: order product when the inventory is

below s to bring it up to S. The engineering controls community often uses neural networks

to represent a policy. Many simulation models contain imbedded decisions (e.g., how to route

a job in a jobshop) that are governed by simple rules (we would call these policy function

approximations).

• Optimizing a cost function approximation (CFAs) - There are problems where a simple myopic

policy can produce good (in rare cases optimal) results. A myopic policy would be written

Xπ
t (St|θ) = arg min

x∈Xt

C(St, x).

Not surprisingly, this would rarely work well in practice. However, there are problems where a

slightly modified cost function might work quite well. One class of approximations looks like

Xπ
t (St|θ) = arg min

x∈Xt

(
C(St, x) +

∑
f∈F

θfφf (St, x)
)
. (25)

Here, (φf (St, x))f∈F , is a set of basis functions (as they are known in the approximate dynamic

programming community) which might be of the form Stx, Stx
2, x, x2, which serves as a type

14



of correction term. However, there are other problems where we make direct changes to the

cost function itself, or perhaps the constraints (e.g., imposing a minimum inventory level). We

can represent this class of policies more broadly by writing

Xπ
t (St|θ) = arg min

x∈Xt

C̄π(St, x|θ). (26)

where C̄πt (St, x|θ) is some sort of parametric approximation. Here, we would let π carry the

information about the structure of the approximation (such as the basis functions in equation

(25)) and we let θ capture all tunable parameters.

We have written the CFA in terms of costs over a single time period, but as we point out below,

it is very common to use hybrids, and we may combine the concept of a CFA with a lookahead

policy.

• Policies that depend on a value function approximation (VFAs) - These are the policies most

often associated with dynamic programming, and are written

Xπ
t (St|θ) = arg min

x∈Xt

(
C(St, x) + E{V t+1(St+1|θ)|St}

)
. (27)

where St+1 = SM (St, xt,Wt+1). Since expectations can be notoriously hard to compute (imag-

ine if our random variable Wt has, say, 100 dimensions), we can use the device of the post-

decision state variable (the state immediately after a decision has been made, but before any

new information has arrived). Let Sxt be the post-decision state, which means it is a determin-

istic function of xt. This allows us to write

Xπ
t (St|θ) = arg min

x∈Xt

(
C(St, x) + V t(S

x
t |θ)

)
. (28)

In both (27) and (28), we have to create an approximation of the value function. Again, we

assume that the index π captures the structure of the function, as well as any tunable parame-

ters represented by θ. For example, a popular approximation is linear regression. Assume that

someone has devised a series of explanatory variables (“basis functions”) φf (Sxt ) for f ∈ F .

Then we can write

Xπ
t (St|θ) = arg min

x∈Xt

(
C(St, x) +

∑
f∈F

θfφf (Sxt )
)
. (29)

Here, the index π carries the information that we are using a linear architecture for the value

function, the set of basis functions, as well as the coefficients θ used in the linear model. We

note that while (25) and (29) look similar, the mechanisms for fitting the regression coefficients

are completely different, and it is unlikely that we would use the same basis functions. In

(29), we are trying to approximate the future contributions given that we are in state St; in

(25), we are just computing an adjustment term which is unlikely to bear any relationship to

future contributions (note that in (25), we would not include any basis functions that are not

a function of x).

15



• Lookahead policies - The simplest lookahead policy involves optimizing over a horizon H de-

terministically. Let x̃tt′ represent the decision variables (this might be a vector) for time t′

in the lookahead model that has been triggered at time t. Variables with tildes represent the

lookahead model, so we do not confuse them with the base model. A deterministic lookahead

policy might be written

Xπ
t (St|θ) = arg min

x̃tt,...,x̃t,t+H

t+H∑
t′=t

C(S̃tt′ , x̃tt′). (30)

Normally, we optimize over the horizon (t, . . . , t+H) but only implement the first decision, so

Xπ
t (St|θ) = x̃tt. All variables in the lookahead model are indexed by (tt′) where t represents

when the decision is being made (and therefore its information content), while t′ is when the

decision impacts the physical system. The lookahead variables (with tildes) may capture various

approximations; for example, our base model may step forward in 5-minute increments, while

the lookahead model may uses hourly increments so it is easier to solve. Here, the parameter θ

captures all the parameters that determine the formulation of the lookahead model (including

choices such as the planning horizon).

We might also use a stochastic lookahead model

min
x̃tt,(x̃tt′ (ω̃),t<t′≤t+H),∀ω̃∈Ω̃t

c̃ttx̃tt +
∑
ω̃∈Ω̃t

p(ω̃)

t+H∑
t′=t+1

c̃tt′(ω̃)x̃tt′(ω̃)

 . (31)

In this case, θ captures parameters such as the number of information stages and the number of

samples per stage (this community refers to the elements of Ω̃t as scenarios). An “information

stage” consists of revealing information, followed by making decisions that use this information.

We need to construct a lookahead stochastic process, captured by the set Ω̃t, to differentiate

stochastic scenarios in the lookahead model from the sample path ω ∈ Ω that we might be

following in the base model (we suggest using “sample path” to describe the evolution of

information in the base model, and “scenario” to represent the evolution of information in the

lookahead model). The choice of the number of stages, and the construction of the set Ω̃t,

represent important decisions in the design of the lookahead model, which we parameterize by

θ.

We note that a stochastic lookahead model is the strategy favored by the stochastic program-

ming community. Equation (31) can be described as a direct solution of the lookahead model,

which is to say that we explicitly optimize over all decisions, for each scenario ω̃ ∈ Ω̃t, all at the

same time. It is also possible to solve the lookahead model using value functions, producing a

policy that looks like

Xπ
t (St|θ) = arg min

xtt∈Xt

(
C(Stt, xtt) + E{Ṽt,t+1(S̃t,t+1)|St}

)
, (32)

where Ṽt,t+1(S̃t,t+1) might be an exact (or nearly exact) estimate of the value of being in state

S̃t,t+1 of the (approximate) lookahead model. We emphasize that lookahead models are almost

16



always approximations of the true model; we might use aggregation, discretization, and/or

Monte Carlo sampling along with a limited horizon to reduce the true model to something

tractable. For sequential convex optimization problems, it is possible to use Benders’ cuts, a

strategy that has become known as stochastic dual decomposition programming (SDDP) (see

Pereira & Pinto (1991) and Shapiro et al. (2013)).

We need to acknowledge that there are some problems where optimal policies can be found: (s, S)

policies are optimal for a special class of inventory problem; myopic policies are optimal for portfolio

problems without transaction costs; exact value functions can be found for problems with small,

discrete action spaces; and there are some problems where a lookahead policy is optimal. However,

we use the term “function approximation” for three of the four classes of policies because we feel

that the vast majority of real applications will not produce an optimal policy.

In addition to these four fundamental classes of policies, we can also create hybrids by mixing

and matching. For example, we might use a lookahead policy with a value function at the end of

the lookahead horizon. Another powerful strategy is to combine a low-dimensional policy function

approximation (say, “maintain 10 units of Type A blood in inventory”) as a goal in a larger, higher-

dimensional optimization problem (see Defourny et al. (2013)). Cost function approximations, which

include any modification of costs or constraints to achieve a more robust policy, are often combined

with a lookahead policy so that uncertainty in forecasts can be accommodated. For example, we

might solve a deterministic approximation of a multiperiod inventory problem, but impose lower

bounds on inventories to handle uncertainty. These lower bounds represent the tunable parameters

of the CFA.

4.2 Approximating functions

Three of our four policies require some sort of functional approximation: policy function approxi-

mations, cost function approximations, and value function approximations. There is a wide range of

methods for approximating functions, although the most popular can be divided into three classes:

lookup tables, parametric, and nonparametric (see Hastie et al. (2009) for a thorough review of sta-

tistical learning methods). For example, in the field of Markov decision processes, the use of policies

based on value functions represented by lookup tables is not an approximation under ideal circum-

stances. However, since lookup table representations do not scale, most applications require some

sort of parametric model (not necessarily linear). Indeed, the habit of equating “Markov decision

processes” with lookup table representations of value functions is the reason why so many have dis-

missed “dynamic programming” because of the curse of dimensionality. However, there is absolutely

no need to insist on using lookup tables, and this has made it possible for approximate dynamic

programming to produce practical solutions to some truly large-scale applications (e.g., Simao et al.

(2009) and Bouzaiene-Ayari et al. (2012)).

An important class of problems in operations research involves convex optimization models,

17



(a) (b)

Figure 3: Approximating convex functions using piecewise linear, separable approximations (a), and
multidimensional Benders’ cuts (b).

which frequently arise in the context of resource allocation. Figure 3 illustrates two (nonparametric)

methods for approximating convex functions: piecewise linear, separable approximations (a) (see

Powell (2011)[Chapter 13]), and multidimensional Benders’ cuts (b) (see Shapiro et al. (2009) and

Birge & Louveaux (2011)). An extensive literature on exploiting these approximation methods for

resource allocation problems is beyond the scope of our discussion.

4.3 Evaluating a policy

It would be nice if we could simply compute the objective function in equation (16), but situations

where we can compute the expectation exactly are quite rare. For this reason, we generally depend on

using Monte Carlo simulation to get a statistical estimate of the value of a policy (see Shapiro (2003)

for a nice introduction to Monte Carlo sampling methods in the context of stochastic optimization).

Let ω represent a sample realization of the sequence (W1,W2, . . . ,WT ). A single simulation of a

policy would be written

F π(ω) =

T∑
t=0

C(St(ω), Xπ
t (St(ω))).

If T is large enough, we might feel that this is a reasonable estimate of the value of a policy π, but

more often we are going to compute an average using

F̄ π =
1

N

N∑
n=0

F π(ωn). (33)

If we are simulating a policy Xπ(St) based on value function approximations, we might write our

VFA as

V
π
t (St|θ) =

∑
f∈F

θfφ
π
f (St).

18



There are different strategies for estimating the regression coefficients θ. If we are using adaptive

learning (common in approximate dynamic programming), the policy at iteration n would be given

by

Xπ
t (St|θn−1) = arg min

xt

C(St, xt) +
∑
f∈F

θn−1
f φf (St)

 .

Note that during iteration n, we might use estimates θn−1 obtained from iterations n−1 and earlier.

Considerable attention has been devoted to the problem of choosing samples carefully. Romisch

& Heitsch (2009) describes methods for generating scenario trees focusing on the construction of

lookahead models. Bayraksan & Morton (2006) and Bayraksan & Morton (2009) provide a nice

discussion of assessing solution quality using Monte Carlo methods for stochastic optimization.

4.4 Searching for the best policy

We can now put meaning to the statement “search over policies” (or “find the best function”) implied

by the objective function in equation (16). The label π on our policy Xπ
t (St) carries two types of

information:

Categorical information which describes the type of policy (PFA, CFA, VFA and Lookahead),

and would also have to specify the specific structure of a function approximation: lookup table,

parametric, or nonparametric (for example). If parametric (which is the most common), the

categorical information would have to describe the particular structure (e.g., the set of basis

functions in a linear approximation).

Tunable parameters , which we refer to as θ, might be the regression parameters of a linear model,

the planning horizon in a lookahead policy, and the number of samples in a scenario tree.

Let p ∈ P represent a class of policies, and let θ ∈ Θp be the set of values that θ can take when using

policy p. So, πp = (p, θ) for p ∈ P and θ ∈ Θp. For a particular class of policies p ∈ P, we have to

solve a stochastic search problem to find the best θ ∈ Θp, which we write as

min
θ∈Θp

F̄ π
p
(θ) =

1

N

T∑
t=0

C(St(ω
n), Xπp

t (St(ω
n)|θ)). (34)

This problem has to be solved for each of a (hopefully small) class of policies P chosen by the

designer.

The literature for solving stochastic search problems is quite deep, spanning stochastic search

(e.g., Spall (2003), Chang et al. (2007)), stochastic programming (Birge & Louveaux (2011), Shapiro

et al. (2009)), ranking and selection (Barr & Rizvi (1966), Boesel et al. (2003)), sample average

19



approximation (Kleywegt et al. (2002)), simulation-optimization (Swisher et al. (2000), Fu et al.

(2005), Hong & Nelson (2007), Chick et al. (2007), Chick & Gans (2009), Andradóttir & Prudius

(2010)), and optimal learning (see the review of many techniques in Powell & Ryzhov (2012)).

Algorithms vary depending on the answers to the following questions (to name a few):

• Is the objective function convex in θ?

• Can we compute derivatives (for continuous, tunable parameters)?

• Are we simulating policies in the computer (offline), or are we observing policies as they are

being used in the field (online)?

• Can the objective function be quickly computed, or is it time consuming and/or expensive?

• Is the dimensionality of θ small (three or less), or larger?

5 Lookahead policies

By far the most complex policy to model is a lookahead policy, which solves the original model by

building a series of (typically) approximate models known as lookahead models. A lookahead model

to be solved at time t is typically formulated over a horizon t, . . . , t + H, and is used to determine

what to do at time t, given by xt. Once we implement xt, we observe the transition from state St

to St+1 and repeat the process. Lookahead policies are often referred to as rolling/receding horizon

procedures, or model predictive control. It is not unusual for authors to formulate a lookahead model

without actually writing down the base model, which is often referred to as a “simulator.”

But not everyone is using a lookahead model, which means it is not always clear whether the

authors are solving the base model or a lookahead model. Imagine that we are trying to model a

business problem over a horizon spanning time periods 0 up to 100. Is the intent to determine what

to do at time 0? Or are we modeling a system over a planning horizon to assess the impact of various

parameters and business rules? If we have a business simulator, then we will need to make decisions

at every time t within our simulation horizon t = 0, . . . , T , which we typically need to repeat for

different sample outcomes. In a lookahead model, we also need to make decisions over our planning

horizon t′ = t, . . . , t+H, but the decisions we make at time periods t′ > t are purely for the purpose

of making a better decision at time t.

5.1 An optimal policy using the base model

We begin our discussion by noting that we can characterize an optimal policy using the function

X∗t (St) = arg min
xt

(
C(St, xt) + min

π∈Π
E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣St
})

, (35)

20



where St+1 = SM (St, xt,Wt+1). What we are doing is finding the best action now given the impact

of that action on the rest of the horizon using the base model. Note that we did not say that we

could compute this policy, but it is a starting point.

The imbedded optimization over policies can look mysterious, so many use an equivalent formu-

lation which is written

X∗t (St) = arg min
xt

(
C(St, xt) + min

(xt′ (ω),t<t′≤T ),∀ω∈Ωt

E

{
T∑

t′=t+1

C(St′ , xt′(ω))

∣∣∣∣∣St
})

. (36)

Instead of writing a policy Xπ
t′(St′), we are writing xt′(ω), which means that the decision at time t′

depends on the sample path that we are following. The problem is that when we specify ω, it means

we are identifying the entire sample path, from t = 0 up to t = T , which is like being able to know

the future.

To make this valid, we have to impose a condition that means that xt′(ω) cannot “see” into

the future (a condition that is satisfied when we use our policy Xπ
t′(St′)). One way to do this is

to write xt′(ht′), expressing the dependence of xt′ on the history of the information process (see

equation (15)). The problem is that since ht′ is typically continuous (and multidimensional), xt′(ht′)

is effectively a continuous function which is the decision we would make if our history is ht′ (in other

words, a policy). Pretty to write, but hard to compute.

Both (35) and (36) are lookahead policies that use the base model. Both require computing not

only the decision that determines what we do now (at time t), but also policies for every time period

in the future. This is equivalent to computing decisions for every state, and for every time period in

the future. The problem, of course, is that we usually cannot compute any of these policies, leading

us to consider approximate lookahead models.

5.2 Building an approximate lookahead model

To overcome the complexity of solving the exact model, we create what is called a lookahead model

which is an approximation of the base model which is easier to solve. To distinguish our lookahead

model from the base model, we are going to put tildes on all the variables. In addition, we use two

time indices. Thus, the decision x̃tt′ is a decision determined while solving the lookahead model at

time t, with a decision that will be implemented at time t′ within the lookahead model.

There are several strategies that are typically used to simplify lookahead models:

Limiting the horizon - We may reduce the horizon from (t, T ) to (t, t+H), where H is a suitable

short horizon that is chosen to capture important behaviors. For example, we might want to

model water reservoir management over a 10 year period, but a lookahead policy that extends

one year might be enough to produce high quality decisions. We can then simulate our policy

to produce forecasts of flows over all 10 years.

21



0x
1W

1 2, ,..., Tx x x


1
2

N

(a) (b)

Figure 4: Illustration of (a) a two-stage scenario tree and (b) a multistage scenario tree.

Stage aggregation - A stage represents the process of revealing information followed by the need

to make a decision. A common approximation is a two-stage formulation (see Figure 4(a)),

where we make a decision xt, then observe all future events (until t + H), and then make all

remaining decisions. A more accurate formulation is a multistage model, depicted in Figure

4(b), but these can be computationally very expensive.

Outcome aggregation or sampling - Instead of using the full set of outcomes Ω (which is often

infinite), we can use Monte Carlo sampling to choose a small set of possible outcomes that start

at time t (assuming we are in state Snt during the nth simulation through the horizon) through

the end of our horizon t + H. We refer to this as Ω̃n
t to capture that it is constructed for the

decision problem at time t while in state Snt . The simplest model in this class is a deterministic

lookahead, which uses a single point estimate.

Discretization - Time, states, and decisions may all be discretized in a way that makes the resulting

model computationally tractable. In some cases, this may result in a Markov decision process

that may be solved exactly using backward dynamic programming (see Puterman (2005)).

Because the discretization generally depends on the current state St, this model will have to

be solved all over again after we make the transition from t to t+ 1.

Dimensionality reduction - We may ignore some variables in our lookahead model as a form

of simplification. For example, a forecast of weather or future prices can add a number of

dimensions to the state variable. While we have to track these in the base model (including the

evolution of these forecasts), we can hold them fixed in the lookahead model, and then ignore

them in the state variable (these become latent variables).

22



5.3 A deterministic lookahead model

A simple deterministic lookahead model simply uses point forecasts of all exogenous variables, giving

us

XLA−D,n
t (St) = arg min

xt

(
C(St, xt) +

t+H∑
t′=t+1

C(S̃tt′ , x̃tt′)

)
, (37)

where S̃t,t′+1 = SM (S̃tt′ , x̃tt′ ,W tt′), and where W tt′ = E{Wtt′ |St} is a forecast of Wt′ made at time

t. These models are often referred to as rolling horizon procedures or model predictive control, but

these terms can also be applied to stochastic approximations of the lookahead model. However,

deterministic approximations are most widely used in practice.

5.4 A stochastic lookahead model

A stochastic lookahead model can be created using our sampled set of outcomes Ω̃n
t , giving us a

stochastic lookahead policy

XLA−SP,n
t (Snt ) = arg min

xt

(
C(Snt , xt) + min

(x̃tt′ (ω̃),t<t′≤t+H),∀ω̃∈Ω̃n
t

Ẽn
{

t+H∑
t′=t+1

C(S̃tt′ , x̃tt′(ω̃))

∣∣∣∣∣St
})

. (38)

When computing this policy, we start in a particular state Snt (in the state space of the base model),

but then step forward in time using

S̃t,t+1 = SM (Snt , xt, W̃t,t+1(ω̃)),

S̃t,t′+1 = SM (S̃tt′ , x̃tt′ , W̃t,t′+1(ω̃)), t′ = t+ 1, . . . , T − 1.

In (38), the expectation Ẽn {·|St} is over the sampled outcomes in Ω̃n
t which is constructed given that

we are in state Snt . To help visualize these transitions, it is often the case that we have a resource

variable R̃tt′ = (R̃tt′i)i∈I (e.g., how many units of blood we have on hand of type i at time t′), where

we would typically write the transition as

R̃t,t′+1(ω̃) = Ãtt′ x̃tt′(ω̃) + R̂t,t′+1(ω̃),

where R̂t,t′+1(ω̃) represents a sample realization of blood donations between t′ and t′+1 in our looka-

head model. In addition, we might have one or more information variables Ĩtt′ , such as temperature

(in an energy problem), or a market price. These might evolve according to

Ĩt,t′+1(ω̃) = Ĩtt′(ω̃) + Ît,t′+1(ω̃),

23



where Ît,t′+1(ω̃) is a sample realization of the change in our information variables. The evolution

of the information variables is captured in the scenario tree (Figure 4(a) or 4(b)), while that of the

resource variables is captured in the constraints for x̃tt′ .

Now we have an expression that is computable, although it might be computationally expensive.

Indeed, it is often the case that the optimization problem in (38) is so large that we have to turn

to decomposition methods which solve the problem within a tolerance (see Rockafellar & Wets

(1991), Birge & Louveaux (2011)). However, our notation now makes it clear that we are solving a

lookahead model. Bounds on the performance of a lookahead model do not translate to bounds on

the performance of the policy in terms of its ability to minimize the base objective function (16).

An alternative approach is to approximate the future using a value function approximation, giving

us a VFA-based policy that looks like

XV FA,n
t (St) = arg min

xt

(
C(St, xt) + E{V n−1

t+1 (St+1)|St, xt}
)
, (39)

where

V
n−1
t+1 (St+1) ≈ min

π∈Π
E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣St+1

}
.

Here, we are using some sort of functional approximation V
n−1
t+1 (St+1) which has been estimated using

information collected during earlier iterations (that is why it is indexed n − 1). What is important

here is that we are approximating the base model, not the lookahead model. If we have access to a

convenient post-decision state Sxt , we can drop the expectation and use

XV FA,n
t (St) = arg min

xt

(
C(St, xt) + V

n−1
t (Sxt )

)
. (40)

where the post-decision value function approximation (40) is different than the pre-decision value

function approximation in (39).

We note that once we have the value function approximations V t(St) (or V t(S
x
t )) for t = 0, . . . , T ,

we have a complete policy for the base model, where we assume that the approximation V t(St) gives

us a value for every possible state (which means we have a decision for every possible state). By

contrast, the lookahead policy XLA−SP,n
t (St) works only for a particular state St at time t. In the

process of solving the stochastic lookahead policy, we produce a series of decisions x̃tt′(S̃tt′) that can

be interpreted as a policy within the lookahead model. But because it is only for a small sample of

states S̃tt′ (that is, the states that appear in the scenario tree), this policy cannot be used again as

we step forward in time. As a result, if we make a decision xt = XLA−SP,n
t (St) and then step forward

to St+1 = SM (St, xt,Wt+1(ω)), we have to solve (38) from scratch.

The need to recompute the lookahead model is not limited to deterministic approximations or

approximations of stochastic models through scenario trees. We might solve the lookahead model

24



using a value function, as we did previously in equation (32), repeated here for convenience:

Xπ
t (St) = arg min

xtt∈Xt

(
C(Stt, xtt) + E{Ṽt,t+1(S̃t,t+1)|St}

)
. (41)

Here, we might assume that Ṽt,t+1(S̃t,t+1) is an exact estimate of the downstream value of being in

state S̃t,t+1 when solving our simplified lookahead model (that is why we have a tilde over the V ).

Because the lookahead model typically involves information available at time t, when we make a

decision at time t and step forward in time (in the real process), we generally have to start all over

again from scratch. This is not the case when we use a value function approximation V t(St) that is

an approximation of the downstream value in the base model.

5.5 Evaluating a lookahead policy

The correct way to evaluate a lookahead policy (or any policy) is in the context of the objective

function for the base model given in (16). Figure 5 illustrates the process of solving a stochastic

lookahead model using scenario trees, then stepping forward in time to simulate the performance of

our lookahead policy. As of this writing, there is a lot of work evaluating the quality of the solution

of a lookahead model (which can be quite hard to solve), but very little evaluating the performance

of a lookahead policy in terms of its ability to solve the base model (see, for example, Rockafellar &

Wets (1991), Philpott & Guan (2008), Bayraksan & Morton (2009), Mak et al. (1999)).

Considerably more attention has been given to this topic in the engineering controls community

under the umbrella of model predictive control, but this work assumes a particular structure to

the problem that generally does not apply in operations research (see Camacho & Bordons (2004)

for a good introduction to model predictive control (MPC), and Lewis et al. (2012) for a modern

introduction to approximate dynamic programming and optimal control).

It has been our experience that while many researchers in stochastic programming understand

that a stochastic program should be evaluated in a “simulator,” there is a fairly widespread lack of

appreciation that the “simulator” is actually a way of approximating the objective function (16),

which is the real problem we are trying to solve (see Mulvey et al. (1995), Takriti et al. (1996),

Mccusker et al. (2002), van der Weijde & Hobbs (2012), Defourny et al. (2013) for a few examples).

For example, Ben-Tal et al. (2005) propose a policy using a robust (min-max) lookahead policy,

which they then evaluate by averaging a series of simulations, which means using the objective in

(16) (see Ben-Tal et al. (2005)[section 4.3]). The lack of consistency between the objective function

in the “simulator” (the base model) and that used in the lookahead model reflect, in our view, a fairly

widespread misunderstanding that the simulator is actually the stochastic analog of the objective

function (4) used in deterministic models.

25



Figure 5: Illustration of rolling horizon procedure, using a stochastic model of the future (from Powell
et al. (2012b)).

5.6 Comments

The distinction between base models and lookahead models has not entered the literature, so care has

to be used when deciding if a researcher is solving the base model or just a lookahead model. It is our

experience that the vast majority of papers using stochastic programming for multistage problems

are using lookahead policies (see, for example, Jacobs et al. (1995), Takriti et al. (1996), Dupačová

et al. (2000), Wallace & Fleten (2003), Jin et al. (2011)). This means that after implementing the

first-period decision and stepping forward in time, the problem has to be solved again with a new

set of scenario trees.

But this is not always the case. Shapiro et al. (2013) formulates and solves a 120-period stochas-

tic program (we would call it a dynamic program) using Benders’ cuts (a form of value function

approximation) for an application that does not require the use of a scenario tree. This strategy

has come to be known as the stochastic dual decomposition procedure (or SDDP, first introduced by

Pereira & Pinto (1991)). While this could be viewed as a 120-period lookahead model, it is perfectly

reasonable to define his base model as consisting of 120 periods. This is possible because after he

solves his 120-period problem, he has a series of Benders’ cuts that defines a policy for every state,

for every time period. This is possible because he makes an assumption known in this community

as intertemporal independence which means that after making a decision, the information process

refreshes itself and does not retain history (intertemporal independence simply means that we can

ignore the information process in the post-decision state). As a result, it is only necessary to compute

one set of cuts for every time period, rather than one for every node in a scenario tree. However,

SDDP requires approximating the underlying information process using a finite (and small) set of

sample realizations; the bounds on the quality of the solution are only bounds for this approximate

problem (see Shapiro et al. (2013)[section 3.1] and Philpott & Guan (2008)[section 2]).

Our own work (Powell et al. (2012a), Simao et al. (2009) and Powell & Topaloglu (2006) for

example) also uses value functions that are approximations of the base model, over the entire horizon.

In both sets of research, once the value functions (Benders’ cuts in Shapiro et al. (2013) and Sen &

Zhou (2014)) have been estimated, they can be used not just to determine the first period decision,

but all decisions over the horizon. These are examples of algorithms that are solving the base model

26



rather than a lookahead model.

Scenario trees always imply a lookahead policy, because stepping forward in the base model will

almost invariably put us in a state that is not represented in the scenario tree. Sen & Zhou (2014)

introduces multi-stage stochastic decomposition (MSD) building on the breakthrough of stochastic

decomposition for two-stage problems (Higle & Sen (1991)). The MSD algorithm generates scenarios

which asymptotically cover the entire state space, but any practical implementation (which is limited

to a finite number of samples) would still require re-optimizing after stepping forward in time, since

it is unlikely that we would have sampled the state that we actually transitioned to.

Even with these simplifications, optimal solutions of the lookahead model may still be quite

difficult, and a substantial literature has grown around the problem of solving stochastic lookahead

models (Rockafellar & Wets (1991), Higle & Sen (1996), Romisch & Heitsch (2009), Birge & Louveaux

(2011), King & Wallace (2012)). Often, exact solutions to even a simplified stochastic model are not

achievable, so considerable attention has been given to estimating bounds. But it is important to

realize:

• An optimal solution to a lookahead model is, with rare exceptions, not an optimal policy.

• A bound on a lookahead model is not a bound on the performance of the resulting policy (with

rare exceptions, such as Shapiro et al. (2013)).

For an in-depth treatment of the properties of lookahead policies, see the work of Sethi (see Sethi

& Haurie (1984), Sethi & Bhaskaran (1985) and Bhaskaran & Sethi (1987)). Not surprisingly, this

literature is restricted to very simple problems.

This is a good time to return to the comment of the helpful referee who felt that multistage

stochastic programming offered a richer framework than dynamic programming. The comment

ignores the idea that the stochastic program is actually a lookahead policy for solving a dynamic

program, and that what we care most about is the performance of the policy for solving the base

model (that is, equation (34)) rather than how well we solve the lookahead model (equation (31)).

This comment also ignores the fact that the lookahead model is itself a dynamic program (no matter

how it is solved), and many in the stochastic programming community even use value function

approximations (in the form of Benders’ cuts) to solve the lookahead model (see Shapiro et al.

(2009) and Jacobs et al. (1995) for examples). We feel that placing stochastic programming within

the broader framework of dynamic programming separates the lookahead model from the base model

(which is usually ignored). In addition, it helps to build bridges to other communities (especially

simulation), but raises new research questions, such as the performance of stochastic programming

as a policy rather than the value of the lookahead objective function.

27



6 Direct policy search versus Bellman error minimization

Lookahead policies represent powerful approximations for many problems, and are especially popular

for more complex problems. However, there are problems where it is possible to compute optimal

policies, and these can serve as useful benchmarks for approximate policies such as CFAs (estimated

using direct policy search), and policies based on VFAs (estimated using Bellman error minimization).

Consider a policy given by

Xπ
t (St|θ) = arg min

x∈Xt

C(St, x) + γ
∑
f∈F

θfφf (Sxt )

 . (42)

We now face a choice between two methods for choosing θ: Bellman-error minimization (which

produces a value function approximation), or direct policy search (which gives us a cost function

approximation). In this section, we are going to compare a series of strategies for estimating CFA-

and VFA-based policies using a relatively simple energy storage application.

With direct policy search, we choose θ by solving equation (34) using any of a range of stochastic

search methods (see Maxwell et al. (2010)[Section 5.4] for an example). If we use Bellman-error

minimization, we need to create estimates of the value of being in a state St, and then use these

estimates to update our value function approximation. One method, approximate value iteration,

computes estimates v̂nt (in iteration n) of the value of starting in some state Snt using

v̂nt = min
x∈Xt

(
C(Snt , x) + V

n−1
t (Sx,nt )

)
,

where Sx,nt is the post-decision state given that we are in state Snt and take action x.

A second method involves defining our policy using (42), and then simulating this policy from

time t until the end of the horizon following sample path ωn using

v̂nt =

T∑
t′=t

C(Snt′ , X
π(Snt′ |θn−1)),

where St′+1 = SM (Snt′ , x
n
t′ ,Wt′+1(ωn)). This is the foundation of approximate policy iteration, origi-

nally derived as backpropagation in the early work of Paul Werbos (Werbos (1974), Werbos (1989),

Werbos (1992)) who introduced the idea of backward differentiation. It is beyond the scope of our

presentation to discuss the merits of these two approaches (see chapters 9 and 10 of Powell (2011)),

but the key idea is to create an observation (or set of observations) of the value of being in a state

and then use these observations to obtain θn.

To provide a hint into the performance of these different methods, we have been running a series

of experiments on a relatively simple set of energy storage problems (some infinite horizon, others

28



finite horizon) which we are able to solve optimally, providing a benchmark. While this is just one

class of applications, the results are consistent with our experiences on other problems. Here are the

algorithms we have run:

1) A simple myopic policy (minimizes real-time costs now without regard to the future).

2) Basic least squares approximate policy iteration described in Lagoudakis & Parr (2003).

3) Least squares approximate policy iteration using instrumental variables (or projected Bellman

error minimization), also described in Lagoudakis & Parr (2003) and implemented in Scott et

al. (2013).

4) Direct policy search, using the same basis functions used in the testing with least squares policy

iteration (Scott et al. (2013), using Scott et al. (2011) to do the stochastic search).

5) Approximate value iteration with a backward pass (known as TD(1) in the reinforcement learning

community Sutton & Barto (1998) or backpropagation in the controls community Werbos

(1992)), but using a piecewise linear value function (in the energy resource variable) which

maintains concavity (see Salas & Powell (2013)).

6) Approximate policy iteration - Pham (2013) evaluated API using linear models, support vector re-

gression, Gaussian process regression, tree regression, kernel regression, and a local parametric

method, on a library of test problems with optimal solutions.

The first four problems were run on a steady state (infinite horizon) problem, while the rest were

all run on a finite horizon, time-dependent set of problems. Optimal policies were found using classical

value iteration to within 1 percent of optimality (with a discount factor of .9999, given the very small

time steps). Optimal policies were calculated by discretizing the problems and solving them using

classical (model-based) backward dynamic programming. These datasets were also evaluated by

Pham (2013) who tested a range of learning algorithms using approximate policy iteration.

Figure 6 shows the results of the first four experiments, all scaled as a percent of the optimal.

The runs using direct policy search were almost all over 90 percent of optimality, while the runs

using least squares policy iteration, which is based on Bellman error minimization, were much worse.

By contrast, the runs using approximate value iteration but exploiting concavity all consistently

produced results over 99 percent of optimality on the finite horizon problems (Salas & Powell (2013)).

These observations need to be accompanied by a few caveats. The use of the piecewise linear

value function approximation (used in Salas & Powell (2013)) scales well to time-dependent problems

with hundreds or thousands of storage devices and hundreds to thousands of time periods, but cannot

handle more than one or two “state of the world” variables which might capture information about

weather, prices and demands. Direct policy search works well when searching over a small number

of parameters (say, two or three), but would not scale to a time dependent problem where the

parameters vary over time (the VFA-based approach had no trouble with many time periods).

29



0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Algorithm performance as a percent of optimal

Myopic LSAPI IVAPI Direct

Figure 6: The performance of a series of approximation algorithms relative to the optimal solution
for 20 benchmark storage problems. These include: a myopic policy, a basic form of least squares
approximate policy iteration, LSAPI with instrumental variables, and direct policy search using the
same structure for the policy (from Scott et al. (2013)).

From this work (and related computational experience), we have been drawing the following

conclusions:

• Bellman error minimization works extremely well when we exploited convexity (Salas & Powell

(2013)), but surprisingly poorly (e.g., around 70 percent of optimal) using simple, quadratic

basis functions (which appeared to provide very reasonable estimates of the value function).

Higher order basis functions performed even worse.

• Policy search using the same structure of policy (same basis functions) performed very well

(around 95 percent of optimal). However, this is limited to low dimensional parameter vectors,

which excludes problems where the regression vector θ is a function of time.

• Approximate value iteration when exploiting convexity works best of all (over 98 percent of

optimal), but depends on our ability to approximate the value of multiple storage devices

independently using low-dimensional lookup tables where convexity is maintained (in the con-

trollable dimension). Without convexity, we have had no success with either approximate value

iteration or its close cousin, Q-learning (see Sutton & Barto (1998)).

• A deterministic lookahead policy underperformed approximate value iteration, but performed

as well as policy search (approximately 95-99 percent of optimal). The lookahead policy did not

require any training, but would require more computation compared to using a value function

once the VFA has been fitted.

30



• Approximate policy iteration worked adequately. Our best results on the storage problems,

using support vector regression, might get over 80 percent of optimal (sometimes to 90 percent)

after 10 policy iterations (each iteration required several thousand policy simulations). How-

ever, support vector regression is not well suited to recursive estimation, needed in algorithms

such as approximate value iteration.

One conclusion that emerged consistently from these results was that the presence of an optimal

benchmark provided tremendous insights into the quality of the solution. It was only through these

benchmarks that we were able to see that many of these apparently sophisticated algorithms actually

work quite poorly, even on a relatively simple problem class such as energy storage (we would never

have been able to get optimal benchmarks on more complex problems). We have been able to

get near-optimal solutions using value iteration, but only when we could exploit structure such as

convexity or concavity, and only when using a lookup table representation, which clearly limits the

scalability of these approaches to additional state variables. We were never able to get high quality

solutions using linear models using approximate value iteration (this was not a surprise, given known

theory) or approximate policy iteration (this was more of a surprise).

We note in closing this discussion that a number of authors have recognized that you can “tune

the value function” for a policy such as (29) using direct policy search (see Maxwell et al. (2013) for

a good example of this). However, if you are choosing θ to tune the policy in (29), we would argue

that the regression term
∑

f∈F θfφf (Sx) is no longer an approximate value function, since we are

not fitting the approximation to the value of being in a state.

If you are using policy search, we would argue that you are using a cost function approximation,

where the CFA policy is given by

XCFA(St|θ) = arg min
xt

C̄π(St, xt|θ)

= arg min
xt

C(St, xt) +
∑
f∈F

θfφf (Sxt )

 . (43)

When we do direct policy search, there is no reason to include any basis functions that are not a

function of xt, since terms that do not depend on xt are simply constants in the argmin in equation

(43). In our energy storage example, we used basis functions such as Stxt, xt and x2
t . Thus, there is

no reason to expect the correction term (involving the basis functions) to approximate in any way

the downstream value of being in state Sxt .

Our belief is that cost function approximations are widely used in engineering practice, but

without being identified as such. The storage example described in this setting represents an instance

of a problem where a CFA (constructed using a simple, additive correction term) works extremely

well. We suspect that there is no shortage of common sense approaches that can be used to make

a policy based on solving some deterministic model work better. We offer that the construction

of these approximations is exactly analogous to the steps involved in constructing value function

31



approximations or policy function approximations. All that has been missing is the idea that this

strategy should be recognized as a completely valid approach.

7 How do we choose a policy?

Instead of making choices such as “stochastic programming,” “dynamic programming,” or “simula-

tion,” we would like to ask readers to pose their choice as between “lookahead policies,” “policies

based on value function approximations,” or “policy function approximations.” Deterministic looka-

head policies which have been tweaked to produce more robust solutions (such as introducing safety

stocks or reserve capacities) should be viewed as lookahead cost function approximations. Cost func-

tion approximations are widely used in practice, but are generally dismissed as some sort of heuristic

compared to more elegant and “sophisticated” policies based on stochastic lookaheads (“stochas-

tic programming”) or value function approximations (“approximate dynamic programming”). We

would argue that all of these methods are, in the end, approximations that have to be tested, and

there is no reason to believe a priori that one will be better than another on a specific problem.

The reality is that with rare exceptions, all of these classes of policies are almost guaranteed

to be suboptimal. There is no apriori reason why a cost function approximation, policy function

approximation, policy based on value function approximation, or a lookahead which provides an

optimal solution to an approximate model, should be better than all the rest. Each class of policy

offers specific features that could produce superior results for a specific problem class.

So how to choose? Based on our experience, the following comments might provide guidance:

• Policy function approximations work best for low-dimensional actions, where the structure of

the policy is fairly obvious. (s, S) inventories are an easy example. Another is that we might

want to sell a stock when its price goes above a particular price. Policy function approximations

can also work well when the policy is a relatively smooth surface, allowing it to be approximated

perhaps by a linear function (known in the literature as “affine policies”) or locally linear

functions.

• Cost function approximations, which are typically variations of deterministic models, work

best when a deterministic model works well, and when the impact of uncertainty is easy to

recognize. It may be easy to see, for example, that we should provide a buffer stock to protect

against supply chain disruptions. Cost function approximations can be particularly attractive

when the decision xt is multidimensional, since we can typically solve a CFA-based policy using

a mathematical programming algorithm designed to handle constraints.

• Value function approximations are particularly useful when the value of the future given a state

is easy to approximate. When solving multidimensional resource allocation problems, keep in

mind that the value function only needs to communicate the marginal value, not the value of

being in a state. Also, the issue of value functions has nothing to do with size (we have used

32



value function approximations on very high dimensional applications in transportation with

state variables with 10,000 dimensions or more). Large problems can be easily approximated

using separable approximations. The real issue is nonseparable interactions. These are easy to

capture in a lookahead model, but are hard to approximate using a statistical model.

• Lookahead policies are particularly useful for time-dependent problems, and especially if there

is a forecast available that evolves over time. The parameters of a stochastic lookahead model

(e.g., the number of scenarios in a scenario tree, the number of stages, the horizon) should

always be tested in a simulator that is able to compare the performance of different policies.

Also, a stochastic lookahead model should always be compared to the performance of a deter-

ministic lookahead model. Just because the underlying problem is stochastic does not mean

that a deterministic lookahead model will not work.

Hybrid policies can be particularly valuable. Instead of building a lookahead policy over a long

horizon H, we can use a shorter horizon but then introduce a simple value function approximation

at the end. Cost function approximations over planning horizons can make a deterministic approxi-

mation more robust. Finally, you can tune a high-dimensional myopic policy (e.g., assigning drivers

to loads or machines to tasks) with low-order policy function approximations (“assign team drivers

to long loads”) by adding the low order policy functions as bonus or penalty terms to the objective

function.

We hope this discussion has helped to place stochastic programming, dynamic programming, and

simulation (using policy function approximations) in a common framework. Over time, these terms

have evolved close associations with specific classes of policies (lookahead policies, value functions,

and policy function approximations, respectively). It is for this reason that we suggest a new name,

computational stochastic optimization, as an umbrella for all of these fields (and more).

Acknowledgements

This research was supported by the National Science Foundation grant CMMI-0856153. We would

also like to warmly acknowledge the helpful comments of the two reviewers and managing editor.

References

Andradóttir, S. & Prudius, A. A. (2010), ‘Adaptive Random Search for Continuous Simulation
Optimization’, Naval Research Logistics 57(6), 583–604. 20

Bandi, C. & Bertsimas, D. J. (2012), ‘Tractable stochastic analysis in high dimensions via robust
optimization’, Mathematical Programming Series B 134, 23–70. 8

Barr, D. R. & Rizvi, M. H. (1966), ‘An introduction to ranking and selection procedures’, J. Amer.
Statist. Assoc. 61(315), 640– 646. 19

Bayraksan, G. & Morton, D. P. (2006), ‘Assessing solution quality in stochastic programs’, Math.
Program., Ser. B 108, 495–514. 19

33



Bayraksan, G. & Morton, D. P. (2009), Assessing Solution Quality in Stochastic Programs via
Sampling, in ‘TutORials in Operations Research’, Informs, Hanover, Md., pp. 102–122. 19, 25

Bellman, R. E. (1957), ‘Dynamic Programming’, Princeton University Press, Princeton, NJ. 4, 9

Ben-Tal, A., Ghaoui, L. E. & Nemirovski, A. (2009), Robust Optimization, Princeton University
Press, Princeton NJ. 8

Ben-Tal, A., Golany, B., Nemirovski, A. & Vial, J.-P. (2005), ‘Retailer-Supplier Flexible Com-
mitments Contracts: A Robust Optimization Approach’, Manufacturing & Service Operations
Management 7(3), 248–271. 25

Beyer, H. & Sendhoff, B. (2007), ‘Robust optimization - A comprehensive survey’, Computer Methods
in Applied Mechanics and Engineering 196(33-34), 3190–3218. 8

Bhaskaran, S. & Sethi, S. P. (1987), ‘Decision and Forecast Horizons in a Stochastic Environment:
A Survey’, Optimal Control Applications and Methods 8, 61–67. 27

Birge, J. R. & Louveaux, F. (2011), Introduction to Stochastic Programming, 2nd edn, Springer, New
York. 18, 19, 24, 27

Boesel, J., Nelson, B. L. & Kim, S. (2003), ‘Using ranking and selection to “clean up” after simulation
optimization’, Operations Research 51(5), 814–825. 19

Bouzaiene-Ayari, B., Cheng, C., Das, S., Fiorillo, R. & Powell, W. B. (2012), From Single Commodity
to Multiattribute Models for Locomotive Optimization: A Comparison of Integer Programming
and Approximate Dynamic Programming. 2, 17

Camacho, E. & Bordons, C. (2004), Model Predictive Control, Springer, London. 25

Chang, H. S., Fu, M. C., Hu, J. & Marcus, S. I. (2007), Simulation-based Algorithms for Markov
Decision Processes, Springer, Berlin. 19

Chick, S. E. & Gans, N. (2009), ‘Economic analysis of simulation selection problems’, Management
Science 55(3), 421–437. 20

Chick, S. E., He, D. & Chen, C.-h. (2007), ‘Opportunity Cost and OCBA Selection Procedures in
Ordinal Optimization for a Fixed Number of Alternative Systems’, IEEE Transactions on Systems
Man and Cybernetics Part C-Applications and Reviews 37(5), 951–961. 20

Defourny, B., Ernst, D. & Wehenkel, L. (2013), ‘Scenario Trees and Policy Selection for Multistage
Stochastic Programming using Machine Learning’, Informs J. on Computing pp. 1–27. 17, 25

Dorfman, R. (1984), ‘The Discovery of Linear Programming’, Annals of the History of Computing
6(3), 283–295. 1

Dupačová, J., Consigli, G. & Wallace, S. (2000), ‘Scenarios for multistage stochastic programs’,
Annals of Operations Research 100, 25–53. 26

Fu, M. C., Glover, F. & April, J. (2005), ‘Simulation optimization: a review, new developments, and
applications’, Proceedings of the 37th conference on Winter simulation pp. 83–95. 20

Gittins, J., Glazebrook, K. & Weber, R. R. (2011), Multi-Armed Bandit Allocation Indices, John
Wiley & Sons, New York. 11

Hastie, T., Tibshirani, R. & Friedman, J. (2009), The elements of statistical learning: data mining,
inference and prediction, Springer, New York. 17

Higle, J. & Sen, S. (1991), ‘Stochastic decomposition: An algorithm for two-stage linear programs
with recourse’, Mathematics of Operations Research 16(3), 650–669. 27

34



Higle, J. & Sen, S. (1996), Stochastic Decomposition: A Statistical Method for Large Scale Stochastic
Linear Programming, Kluwer Academic Publishers. 27

Hong, L. & Nelson, B. L. (2007), ‘A framework for locally convergent random-search algorithms for
discrete optimization via simulation’, ACM Transactions on Modeling and Computer Simulation
17(4), 1–22. 20

Jacobs, J., Freeman, G., Grygier, J., Morton, D. P., Schultz, G., Staschus, K. & Stedinger, J. (1995),
‘SOCRATES-A system for scheduling hydroelectric generation under uncertainty’, Ann. Oper. Res
59, 99–133. 26, 27

Jin, S., Ryan, S., Watson, J. & Woodruff, D. (2011), ‘Modeling and solving a large-scale generation
expansion planning problem under uncertainty’, Energy Systems 2, 209–242. 26

King, A. J. & Wallace, S. (2012), Modeling with stochastic programming, Springer Verlag, New York.
27

Kleywegt, A. J., Shapiro, A. & Homem-de Mello, T. (2002), ‘The sample average approximation
method for stochastic discrete optimization’, SIAM J. Optimization 12(2), 479–502. 20

Lagoudakis, M. & Parr, R. (2003), ‘Least-squares policy iteration’, Journal of Machine Learning
Research 4, 1107–1149. 29

Lewis, F. L., Vrabie, D. & Syrmos, V. L. (2012), Optimal Control, 3rd edn, John Wiley & Sons,
Hoboken, NJ. 9, 25

Mak, W.-K., Morton, D. P. & Wood, R. (1999), ‘Monte Carlo bounding techniques for determining
solution quality in stochastic programs’, Operations Research Letters 24(1-2), 47–56. 25

Maxwell, M. S., Henderson, S. G. & Topaloglu, H. (2013), ‘Tuning approximate dynamic program-
ming policies for ambulance redeployment via direct search’, Stochastic Systems 3(2), 322–361.
31

Maxwell, M. S., Restrepo, M., Henderson, S. G. & Topaloglu, H. (2010), ‘Approximate Dynamic
Programming for Ambulance Redeployment’, INFORMS Journal on Computing 22(2), 266–281.
28

Mccusker, S. A., Hobbs, B. F., Member, S. & Ji, Y. (2002), ‘Production Costing and Generalized
Benders Decomposition’, 17(2), 497–505. 25

Mulvey, J. M., Vanderbei, R. J. & Zenios, S. A. (1995), ‘Robust Optimization of Large-Scale Systems’,
Operations Research 43(2), 264–281. 25

Pereira, M. F. & Pinto, L. M. V. G. (1991), ‘Multi-stage stochastic optimization applied to energy
planning’, Mathematical Programming 52, 359–375. 17, 26

Pham, T. (2013), Experiments with Approximate Policy Iteration, PhD thesis, Princeton University.
29

Philpott, A. & Guan, Z. (2008), ‘On the convergence of stochastic dual dynamic programming and
related methods’, Operations Research Letters 36(4), 450–455. 25, 26

Powell, W. B. (2011), Approximate Dynamic Programming: Solving the curses of dimensionality, 2
edn, John Wiley & Sons, Hoboken, NJ. 6, 11, 18, 28

Powell, W. B. & Ryzhov, I. O. (2012), Optimal Learning, John Wiley & Sons, Hoboken, NJ. 11, 20

Powell, W. B. & Topaloglu, H. (2006), ‘Dynamic-programming approximations for stochastic time-
staged integer multicommodity-flow problems’, Informs Journal on Computing 18(1), 31. 26

35



Powell, W. B., George, A., Simão, H. P., Scott, W. R., Lamont, A. D. & Stewart, J. (2012a),
‘SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and
Policy’, Informs J. on Computing 24(4), 665–682. 2, 26

Powell, W. B., Simao, H. P. & Bouzaiene-Ayari, B. (2012b), ‘Approximate dynamic programming in
transportation and logistics: a unified framework’, EURO Journal on Transportation and Logistics
1(3), 237–284. 2, 26

Puterman, M. L. (2005), Markov Decision Processes, 2nd edn, John Wiley and Sons, Hoboken, NJ.
4, 6, 9, 22

Rockafellar, R. T. & Uryasev, S. (2013), ‘The fundamental risk quadrangle in risk management,
optimization, and statistical estimation’, Surveys in Operations Research and Management Science
18(1), 33–53. 8

Rockafellar, R. T. & Wets, R. J.-B. (1991), ‘Scenarios and policy aggregation in optimization under
uncertainty’, Mathematics of Operations Research 16(1), 119–147. 24, 25, 27

Romisch, W. & Heitsch, H. (2009), ‘Scenario tree modeling for multistage stochastic programs’,
Mathematical Programming 118, 371–406. 19, 27

Ruszczyski, A. (2010), ‘Risk-averse dynamic programming for Markov decision processes’, Mathe-
matical Programming 125(2), 235–261. 7

Salas, D. F. & Powell, W. B. (2013), Benchmarking a Scalable Approximate Dynamic Programming
Algorithm for Stochastic Control of Multidimensional Energy Storage Problems, Technical Re-
port 2004, Department of Operations Research and Financial Engineering, Princeton University,
Princeton, N.J. 29, 30

Scott, W. R., Frazier, P. & Powell, W. B. (2011), ‘The Correlated Knowledge Gradient for Simulation
Optimization of Continuous Parameters using Gaussian Process Regression’, SIAM Journal on
Optimization 21(3), 996. 29

Scott, W. R., Powell, W. B. & Moazeni, S. (2013), Least Squares Policy Iteration with Instrumental
Variables vs . Direct Policy Search: Comparison Against Optimal Benchmarks Using Energy
Storage, Technical report, Dept. of Operations Research and Financial Engineering, Princeton
University, Princeton, N.J. 29, 30

Sen, S. & Zhou, Z. (2014), ‘Multistage stochastic decomposition: A bridge between stochastic pro-
gramming and approximate dynamic programming’, SIAM J. Optimization 24(1), 127–153. 26,
27

Sethi, S. P. & Bhaskaran, S. (1985), ‘Conditions for the Existence of Decision Horizons for Discounted
Problems in a Stochastic Environment’, Operations Research Letters 4, 61–64. 27

Sethi, S. P. & Haurie, A. (1984), ‘Decision and Forecast Horizons, Agreeable Plans, and the Maximum
Principle for Infinite Horizon Control Problem’, Operations Research Letters 3, 261–265. 27

Shapiro, A. (2003), Monte Carlo sampling methods, in A. Ruszczynski and A. Shapiro, ed., ‘Stochas-
tic Programming, Handbook in OR & MS, Vol. 10’, North-Holland, Amsterdam. 18

Shapiro, A., Dentcheva, D. & Ruszczyski, A. (2009), Lectures on stochastic programming: modeling
and theory, SIAM, Philadelphia. 7, 18, 19, 27

Shapiro, A., Tekaya, W., Paulo, J. & Pereira, M. F. (2013), ‘Risk neutral and risk averse Stochastic
Dual Dynamic Programming method’, European J. Operational Research 224, 375–391. 17, 26, 27

Simao, H. P., Day, J., George, A., Gifford, T., Powell, W. B. & Nienow, J. (2009), ‘An Approxi-
mate Dynamic Programming Algorithm for Large-Scale Fleet Management: A Case Application’,
Transportation Science 43(2), 178–197. 2, 17, 26

36



Spall, J. C. (2003), Introduction to Stochastic Search and Optimization: Estimation, Simulation and
Control, John Wiley & Sons, Hoboken, NJ. 19

Sutton, R. S. & Barto, A. G. (1998), Reinforcement Learning, Vol. 35, MIT Press, Cambridge, MA.
29, 30

Swisher, J. R., Hyden, P. D., Jacobson, S. H. & Schruben, L. W. (2000), ‘A survey of simulation
optimization techniques and procedures’, Proceedings of the winter simulation conference pp. 119–
128. 20

Takriti, S., Birge, J. R. & Long, E. (1996), ‘A stochastic model for the unit commitment problem’,
Power Systems, IEEE Transactions on 11(3), 1497–1508. 25, 26

van der Weijde, A. H. & Hobbs, B. F. (2012), ‘The economics of planning electricity transmission
to accommodate renewables: Using two-stage optimisation to evaluate flexibility and the cost of
disregarding uncertainty’, Energy Economics 34(6), 2089–2101. 25

Vanderbei, R. J. (1996), Linear Programming: Foundations and Extensions, Kluwer’s International
Series, New York. 1

Wallace, S. & Fleten, S.-E. (2003), Stochastic Programming Models in Energy, in A. Ruszczynski &
A. Shapiro, eds, ‘Stochastic Programming’, Vol. 10, Elsevier Science B.V., Amsterdam, chapter 10,
pp. 637–677. 26

Werbos, P. J. (1974), Beyond regression: new tools for prediction and analysis in the behavioral
sciences, PhD thesis, Harvard University. 28

Werbos, P. J. (1989), ‘Backpropagation and neurocontrol: A review and prospectus’, Neural Networks
pp. 209—-216. 28

Werbos, P. J. (1992), Approximate Dynamic Programming for Real-Time Control and Neural Mod-
elling, in D. J. White & D. A. Sofge, eds, ‘Handbook of Intelligent Control: Neural, Fuzzy, and
Adaptive Approaches’. 28, 29

37


	Introduction
	Modeling a sequential stochastic optimization problem
	A dynamic programming ``model''
	A stochastic programming ``model''
	The five elements of a sequential decision problem

	What is a state variable?
	Designing policies
	The four classes of policies
	Approximating functions
	Evaluating a policy
	Searching for the best policy

	Lookahead policies
	An optimal policy using the base model
	Building an approximate lookahead model
	A deterministic lookahead model
	A stochastic lookahead model
	Evaluating a lookahead policy
	Comments

	Direct policy search versus Bellman error minimization
	How do we choose a policy?
	References

