
Adaptive Labeling Algorithms for the
Dynamic Assignment Problem

WARREN B. POWELL AND WAYNE SNOW

Department of Operations Research and Financial Engineering, Princeton University, Princeton, New Jersey 08544

RAYMOND K. CHEUNG

Department of Industrial Engineering and Engineering Management, Hong Kong University of Science and Technology,
Clearwater Bay, Kowloon, Hong Kong

We consider the problem of dynamically routing a driver to cover a sequence of tasks (with no
consolidation), using a complex set of driver attributes and operational rules. Our motivating
application is dynamic routing and scheduling problems, which require fast response times, the
ability to handle a wide range of operational concerns, and the ability to output multiple
recommendations for a particular driver. A mathematical formulation is introduced that easily
handles real-world operational complexities. Two new optimization-based heuristics are de-
scribed, one giving faster performance and the second providing somewhat higher solution
quality. Comparisons to optimal solutions are provided, which measure the quality of the
solutions that our algorithms provide. Experimental tests show that our algorithms provide
high quality solutions, and are fast enough to be run in real-time applications.

We consider the problem of routing and sched-
uling a heterogeneous set of drivers to cover a
known set of tasks. There is a reward for covering
each task, and not all the tasks have to be covered.
The reward received can depend on when a task is
covered, and the cost of covering a task can be de-
pendent, in an arbitrary way, on the characteristics
of the driver. After a driver has finished one task, he
may be free to cover another task, although subse-
quent assignments have to obey hours of service
regulations and service commitments on tasks. A
driver may or may not have to return home at the
end of a shift, and we may be planning tours for the
driver for several days into the future. A driver can
handle only one task at a time; there is no in-vehicle
consolidation. A task might represent a job that has
to be performed at a specific location, but our work is
motivated by applications where the task involves
moving a load of freight from one location to another,
thereby adding a spatial element to the problem.

The construction of each tour is subject to various
constraints, such as government regulations on
driver hours and constraints associated with each
task. For example, each task has an associated time

window and the driver must arrive at the origin and
destination of the task between their respective time
windows. Other constraints might reflect driver ca-
pabilities and load characteristics; for example, the
load might require a driver with certain training or
a specific type of tractor. Because there are very few
hard constraints in real-time operations, assign-
ments that violate stated goals are assessed penal-
ties according to a function that varies according to
the constraint violation. Similar penalty functions
can also be constructed for other assignment rules and
calibrated to simulate the human decision process.

This paper presents two algorithms, which are
optimization-based heuristics, that solve this type of
problem, which we refer to as the dynamic assign-
ment problem. Our work is motivated by the need to
solve these problems in a real-time setting. This
need imposes three constraints on our solution ap-
proach. First, the run times must be exceptionally
fast. In real problems, data updates can come in
every few seconds, so the algorithm must be able to
produce a revised solution very quickly for problems
with perhaps 500 drivers. As a result, the algorithm
must be amenable to finding new solutions given

50

Transportation Science, © 2000 INFORMS 0041-1655 /00 /3401-0050 $05.00
Vol. 34, No. 1, February 2000 pp. 50–66, 1526-5447 electronic ISSN

small perturbations to the problem, with sufficiently
high quality that a dispatcher cannot readily find a
better solution. Second, operational problems can be
extremely complex. There is a lot more data avail-
able and issues to be considered in a real-time set-
ting than is generally considered in more classical
(static) planning problems. As a result, the modeling
approach must be able to handle high levels of detail
and complex operational issues very easily.

Third, we need to output not only a recommended
tour, but alternative recommendations. In an oper-
ational problem, it is simply impossible to get all of
the data right all of the time. As a result, a model
that outputs a specific tour is typically of limited
usefulness. Instead, an optimization model needs to
give alternative task assignments for a particular
driver, and alternative driver assignments for a par-
ticular task. An experienced dispatcher can use this
information to make an assignment that considers
other information that may not be in the computer.
Thus, we need not only primal information (what
the model recommends) but also dual information,
so that the dispatcher can, in real-time (and without
requiring a reoptimization by the model) identify
sensible alternatives when the recommended solu-
tion is deemed to be inappropriate.

In this paper, we consider only static snapshots of
data. We present our two algorithms and compare
the solutions generated by these algorithms to an
optimal solution, a comparison that can only be per-
formed in a static setting. Our goal is to establish
the flexibility of the modeling framework, and the
quality of the solution in a static setting. The testing
of these algorithms on a dynamic data set will be
presented in a subsequent paper. However, we dem-
onstrate that our methods provide fast solutions
that are of very high quality for problems that are
likely to arise in practice.

The problem we address in this paper has been
handled in the literature under titles such as the
vehicle scheduling problem, the full-truckload prob-
lem, or the crew scheduling problem. The vehicle
scheduling problem, or the full-truckload problem,
are typically cast in relatively simple terms, where a
set of vehicles needs to cover a set of loads. Tours
may need to cover tasks within a time window, and
the length of the tour is typically constrained to the
maximum number of hours a driver can spend on
the road (see BALL et al., 1981; BODIN et al., 1983;
ATKINSON, 1994, for example). This earlier work
primarily used tour construction and tour improve-
ment procedures. There now exists an extensive
body of literature on local search and improvement
procedures that have been primarily developed in
the context of vehicle routing problems (which in-

volve in-vehicle consolidation), but which could just
as easily be adapted for vehicle scheduling prob-
lems. Examples can be found in GOLDEN and ASSAD
(1986), SOLOMON (1987), SOLOMON, BAKER, and
SCHATTER (1988), SAVELSBERGH (1985) and the
more recent literature on tabu search, including
GLOVER (1989, 1990) and GENDREAU, HERTZ, and
LAPORTE (1994).

The use of local search heuristics in a real-time
setting has received relatively little attention. A nice
discussion of some of the issues is given in
PSARAFTIS (1988). A significant drawback is the re-
sponse time. The problem is not the speed of the
algorithms, but rather the speed of communication
between an on-line dispatch system and an optimi-
zation model. A dispatcher may receive a phone call
with new information, and may have to assign a
driver to the request while on the phone. There may
not be enough time, in many practical settings, to
send the information to an optimization algorithm
and then wait for a response. An effective strategy
that has proved successful in the truckload motor
industry is to use the dual solution to offer a series
of recommendations (based on the reduced cost of
the assignment).

An alternative technology is the column genera-
tion/set partitioning strategy developed in the con-
text of airline crew scheduling (see, for example,
MARSTEN and SHEPARDSON, 1981; DESROSIERS,
SOUMIS, and DESROCHERS, 1984; and DESROSIERS,
SOLOMON, and SOUMIS, 1995). These techniques of-
fer the ability to incorporate a wide variety of com-
plex work rules, and do offer dual solutions from
which alternative solutions can be generated. A sig-
nificant weakness is their slow execution time (even
with dual variables, we need to reoptimize as
quickly as possible) especially in the presence of
wide time windows (as we have). Also, column-gen-
eration strategies ensure that we have generated
the optimal columns, but it is not clear if we have
generated a high quality set of suboptimal columns.
For example, assume a single driver can cover five
loads during a day, and, each time he is assigned to
a load, there are 20 loads to choose from. There are,
then, potentially 205 � 320,000 columns to choose
from. A column-generation code will sample only a
small percentage of these, and thus may not provide
enough options for a production system where so-
called optimal tours are, in fact, not at all optimal
because of data problems.

This paper makes the following contributions:

● We present a formulation that readily handles a
high degree of operational detail within a very
simple mathematical framework. The formula-

51ADAPTIVE LABELING FOR ROUTING AND SCHEDULING /

tion is math programming-based, and provides
the dual information needed to produce alterna-
tive recommendations, as needed in real-time
applications. We believe that our formulation of
this problem is new.

● We present two new heuristic algorithms for
solving this problem class. The algorithms are
similar, and are denoted by the name RAPID
(Resource Allocation Procedure for the Inte-
grated Dynamic Assignment Problem). The
first, RAPID-SL (single label), is exceptionally
fast and provides high quality solutions to prob-
lems where the number of drivers or vehicles is
sufficient to handle most of the tasks presented
to the fleet. The second, RAPID-ML (multi-la-
bel), is somewhat slower but provides higher
quality solutions than RAPID-SL, especially
when the problems are resource constrained
(more tasks than can be covered by the available
drivers or vehicles).

● We compare solutions produced by both algo-
rithms to optimal solutions in a variety of prob-
lem settings (using static data sets) to provide a
rigorous estimate of the quality of the solutions
provided by both algorithms. The work shows
that RAPID-SL provides high quality solutions
very quickly, although solution quality deterio-
rates in more tightly capacitated problems.
RAPID-ML provides comparable results in
problems that are not resource constrained, but
much better results in problems that are re-
source constrained.

The RAPID algorithms belong in the same family
of procedures as column generation methods. The
primary difference is that, although column gener-
ation uses a master problem/subproblem format, we
integrate the dual adjustment and column genera-
tion steps into a single procedure.

Our two algorithms differ in terms of how we
represent the attributes of a driver (or vehicle) fol-
lowing the completion of a task. We begin in Section
1 with a formulation that uses a single label to
describe a driver after a task completion. Next, Sec-
tion 2 extends this concept to a multi-label concept,
which uses a set of labels to represent potential
drivers at the end of a task. Then, Section 3 develops
an algorithm using the multi-label concept. Section
4 describes a comprehensive set of numerical exper-
iments, where the algorithms are compared to each
other and to an optimal solution based on a column-
generation technique. Finally, Section 5 summa-
rizes the results of the research.

1. THE SINGLE-LABEL LABELING ALGORITHM

IN OUR FIRST ALGORITHM, we represent the at-
tributes of a driver by a label. The labels for the
drivers are iteratively updated in the algorithm. In
the following, we first present the notation, then the
mathematical formulation, followed by a description
of the algorithm.

1.1 Notation

We consider the notations used for tasks, drivers,
the decisions for assigning drivers to tasks, and the
costs involved.

Task Attribute and Driver Labels

Associated with a task are two sets of labels—one
describes the attributes of that task and the other
describes the attributes of the driver who has just
completed that task. There are two types of drivers:
real or potential. The real drivers are those whose
attributes are known, typically the set of initial driv-
ers. After a real driver covers a task, a new driver is
generated, which we refer to as a potential driver.
This potential driver can then cover other tasks,
resulting in other potential drivers as illustrated in
Figure 1.

To simplify our notation, we assume that the set of
initial drivers are generated by some dummy tasks.
Let

�0 � set of dummy tasks that generate the initial
drivers

�a� set of actual tasks to be covered
� � set of all tasks � �0 � �a

� � index of a particular task, � � �.

The number of attributes for a task is arbitrary
and depends on the applications. Let

� � space containing all possible task attribute
labels

b� � the attribute label associated with task �.

In our presentation, we assume that there are only
five attributes for each task �, defined as

b� � �
b�,1

b�,2

b�,3

b�,4

b�,5

� � �
origin
destination
start of origin time window
end of origin time window
length of task

� .

Fig. 1. Potential drivers.

52 / W. B. POWELL, W. SNOW, AND R. K. CHEUNG

For the driver label, let

� � space containing all possible driver attribute
labels

a� � the driver label associated with the driver gen-
erated by task �.

We assume that there are only four attributes for
each driver r:

a� � �
a�,1

a�,2

a�,3

a�,4

�
� �

location
time of availability
hours of service elapsed at time a�,2

daily duty time allowance
� .

Costs

The costs and travel times are defined over the
attribute space because a task can be covered by a
real driver or a potential driver whose attributes are
not known initially. Let � be the set of real num-
bers. For each a � � and b � � define

v: � 3 � � salvage function for a driver label
a

�: � � � 3 � � total travel time incurred in
driver label a covering a task with
attribute label b

c: � � � 3 � � net contribution associated with
driver label a covering a task with
attribute label b.

The number v(a) represents the value of strand-
ing a driver with attribute a. This may be a cost in
the case where a driver has to return home, or it
may be an expected revenue derived from historical
data. Notice that v(a) is a useful construct in prob-
lems that may not have a well-defined end of hori-
zon. The revenue and cost functions are defined over
driver and task labels, which allows us to incorpo-
rate a great deal of complexity into these functions
as the application requires. Notice that c(a��, �) rep-
resents the contribution of covering task � by the
driver generated by task ��. For fixed �� and �, the
value of c(a��, �) can vary because it depends on the
attributes of �� and �.

Driver–Task Assignment

When the driver generated by a task �� with at-
tribute label a�� � � covers a task with attribute
label b� � �, it generates a new driver with label a�,

defined by

��a�� , b�� � a� � �
a�,1

a�,2

a�,3

a�,4

� � �
b�,2

��a�� , b�� � a��,2

��a�� , b�� � a��,3

a��,4

� .

The mapping, �: � � �3 �, defines the attributes
of a new potential driver r that will be available at
the destination of task �.

Decision Variables

A driver (real or potential) has two options: covers
a task or is unassigned. Thus, the decision variables
are given by

x��,� � � 1 if the driver generated
by task �� covers task �

0 otherwise,

z� � � 1 if the driver generated
by task � is unassigned to any task.

0 otherwise.

Subtours

A subtour contains a sequence of chained driver–
task assignments. Let

� � set of subtours
s � index of a subtour, s � �
�s� � number of arcs in the subtour.

A subtour s can be represented by a sequence of task
pairs,

���s1 , �s2�, ��s2 , �s3�, . . . , �� �s� , �s1��.

In the subtour, the potential driver generated by
task �s1

will eventually cover task �s1
, creating a

loop that is not allowed in the solution.

1.2 Formulation

Using the notation presented so far, the problem
formulation is given by

Maximize
x, z

�
����

�
���

c�a�� , b��x��,� � �
����

z��v�a��� (1)

subject to

�
����

��a�� , b�� x��,� � a� � 0 @� � �a (2)

�
����

x��,� � � �
����

x�,�� � z�� � 0 @� � �a (3)

�
����

x�,�� � z� � 1 @� � �0 (4)

53ADAPTIVE LABELING FOR ROUTING AND SCHEDULING /

�
����

x��,� � 1 @� � � (5)

�
���

x��,� � 1 @�� � � (6)

z�� � �0, 1� @�� � � (7)

x��,� � �0, 1� @��, � � � (8)

�
���, ���s

x��,� � 1 � �s � � 0 @s � �, �s � � 2 (9)

Constraint 2 represents the definition of the at-
tribute vector of a future driver label (introducing,
at the same time, a complex nonlinear constraint).
Constraint 3 ensures that flow conservation is main-
tained for each task. Constraint 4 means that an
initial driver must either cover a task or be unas-
signed. Constraints 5 and 6 are the bundle con-
straints for each task and driver. These constraints
make sure that each task will be covered by at most
one driver, and each driver can cover at most one
task at a time. Constraints 7 and 8 are the integral-
ity constraints on the decision variables. Finally,
constraint 9 prevents subtours.

1.3 RAPID-SL Algorithm

The difficulties in solving the optimization defined
by 1–9 come from two aspects. First, the problem is
an integer program that can contain a large number
of subtour constraints. Second is the presence of the
highly nonlinear constraint in Eq. 2. In the RAP-
ID-SL algorithm, we iteratively fix the labels a�, l �
�a to a value a�

k (in iteration k). This eliminates Eq.
2 and also allows us to define

c� ��,�
k � c�a�

k , b��.

We may now rewrite the objective function as

F�ak� � Maximize
x, z

�
����

�
���

c� ��,�
k , x��,� � �

����

z��v�a���,

(10)

subject to 3–9. The problem F(ak) is now just a
driver scheduling problem. If we relax the subtour
constraints 9, the resulting problem is a pure net-
work that can be solved easily.

We propose an algorithm with an outer iteration
that fixes the labels ak, and an iteration that penal-
izes violations of the subtour constraints. Our up-
dating rules are quite simple. The important re-
search result is that the algorithm works quite well
under many situations that arise in practice, and
easily handles very large problems (e.g., hundreds of
vehicles) in real-time.

Let

�s � a multiplier (penalty cost)

for the sth subtour constraint.

The steps and the interpretation of the algorithm
are as follows.

Step 1. Initialization

k � 0.

For each � � �, generate a driver label a� such that

a�,1 � b�,2

a�,2 � b�,3 � b�,5

a�,3 � b�,5

Compute c���,�
k � c(a��

k , b�), @r � �, � � �.

Explanation. RAPID-SL builds an initial esti-
mate of a driver label by giving it the most opti-
mistic set of attributes possible given that we
know it has covered this task. For example, if the
time window on the task origin starts at 3:00 P.M.
and the task takes one hour to complete, then the
most optimistic time of availability is 4:00 P.M.
The other attributes are set using similar reason-
ing and are continually revised at each iteration
as tasks are covered.

Step 2. Flow adjustment
Set k � k 	 1, solve the relaxation problem (P1)
below as a minimum cost flow problem. For sub-
tour s, set �s � 0

Explanation. After relaxing the subtour con-
straint, the resulting optimization is

�P1� Maximize
x, z

�
����

�
���

c� ��,�
k x��,� � �

����

z��v�a��
k �

 �
�s��, �s��2�

�s� �
�, ���s

x�,�� � 1 � �s ��
subject to constraints 3– 8

Initially, �s are 0 but will be updated in Step 3.
Problem P1 is a pure network flow problem that
can be solved by standard optimization technique
such as network simplex algorithm.

Step 3. Identify and eliminate subtours
Find a subtour s with positive flow, that is, to find
s such that

s � ���s1 , �s2�, ��s2 , �s3�, . . . , �� �s� , �s1��

where x�s1,�s2
� 1, x�s2,�s3

� 1, . . . , and x� �s�,�s1
� 1.

54 / W. B. POWELL, W. SNOW, AND R. K. CHEUNG

Calculate

�s � min
���, ���s

�c� ��,�
k � p�� � p�� (11)

Update �s � �s 	 �s
Solve Problem P1 again.
Repeat this step until no subtour exists in the
optimal solution; or until a prespecified number of
times.

Explanation. We first identify the subtours cre-
ated by the optimal solution of P1. Then, we use
the dual variables to increase the cost of the arcs
in the subtours for penalizing the formation of
such subtours when P1 is re-optimized.

Step 4. Label and cost adjustment
Update the labels for potential drivers:

For each �� � �0:

while x��,� � 1 for some � � � do the following:

Obtain a�
k � �(a��

k , b�).

Compute c���,�
k � c(a�

k, b�̂) @�̂ � �.

�� 4 �.

Explanation. Here we trace out the assignments
made for each driver and update the potential
driver attributes to those of the driver that now
covers that task. Having changed the potential
driver, we then re-cost all the arcs out of that
potential driver.

Step 5. Termination check
If no assignments have changed from the last
iteration or k reaches a pre-specified maximum
allowable number of iterations, then we terminate
the algorithm. Otherwise, go to Step 2.

The strengths of this procedure are that it lends
itself very well to real-time updating, requiring only
a few iterations to perform real-time updates. One
clear disadvantage is the development of subtours
that can have a significant impact on solution qual-
ity. We use a Lagrangian approach to mitigate the
formulation of subtours, but this does not completely
eliminate the problem. In addition, the labels can
alternate between discrete values, creating another
source of instability.

2. MULTI-LABEL FOR DRIVER-TASK ASSIGNMENT

WE NOW EXTEND the notion of a single potential
driver at the end of each task to a set of path-
dependent drivers. With this new notion, we develop
an algorithm RAPID-ML whose details are de-
scribed shortly. There are two major differences be-
tween the labels used in RAPID-SL and those in

RAPID-ML. First, in RAPID-SL, after a task is cov-
ered, a potential driver is generated and we approx-
imate its attributes. In RAPID-ML, a set of possible
drivers are associated with a task. For each possible
driver, we keep track of the path to reach the cur-
rent task. Second, in RAPID-ML, using these driver
labels, we can generate tour labels, which corre-
spond to possible sequences of tasks that any driver
with a specific set of attributes may perform in the
future. These tour labels are similar to those found
in column-generation approaches to this problem.
Thus, at any task �, in addition to the task labels
that are the same as those in RAPID-SL, there exist
two sets of labels: driver labels and tour labels. To
completely represent a task, we must include all the
labels at that task. Each driver label describes the
past of a specific driver that may cover that task. In
contrast, each tour label describes one possible fu-
ture for a driver that covers this task. In RAPID-SL,
we do not use tour labels. In this section, we describe
the labels in detail.

2.1 Driver Labels

The attribute label a� for a potential driver gen-
erated by task � in RAPID-SL is now replaced by a
set of driver labels describing the possible drivers
generated by this task. Let

�� � set of possible path-dependent drivers at the
completion of task �, @� � �

�� � set of all possible driver labels associated with
the path-dependent drivers in �� at the com-
pletion of task �, @� � �

� � ���� ��.

We now use a cone to denote the set of drivers at
a task and a triangle to represent a single driver
label in that set. Figure 2 shows the various ways for
each driver to cover task 2. Each different path
produces a separate driver label at task 2 that is
specific to the path taken by that driver. The two
drivers have a total of five different paths to reach
task 2, and thus create five different driver labels at
task 2. For each driver label, we also include addi-
tional attributes to specify the path to reach the
current task. To simplify our discussion, let us in-
troduce two functions defined for a driver r � ��

with the label ar � ��:

prev_task(ar) � the last task before task � on the
path that generate driver r

prev_label(ar)� the driver label for the last driver
before task � on the path that gen-
erates driver r.

For example, in Figure 2, prev�task(a6) returns task
1 and prev�label(a6) returns a1.

55ADAPTIVE LABELING FOR ROUTING AND SCHEDULING /

2.2 Tour Labels

Each tour label describes one possible sequence of
tasks that a driver may perform after it has com-
pleted a task. To be sure that the tour is feasible for
a given driver, each label contains information about
the tour. Let

	 � space containing all possible tours labels
	� � set of tour labels at the completion of task �, @�

� �.

Each tour label t, t � 	�, has the following at-
tributes:

t � �
t1

t2

t3

t4

� � �
future revenue attainable

from covering the tour
time required to complete the

tour and attain t1

latest arrival time at task � for
attaining t1 in time t2

terminating location for the tour

�.

The set of tour attributes can be expanded as the
application requires.

We use a sphere to represent the set of tour labels
and a circle represents a single tour label. Some
examples of tour labels are shown in Figure 3. Label
t1 describes the tour that covers task 2 after task 1
and then terminates. Label t3 describes the tour
that covers task 4 and then 2, after task 3 has been
completed. Notice that there is only one label, t2, at
task 2. This is because all the tours that cover this
task terminate there and, hence, will have the same
tour label.

2.3 Label Generation

Suppose that the driver r� � ��� will cover task �
as shown in Figure 4, a new driver r is generated at
the completion of task �. The attributes of the newly
created driver label ar are similar to those of the
driver label in RAPID-SL, but with the additional

Fig. 2. Illustration of driver labels.

Fig. 3. Forward tours represented by each tour label: a tour label captures the characteristics of a tour that might start with a particular
task.

56 / W. B. POWELL, W. SNOW, AND R. K. CHEUNG

attributes for tracking the last task visited (i.e., task
��) and the corresponding driver label in the last
task (i.e., ar�).

After the driver labels have been generated, which
correspond to a sequence of tasks in a tour, we can
use these labels to generate tour labels for that tour.
For example, assume that there is nothing that the
driver can do after completing task � in Figure 4.
The corresponding tour label t at task � is

t � �
t1

t2

t3

t4

� � �
0
0

b�,4

b�,2

� .

Then, a new label t�, t� � 	�� will be generated by
using a mapping
: � � � � 	 3 	, where

�ar� , b� , t� � t�

� �
t�1
t�2
t�3
t�4

�
� �

t1 � c�ar� , b��
t2 � ��ar� , b��
min�b��,4 , t3 � ��ar� , b���
t4

� ,

where c(ar�, b�) is the contribution that the driver
with label ar� makes by covering task �.

2.4 Decision Variables and Revenue
Functions

Generating the driver and tour labels enables us
to calculate how much revenue a driver r is capable
of earning after it covers a task � by solving a simple
optimization problem,

	r,� � Max
t�	�

t1 (12)

subject to ar,3 � ��ar , b�� � t2 � ar,4 . (13)

Constraint 13 ensures that the driver does not ex-
ceed its maximum daily driving limit for that day;
other constraints can be included as the application
requires.

Given we now have multiple drivers at each task,
we must now expand the set of decision variables to
recognize flow between a specific driver pair. For
each r� � � and r � �� for each � � �, let xr�,r be
the flow from driver r� to driver r. That is,

xr�,r � � 1 if driver r� covers task �
and becomes driver r

0 otherwise.

Because a task can only be covered by a single
driver, we impose the constraint

�
r���

�
r����� , ����

xr�,r � 1 @� � �

in our formulation.

2.5 Initial Tour Generation

Before we apply the RAPID-ML algorithms, we
need to generate initial tours and the initial sets of
labels. The tour-generation logic is based on a
breadth-first approach by generating driver labels
at the m most profitable tasks and putting them into
a queue. We then repeat this procedure for each
driver in the queue, which generates new driver
labels as the tour progresses until the queue is
empty. Then, we use the backward recursive strat-
egy discussed earlier in Section 2.3, generating the
tour labels.

Define

Q � queue for (real or potential) drivers
nr � number of possible tasks that can be covered by

driver r.

For each distinct initial driver, say r0, we generate a
set of tours (and labels) as follows.

Procedure ILG (Initial label generation)

LG1: Initialize Q � {r0}.
LG2: If Q is empty, go to LG5. Otherwise, remove

the top element from Q and denote it as r. If nr �
0, then repeat this step until nr � 0.

LG3: For all the nr tasks that can be covered by r,
compute and rank the contribution of covering
these tasks such that: c(ar, b�1

) � . . . �
c(ar, b�nr).

LG4: For each task �i, i min{m, nr}, create a new
driver r̂ and update the labels as

ar̂ � ��ar , b�i�

��i � ��i � r̂

Add r̂ to the bottom of Q. Go to LG2.
LG5: Let � be the last task of the tour just found,

Fig. 4. Generation of labels.

57ADAPTIVE LABELING FOR ROUTING AND SCHEDULING /

and ar be the driver label generated by task �
where nr � 0 (no task can be covered by r).

For task �, initialize a tour label t as

t � �
t1

t2

t3

t4

� � �
0
0

b�,4

b�,2

�
Define the tour labels for the tasks on the path
just found recursively:

If r is not an initial real driver, repeat the follow-
ing

�� � prev_task(ar)

r� � prev_driver(ar)

	�� � 	�� � t� where t� �
(ar�, b�, t)

r 4 r�

An example of this procedure is given in Figure 5
when we discuss the steps of the RAPID-ML algo-
rithm.

3. THE RAPID-ML ALGORITHM

DEFINE:

� � candidate list of drivers to be assigned or re-
assigned

p� � estimate of the dual price for constraint 3 for
task � at the current iteration

r � estimated revenue of the best assignment for
driver r

wr� estimated revenue of the second-best assign-
ment for driver r

k � iteration counter
� � discount factor for dual price reduction (de-

scribed later)
N � number of iteration before each dual price re-

duction (described later)
� � a positive number used to avoid cycling in the

algorithm.

Notice that, in the algorithm, the sets such as ��

and 	� and the prices and revenues (p�,
r, wr) are
iteratively updated. In the description below, these
sets and numbers are implicitly assumed as the
most current ones.

3.1 Basic Ideas

RAPID-ML partially relaxes the flow conservation
constraints given by Eqs. 3 and 4 to allow for the
case where the flow into any given task or terminal
may exceed the flow out. In other words, the “�” in
3 is replaced by a “�”.

The algorithm RAPID-ML is based around a can-
didate list that contains a list of all the drivers
available for assignment. At each iteration, we re-

Fig. 5. Illustration of creating new driver labels and tour labels initially.

58 / W. B. POWELL, W. SNOW, AND R. K. CHEUNG

trieve an element from this list and, using the tour
labels, assign it to its best alternative using a flow-
adjustment process. After updating the sets of both
driver and tour labels, we re-assign some of the
drivers to tasks based on estimated dual prices. The
newly assigned drivers will create new flow. At the
same time, some assigned drivers can become unas-
signed. As a result, the downstream flow from these
drivers needs to be eliminated. We repeat this pro-
cess until the candidate list is empty. In RAPID-SL,
we solve a sequence of minimum cost flow problems
to get the dual prices. In RAPID-ML, we use an
approach adopted from the auction algorithm of
BERTSEKAS (1988) for deriving the dual prices.
When evaluating the best decision for a driver, we
take three elements into consideration. The first is
the revenue earned from covering the task, c(r, �).
The second, 	r,�, is how much revenue the driver
can earn after it has completed task �, and the third
term, p� �, is the estimated price of the task. This is
how much the driver must be prepared to pay if it
wants to cover this task. It measures the level of
competition for the task, the more intense the com-
petition, the higher the price.

3.2 The Steps

We now formally present each step of the algo-
rithm together with intuitive explanations and illus-
trations.

Step 1. Initialization
Set p� � 0, @� � � and � � �0 (a user specified

parameter)
Set � � {set of initial drivers}
For each task �, set �� � A and initialize 	� � {t}

where

t � �
t1

t2

t3

t4

� � �
0
0

b�,4

b�,2

�
Explanation. There is no driver label initially.
However, we generate a tour label for each task,
reflecting the option of doing nothing after com-
pleting that task.

Step 2. Initial label generation
We use the procedure ILG described in Section 2.5
to create the initial sets of drivers and tour label.

Example. Figure 5 illustrates an example of this
process. We start with the initial driver A and loop
over the seven tasks. In this example, we take
m � 2. The most profitable tasks for driver A are
1 and 5; task 1 being the most profitable. We then
generate the new driver labels a1 and a2 at tasks

1 and 5, respectively. For driver 1 (with label a1),
the best and the second-best tasks are tasks 4 and
2, and thus we create a3 and a4. The driver cannot
feasibly cover any more tasks after task 4, so the
tour stops here. We go on to create other driver
labels: in our example, a5 and a6 (from drivers 2
and 4, respectively). We now trace back along the
tasks that were covered and generate a new tour
label, which describes the completion of the tour
from that task on. For task 6, we have an initial
tour label t1. Tracing back the path, we create t2
and t3 for tasks 2 and 1, respectively. By repeating
the procedure, we obtain the tour labels t4, t5, t6,
and t7.

Step 3. Flow adjustment
FA1: Adjust iteration counter and retrieve a

driver from the candidate list

k � k 	 1

Let r � first element of �.
FA2: If r is unassigned (i.e., �r��� xr,r� � 0),

determine the task to cover next
Estimate the revenue of the best assignment,

r � max
���

�c�ar , b�� � 	r,� � p�� (14)

Let �* be the argmax of equation (14). Go to
FA4.

FA3: If r is assigned, determine whether re-
assignment should be made
Find r� such that xr,r� � 1 (r� is the current best
assignment for r) and identify task �� such that
r� � ���.
Re-estimate the revenue of the new second-best
assignment;

wr � max
����

�c�ar , b�� � 	r,� � p��, (15)

where 	r,� is defined by Eq. 12
If wr �
r
 �

No new assignment is made. Remove driver r
from � and insert the previous driver r� (with
xr�,r � 1) to �.
Go to FA1.

else (i.e., need to change of the assignment of r)
Let �* be the argmax of Eq. 15.
Go to FA4.

FA4: Identify the driver who has covered task �*
and remove the downstream flow out of it
If ?r� � ��* and r̂ � � such that xr̂,r� � 1

While xr̂,r� � 1 for some r� � �
Set � � � � r̂, xr̂,r� � 0, and r̂ 4 r�.

FA5: Create new labels and assign flow to task �*
Obtain ar* � �(ar, b�*), set ��* � ��* � ar*
and set xr,r* � 1.

59ADAPTIVE LABELING FOR ROUTING AND SCHEDULING /

Explanation of Step 3. When a driver r is re-
trieved from the candidate list, it may be either
unassigned or it may be assigned to some task, �*.
If the driver is unassigned, then we must calculate
vr to determine which task to cover next using Eq.
14. Having determined �*, we then check to see if
that task is already covered by another driver (say
r̂) and remove all flow out of that driver. If, alter-
natively, the driver is already assigned, then we
evaluate the next-best assignment using Eq. 15 to
check if the current assignment is still the best
assignment (within �) for this driver. If it is, then
we move on to the next element in the candidate
list. Otherwise, we redirect the flow out of driver r
to its new best assignment.

Example. Consider Figure 6 where driver 1 (with
label a1) is the first in the candidate list that is
currently assigned to task 4. After verifying that
the best strategy for this driver is still task 1, we
remove driver 1 from the candidate list and move
on to the next element driver 3 (with label a3).
This driver is currently unassigned, and, on eval-
uating Eq. 14, we find that the best task for this
driver is task 4 using tour label t. This task is
currently covered by the driver with label a1 so we
remove all the flow out of a1 and add 1 to the
candidate list as an unassigned driver. We now
generate the new driver label a5 at task 4, assign
flow from a3 to a5, and place driver 5 into the
candidate list. The new situation is shown in Fig-
ure 7.

Step 4. Dual price adjustment
Given that driver r is assigned to task �*. Compute

wr � max
���*��

�c�ar , b�� � 	r,� � p�� (16)

p�* � p�* � vr � wr � � (17)

Explanation of Step 4. Having assigned flow from
r to �*, we now evaluate the second-best alterna-
tive for driver r using Eq. 15. Equation 17 then
gives the reduction in revenue incurred if driver r
was diverted to its second-best alternative. This is
our estimate for p�. This is the adjustment given
in Bertsekas’ (1988) auction algorithm for the as-
signment problem. However, in the assignment
problem, after a driver is assigned to some task, it
remains covered at each subsequent iteration. In
our problem, when a driver is knocked off a task,
it also frees up all the other tasks that it may have
covered. The problem we face is what to do with
the prices on these newly uncovered tasks. This
issue is addressed in Step 6. To prevent the algo-
rithm from entering into price wars over a task by
making bids of zero (
r � wr), we perturb the
price by a positive amount � each time the price is
adjusted.

Step 5. Update tour labels
Let task �* be the last task of the tour and ar* be
the driver label generated by task �* (i.e.,
c(ar*, b�) �
�, @� � �). Update the tour labels
along the tour recursively

Initialize t � 	�* as the tour label at task �*
representing doing nothing after task �* (see
LG5 in Section 2.5).
Set r � r*, � � �*, and � � � � r�.
If r is not an initial real driver, repeat the fol-
lowing:

Find previous task �� and driver r� of r by
identifying �� such that ?r� � ��� such that
xr�,r � 1.
Create a label by t� �
(ar�, b�, t).
if t� �	 	�� then 	�� � 	�� � t�.
� 4 ��, t 4 t�, r 4 r�.

Fig. 6. An illustration of driver and tour labels, and a current set of tours.

60 / W. B. POWELL, W. SNOW, AND R. K. CHEUNG

Explanation of Step 5. After a driver has com-
pleted the last task in its tour, we must check to
see if the tour is represented by the existing set of
tour labels 	. If not, then we augment the set of
tour labels at each task to represent the new tour.
The generation of these labels follows the same
recursive strategy as the initial label-building pro-
cess. In practice, it is this continual updating of 	
that gives us more accurate estimates of 	r,� than
the labels developed from the initial greedy ap-
proach. After the tour is completed, we now place
the driver that covers the last task in the tour
back into the candidate list so that we can check
the validity of this decision at some subsequent
iteration.

Step 6. Secondary dual price adjustment
For every N iterations (i.e., k is divisible by N),
reduce the dual prices for uncovered task: p� �
p� � � for some 0 � � 1.

Explanation of Step 6. When a driver is knocked
off a tour consisting of several tasks, some of the
tasks that were in the tour may remain uncovered
during subsequent iterations. If the prices on
these tasks are not reduced, then a driver may
ignore these tasks because of their high price. The
strategy that we have adopted is to reduce the
price by a factor � every n iterations as long as
these tasks remain uncovered. At some point, the
price may decrease sufficiently to become attrac-
tive to some driver.

Step 7. Termination check

If � � A then go to Step 3
else adjust the value of �

Set � � �/�.
If � � �min then

for every unassigned driver r, set � � � � r
go to Step 3.

Explanation of Step 7. The epsilon reduction
strategy is similar to the approach adopted by
Bertsekas (1988). We discuss this in greater detail
in the next section.

Step 8. Uncovered task dual price adjustment
For all uncovered task � set p� � 0
For all unassigned initial driver r, set � � � � r
Repeat Steps 3 to 7 and then terminate.

Explanation of Step 8. Because it is possible that,
after several iterations uncovered tasks with pos-
itive prices will remain, we reduce all the uncov-
ered task prices to zero and perform one more
iteration.

4. NUMERICAL EXPERIMENTS

THIS SECTION PRESENTS a comparison of the two
algorithms RAPID-SL and RAPID-ML. The algo-
rithms were tested on data sets with various prop-
erties. We use several criteria as measures for per-
formance.

We also describe some of the strengths and weak-
nesses of both types of algorithms and discuss their
adaptability to solving real-time problems. The al-
gorithms were tested on both randomly generated

Fig. 7. Illustration of how adjusting the flow changes the flow into specific driver labels.

61ADAPTIVE LABELING FOR ROUTING AND SCHEDULING /

and real-world problems obtained from a truck-load
motor carrier. All tests were done on an Indy Silicon
Graphics Workstation (250 MHz IP22 Processor).

4.1 Problem Sets

The characteristics of the randomly generated and
real-world problems are described below.

Real World Problems

The real-world problems used in this comparison
are an example of the drayage problem and have a
very specific structure. In drayage problems, the
tasks typically consist of loads that have to be trans-
ported either to or from a rail terminal. In this case,
a typical driver tour will start from a terminal where
he will collect a load and take it to its destination.
He will then move empty to pick up a second load
and bring that load back to the terminal. A driver
will typically perform several of these moves in a day.

Randomly Generated

Although the real-world data sets are interesting
from a practical standpoint, the randomly generated
data sets allow us more freedom to construct exam-
ples that highlight the properties of each algorithm.

To assess both algorithms in multiple situations,
we generated a number of problems with three dif-
ferent time-window constraints, wide, tight and
mixed; and also with different tour lengths. The
wide time windows stretched the length of the entire

planning horizon, which, in this case, was one day.
The mixed category contained approximately 25%
perfectly tight time windows, 25% wide and 50%
were uniformly distributed between the two. The
task origin and destinations were uniformly distrib-
uted over a given set of locations that were based
around a central hub. The algorithms were tested on
two different tour lengths. The first set exhibits an
average tour length between 1 to 5 tasks and the
results for these problems are given in Table I. The
second set of results, given in Table II, are for prob-
lems where the average tour length ranges from 2 to
9 tasks.

4.2 Implementation Issues

Several issues arose in implementation of both
RAPID-SL and RAPID-ML. The main ones were as
follows.

4.2.1 Arc Generation

One issue common to both algorithms is the gen-
eration of arcs from drivers to tasks. The size of the
problems we are dealing with prohibit the calcula-
tion of every arc in the network so we have used a
space-filling procedure (BARTHOLDI and PLATZMAN,
1988) to only generate arcs between drivers and
near tasks. (In practice, the origin of a task should
be sufficiently close enough to a driver to justify a
deadhead movement.)

TABLE I
Medium Tour Length

Excess, n � 50 Constrained, n � 10

m � 30
Mixed SL ML DWCG SL ML DWCG
Profit 31477 31246 31703 28190 31480 32177
% Cov. 100 100 100 88 100 100
Idle. 30 30 30 0 0 0
% Empty 75 76 73 73 75 68
ATL (MTL) 1.3 (3) 1.5 (3) 1.5 (4) 2.6 (4) 3 (6) 3 (7)
CPU Time 1 6 47 1 5 24

m � 50
Mixed SL ML DWCG SL ML DWCG
Profit 42055 42727 43496 35230 39760 43824
% Cov. 97 100 100 81 91 100
Idle. 20 21 21 0 0 0
% Empty 74 75 71 73 72 68
ATL (MTL) 1.5 (2) 1.7 (3) 2.2 (4) 4.1 (6) 4.6 (6) 5 (7)
CPU Time 3 10 23 2 3 13

m � 30
Wide SL ML DWCG SL ML DWCG
Profit 25994 25526 26002 24053 26484 26981
% Cov. 100 100 100 90 100 100
Idle. 22 23 24 0 0 0
% Empty 65 69 64 52 58 48
ATL (MTL) 1 (3) 1.1 (3) 1.2 (3) 2.7 (4) 3 (4) 3 (4)
CPU Time 1 5 49 1 5 86

62 / W. B. POWELL, W. SNOW, AND R. K. CHEUNG

4.2.2 Stability of RAPID-SL

The subtour logic in RAPID-SL does not eliminate
subtours at each iteration. This results in some de-
gree of instability in the solution, and, to prevent
termination problems, we only allow RAPID-SL to
run for a maximum number of iterations and then
terminate the algorithm. The solution we take is the
best one up to and including that iteration. This
number was set to 20. The assignment problem was
solved using a network simplex code.

Although subtours can occur in any problem class,
they are more likely to occur as the tour length
increases; hence one would expect the solution qual-
ity for RAPID-SL in these types of problems to be
significantly lower. This hypothesis is tested in the
next section, where we compare RAPID-SL and
RAPID-ML on problems with varying tour lengths.
In real-time implementation of RAPID-SL, the prob-
lem is solved on a rolling horizon fashion and only
the assignments of the initial drivers will be imple-
mented. Thus, a task that has been covered will not
be covered again, and subtours do not exist in prac-
tice (see subsection 4.4).

4.2.3 Control Parameters for RAPID-ML

The main parameters in RAPID-ML to be set are
�, N, and �. The first two parameters control the
periodic price reduction of each uncovered task, de-
fined in Step 8 of the algorithm. After performing

numerous experiments, we found that the values
that, on average, gave the highest objective function
values were � � 0.6 and N � 25. The parameter � is
discussed next.

4.2.4 Epsilon Strategies

In setting a value for �, we followed the approach
suggested by Bertsekas (1988), that is, we solved the
problem with a relatively high � (around 100) and
then iteratively reduced it until it fell below a spec-
ified minimum, �min. In practice, we set � (the
amount we divide � by at each iteration) to 4 and �min
(the stopping point) to 5. Different � strategies can
affect solution quality as well as CPU times. We
tested various � strategies on several assignment
problems and the results are summarized in Table
III. The solution is given as a percentage of the
optimum solution.

In strategy 1, �0 was set to 100, and we terminated
the algorithm at Step 8. Strategy 2 was the same as

TABLE II
Long Tour Length

Excess, n � 50 Constrained, n � 10

m � 60
Wide SL ML DWCG SL ML DWCG
Profit 51047 52358 53324 40777 43047 54173
% Cov. 96 100 100 75 80 100
Idle. 19 21 21 0 0 0
% Empty 59 62 55 46 52 45
ATL (MTL) 1.8 (4) 2 (5) 2 (6) 4.5 (5) 4.8 (7) 6 (7)
CPU Time 5 19 1918 3 3 954

m � 100
Mixed SL ML DWCG SL ML DWCG
Profit 75116 86258 DNR 49127 52690 80119
% Cov. 86 100 56 59 90
Idle. 42 43 0 0 0
% Empty 72 74 69 61 65
ATL (MTL) 1.8 (3) 2.3 (4) 5.6 (7) 5.9 (8) 9 (11)
CPU Time 19 59 8 7 1009

m � 120
Wide SL ML DWCG SL ML DWCG
Profit 84367 89657 DNR 44463 45032 DNR
% Cov. 79 88 40 41
Idle. 13 11 0 0
% Empty 55 72 48 57
ATL (MTL) 2.1 (3) 2.7 (5) 4.8 (5) 4.9 (7)
CPU Time 24 51 15 7

DNR: CPU times exceeded 7 hours.

TABLE III
� Strategies

Strategy
Solution

(%)
CPU

(Average)

1 78 3
2 99 150
3 94 5

63ADAPTIVE LABELING FOR ROUTING AND SCHEDULING /

strategy 1 but �0 was set to 1. Strategy 3 is the method
described by Bertsekas (1988) and reviewed above.

As expected, strategy 1 terminated quicker but
gave the worst solution quality, in accordance with
the epsilon optimality properties of the auction al-
gorithm. The second gave a better solution quality
but the CPU requirements were too large for the
class of problems that we are aiming to solve. The
third option gave a good balance between the two.

4.3 Discussion of Results

The abbreviations used in Tables I, II, and IV are
as follows.

● n � number of drivers
● m � number of tasks
● Profit � total contribution earned
● % Cov � percentage of task covered
● % Empty � percentage of miles traveled empty

by the drivers
● Idle � number of idle drivers
● ATL � average tour length (number of tasks

covered/number of drivers used)
● MTL � maximum tour length

● CPU � CPU time in seconds

Tables I, II, and IV compare the performance of
RAPID-SL (denoted as SL) and RAPID-ML (denoted
as ML) to a Dantzig–Wolfe column generation pro-
cedure (denoted as DWCG) that can produce an op-
timal solution on randomly generated and real-
world problem sets. Each of the task sets were tested
on two fleet sizes, excess and constrained. In the ex-
cess case (left column) there were idle drivers who did
not cover any tasks, whereas in the constrained case
(right column) all drivers covered at least one task.

In general, RAPID-SL performs much better un-
der excess fleet capacity, attaining solutions that, on
average, are within 5% of the optimal solution. How-
ever, in the constrained case, the shortage of drivers
forces both algorithms to cover the tasks with fewer
drivers, resulting in an increased tour length. As the
tour length increases, so does the occurrence of sub-
tours, resulting in a significantly lower solution
quality for the constrained case, and one can see
from Table II that RAPID-SL covers significantly
fewer tasks than both RAPID-ML and DWCG.

From Tables I and II, we can see that RAPID-ML

TABLE IV
Short-Haul Truckload Problems

Excess Constrained

n � 60, m � 91 n � 10, m � 91
Real SL ML DWCG SL ML DWCG
Profit 37895 37501 37900 18896 21380 22414
% Cov. 59 70 59 19 20 20
Idle. 14 5 14 0 0 0
% Empty 50 50 49 52 44 44
ATL (MTL) 1.2 (2) 1.2 (3) 1.2 (3) 1.7 (2) 1.8 (2) 1.8 (2)
CPU Time 4 28 121 2 4 31

n � 46, m � 65 n � 23, m � 65
Real SL ML DWCG SL ML DWCG
Profit 3993 4935 5290 3032 4139 5013
% Cov. 76 82 54 45 75 79
Idle. 15 9 19 0 0 0
% Empty 54 54 53 48 50 48
ATL (MTL) 1.6 (2) 1.4 (3) 1.4 (2) 1.3 (2) 2.1 (3) 2.2 (3)
CPU Time 4 38 56 4 26 130

n � 36, m � 27 n � 10, m � 27
Real SL ML DWCG SL ML DWCG
Profit 1132 1082 1132 516 1050 1067
% Cov. 85 85 85 55 59 59
Idle. 12 12 12 0 0 0
% Empty 69 69 69 56 56 56
MTL 1 (1) 1 (2) 1.1 (2) 1.5 (2) 1.6 (3) 1.6 (3)
CPU Time �1 2 4 �1 1 2

n � 52, m � 48 n � 10, m � 48
Real SL ML DWCG SL ML DWCG
Profit 3885 3826 3887 3099 3114 3182
% Cov. 64 66 64 39 41 39
Idle. 24 22 24 0 0 0
% Empty 78 77 78 54 55 54
MTL 1.2 (2) 1.1 (2) 1.2 (2) 1.9 (2) 2 (2) 1.9 (2)
CPU Time �1 9 9 �1 4 6

64 / W. B. POWELL, W. SNOW, AND R. K. CHEUNG

and RAPID-SL are approximately equivalent on un-
constrained data sets. However, in the constrained
case, RAPID-ML consistently outperforms RAPID-
SL. RAPID-ML is clearly better at using the avail-
able duty time, covering more tasks than RAPID-SL
in every data set.

We now turn our attention to the real-world prob-
lems given in Table IV. In the unconstrained exam-
ples, the algorithms have approximately the same
objective functions, but, in the constrained cases,
RAPID-SL is not as efficient at using available duty
time. RAPID-ML consistently outperforms RAP-
ID-SL in both objective value and coverage, but at
the cost of a significant increase in CPU times in
some cases. This is mainly due to the initial label-
building strategy that generates increasingly more
labels as the possible tour length increases.

The performance of RAPID-SL and RAPID-ML
versus the optimal solution is summarized in Table
V. Here, we clearly see the highly competitive per-
formance of RAPID-SL in the cases of more loosely
constrained data sets. By contrast, RAPID-ML
noticeably outperforms RAPID-SL in the case of
tightly constrained data sets.

4.4 Real Time Implementation

In cases where the driver’s tour length is short,
typically only one or two tasks long, RAPID-SL will
provide optimal or near-optimal solutions to these
problems. We have successfully implemented a real-
time version of RAPID-SL in a truckload application
where the problem structure exhibits the above
properties.

In our implementation, the problem is solved from
scratch after the system is initialized at 7:00 A.M.
Updates, which occur approximately every 20 sec-
onds, are incorporated into the solution as the day
progresses.

The initial network usually consists of approxi-

mately 1000 drivers and 1500 tasks at any one so-
lution pass. The initial solution takes approximately
one or two minutes to reach a solution, but updates
require considerably less computational effort and
take approximately 5 seconds.

The updating procedures for RAPID-SL are as
follows. For each change to an existing driver, we
recost all the arcs out of that driver and resolve
using the modified network. If a new driver is added,
then we simply add in the arcs from the new driver
to the tasks and re-solve.

The addition of a new task is similar. For each
new task, we add in the arcs from each potential and
real driver to that task and from the potential driver
at that task to all the other tasks in the network and
re-solve. Changes to a task’s attributes are incorpo-
rated using a similar strategy.

The addition of a driver simply means reinitializ-
ing the candidate list and repeating the algorithm
from Step 3. The addition of a task requires the
generation of a set of tour labels for that task, which
can be accomplished using the existing sets of tour
labels at other tasks. Once the tour labels are gen-
erated, we can then reinitialize the candidate list
and repeat from Step 3 to check if this task, which
we initially price at zero, is attractive to any driver.

5. CONCLUSIONS

THE OBJECTIVE OF THIS PAPER was to develop a class
of heuristics to solve the Dynamic Assignment Prob-
lem in a real-time environment caused by the dy-
namic nature of the problem that we wish to solve.
This means that the algorithms must be able to
incorporate updates to the problem and produce
good quality solutions in a matter of seconds. We
also require that the procedures are flexible enough
to simulate the complex environment of a real-world
situation.

We have described two algorithms, RAPID-SL and
RAPID-ML, which satisfy all of the above criteria.
We have tested both algorithms on a variety of data
sets, both real-world and randomly generated. We
have also compared both solutions to an optimal
column-generation procedure and can draw the fol-
lowing conclusions:

● RAPID-SL produces results that, on average,
are within 4.1% of optimality for problems that
are not tightly driver constrained.

● RAPID-SL’s performance decreases as the num-
ber of tasks in a tour increases and the problem
becomes more driver constrained.

● RAPID-ML outperforms RAPID-SL on problems
with longer tours, which are prone to instability
brought about by subtours.

TABLE V
Objective Function Gap

Problem

Excess Constrained

SL ML SL ML

30-Medium 99.3 98.6 87.6 97.8
30-Medium 99.9 98.2 88.9 97.9
50-Medium 96.7 98.2 80.4 90.7
50-Long 95.7 98.2 75.3 79.5
100-Long DNR DNR 61.3 65.6
100-Long DNR DNR DNR DNR
Real world-91 99.9 98.9 84.3 95.4
Real world-65 75.4 93.3 60.5 82.6
Real world-27 100.0 95.6 48.4 98.4
Real world-48 99.9 98.4 97.4 97.9

Average 95.8 97.4 76.0 89.5

65ADAPTIVE LABELING FOR ROUTING AND SCHEDULING /

● RAPID-ML is better at using available driver
time, resulting in increased coverage over RAP-
ID-SL on all data sets.

● Both algorithms provide high quality solutions
when there are enough drivers to cover most of
the tasks, with RAPID-ML outperforming RAP-
ID-SL by an average of 1.6%. When drivers are
tightly constrained, RAPID-ML outperforms
RAPID-SL by an average of 13%.

● CPU times for RAPID-ML are greater than
those for RAPID-SL but are still compatible
with its use in a real-world environment.

● Both algorithms are easily adaptable to real-
time updates, and provide dual information
needed to produce alternative solutions.

ACKNOWLEDGMENTS

THIS RESEARCH WAS supported in part by grant
AFOSR-F49620-93-1-0098 from the United States
Air Force Office of Scientific Research. The work of
the third author was partially supported by the
Research Grant Council in Hong Kong (CERG:
HKUST6047/97E).

REFERENCES

J. B. ATKINSON, “A Greedy Look-Ahead Heuristic for Com-
binatorial Optimization: An Application to Vehicle
Scheduling with Time Windows,” J. Opns. Res. 45,
673–684 (1994).

M. BALL, B. GOLDEN, A. ASSAD, AND L. BODIN, “Planning
for Truck Fleet Size in the Presence of a Common
Carrier Option, Decision Sci. 14, 103–120 (1981).

J. J. BARTHOLDI, III AND L. K. PLATZMAN, “Heuristics
Based on Spacefilling Curves for Combinatorial Prob-
lems in Euclidean Space,” Management Sci. 34, 291–
305 (1988).

D. P. BERTSEKAS, “The Auction Algorithm: A Distributed
Relaxation Method for the Assignment Problem,” Ann.
Opns. Res. 14, 105–123 (1988).

L. BODIN, B. GOLDEN, A. ASSAD, AND M. BALL, “Routing
and Scheduling of Vehicles and Crews,” Comp. Opns.
Res. 63–211 (1983).

J. DESROSIERS, M. SOLOMON, AND F. SOUMIS, “Time Con-
strained Routing and Scheduling, in Handbook in Op-
erations Research and Management Science, Volume
on Networks, C. Monma, T. Magnanti, and M. Ball
(eds), North Holland, Amsterdam, 1995.

J. DESROSIERS, F. SOUMIS, AND M. DESROCHERS, “Routing
with Time Windows by Column Generation,” Networks
14, 545–565 (1984).

M. GENDREAU, A. HERTZ, AND G. LAPORTE, “A Tabu Search
Heuristic for the Vehicle Routing Problem,” Manage-
ment Sci. 40, 1276–1290 (1994).

F. GLOVER, “Tabu Search. Part I,” ORSA J. Comp. 1,
190–206 (1989).

F. GLOVER, “Tabu Search. Part II,” ORSA J. Comp. 2,
4–32 (1990).

B. GOLDEN AND A. ASSAD, “Vehicle Routing with Time
Window Constraints,” Amer. J. Math. Management
Sci. 6, 251–260 (1986).

R. E. MARSTEN AND F. SHEPARDSON, “Exact Solution of
Crew Scheduling Problems Using the Set Partitioning
Model: Recent Successful Applications,” Networks 11,
167–177 (1981).

H. PSARAFTIS, “Dynamic Vehicle Routing Problems,” in
Vehicle Routing: Methods and Studies, B. L. Golden
and A. A. Assad (eds), 223–248, North Holland, Am-
sterdam, 1988.

M. W. P. SAVELSBERGH, “Local Search in Routing Problem
with Time Windows,” Ann. Opns. Res. 4, 285–305 (1985).

M. SOLOMON, “Algorithms for the Vehicle Routing and
Scheduling Problem with Time Window Constraints,”
Opns. Res. 35, 254–265 (1987).

M. SOLOMON, E. BAKER, AND J. SCHAFFER, “Vehicle Rout-
ing and Scheduling Problems with Time Window Con-
straints: Efficient Implementation of Solution Im-
provement Procedures,” in Vehicle Routing: Methods
and Studies, B. L. Golden and A. A. Assad (eds), Vol.
16, 85–106, North Holland, Amsterdam, 1988.

(Received: September 1997; revisions received: September 1998;
accepted: October 1998)

66 / W. B. POWELL, W. SNOW, AND R. K. CHEUNG

