
15-323

Warren B. Powell
Department of Operations Research 
and Financial Engineering,
Princeton University

15
Real-Time Dispatching 

for Truckload Motor 
Carriers 

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-323
15.2 A Basic Load-Matching Model  . . . . . . . . . . . . . . . . . 15-325
15.3 Variations and Extensions . . . . . . . . . . . . . . . . . . . . . 15-327

More Complex Operational Problems • Looking into the 

Future

15.4 Forecasting Demand . . . . . . . . . . . . . . . . . . . . . . . . . . 15-329
Elementary Forecasting • Th e Challenge of Forecasting 

Daily Demand • Handling Pre-Booked Loads

15.5 Capacity Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . .  15-331
Simulating a Myopic Policy • An Approximate Dynamic 

Programming Solution • Getting Drivers Home

15.6 Demand Management  . . . . . . . . . . . . . . . . . . . . . . . . 15-334
15.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-335

Computer Integration • Th e Problem of Data

• Measuring Compliance

15.8 Case Study—Burlington Motor Carriers . . . . . . . . . 15-338
Operations Research Models—Round I • Th e Real-Time 

Dispatch System—Round II

 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-342

15.1 Introduction

Truckload trucking may be the simplest operational problem in freight transportation. Shippers use 

truckload motor carriers to move large quantities of freight which require hiring an entire truck to move 

a load of goods from one location to another. Similar to taxi operations for passengers, a shipper will call 

a carrier with information about a load of freight that needs to be moved from one city to another. If the 

carrier agrees to move the load, he sends out a driver with a tractor (and possibly a trailer) who then picks 

up a trailer loaded with freight. When the driver delivers the freight at the origin, it is now the responsibil-

ity of the company to fi gure out what to do with the driver next. Although there are many one-man truck-

ing companies, our focus is on operations that manage fl eets that may range from several dozen to over 

10,000 drivers.

At the heart of real-time operations in truckload trucking is a disarmingly simple problem: given a 

set of drivers and loads, which driver should be assigned to which load? We could address the problem 
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from the perspective of a particular driver (what is the best load?) or a particular load (what is the best 

driver?), but the real problem requires juggling the needs of multiple drivers and loads. A company with 

100 drivers, faced with the decision of which driver to assign to each of 100 loads, can choose from 

among 100 × 99 × 98 × … × 2 × 1 ≈ 10158 possible solutions.

In the 1970s, as part of a consulting project with a young trucking company called Schneider National 

(today, the largest truckload carrier in the United States), Dr. Richard Murphy, then a faculty member 

at the University of Cincinnati, recognized that the load-matching problem was a special type of linear 

programming problem known as a pure network. Th ese are best visualized using the network in 

Figure 15.1. In this representation, drivers are represented as nodes on the left , with a fl ow of 1 unit 

entering each driver node. Links join driver nodes to load nodes, with an additional “load link” from 

each load node to a “supersink” from which all the fl ow leaves the network. An upper bound on each 

load link prevents more than one driver from covering each load. Th e mathematical structure of the 

problem guarantees that we would never assign a fraction of a driver to a load.

At that time, this observation meant that it was possible to solve very large problems with exceptionally  

powerful algorithms that were extremely fast (even on computers of that era). Just as important, the 

model provided for a surprisingly high level of detail in how the costs were calculated. Th e cost crl of 

assigning driver r to load l could include the cost of driving empty from the current location of the 

driver to where the load had to be picked up, along with a variety of other factors. For example, we could 

add artifi cial penalties for assigning drivers who would pick up the load aft er its pickup appointment, 

or if the driver would arrive so early that he would have to sit for several hours. We could put a bonus 

(negative cost) for desirable assignments such as putting sleeper teams (pairs of drivers who swap driving  

so that the truck does not sit idle while a driver sleeps) on long loads (where the team gets higher 

 utilization). In real applications, the list of such issues can be quite long, and yet this simple model can 

handle a broad range of these operational goals and constraints.

Linear programming models and the associated algorithms looked like the perfect match of a new 

technology with an industrial application. Th ey off ered to overcome what appeared to be a major limita-

tion of human dispatchers—the ability to consider all the drivers and loads at the same time when 

 making a decision. Humans tend to break problems down into small pieces. What is the best driver 

to move a particular load? What load should I assign this available driver to? Juggling the assignment of 

multiple drivers and loads at the same time is beyond the problem solving skills of most people.

News of this model spread quickly, and suddenly other carriers wanted their own optimization 

 models for solving the load-matching problems. A small cottage industry of consulting fi rms popped up 

in the late 1980s and 1990s to sell this technology. Th e promise of the technology closely matched the 

Driver node

Load node

Supersink

Demand links
Upper bound = 1

Driver hold links

FIGURE 15.1 Network model for driver assignment problem.
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early promises of robots building cars in the 1980s. What we learned is that the technology is promising, 

but the problem has proven to be far more diffi  cult than anyone realized. 

15.2 A Basic Load-Matching Model 

Th e network model shown in Figure 15.1 is easily modeled as an assignment problem involving the assign-

ment of driver r (we think of drivers as the resources we are managing) to load l. Such models would 

defi ne crl to be the cost of assigning driver r to load l, and we would defi ne a decision variable xrl where 

xrl = 1 means we have decided to assign driver r to load l. In this section, we adopt a somewhat diff erent 

notation that will prove to be much more general, allowing us to easily represent other issues that are not 

captured by this basic model. We describe a driver using a vector of attributes we denote by a, such as:
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Here, location might represent his exact current location, his last reported location, or the location to 

which he is headed (it would be his current location if the driver is sitting still). If the driver is enroute, 

“estimated time of arrival ” (ETA) represents when he is expected to arrive at his destination. Locations 

can be represented at a number of diff erent levels of aggregation. Equipment might capture the type of 

trailer (and even tractor) he is pulling. “Team?” is an indicator variable that tells us whether it is a single 

driver or a pair of drivers who trade off  between driving and sleeping. Th e attribute a7 ,“DOT hours” is 

actually a vector that tells us how long the driver has been driving today, how long he has been on-duty, 

and how many hours he was on-duty for each of the last seven days. Th ese attributes are used to enforce 

 federal Department of Transportation rules on how much a driver can work in a given day. 

Similarly, we let b = (b1,b2,...,bm) be a vector of attributes describing a load. Attributes might include 

origin, destination, pickup and delivery time windows, equipment characteristics, shipper (or shipper 

priority), and any other information needed to describe the load. 

We need to represent how many drivers and loads we have of each type. We let A be the set of all 

 possible attribute vectors for drivers, B be the set of all possible load attributes. We then defi ne:
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Th roughout our discussion, Rt describes the state of all our drivers and loads at time t. We need to 

emphasize that in a soft ware implementation, we would never explicitly store the entire vector  R t  
D   or   R t  

L  . 
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Instead, it makes more sense to defi ne a set   R t  
D   where r ∈  R t  

D   is a particular driver with attribute vector ar⋅ 
However, the notation we have adopted will prove more convenient as we progress.

Rather than assigning a particular driver to a particular load, we adopt the convention that we are 

acting on a driver (or resource) with attribute a using a decision of type d chosen from a set of possible 

decision types, given by the set D. Th ere are diff erent classes of decisions, which we defi ne using

DL =  Decisions to move a type of load. Each element of DL corresponds to an element 

in the set of load attributes B.

DM =  Decisions to move empty to another location (perhaps in anticipation of loads that 

might become available in the future).

DH = Decision to “go home” and go off  duty for a period of time.

dφ = Th e decision to “do nothing” (sit and wait)

D = DL ∪  DM ∪  DH ∪  dφ

Th is notation is useful since it allows us to easily add new decision classes (e.g., repair or clean a 

trailer, maintain a tractor) without fundamentally changing our model. Th e set D is all of our types of 

decisions. We then defi ne

 xtad = Number of times we cat on a driver of type a with a decision of type d at time t.

 xt = (xtad)a∈A,d∈D = Th e decision vector.

As a rule, xtad will be 0 or 1, but our notation allows us to aggregate drivers. xtad = 1 when d ∈ DL means 

that we have assigned a driver to a load of type bd. We also note that xtad = 1 does not mean that we are 

moving a driver at time t. It only means we are making the decision at time t. We may be preassigning a 

driver due to arrive later in the aft ernoon to a load, but we are making the decision in the morning.

Th e eff ect of a decision is captured using the modify function, which we write as follows:

 M (a,d) = (a′, c, τ)

Th e modify function is a set of rules that specifi es that if we act on a driver with attribute vector a with 

a decision of type d, we produce a modifi ed driver with attribute vector a′ and generate a contribution 

(cost if we are minimizing) c, where the time required to complete the action is given by τ. Th e comple-

tion time τ is also captured by one of the attributes of a′ (the “estimated time of arrival” fi eld). It is also 

useful to defi ne the 

 aM(a,d) = Th e terminal attribute function, which is the attribute a′ produced by decision d.

 δa′ =  { 1 If aM (a,d) = a′   
0 Otherwise

  

 cad = Contribution generated by acting on a driver of type a with a decision of type d.

Which gives the attribute a′ produced by decision d.

We can now state our basic problem (depicted in Fig. 15.1) as the following mathematical model:

 

max x ad tad

d Da A

c x
ŒŒ
∑∑

 

(15.1)

Th is is solved subject to the following constraints
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 xtad ≤ 0  (and integer) (15.4)

Equation 15.1 is our objective function, which we have written in the form of maximizing total con-

tribution. Equation 15.2 is conservation of fl ow for drivers. Note that because “doing nothing” is an 

explicit decision, this must hold with equality. Equation 15.3 is conservation of fl ow for loads (we cannot 

move loads we do not have). Equation 15.4 states that fl ows must be nonnegative integers.

Th e optimization problem in 15.1–15.4 is powerful in part because it provides for a very high level of 

detail in the representation of drivers and loads, but it also has another extremely useful property. 

In practice, it is very common for issues not captured by the computer to prevent the assignment of a 

particular driver to a particular load. In commercial implementations, it is standard practice to produce 

a ranked list of options by using dual variables. Let  v a  
L  be the dual variable for each driver constraint 15.2 

and let  v  b  
D  be the dual variable for each load constraint 15.3. We can now compute the reduced cost of 

each decision using

c c v vtad tad b
L

a
D

d= + −( )

where bd is the attribute of the load corresponding to decision d ∈ DL. If xtad > 0, then –ctad = 0. If 

xtad = 0, then –ctad ≤ 0, which means that contributions are reduced if we increase fl ow on these links. It is 

not unusual for  –ctad to be zero (or very close to zero) for decisions that the model does not recommend, 

 indicating that these are very close to being optimal. Errors in costs or missing data can easily change 

these recommendations, so we normally provide dispatchers with a ranked list of recommendations. 

In fact, it is common practice to choose a value, say $10, where we would say that if the dispatcher 

chooses a decision where –ctad ≤ $10, they we would say that the dispatcher “agrees with” the model.

15.3 Variations and Extensions 

Th e initial appeal of the load-matching problem is quickly tempered by the realities of actual operations. 

In this section, we briefl y review a number of operational issues that our basic model does not consider. 

We divide our discussion between more complex operational problems in Section 15.3.1, followed by a 

discussion of the challenge of working with forecasted demand.

15.3.1 More Complex Operational Problems

Th is section briefl y describes some operational issues that arise in real applications that cannot be 

 handled by our basic load-matching model. 

15.3.1.1 Short-Haul Loads

Th e load-matching problem was fi rst solved in the context of a long-haul truckload carrier. In this 

 setting, loads typically require a day or more to complete. Since we cannot accurately predict what will 

happen a day from now, it makes sense to assign a driver to at most one load, and then wait until he is at 

least close to completing the load before assigning him to another load. Many trucking companies pull 

3053_C015.indd   327 7/30/2007   1:13:06 PM



15-328 Topics in Transportation Management

a signifi cant amount of short-haul movements, and even long-haul carriers have to execute a number of 

short movements. Since short movements can be completed quickly, we have the ability to plan a 

sequence of movements for a single driver through several loads. Figure 15.2 illustrates a problem with 

four drivers and six loads, three of which are quite short. If we use a load-matching model, where a 

driver can be assigned to at most one load, we obtain the solution in Figure 15.2a. If we plan a tour using 

all the loads we know about, we might obtain the solution in Figure 15.2b. Th e diff erence is signifi cant, 

and remains a source of complaint about commercial load-matching systems.

15.3.1.2 Managing Trailers

It is common to assume that we are assigning “drivers” to “loads,” but exactly what do we mean by a 

driver? We generally assume that a driver also has a tractor, but what about a trailer? A truckload carrier 

might have twice as many trailers as drivers. It is common, for example, for a driver to drop a loaded 

trailer in a shipper’s lot, and then drive just his tractor to another shipper where he picks up a trailer that 

has just been loaded. At a later time, the fi rst trailer will be unloaded, and either added to the shippers 

pool of trailers, or someone will have to pull the trailer out empty.

In the language of resource management, modeling just the drivers and loads represents a two-layer 

problem. If we explicitly model trailer inventories, we have a three-layer problem. Computationally, this 

can be much more diffi  cult. It is fairly easy to model trailers in a simple way. For example, if a driver does 

not have a trailer, but the load requires that the driver bring a trailer to pick up the load, then the cost of 

assigning a driver to a load requires that we consider routing the driver through a trailer pool. But a real 

model of trailers would also make recommendations to move trailers from one pool to the next in order 

to manage trailer inventories.

(a)

(b)

FIGURE 15.2 Assigning each driver to one load.
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15.3.2 Looking into the Future

A second complication arises when decisions now have to consider what might happen in the future. 

Th ere are three issues that we need to consider that require us to look into the future:

 1. Should we commit to move this load? We oft en have the ability to decline loads (when they are 

fi rst off ered), and we have to think about whether we will have too many drivers at the destination 

of the load to use them productively.

 2. Is this the right type of driver? Teams like long loads. Regional drivers like short loads that keep 

the driver close to home. A driver pulling a refrigerated trailer would like to move to locations 

where this is needed. Not every region has the same mix of freight.

 3. Will we be able to get the driver home? A long-haul carrier might keep a driver away from home 

for several weeks. Th e carrier might like to get a driver home every week or two (less oft en for 

some drivers). What is the likelihood that we can get a driver to his home if we assign him to a 

particular load?

Th ese issues require that we think about loads that we do not yet know about. In other words, we have 

to forecast future demands, a problem we address in Section 15.4. But it is not enough to forecast 

demands; we also have to think about how we might manage the drivers in the future. Th is problem is 

addressed in Section 15.5.

15.4 Forecasting Demand 

Looking into the future requires that we estimate customer requests before they become known. Th is 

section provides a brief overview of issues that arise when forecasting for a truckload operation.

15.4.1 Elementary Forecasting

Let D̂ 
tij be a random variable representing the number of loads that will need to be moved from location 

i to location j on day t. D̂ 
tij is a random variable that we might assume takes the form

 D̂tij = μtij + εtij (15.5)

where μtij is the mean of the random variable and εtij is a random error around the mean which we 

assume has zero mean and some variance. We will never be able to guess εtij, but we would like to try to 

estimate μtij. Th ere is a vast array of forecasting techniques, but the simplest and most widely used is 

exponential smoothing. Let  
__

 μ t − 1,ij be our estimate of the mean aft er day t-1, and let D̂ 
tij be our observa-

tion of the actual demand on day t. Using exponential smoothing, we would update the mean using

 μ
_

t,ij = (1−α)μ
_

t−1,ij + αD̂tij (15.6) 

where α, a parameter between 0 and 1, is variously known as the smoothing parameter, learning rate 

or stepsize.

If only forecasting were this easy. One challenge is that it is very common to have forecasts (for the 

fl ow from a particular origin to destination) to be a fraction less than one. Carriers will oft en forecast 

the total loads out of an origin, but this means they have no idea where the loads are going. Th is problem 

arises because of the common misconception that to forecast demand means to estimate μtij, which is 

known as a point forecast. More modern tools forecast the actual distribution of demand (e.g., the proba-

bility that there will be 5 loads from i o j).

Th e following two sections address two important issues: (1) the challenge of forecasting daily demand 

and (2) methods for handling advance bookings.
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15.4.2 The Challenge of Forecasting Daily Demand

In an operational model, it is necessary to forecast demand on a particular day. Th is introduces not only 

the problem of handling day-of-week eff ects, but also the more challenging problem of holidays and 

other “special days”—end of month, end of quarter, the Monday aft er Th anksgiving, the fi ft h of July 

when the fourth of July is on a Th ursday, and so on.

It is popular in industry to use techniques such as averaging the last four Mondays to forecast the next 

Monday. Th is might capture day of week eff ects, but requires that we go back a month, which means we 

might be missing out on seasonal eff ects such as those that typically arise around the Christmas season. 

It also ignores holidays and special days. An alternative that we have found eff ective is to use a model of 

the form (dropping the indices i and j):

 m q q qt t t
dow

t
wom

t
sdb=  (15.7)

where b is the baseline,  θ  t  dow  is a day-of-week adjustment factor,   θ  t  wom  is a week-of-month adjustment 

factor, and   θ  t  sd  is a factor for special days. For example,  θ  t  dow  = 1.07 if the day-of-week eff ect for day t is 

7% higher than normal.  θ  t  sd  (is particularly challenging to estimate, since we might observe a particular 

“special day” only once a year. [see Godfrey and Powell (2000) for methods to update this model]

15.4.3 Handling Pre-Booked Loads

A particular challenge in forecasting demand in truckload trucking is the fact that customers will book 

orders in advance. We refer to a demand process where there is a gap between when we know about the 

demand, and when we can act on it, as a lagged information process. Th is is modeled using the notation:

D̂ 
tt′ =  Th e number of new demands that fi rst become known between t−1 and t that need to 

be served at time t′.
 ftt′ = Point forecast of D̂ 

tt′, made before time t.

 Ftt′ = Forecast of the total demand for time t′ using the information available at time t.

Here, time t refers to both a day as well as time of day. If today is Tuesday, our forecast of loads on 

Th ursday depends on whether it is 10:00 a.m. on Tuesday or 4:00 p.m. Because of the need to have a truly 

continuous time forecast, we have to view the time index t as being continuous. However, when we 

 prepare a forecast of the total loads to be served on Th ursday, time t′ needs to be viewed as an entire day. 

We have generally found it best to fi rst forecast assuming time t represents an entire day, and then fore-

cast an hour-of-day distribution. Th us, if we forecast that 10 loads will be called in on Tuesday to be 

served on Th ursday, we can use a separate hour-of-day distribution to determine how many of these 

loads would be known by 11:30 a.m. on Tuesday.

It is important to phase in known demands with your forecast, so that at a time t, we take advantage 

of what we know with what we do not yet know. Th e biggest mistake is to forecast demand, and then 

update the forecast by subtracting what is already known. To illustrate, we might forecast that we will 

pick up 40 loads in a region. Assume we already have 27 booked loads. It is tempting to update the fore-

cast so that we assume that we have 27 known loads and 40 − 27 = 13 forecasted loads, giving us a total 

forecast of 27 + 13 = 40. We hope the error in this process is apparent. 

Th ere are two methods for phasing in known demands, and we generally have to use both. Th e fi rst is 

primarily suited for phasing in demands from numerous small customers, while the second is particularly  

important when phasing in demands from a small number of large customers. 

15.4.3.1 Forecasting Small Customers

When we forecast demand from numerous small customers, we assume they behave like a model known 

as a Poisson process. Th is model assumes that the number of calls made, say, before noon on Tuesday, is 
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completely independent of the number of calls made aft ernoon on Tuesday (or the number of calls yet 

to be made on Wednesday). For this discussion, assume that we are forecasting the total demand on day 

t´ in the future, but that we are forecasting demand at hour t, since as a rule, we need to update forecasts 

continuously during a day.

ftt′ is our estimate of the total number of phone calls that will arrive between t-1 and t. At time t, our 

forecast of the total number of loads that have to be served at time t′ is given by

 

F D ft t

t t

t t

t t

tt¢ ¢¢

¢¢

¢¢

¢¢

= +
£ >

Â Â, ,  (15.8)

Th us, our forecast of t′ combines what we know as of time t, plus a forecast of what is not yet known. 

Note that this only produces a point forecast. We can also produce estimates of the variance of the 

forecast.

15.4.3.2 Forecasting Big Customers

Th e method described in the previous section does not work for large customers who tend to make a 

single phone call at some point during the day. Th ey may make their phone call early in the day, but 

other days the phone call may come in later. Th e way that Equation 15.8 merges known and fore-

casted demands does not work for this type of process. Instead, it is better to have a separate forecast 

for each of these big accounts. Since we know when the account has made its orders known, we can 

simply use the forecasted before the orders are entered, and use the actual aft er the orders are 

entered. 

15.5 Capacity Forecasting

Now that we have a basic method for forecasting demand, we next have to forecast capacity, which is the 

movement of trucks in the future. Th is is important if we want to know, for example, if we have too 

many trucks in a region compared to the demand. It is also needed if we want to estimate our ability to 

get drivers home.

Capacity forecasting is subtle. Older models would project capacity into the future by solving a large 

space–time network such as that depicted in Figure 15.3, where nodes represent points in space and 

time, solid links represent the movement of loads (known or forecasted), and dashed lines representing 

either holding in a location, or moving empty. A point in space is typically one “region,” where the 

 continental United States might be divided into 100 regions.

Space

Time

FIGURE 15.3 Illustrative space-time network.

Q1
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Th e advantage of space-time networks is that they are easy to understand and communicate, and can 

be solved as linear programs using commercially available solvers. Th e problem is that they can do an 

extremely poor job of modeling the real system, seriously biasing the forecasts. One problem is that they 

completely ignore the uncertainty in demand forecasts, where the number of forecasted loads from one 

location to another is likely to be a fraction such as 0.17. Th e second and perhaps more serious error is 

that the network models the fl ow of trucks, not drivers, and is unable to capture limits on how much a 

driver can move, or any other issues such as getting a driver home. We have found that such models can 

dramatically overestimate the capacity of a fl eet, disguising capacity problems in the future.

In the sections which follow, we briefl y outline a strategy that is able to forecast capacity into the 

future, without any loss of detail in how drivers are represented. Section 15.5.1 begins by describing a 

simple, myopic simulator. Section 15.5.2 shows how we can take this basic simulator and produce a 

 solution that looks into the future.

15.5.1 Simulating a Myopic Policy

Th e easiest way to forecast capacity in the future is to simply simulate the dispatch process, which we can 

do by applying the model we fi rst introduced in Section 15.2 iteratively into the future. To describe this 

more formally (which we need for our discussion in Section 15.5.2), let  X t  
π  (Rt) be a function that represents 

solving the load-matching optimization problem given by Equations 15.1 through 15.4 at time t, producing  

a vector xt that satisfi es the constraints 15.2 through 15.4. Th e problem is solved given the resource state 

vector Rt that tells us the status of all drivers and loads at time t. Th e superscript π is an index in a set Π so 

that we can represent the fact that this is not one function, but a family of functions from which we can 

choose (oft en referred to as policies). Th e model in Section 15.2 is one of these models which we represent 

using π = M, where M denotes a myopic policy (i.e., a rule for making decisions that ignores the future).

In a real-time system, we would solve Equations 15.1 through 15.4 where t = 0. In this case, R0 = ( R 0  
D ,  R 0  

L ) 

tells us the status of all the drivers and loads that we know about right now. We again emphasize that 

this does not mean all drivers and loads that can be assigned right now. Th e driver’s ETA attribute, and 

the pickup window of a load, may specify that a driver may not arrive for two days, and the load has to 

be picked up a week from now. Solving   X 0  
π  (R0) returns a decision vector x0. We can now combine this 

information with our modify function. If x0ad = 1 (which means that R0a > 0), then we now have a driver 

with attribute a′ = aM (a,d). We write the eff ect of these decisions on our resource state vector using

 

R a da
D x

ad a

da

0 0¢ ¢d, ( , )=
ŒŒ
ÂÂ x

DA

 (15.9)

We refer to  R 0  
D,x  = ( R 0a  

D,x )a∈A as the post-decision resource vector for drivers. Equation 15.9 describes 

how our decisions impact drivers. We also have to model the eff ect of decisions on loads, which is quite 

simple. If we assign a driver to a load, the load leaves the system; otherwise it remains in the system, a  

process that is written as

 

R R d Db
L x

b
L

ad

a

L
d d0 0 0
, = - Œ

Œ
Â x

A

 (15.10)

Now we are going to make the transition from t = 0 to t = 1 which might represent, for example, a 

point in time 4 hr later. During this time, we might have a set of phone calls. Earlier, we represented new 

demands using D̂ 
t ⋅ Here, we slightly revise this notation so that our model can easily handle phone calls 

that provide updates to demands (new orders, changes in orders) as well as updates to drivers (drivers 

3053_C015.indd   332 7/30/2007   1:13:07 PM



Real-Time Dispatching for Truckload Motor Carriers 15-333

being added to the system, drivers leaving the system, and updates to existing drivers, such as delays in 

arrival times). Th ese updates are represented as the following random variables:

R ̂  
ta
  

D
  =  Change in the number of drivers with attribute a due to exogenous information that 

arrived between t − 1 and t.

R ̂  
ta
  

L
  =  Change in the number of loads with attribute b due to exogenous information that 

arrived between t − 1 and t.

R̂t =  ( R ̂  
ta
  

D
  , R ̂  

ta
  

L
  )   = Exogenous information arriving between t − 1 and t.

We note that R̂t is a function that depends on the drivers and loads already in the system, as well as exog-

enous information that arrives to tell us how the system is changing. With this notation, we can describe 

how our system evolves forward in time:

 R D    t+1,a  = R D,x
   ta   + Rt+1,a (15.11)

 R L    t+1,a  = R L,x
   ta   + Rt+1,a (15.12)

Equations 15.9 through 15.11, combined with 15.11 through 15.12, tell us how the resource state vec-

tor Rt evolves from time t to time t+1, given a decision xt and the exogenous information R̂t+1.

We know how to fi nd xt (by solving the Equation 15.1 through 15.4. How do we actually obtain R̂t+1? 

We do this by  forecasting future updates to the system, and then randomly sampling from this forecast. 

In a basic model, we might ignore any random events happening to drivers, and simulate only the ran-

dom arrival of new customer orders. If we have forecasted, say, 0.20 orders will arrive to move from 

Dallas to New York this Th ursday, then we would generate a random integer whose mean is 0.20. For 

example, we might generate a random variable between 0 and 1; if the random variable is less than 0.20, 

then we would set the random demand to 1, and otherwise set it to 0. To allow for means greater than 1, 

we might treat the forecast as the mean of a Poisson random variable and sample from this. A number 

of popular simulation textbooks describe this process.

Since we have to sample randomly, it is generally a good idea to perform repeated sample realizations 

and average any statistic that is desired from the model. Let R ̂  t  
n
  be the nth sample of the random informa-

tion that arrived between t − 1 and t. We refer to the sequence  (  R ̂  1  
n
 , R ̂  2  

n
 , …, R ̂  t  

n
 , …, R ̂  T  

n
  )  as a sample path, 

which is to say a single set of realizations over all the time periods we are interested in.

We now have a process for simulating our system as far into the future as we would like. Th e only 

weakness is that our decision function  X t  
π (Rt) always ignores the impact of decisions now on the future. 

Th e following section addresses this problem.

15.5.2 An Approximate Dynamic Programming Solution

Th ere is a simple way to make our myopic decision function much more sophisticated. Instead of solving 

the objective function given by Equation 15.1, assume instead that we solve the problem

 

max ( ( , ))c x V R R xad tad

da

t t
x

t t

ŒŒ
ÂÂ +

DA

 (15.13)

where 
–
Vt  (  R t  

x (Rt, xt) )  approximates the value of being in resource state  R t  
x  (Rt, xt) which depends, of course, 

on Rt and xt. For this class of problems, a reasonable approximation is a linear function, given by

 

V R R x R vt t
x

t t ta
D x

ta

a

( ( , )) ,= Â ¢ ¢

¢  

(15.14)
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where  
_
 v ta′ can be thought of as the marginal value of drivers with attribute a’. Combining 15.9 and 15.14, 

and using the defi nition of our terminal attribute function aM (a,d), allows us to write

 

V R R x x a d v

x v

t t
x

t t tad a ta

daa

tad t

( ( , )) ( , )

,

=
Ê

Ë
Á

ˆ

¯
˜

=

ŒŒŒ
ÂÂÂ d ¢ ¢

¢ DAA

aa a d

da

M ( , )

ŒŒ
ÂÂ

DA  

(15.15)

Combining 15.13, 15.14, and 15.15, with a bit of algebra, produces

 

max
, ( , )

c c v xad t a a d tad

da

M+( )
∈∈
∑∑

DA  

(15.16)

which we solve subject to the fl ow conservation constraints 15.2 through 15.4. Th e only question we have 

not answered is: how do we get the values  
_
 v ta′?

Fortunately, this is the easy part. When we solve problem (15.1)–(15.4), or problem (15.16) subject to 

(15.2)–(15.4) using any commercial linear programming package, we also obtain a dual variable that for 

the fl ow conservation constraint on drivers Equation 15.2, that tells us the marginal value of a driver 

with attribute a. We have to keep in mind that we are solving these problems iteratively, where at itera-

tion n we use the sample realization R ̂  t  
n ⋅ Let   

_
 v  t−1,a  
n−1

   be our estimates of the marginal values aft er iteration 

n − 1. Let V ̂   ta  
n
   be the dual variable we obtained during the nth iteration of our simulation. We then apply 

exponential smoothing to obtain our value function approximation, using 

 
v v vt a

n
t a
n

ta
n= ( ) +1 1

11, ,a a  (15.17)

We note that   v̂   ta  
n
    is used to update    

_
 v  t−1, a  

n−1
  ⋅ For further background on this subtle bit of modeling, see 

the discussion in Powell et al. (2006).

Recall that the attribute a can be quite complicated. Although we do not write it explicitly, while 

 v ̂   ta  
n   will depend on the full attribute vector, our value function approximation   

__
 v   t,a  
n
   depends only on a 

subset of attributes such as location, the domicile of the driver and perhaps his equipment type.

15.5.3 Getting Drivers Home

One of the real challenges of load-matching models is getting drivers home. While this can be quite dif-

fi cult, our dynamic programming approximation of the previous section already accomplishes this for 

us, as long as we retain driver domicile as one of the attributes of the value function. In addition, it is also 

necessary to include logic in the load-matching problem that recognizes that a driver may be close to his 

home, or is assigned to a load that allows a driver to pick up a load, move to his home, spend a day or two 

and still deliver on time. Th e model must include rewards for getting drivers home, or  penalties for 

keeping drivers away from home.

15.6 Demand Management

Th e focus of real-time dispatch systems is typically on what we should do with a driver, but it is usually 

the case that we can have a much bigger impact on the company by controlling which loads are accepted. 

Th is is particularly true since many orders are booked several days in advance. 

Carriers typically accept or reject loads based on issues such as, (1) Is this a major account? (2) Is the 

rate being off ered (oft en expressed in units of dollars per mile) above a minimum? (3) Do I have enough 
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capacity (relative to demand) out of the region where the load originates? and (4) If I accept the load, will 

this create a situation where I have too many drivers at the destination of the load?

Th e capacity forecasting logic described in Section 15.5 can produce estimates of the number of 

drivers (and loads) out of an origin or into a destination several days into the future. In addition, it 

can even account for the fact that while we may be sending too many drivers into New Jersey, we 

have a shortage of drivers in nearby eastern Pennsylvania, which means that we may have more 

capacity in a region than would be forecasted if we simply add up the number of loads terminating 

in a region.

15.7 Implementation

Th e use of computers to not only store information about drivers and loads, but also to recommend how 

drivers should be managed, seems like it should be a major application of operations research. A number 

of issues have resulted in extremely slow adoption. One problem is that current commercial packages 

do not handle problems such as trailers, routing drivers through a sequence of several loads, and the 

uncertainty of forecasts in the future.

15.7.1 Computer Integration

A real-time dispatch system requires having up-to-date information about drivers and loads, informa-

tion that carriers enter into the computer. Th ere are a number of commercial management information 

 systems designed specifi cally for truckload motor carriers, and as of this writing, none include an 

 automated driver assignment module. Th e reason for this is simple. Th ere are thousands of trucking 

companies with less than 50 drivers, and this is the market when a company starts to use computers. It 

is only when a  company gets a fl eet of at least 200 drivers that an automated dispatch system starts to 

make sense.

Since the 1980s, a small cottage industry emerged to install real-time load-matching systems for truck-

load carriers (two of these companies, Princeton Transportation Consulting Group and Transport 

Dynamics, were founded by students under the supervision of this author). Without question, the Achilles 

heel of these systems was the interface between the optimization model and the dispatch system. To be 

successful, this interface has to be seamless, with rapid transmission of information, something that has 

been achieved only in highly customized applications (and very high cost).

15.7.2 The Problem of Data

Not surprisingly, automated dispatch systems depend on quality data. But data “errors” can be quite  subtle. 

Consider the problem of assigning fi ve drivers to fi ve loads as depicted in Figure 15.4. Take a minute to 

solve the problem in your mind before turning the page.

Th e mathematically guaranteed, optimal solution provided by the computer is given in Figure 15.5. 

Th is may surprise the reader, but it is because the reader has not been provided all the information. Th e 

problem is fi rst noticed by the company (which cannot look at the entire solution) when driver B calls in 

and the dispatcher sees that he has been assigned to load 1 instead of load 2, which seems closer. Th e 

problem, actually, is with the data associated with load 3. When this load was fi rst called in, the traffi  c 

manager asked “Is it possible to pick the load up before noon? We get busy in the aft ernoon.” Dispatch 

systems allow the specifi cation of pickup time windows, but these are hard constraints; failure to pick 

the load up within the window is viewed as a service failure which can lead to the loss of the contract. 

Only driver A in this group is arriving early enough to meet this constraint. As we can see, however, the 

request to pick it up before noon was only a preference.
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15.7.3 Measuring Compliance

Dispatch systems are successful only if people actually do what the systems tell them to do. Not  surprisingly, 

it is common to measure compliance, which is a statistic that describes the number of driver assignments 

where the decision made by the dispatcher agrees with the model. Unsuccessful implementations (where 

the company runs the model but no-one uses the recommendations) tend to observe around 30–35% 

compliance. Carefully calibrated models with strong management support might average 80–85% compli-

ance (with some users over 90%). However, users can manipulate these numbers if they feel they are being 

judged by them.

Th e issue of user noncompliance has received relatively little attention from the academic community 

since it is an issue that only arises in a fi eld implementation. Powell et al. (2000) studied the eff ect of user 

noncompliance. Aft er solving the myopic optimization model defi ned by equations 15.1 through 15.4, the 

value of assigning a driver of type a to a load of type b is given by a formula based on the reduced cost:

 
_
 c abd

 = cabd 
+ θ  (v a  

D  −  v 
bd

  L
  )

where cabd
 is the direct contribution of assigning a driver of type a to a load of type bd,  v a  

D  is the dual vari-

able for the driver node of type a (the dual for Equation 15.2),  v 
bs
  L
   is the dual for the load node for a load 
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FIGURE 15.4 A driver assignment problem.
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FIGURE 15.5 Th e computer generated solution.
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of type b, and θ is a scaling factor. Our rule is to assign a driver to the load with attribute bd with the 

 highest value of   
_
 c abd

⋅ We can model user compliance by randomly deciding whether the recommenda-

tion is “acceptable” to the dispatcher; if this assigned is (randomly) judged to be unacceptable, we go to 

the second-ranked load, and so on. If we are modeling perfect user compliance, and if θ = 1, then we are 

implementing basically the same solution recommended by solving the global optimization model in 

Equations 15.1 through 15.4. If we use θ = 0, then we are ignoring the dual variables, and implementing 

a greedy solution where we do the best for each driver. Intermediate policies are obtained using 0 < θ < 1. 

Figure 15.6 shows total profi ts as a function of the level of user compliance for θ = 0, 0.75, and 1.00. Note 

that at an 80% compliance rate (considered quite good in actual applications), the diff erence between the 

globally optimal  solution and the greedy solution is not large, but there is a noticeable improvement if 

we use θ = 0.75.

Th e issue of user compliance is a serious one. We have to recognize that the computer simply does not 

have all the information needed to make perfect decisions. We have oft en found that senior manage-

ment is attracted to models since it provides them some level of control over the decisions made on the 

dispatch fl oor. One vice president used the term “dispatcher savant” to describe talented people in 

 operations who otherwise could not be controlled. Responding to the challenges of changing operating 

philosophies on the dispatch fl oor, another senior manager remarked “Sometimes, when you can’t 

change the people, you have to change the people.” Th e problem that managers face is identifying the 

best dispatchers. Each manager works with a diff erent region of the country, or diff erent groups of 

 drivers, making direct comparisons impossible. Too much emphasis on user compliance produces 

behavior where dispatchers “game the system,” manipulating the process to produce the best score. 

Despite these qualifi cations, automated systems can add real value in the following ways:

While it is possible to put too much emphasis on “matching the computer,” it is generally the 

case that the best dispatchers have the highest compliance, but it is very important that the 

model be of high quality, capturing most operational situations. Th e early commercial models, 

despite their tremendous promise, did possess serious limitations.

Models provide a useful benchmark. Comparing user performance (empty miles, on-time 

 service, getting drivers home) against model performance for the same region and/or the same 

•

•

FIGURE 15.6 Value of global optimization in the presence of user noncompliance.
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group of drivers, provides a benchmark that adapts to the unique situations faced by each 

dispatcher.

Filling in for vacations and departures—Models can be of signifi cant value during times such 

as when a dispatcher leaves or takes a vacation. Experienced dispatchers can oft en outperform 

a model, but the model can provide a genuine safety net for new people.

15.8 Case Study—Burlington Motor Carriers 

I knew the Burlington Motor Carriers (BMC) from when they had four or fi ve employees, until they 

fi nally closed their doors. Th e company was started in the mid-1980s by the Burlington Northern 

Railroad by Dr. Michael Lawrence, a Ph.D. economist with a dream of merging a series of truckload 

carriers to gain the economies of larger networks. Dr. Lawrence hired Michael Crowe from Schneider 

National, then (and now) the nation’s largest truckload motor carrier, and one with a long history of 

innovation. Mike had a Master’s in Operations Research, and had acquired during his years at Schneider 

a vision of how operations research could be used to help run a truckload operation.

Th e story of BMC unfolded in two acts, which we refer to as “Round I” and “Round II.”

15.8.1 Operations Research Models—Round I

Th e fi rst attempt to implement operations research models at BMC occurred while the company was 

fi rst being formed, combining an entirely new information system with the purchase of four or fi ve 

companies with established operations. Mike Crowe’s vision of what models to use and how to use them 

demonstrated a deep understanding of the right way to use models within truckload trucking. Rather 

than focus on using models to assign drivers to loads (a technology pioneered by Richard Murphy at 

Schneider National), the vision was to focus more on demand management and capacity management. 

You can have a much greater impact by managing demand than managing capacity. Th is was aligned 

with some of our recent research at Princeton (see Powell, 1987), which focused more on looking into 

the future (while capturing uncertainty) and less on modeling individual drivers. Th e ideas were 

 embodied in a soft ware package we dubbed LOADMAP, which was also implemented at the same time 

at North American Van Lines [Powell et al. (1988)]. 
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Th e system that Mike Crowe had designed was brilliant, and at least 10 years ahead of its time. Although 

the strategy emphasized network-wide profi ts rather than micro-level decisions, it was still important to 

know basic data such as where the driver was located, where he was headed to, and when he was likely to 

arrive. Today, many long-haul carriers use satellite systems to provide two-way communication with 

 drivers, but this did not come until the late-1980s. Th e computers and communication technologies we 

take for granted today were just being invented in 1985. I realized the project was headed to failure when 

I met Mike aft er a conference call with fi eld operations, and listened to his frustration getting basic data 

such as when a driver might arrive at the destination.

15.8.2 The Real-Time Dispatch System—Round II

In 1994, under new management, BMC again attempted a project to perform real-time dispatch. Before 

describing the details of the project, some background is needed.

15.8.2.1 A Bit of History

Our fi rst eff orts at fl eet management focused on more aggregate level capacity measurements—how 

many drivers were in a region, how many loads were booked out of a region, and how many loads were 

booked into a region. Our model would make recommendations such as “move two drivers loaded 

from region A to region B.” Th ese instructions were met with complete mystery by the dispatchers, 

who would immediately respond “which two drivers?” For them, every assignment was unique. Th is 

driver needed to get home to Dallas, another driver was supposed to be available at 2:00 p.m. but was 

notoriously unreliable, a third driver needed to go on rest for the remainder of the day because he had 

hit the limit on the number of hours he could drive. Regions were good for planning, but it made a big 

diff erence if a driver was on the northern boundary of eastern Pennsylvania or was south of Philadelphia 

(all in the same region). A driver might be sitting in a yard staring at a trailer in the process of being 

loaded that had not yet been entered into the computer system. It may be that aggregate, network-level 

fl ows drives the economics of a carrier, but the devil is in the details, and our fi rst eff ort completly 

ignored this.

By the early 1990s, BMC had moved to its third headquarters, a low-rent offi  ce building in a cornfi eld 

north of Indianapolis. With a much lower cost structure, the company began to thrive, growing to a 

respectable $300 million annual revenue and a fl eet of about 500 trucks. Under new management, I was 

contacted again, but this time to implement a real-time dispatch system. Knowing many of the uncertainties,  

I off ered to take on the task as a research project through Princeton University, which introduced its own 

special issues. While negotiating the contract, the Princeton University grants offi  ce fi rst insisted that 

BMC was welcome to use the results of our work in their research, but had to pay royalties if they wanted 

to actually use the system. Aft er getting over the vision of a small trucking company writing journal publi-

cations, I had to explain that the project was fi eld research. I wanted to observe the process of implementa-

tion, take measurements, and publish the results. Th is is exactly what happened, and the results were 

published in the prestigious journal Operations Research [Powell et al. (2002)].

15.8.2.2 The Dispatch System

Th rough the 1980s and 1990s, one of our most signifi cant achievements was the development of a model 

which combined the real-time assignment of individual, rather than aggregated, drivers and loads which 

also looked into the future and captured the uncertainty of future demands. In a separate breakthrough 

(at the time), we also found a way to route drivers through a sequence of two or more loads, rather than 

restricting each driver to being assigned to at most one load [Powell et al. (2000)]. Th e challenge was 

 solving these problems in real-time (updates could not take more than a second or two), using available 

computers and algorithms. Just as important—it was not enough just to tell dispatchers what load a driver 

should pick up, it was still necessary to provide a ranked list of options, a feature from the basic load-

matching model that was critical to fi eld implementation.

Q2
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Th e project proceeded smoothly. BMC’s capable vice president of information technology, Mr. Robert 

Lamere, handled all aspects of the interface between the corporate information system and the model. 

However, due to the nature of the technology, the resulting solution was hardly pretty. As with many 

truckload carriers, BMC used a very popular computer developed by IBM called an AS/400, a fantastic 

machine for processing data but which would not run languages such as C or C++. Th e preferred imple-

mentation platform for models at the time was Unix-based machines, in our case a Silicon Graphics 

workstation. Bob worked out a solution where data would be passed from the AS/400 to a PC which then 

talked to the Unix workstation. Ugly, but it worked. Th e system went into production about a year aft er 

the project started, and we began the painful process of gaining user acceptance.

15.8.2.3 Oh, but could You Help us with . . . 

In the middle of the project, I received a call from senior management asking if I could take a look at 

their network profi tability and pricing policies. I had developed a model for this purpose that had been 

applied to several other carriers, and I off ered to apply it to their network. Normally the model would 

produce a profi t-and-loss statement fairly close to actuals, but aft er several weeks of fi ddling, I had to call 

to tell them that the model did not seem to be working. It was producing results where the operating 

ratio (total costs over total revenue) was 110 (i.e., costs were running 10% higher than revenues)! 

I was politely informed “that was about right” !!!.

I learned in that phone call that the reason the company had funded the dispatch project was a belief 

that the reason their costs were 10% higher than revenues was problems with the dispatch fl oor. By this 

time, we knew that dispatch systems could reduce operating costs by 1% or 2%. Th ey do this by reducing 

the empty miles traveled, but these are typically only 10% of total miles traveled. A 1% or 2% reduction in 

total costs is a big number if your profi t margin is only 3% or 4%. But they will never drop costs by 10%. 

Th e phrase “Houston, we have a problem” was appropriate here.

We had to put the dispatch project on the shelf for about six months to focus on their profi tability 

 problem. Truckload trucking is famous for lines such as “we lose money on every load but make it up in 

volume.” Approximately 95% of the total costs of a truckload operation are what economists would call 

short-term variable costs (i.e., directly related to miles traveled and the size of the fl eet). BMC did not have 

an operational problem. Th ey had a pricing and marketing problem. Th ey were carrying the wrong loads 

at the wrong price.

Using my network planning model, BMC shrank the company by over 25%, reducing their operating 

ratio from 110 to below 100 (which is to say, profi table). Th is is extremely diffi  cult in most companies, but 

is surprisingly easy to do in the truckload industry. It is not that hard to shrink a company to profi tability 

as long as assets such as fl eets are also reduced. Of course, corporate overhead has to be reasonable. With 

the big problem solved, we returned to the dispatch system.

15.8.2.4 Implementing the Dispatch System

Th e remainder of the project progressed smoothly. System compliance was tracked daily, and dispatch-

ers were given bonuses for higher levels of compliance. Th e vice president of operations particularly 

enjoyed the sudden control he was given over the behavior of the dispatchers. A major frustration in 

managing a room full of dispatchers is that they are notoriously independent. It is important for a 

 company to balance on-time service, operating costs (measured primarily through the miles a driver 

moves empty to pick up a load), equipment productivity (oft en miles per driver per week), and keep 

drivers happy (which translates to putting them on long loads and getting them home on time). Not 

surprisingly, these goals are oft en competing, and management may decide to shift  emphasis from one 

goal to another as business conditions warrant. Th e model, however, allowed management to easily 

raise or lower penalties and bonuses to emphasize diff erent management objectives, and Burlington 

Management took advantage of this feature.

Th is control, however, proved somewhat illusory. One week we found that system compliance had 

dropped noticeably. We found that some of the parameters controlling the importance the model puts 
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on these soft  issues had been adjusted somewhat dramatically. We reset the parameters (we had direct 

access to the Silicon Graphics workstation where the model was run) and called the vice president of 

operations to explain that optimization models are a little like artifi cial hearts. You can use these 

machines to increase or decrease the speed of a patient’s heart, but it is also a nice way to give the patient 

a stroke. Models work the same way. Just because you adjust the parameter does not mean that all the 

dispatchers adjust equally quickly.

15.8.2.5 Measuring the Impact

We carefully documented the impact of the model by collecting an extremely valuable dataset. Since the 

model ran in real-time, we not only received updates to drivers and loads, we were also given, in real-time, 

actual assignments of drivers to loads. We stored every transaction during a day for approximately 50 days 

out of a 6-month period. Th is also allowed us to make changes to the model, and then re-simulate an 

entire day using actual transactions. With this system, we could make certain measurements from actual 

decisions and compare them to what the model recommended at that point in time. We measured empty 

miles, on-time performance and our ability to get drivers home on time. Figure 15.8 reports reduction in 

empty miles and improvement in getting drivers home for each day that we  captured. We found that the 

model consistently produced improved performance.

15.8.2.6 Prologue

At fi rst, this seemed like a completely successful project in every measure. In addition, one of my gradu-

ate studies, Derek Gittoes, had just started a new consulting fi rm called Transport Dynamics to imple-

ment and maintain these systems. Although the project was quite successful, they did not want 

to maintain an ongoing research relationship, and a university was not the right organization to provide 

maintenance and support. By this time, the company was convinced that it was not possible to run a 

profi table truckload carrier without models to identify profi table accounts and to help the dispatchers. 

But facing continuing cost pressures, they decided to move forward with the load profi tability and driver 

dispatch systems without maintenance.

A few years later (post year 2000) I received a call saying that the system had not survived the post-

2000 transition. Our model was specifi cally designed to be Y2K compliant (i.e., we could handle dates 

in two-digit format, such as 00, 01, 02), but we suspected a problem either in the PC interface between 

the AS/400 and the workstation. But when I asked what their level of user compliance was, they reported 

that it had dropped to around 35%, a level that I understood to mean that they were no longer using the 

dispatch system. Knowing that they did not have a budget for maintenance, I recommended that they 

simply shut off  the dispatch system, which they did.
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FIGURE 15.8 Day-by-day comparison of model recommendations against actual performance for (a) 

reducing empty miles and (b) getting drivers home.
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Th ree months later, I received another phone call from the president asking how we could get the 

 system running again. Th e problem, he explained, was that while the experienced dispatchers seem to do 

fi ne, they “got killed” each time one of them went on vacation or left  the company. Th is was the fi rst time 

I had solid evidence that a real-time dispatch system off ered the kind of value that a manager could clearly 

and unambiguously recognize.

With a renewed commitment to the use of models, the company looked at bids from Transport 

Dynamics and a competitor. Th ey had just hired a new manager from the competitor, and not surprisingly 

decided to go with the competitor. BMC closed its doors and liquidated two years later. Sigh.
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