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Abstract

We propose an online, on-policy least-squares policy iteration (LSPI) algorithm which can

be applied to infinite horizon problems with where states and controls are vector-valued and

continuous. We do not use special structure such as linear, additive noise, and we assume that

the expectation cannot be computed exactly. We use the concept of the post-decision state

variable to eliminate the expectation inside the optimization problem. We provide a formal

convergence analysis of the algorithm under the assumption that value functions are spanned

by finitely many known basis functions. Furthermore, the convergence result extends to the

more general case of unknown value function form using orthogonal polynomial approximation.



1 Introduction

Central to the solution of Markov decision processes is Bellman’s equation, which is often

written in the standard form (Puterman (1994))

Vt(xt) = max
ut∈U
{C(xt, ut) + γ

∑
x′∈X

P (x′|xt, ut)Vt+1(x′)}. (1)

If the state variable xt and decision variable ut are discrete scalars and the transition matrix P

is known, the value function Vt(xt) can be computed by enumerating all the states backward

through time, which is a method often referred to as backward dynamic programming. More-

over, there is a mature and elegant convergence theory supporting algorithms that handle

problems with finite state and action spaces and computable expectation (Puterman (1994)).

However, discrete representations of the problem often suffer from the well-known “curses of

dimensionality” which arise in the presence of multidimensional states, actions and random

information. In addition, there are a large number of real world applications with continu-

ous state and action spaces, to which direct application of algorithms developed for discrete

problems is not appropriate.

In this paper, we consider the problem of solving stochastic, dynamic programs with

continuous (and vector-valued) states and actions, without assumptions such as additive noise

and quadratic cost functions. An example of a problem arises in managing a resource such

as energy which has to be allocated from different sources (coal, natural gas, wind, solar,

biomass) to different types of demand (residential, commercial, transportation), including

injections to and withdrawals from storage. The control vector may have hundreds to many

thousands of dimensions, and must satisfy constraints including production capacity, amount

of energy in storage, transmission constraints and demand. These constraints are expressed

using ut ∈ Ut, where the feasible region Ut evolves stochastically over time (reflecting, for

example, randomness in supply from wind and variations in demands and prices). The state

vector xt would capture how much energy is in storage, availability of energy from wind,

and demand for different types of energy such as electricity, oil and natural gas. We seek to
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determine the allocation ut using Bellman’s equation, given by

V (xt) = max
ut∈Ut

(ctut + γE [V (xt+1)|xt]) ,

Here, the expectation is over random variations that include energy from wind and solar,

prices and demands.

This paper considers continuous value function approximations to handle high-dimensional

and continuous applications. We propose an implementable approximate policy iteration

algorithm that uses a linear function approximation architecture to handle infinite-horizon

discounted Markov decision processes where state, action and information variables are all

continuous vectors (possibly of high dimensionality) and the expectation cannot be computed

exactly. The algorithm is an online, on-policy modified version of the least squares policy

iteration (LSPI Lagoudakis & Parr (2003)), which applies to value functions of the state

(instead of state-action Q-factors) and uses least squares or recursive least squares methods

for policy evaluation. We provide a rigorous convergence analysis of the algorithm for linear

value function approximation with a finite set of known basis functions and extend the result

to the case with unknown value function form using Chebyshev basis functions.

We have a special interest in on-policy algorithms since our interest is in problems with

multidimensional (and possibly very high dimensional), continuous states and actions. Off-

policy algorithms assume that if we are in state xt, we will choose an action ut at random

to help determine (along with exogenous noise) the next state xt+1 that we will visit. If

we let wt be the exogenous noise (random at time t), then xt+1 is determined from xt+1 =

f(xt, ut, wt) where f(·) is an arbitrary transition function. For high-dimensional states and

actions, choosing actions (or states) at random to guide exploration becomes impractical,

since we will spend the vast majority of the time sampling states and actions that are simply

not important. With on-policy algorithms, the action is determined by what we think is a

good policy, guiding our attention to the regions that are more likely to be interesting. It is

much harder to prove convergence for on-policy algorithms since we are not allowed to directly

control the sampling process.

The rest of the paper is organized as follows. In section 2, we review the literature on
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continuous function approximations applied to Markov decision process problems and their

asymptotic properties and place our work in line with the others. In section 3, we summarize

important mathematical foundations to establish convergence and illustrate the details of a

least squares/recursive least squares approximate policy iteration (LS/RLSAPI) algorithm.

Section 4 presents the convergence results for policy evaluation. In section 5, by applying the

results in section 4, we show almost sure convergence of the exact policy iteration algorithm,

which requires exact policy evaluation, to the optimal policy. Section 6 proves convergence in

the mean of least squares approximate policy iteration, in which case policies are evaluated

approximately. In section 7, we extend the convergence result in section 6 to unknown basis

functions using Chebyshev polynomials and provide a detailed algorithm. The last section

concludes and discusses future research directions.

2 Literature Review

In this section, we first review the literature on continuous function approximations and

related convergence theories. Since the inception of the field of dynamic programming, re-

searchers have devoted considerable efforts to explore heuristic value function approximation

approaches (see, for example, Bellman & Dreyfus (1959), Bellman et al. (1963), Reetz (1977),

Whitt (1978), Schweitzer & Seidmann (1985)) in order to overcome the curses of dimension-

ality in large-scale stochastic dynamic programming problems. It was not until the early

nineties that convergence theory of continuous function approximation was introduced. The

literature on continuous value function approximations (include both linear and non-linear

approximation) with convergence theories can be divided into two main categories: 1) con-

tinuous function approximation of problems with discrete states, and 2) approximation of

problems with continuous states. Convergence results have focused either on demonstrating

that the value function approximation accurately evaluates a fixed policy (hence no actual

optimization), or the much more difficult challenge of proving that we also find an optimal

policy. Research into algorithms for finding optimal policies can be divided into: 1) on-policy

algorithms where the next state to be sampled is determined by the behavior of the policy

we are trying to optimize, and 2) off-policy algorithms which attempts to estimate the value
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of an estimation policy while using a sampling policy (or behavior policy) to determine which

state to visit next. To prove convergence, on-policy algorithms need to impose stability con-

ditions on the underlying system by following the policy (which is evolving as we learn it),

while off-policy algorithms need stability condition of the system of the sampling policy and

also requires that every action taken under the sampling policy is also taken, at least occa-

sionally, under the estimation policy. The popular idea of Q-learning simplifies the problem

by estimating the value of a state-action pair, but at a price of a more complex estimation

problem.

The table in figure 1 is a brief summary of the literature ordered by year of publication and

categorized by their characteristics such as whether the state and action spaces are discrete or

continuous (D/C), whether the contribution/reward function is quadratic or general (Q/G),

whether the expectation can be computed exactly (Y/N), whether the problem is deterministic

or stochastic (Gaussian noise) (D/S(G)), the type of algorithms including value iteration (VI),

fixed policy (FP), exact or approximate policy iteration (EPI/API), approximation techniques

such as linear (L) and nonlinear (NL), whether the algorithm is on or off-policy (On/Off)

and types of convergence including convergence (Y) for deterministic case or computable

expectation and almost sure (a.s.), in probability (i.p.) convergence and probability bound

(PB) for stochastic algorithms. Details of the algorithms and their convergence properties are

discussed in the following subsections.

2.1 Continuous approximations of discrete problems

Many learning algorithms with different continuous function approximation techniques are

proposed to handle large-scale discrete MDP problems. Tsitsiklis & Van Roy (1996) first

sets up a rigorous framework combining dynamic programming and compact representations

using feature-based (linear approximation) value iteration algorithms. With the assumption

of computable expectation, Gordon (1995) proves convergence for fitted value iteration al-

gorithm with function approximations that are contraction or expansion mappings such as

k-nearest-neighbor, linear interpolation, some types of splines, and local weighted average

(but excluding linear regression and neural network). Gordon (2001) proves a weaker result

4



State Action Reward Exp. Noise Type Apr. Policy Conv.
Bradtke...(1994) C C Q N D API L Off Y

Baird (1995) D D G NA D FP L/NL NA Y
Gordon (1995) D D G Y S VI NL NA Y

Tsitsiklis...(1996) D D G Y S VI L NA Y
Bradtke...(1996) D D G N S FP L On a.s.

Landelius...(1997) C C Q N D VI/API L On Y
Tsitsiklis...(1997) D D G Y S FP L On a.s.

Boyan (1999) D D G N S FP L On a.s.
Papavassiliou...(1999) D NA G Y S FP L/NL NA Y

Gordon (2001) D D G N S VI L Off a.s.
Tadić (2001) C NA G N S FP L On a.s.

Precup...(2001) C NA G N S FP L Off a.s.
Ormoneit...(2002) C D G N S VI NL NA i.p.

Melo...(2007) C D G N S VI L Off a.s.
Szita (2007) C C Q N S(G) VI L Off a.s.

Antos...(2007) C D G N S API L/NL Off PB
Munos...(2008) C D G N S VI L/NL NA PB
Antos...(2008a) C D G N S API L/NL Off PB
Antos...(2008b) C C G N S API L/NL Off PB
Melo...(2008) C D G N S VI L Off a.s.

Sutton...(2009) D D G N S FP L Off a.s.
Maei...(2010) D D G N S FP NL On a.s.

Figure 1: Table of some continuous function approximation algorithms and related conver-
gence results

that the SARSA(0) and V(0) algorithms (value iteration) with linear approximation converge

to a bounded region almost surely.

A variety of temporal difference (TD) learning algorithms are proposed to evaluate value

function for a fixed policy, which reduces the problem to a discrete Markov chain. Tsitsiklis &

Van Roy (1997) proves almost sure convergence of the on-policy TD learning algorithm with

linear approximation, while Bradtke & Barto (1996) and Boyan (1999) present almost sure

convergence results of the least squares version (LSTD). Precup et al. (2001) and Sutton et al.

(2009) shows almost sure convergence of off-policy TD algorithms for a fixed policy with linear

approximation, which use importance sampling and i.i.d. sampling of initial states combined

with on-policy transition respectively. Maei et al. (2010) proposes on-policy TD learning

algorithm that converges almost surely for non-linear smooth value function approximators,

such as neural networks. Assuming the ability of computing the expectation, Papavassiliou

& Russell (1999) describes the Bridge algorithm for a fixed policy with any “agnostically

learnable” function class other than the class of linear combination of fixed basis functions
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and provides approximation error bounds. As another alternative to TD algorithms for a fixed

policy, the residual gradient algorithm in Baird (1995), which performs gradient descent on

the mean squared Bellman residual, is provably convergent for deterministic system.

2.2 Approximations of continuous problems

Early convergence results of function approximation algorithms directly applied to continuous

problems can be found for the problem class of linear quadratic regulation (LQR) where

value iteration is applied to quadratic contribution/reward and linear state transition, i.e.

Bradtke (1993), Bradtke et al. (1994), Landelius & Knutsson (1997) (deterministic) and Szita

(2007) (stochastic with Gaussian noise). Tadić (2001) generalizes and extends the almost

sure convergence results of on-policy TD algorithm for a fixed policy in Tsitsiklis & Van Roy

(1997) to a broader class of Markov chains with uncountable state space. Ormoneit & Sen

(2002) adopts a kernel-based approach to off-line value iteration algorithm for continuous

state and finite action space, which is convergent in probability as the size of the off-line

training sample size increases to infinity. Under strong technical conditions of basis functions,

Melo et al. (2007) proves almost sure convergence of Q-learning used with linear function

approximation. Melo et al. (2008) shows almost sure convergence of Q-learning and SARSA

algorithms with linear approximation under strong assumptions on the sampling policy.

More recently, a series of papers (Antos et al. (2007), Antos, Szepesvári & Munos (2008),

Munos & Szepesvári (2008), Antos, Munos & Szepesvari (2008)) derive finite-sample high

probability performance bounds for batch reinforcement learning algorithms that produce a

near-optimal policy in polynomial time for MDPs with continuous state space. More specif-

ically, Munos & Szepesvári (2008) considers sampling-based fitted value iteration algorithm

for MDP problems with large or possibly infinite state spaces but finite action spaces in an

off-line setting where a known generative model of the environment is available to sample any

transitions from any initial states for each possible action. In a model-free setting, Antos et al.

(2007), Antos, Szepesvári & Munos (2008) propose off-policy fitted policy iteration algorithms

that are based on a single trajectory of following some fixed sampling policy to handle prob-

lems in continuous state space and finite action space. The running time of the algorithms
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depends on the mixing rate of the sample trajectory of following the sampling policy, the

controllability properties of the underlying MDP, sample size and the approximation power

and capacity of the function approximation method used. Antos, Munos & Szepesvari (2008)

makes the first step to extend previous convergence analysis to problems with continuous

actions by imposing regularity conditions on the action space.

2.3 Discussion of related works

The most directly related works to this paper include the LSTD algorithm developed in

Bradtke & Barto (1996) and the LSPI algorithm in Lagoudakis & Parr (2003), which is

motivated by LSTD to combine linear value-function approximation and approximate policy

iteration. Lagoudakis & Parr (2003) introduces LSPI as an off-policy approximate policy

iteration algorithm for finite MDPs that uses LSTDQ (a modified version of LSTD) to evaluate

state-action value function (Q-function) of a fixed policy, and no formal convergence analysis

of the algorithm is provided except for a generic deterministic error bound of the approximate

policy iteration as in Bertsekas & Tsitsiklis (1996). Replacing LSTD with Bellman residual

minimization (BRM) for policy evaluation, fitted policy iteration algorithms in Antos et al.

(2007), Antos, Szepesvári & Munos (2008), Antos, Munos & Szepesvari (2008) generalize

the off-policy LSPI from linear approximation to a richer set of approximation functions for

continuous problems and provide probability bounds that ensures high performance. However,

this research on off-line LSPI does not detail implementation of the algorithm such as feature

selection, which is crucial for determining the approximation power of the function class and

in turn providing convergence guarantees for algorithms using linear architecture. Mahadevan

& Maggioni (2007) extends LSPI within the representation policy iteration (RPI) framework

but lacks a convergence analysis. By representing a finite sample of state transitions induced

by the MDP as an undirected graph, RPI constructs an orthonormal set of basis functions

with the graph Laplacian operator.

The work presented in our paper extends the LSTD to the continuous framework and

solves the problem of persistency of excitation for parameter convergence in system identifi-

cation with continuous states by imposing orthonormality assumption on basis functions. In
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order to handle continuous state and action spaces of potentially high dimensionality and sim-

plify implementation of both policy evaluation and improvement steps, we propose an online,

on-policy version of LSPI that uses linear function approximation and LSTD to evaluate the

post-decision value function of following a fixed policy and prove convergence in expectation of

the algorithm. Furthermore, we propose a solution to feature selection by automatically con-

structing a finite set of approximate orthonormal basis functions with Chebyshev polynomials

and sampled state transitions and provide a sound convergence analysis of the algorithm.

3 Preliminaries and the algorithm

We consider a class of infinite horizon Markov decision processes with continuous state and ac-

tion spaces. The following subsections discuss several important preliminary concepts includ-

ing Markov decision processes, contraction operators, continuous correspondence, continuous-

state Markov chain and post-decision state variable. These basics are necessary in the con-

vergence proofs in subsequence sections. The last subsection illustrates the details of an

approximate policy iteration algorithm with recursive least squares updating method.

3.1 Markov decision processes

We start with a brief review of Markov decision processes. A Markov decision process is a

sequential optimization problem where the goal is to find a policy that maximizes (for our

application) the expected infinite-horizon discounted rewards. Let xt be the state of the

system at time t, ut be a vector-valued continuous decision (control) vector, π : X → U be

a policy in the stationary deterministic policy space Π, C(xt, ut) be a contribution/reward

function, and γ be a discount factor in (0, 1).

The system evolves according to the following state transition function

xt+1 = SM(xt, ut,Wt+1), (2)

where Wt+1 represents the exogenous information that arrives during the time interval from t
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to t+ 1. The problem is to find the policy that solves

sup
π∈Π

E

{
∞∑
t=0

γtC(xt, π(xt))

}
, (3)

where the initial state x0 is deterministic. Since solving the objective function (3) directly

is computationally intractable, Bellman’s equation is introduced so that the optimal control

can be computed recursively. To handle continuous problems, it is more convenient for our

purpose but mathematically equivalent to write Bellman’s equation (1) with the expectation

form (rather than the traditional use of a one-step transition matrix)

Vt(xt) = sup
ut∈U
{C(xt, ut) + γE[Vt+1(xt+1)|xt]}, (4)

where Vt(xt) is the value function representing the value of being in state xt by following the

optimal policy onward and the expectation is taken over the random information variable

Wt+1. It is worth noting that the contributions in (4) can be stochastic. Then, Bellman’s

equation becomes

Vt(xt) = sup
ut∈U

{
E
[
Ĉ(xt, ut,Wt+1) + γVt+1(SM(xt, ut,Wt+1))|xt

]}
. (5)

Furthermore, if we have an infinite horizon steady state problem, we can drop the subscript t

and write the Bellman’s optimality equation as

V (x) = sup
u∈U

{
C(x, u) + γE[V (SM(x, u,W )]

}
. (6)

Value functions define a partial ordering over policies. That is, π ≥ π′ if and only if

V π(x) ≥ V π′(x) for all x ∈ X . Let V ∗ denote the optimal value function defined as

V ∗(x) = sup
π∈Π

V π(x), (7)

for all x ∈ X . It is well-known that the optimal value function V ∗ satisfies equation (6).

To solve problems with continuous states, we list the following assumptions regarding

MDPs for future reference in later sections.
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The state space X , the decision space U and the outcome space W are convex, compact

and Borel subsets of Rm, Rn and Rl respectively.

Assume that the contribution function C, the state transition function SM and the tran-

sition probability density function Q : X × U ×W → R+ are all continuous.

It is worth noting the contribution and transition function are uniformly bounded given

assumption 3.1 and 3.1. In turn, the objective function (3) is also bounded since we work

with discounted problems. Let Cb(X ) denote the space of all bounded continuous functions

from X to R. It is well-known that Cb(X ) is a complete metric space.

3.2 Contraction operators

In this section, we describe the contraction operators associated with Markov decision pro-

cesses. Their contraction property is crucial in the convergence proof of our algorithm.

[Bellman optimality operator] Let M be the Bellman operator such that for all x ∈ X and

V ∈ Cb(X ),

MV (x) = sup
u∈U
{C(x, u) + γ

∫
W
Q(x, u, dw)V (SM(x, u, w))},

where Q is assumed to make M map Cb(X ) into itself.

[Policy evaluation Operator] Let Mπ be the operator for a fixed policy π such that for all

x ∈ X

MπV (x) = C(x, π(x)) + γ

∫
W
Q(x, π(x), dw)V (SM(x, π(x), w))

where Q and SM have the same property as in definition 3.2.

There are a few elementary properties of the operators M and Mπ (Bertsekas & Shreve

(1978)) that will play an important role in the subsequent sections.

Proposition 1 (Monotonicity) For any V1, V2 ∈ Cb(X ), if V1(x) ≤ V2(x) for all x ∈ X ,
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then for all k ∈ N and x ∈ X

MkV1(x) ≤ MkV2(x),

Mk
πV1(x) ≤ Mk

πV2(x),

where MkV (x) = M
(
Mk−1V (x)

)
.

Proposition 2 (Contraction property and Fixed point) M and Mπ are γ-contractions

for Cb(X ) with respect to the supremum norm. Furthermore, M and Mπ have their respective

unique fixed points. That is, for any V ∈ Cb(X ), limk→∞M
kV = V ∗ where V ∗ is the unique

solution to the equation V = MV . Similarly, for any V ∈ Cb(X ), limk→∞M
k
πV = V π where

V π is the unique solution to the equation V = MπV .

3.3 Continuous correspondence

The correspondence Γ defined formally below describes the feasible set of decisions that ensures

the Bellman optimality operator M takes the function space Cb(X ) into itself. A correspon-

dence is said to be compact-valued if the set Γ(x) is compact for every x ∈ X . The following

definitions and properties of Γ will be used in section 5 to prove the convergence of policies

to the optimal.

[Correspondence] A correspondence Γ : X → 2U is a relation that assigns a feasible decision

set Γ(x) ⊂ U for each x ∈ X .

[Lower and upper hemi-continuity of correspondence] A correspondence Γ : X → 2U is

lower hemi-continuous (l.h.c.) at x if Γ(x) is nonempty and if, for every u ∈ Γ(x) and

every sequence xn → x, there exists N ≥ 1 and a sequence {un}∞n=N such that un → u and

un ∈ Γ(xn) for all n ≥ N .

The correspondence is upper hemi-continuous (u.h.c.) at x if Γ(x) is nonempty and if, for

every sequence xn → x and every sequence {un} such that un ∈ Γ(xn) for all n, there exists

a convergent subsequence of {un} with limit point u ∈ Γ(x).
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[Continuity of correspondence] A correspondence Γ : X → 2U is continuous at x ∈ X if it

is both u.h.c. and l.h.c. at x.

3.4 Markov chains with continuous state space

To work with Markov chains with continuous state space, we present the following definitions

of irreducibility, invariant measure, recurrence and positivity that all have familiar counter-

parts in discrete chains. These properties are related to the stability of a Markov chain, which

is of great importance in proving the convergence of value function estimates. In addition,

the continuity property of the transition kernel is helpful in defining behavior of chains with

desirable topological structure of the state space (Meyn & Tweedie (1993)). Hence, we intro-

duce the concepts of Feller chains, petite sets and T -chains, which will be used later to classify

positive Harris chains.

[ψ-Irreducibility for general space chains] For any measure ϕ, a Markov chain Φ on state

space X is called ϕ-irreducible if there exists a measure ϕ on B(X ) such that whenever

ϕ(A) > 0 for A ∈ B(X ), we have

Px{Φ ever enters A} > 0,∀x ∈ X

where Px denotes the conditional probability on the event that the chain starts in state x. Let

ψ be the maximal irreducibility measure among such measures. (For the existence of ψ, see

proposition 4.2.2 of Meyn & Tweedie (1993).)

[Harris recurrence] The set A ∈ B(X ) is called Harris recurrent if

Px{Φ ∈ A infinitely often} = 1,∀x ∈ X .

A chain Φ is called Harris (recurrent) if it is ψ-irreducible and every set in

B+(X ) = {A ∈ B(X ) : ψ(A) > 0}

is Harris recurrent.

[Invariant measure] Let P (·, ·) be the transition kernel of a chain Φ on the state space X .
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A σ-finite measure µ on B(X ) with the property

µ(A) =

∫
X
µ(dx)P (x,A), ∀A ∈ B(X )

will be called invariant.

[Positive chains] Suppose a ψ-irreducible chain Φ admits an invariant probability measure

µ. Then Φ is called a positive chain.

[Weak Feller chains] If a chain Φ has a transition kernel P such that P (·, O) is a lower

semi-continuous function for any open set O ∈ B(X ), then Φ is called a weak Feller chain.

It is worth noting that the weak Feller property is often defined by assuming that the

transition kernel P maps the set of all continuous functions C(X ) into itself.

[Petite set] A set C ∈ B(X ) is called petite if for some non-trivial measure ν on B(X ) and

δ > 0,

K(x,A) ≥ δν(A), x ∈ C,A ∈ B(X )

where K is the resolvent kernel defined by

K(x,A) =
∞∑
n=0

(
1

2
)n+1P n(x,A).

[T -chains] If every compact set of B(X ) is petite, then Φ is called a T -chain. (For another

more detailed definition, see Meyn & Tweedie (1993) chapter 6.)

3.5 Post-decision state variable

Computing the expectation within the max operator M is often intractable when the under-

lying distribution of the evolution of the stochastic system is unknown or the decision u is

a vector. However, we can circumvent the difficulty by introducing the notion of the post-

decision state variable (Van Roy et al. (1997), Powell (2007)) or end-of-state (Judd (1998))

or after-state (Sutton & Barto (1998)). Suppose we can break the original transition function
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(2) into the two steps

xut = SM,u(xt, ut), (8)

xt+1 = SM,W (xut ,Wt+1). (9)

We call xut the post-decision state, which is the state immediately after we make a decision.

Using our original energy allocation example, we let xt be supplies of and demands for energy

at time t, ut be how much to use at time t, and Wt+1 be random changes in energy from wind

and solar, changes in prices and changes in demand. Then, comparable to equation (8) and

(9) we have

xut = xt − Aut

xt+1 = xut +Wt+1.

We denote the post-decision state space by X u. Accordingly, we define the post-decision value

function V u : X u → R to be

V u(xut ) = E{V (xt+1)|xut }, (10)

where V u(xut ) represents the value of being in the post decision states xut . Suppose the pre-

decision value function V ∈ B(X ) and V u ∈ B(X u). There is a simple relationship between the

pre-decision value function V (xt) and post-decision value function V u(xut ) that is summarized

as

V (xt) = max
ut∈U
{C(xt, ut) + γV u(xut )} . (11)

By substituting (11) into (10), we have Bellman’s equation of post-decision value function

V u(xut ) = E{ max
ut+1∈U

{C(xt+1, ut+1) + γV u(xut+1)}|xut }. (12)

We note that it is popular in the reinforcement learning community to approximate Q-

factor Q(x, u). In our approach, we only need to approximate V u(xu), where the dimension-

ality of the post-decision state xu is much lower than the dimensionality of the state-action

pair (x, u).
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Step 0: Initialization:

Step 0a Set the initial values of the value function parameters θ̂0.

Step 0b Set the initial policy

π1(x) = arg max
u∈Γ(x)

{C(x, u) + γφ(xu)T θ̂0}.

Step 0c Set the iteration counter n = 1.

Step 1: Do for n = 1, . . . , N ,

Step 1a: Set the initial State xn0 .

Step 2: Do for m = 0, . . . ,M :

Step 3: Initialize θ̂n,m and v̂m = 0.
Step 4: Draw randomly or observe Wm+1 from the chain.
Step 5: Do the following:

Step 5a: Set unm = πn(xnm).
Step 5b: Compute xn,πm = SM,π(xnm, u

n
m) and xnm+1 = SM (xnm, u

n
m,Wm+1)

Step 5c: Compute unm+1 = πn(xnm+1) and xn,πm+1 = SM,π(xnm+1, u
n
m+1)

Step 5d: Compute input variable/regressor using the corresponding basis function values:
φ(xn,πm )− γφ(xn,πm+1).

Step 6: Do the following:
Step 6a Compute/observe the response variable v̂m = C(xn,πm , xn,πm+1)

Step 6b Update parameters θ̂n,m with LS/RLS method that regresses response v̂m on
regressor φ(xn,πm )− γφ(xn,πm+1)

Step 7: Update the parameter and the policy:

θ̂n+1 = θ̂n,M ,

πn+1(x) = arg max
u∈Γ(x)

{C(x, u) + γφ(xu)T θ̂n}.

Step 8: Return the policy πN+1 and parameters θ̂N .

Figure 2: Infinite-horizon approximate policy iteration algorithm with recursive least squares
method

3.6 Algorithm details

The recursive least squares approximate policy iteration algorithm (RLSAPI) is summarized in

Figure 2. The details of the least squares subroutine in step 3 for updating the value function

parameters are discussed in section 4. It is worth making a remark on the arg max function at

the end of the algorithm. This step is usually a multivariate global optimization problem that

computes the policy (exactly or approximately) from the post-decision value function of the
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previous inner iteration. The updated policy function feeds back a decision given any fixed

input of the state variable. We assume that there is a tie-breaking rule that determines a

unique solution to the arg max function for all f ∈ Cb(X ) such as a nonlinear proximal point

algorithm (Luque (1987)). As a result, the returned policies are well-defined single-valued

functions. It is worth noting that determining the unique solution to the arg max function

may not be an easy job in practice. However, the computational difficulty is significantly

reduced if we have special problem structures such as strict concavity and differentiability of

the value functions as in the blood management example mentioned in the introduction.

4 Almost sure convergence of policy evaluation

In the RLSAPI algorithm, there are both inner and outer loops, which correspond to policy

evaluation and policy improvement respectively. We first analyze the convergence of the

policy evaluation step. RLSAPI uses the least squares temporal difference (LSTD) learning

algorithm Bradtke & Barto (1996) for evaluating a fixed policy.

For a fixed policy π, the transition steps (8) and (9) become

xπt = SM,π(xt, π(xt)),

xt+1 = SM,W (xπt ,Wt+1).

As a result, the Markov decision problem can be reduced to a Markov chain for post-decision

states. Bellman’s equation (12) for the post-decision state becomes

V π(x) =

∫
Xπ
P (x, dx′)(Cπ(x, x′) + γV π(x′)), (13)

where V π is the value of following the fixed policy π, P (·, ·) is the transition probability func-

tion of the chain, Cπ(·, ·) is the stochastic contribution/reward function with Cπ(xπt , x
π
t+1) =

C(xt+1, π(xt+1)) and X π is the post decision state space by following policy π. It is worth

noting that X π is compact since X and U are compact and the state transition function SM is

continuous by assumption 3.1 and 3.1 respectively. In addition, x in (13) is the post-decision

state variable and we drop the superscript u for simplicity.
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In the algorithm, we choose to work with the post-decision value functions resulting from

following a fixed policy π (call it policy value function) because in this way we can avoid

computing the expectation of the pre-decision value function directly in policy improvement,

which is often hard to evaluate. To make the policy improvement step easier and show

convergence of the algorithm, we make the following assumption on the policy value function.

Assume that the policy value function for a fixed policy π is continuous and of the linear

form i.e. V π(x|θ) = φ(x)T θ where φ(x) = [· · · , φf (x), · · · ] is the vector of basis functions of

dimension F = |F| (number of basis functions) and f ∈ F (F denotes the set of features).

Since we assume that the spanning set of the basis functions is known, so it is enough to

just estimate the linear parameters for estimating policy value function. It is worth mentioning

that the features for the post-decision value functions may not be the same and may not be

easily deduced from those of the pre-decision value function (if we assume a linear structure on

pre-decision value function), since there is an additional expectation operator as in equation

(11), ie. φ(xu)T θ =
∫
W
Q(x, u, dw)φ′(SM(x, u, w))T θ′, where φ′ stands for the features of the

value function defined on pre-decision states. An exception is LQR, in which case the features

are identical for both pre- and post-decision value functions.

There are two different approaches to derive convergence results for LSTD with finite state

space. Bradtke & Barto (1996) employs a general linear regression setting, while Lagoudakis

& Parr (2003) considers the least squares fixed point solution of the Bellman operator pro-

jected on the feature space. It looks more convenient to extend the convergence result to the

continuous case in the regression setting, since the derivation in Lagoudakis & Parr (2003) is

very specific to finite states. However, we believe that the intuitive interpretation of the least

squares fixed point approximation approach discussed in Lagoudakis & Parr (2003) remains

valid in the continuous case.

We proceed by following the regression setting in Bradtke & Barto (1996). Bellman’s

equation (13) gives us

φ(x)T θ∗ =

∫
Xπ
P (x, dx′)[Cπ(x, x′) + γφ(x′)T θ∗].
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We can rewrite the fixed point equation as

Cπ(x, x′) =

(
φ(x)− γ

∫
Xπ
P (x, dx′)φ(x′)

)T
θ∗ + Cπ(x, x′)−

∫
Xπ
P (x, dx′)Cπ(x, x′),

which fits the linear regression setting.

Remark: It is worth noting that φ(x) and φ(x′) are vectors. The integral is taken compo-

nentwise for φ(x′), so it feeds back a vector. Similarly, if we take an integral of a matrix, it is

taken componentwise.

Since the transition probability function may be unknown or not computable at iteration

m, instead of having the exact input variable, we can only observe an unbiased sample estimate

φm − γφm+1 where φm is the shorthand notation for φ(xm). Therefore, this is an errors-in-

variable model (Young (1984)), and the regular linear regression estimates for θ∗ is biased. An

instrumental variable is used in the regression estimates to eliminate the asymptotic bias. The

instrumental variable has to be correlated with the true input variable but uncorrelated with

the input error term and the observation error term. A good candidate for the instrumental

variable in the algorithm is φ. As a result, the m-th estimate of θ∗ is

θm =

[
1

m+ 1

m∑
i=0

φi(φi − γφi+1)T

]−1 [
1

m+ 1

m∑
i=0

φiCi

]
, (14)

where Ci = Cπ(xi, xi+1) is the i-th observation of the contribution.

Convergence of the parameter estimates requires stability of the chain. This can be in-

terpreted as saying a chain finally settles down to a stable regime independent of its initial

starting point (Meyn & Tweedie (1993)). Positive Harris chains defined in section 3 meet the

stability requirement precisely, and the invariant measure µ describes the stationary distribu-

tion of the chain. The following lemma from Meyn & Tweedie (1993) states the well-known

strong law of large numbers for positive Harris chains, which is essential in the convergence

proof of theorem 1.

Lemma 4.1 (Law of large numbers for positive Harris chains) If Φ is a positive Har-

ris chain (see definition 3.4 and 3.4) with invariant probability measure µ, then for each
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f ∈ L1(X ,B(X ), µ),

lim
n→∞

1

n+ 1

n∑
i=0

f(xi) =

∫
X
µ(dx)f(x)

almost surely.

In short, a positive Harris chain (analogous to an ergodic Markov chain in the discrete

case) has the highly desirable property that the Strong Law of Large Numbers (SLLN) holds

for the chain independent of the initial state of the chain, so that we can show convergence

of parameter estimates of policy value functions. There are some sufficient conditions for

positive Harris recurrence such as irreducibility, aperiodicity or “minorization” hypotheses on

the transition kernel (Meyn & Tweedie (1993), Nummelin (1984)), but they are hard to verify.

Owing to our assumptions on compact X and U and continuous transition probability function

Q, the following proposition states that the only global requirement for each controlled Markov

chain Φπ being positive Harris is an irreducibility condition of the post-decision state space

X π.

Proposition 3 Under assumption 3.1 and 3.1, suppose the controlled Markov chain Φπ for a

fixed policy π with state space X π is ψ-irreducible and the support of ψ has non-empty interior.

Then, Φπ is positive Harris.

Proof:

Φπ is a weak Feller chain (see definition 3.4), since the transition function is continuous and

the transition probability function Q has the Feller property. In addition, the state space

X π of Φπ is compact. By the irreducibility hypothesis on X π and theorem 6.2.9 of Meyn &

Tweedie (1993), Φπ is a T -Chain (see definition 3.4). By theorem 6.2.5 of Meyn & Tweedie

(1993), every compact set in B(X π) is petite (see definition 3.4). As a result, X π is petite since

it is compact. By proposition 9.1.7 of Meyn & Tweedie (1993), Φπ is Harris recurrent. By

theorem 10.4.4 of Meyn & Tweedie (1993), Φπ admits a unique (up to a constant multiple)

invariant measure. Finally, by theorem 10.4.10 of Meyn & Tweedie (1993), Φπ is positive

Harris.
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ψ-irreducibility is easier to verify than the standard definition of irreducibility for countable

chains, and it is often simple to establish problem-dependent “grossly sufficient” conditions

Meyn & Tweedie (1993). Hence, we impose the following assumption on the policy space Π

in order to prove later convergence results of our algorithm.

Assume that, for all π ∈ Π, the MDP is reduced to a ψ-irreducible Markov chain Φπ with

state space X π and the support of ψ has non-empty interior.

Invertibility of the correlation matrix between the instrumental variable and input variable

is another requirement to show convergence of the parameter estimates. For problems with a

finite state space, Bradtke & Barto (1996) assumes that the number of linearly independent

basis functions is the same as the dimension of the state variable so that the correlation

matrix between the input and instrumental variables is invertible. However, this assumption

defeats the purpose of using a compact representation of the value function such as a linear

approximation with basis functions, since the complexity of computing parameter estimates

is the same as estimating a look-up table value function directly. In fact, invertibility only

requires that the feature matrix (which is an n × m matrix, n being the number of states

and m the number of features) is of full rank, i.e. the rank of the feature matrix is m for

n > m. However, we do not have the feature matrix in the continuous case since the number

of states is uncountably infinite. The following two lemmas show how the invertibility issue

are handled for continuous problems.

When we have linearly independent basis functions, the correlation matrix of input and

instrumental variables is not guaranteed to be invertible. However, it is reasonable to assume

the non-singularity of the correlation matrix. The set of singular n×n matrices is a null subset

with respect to Lebesgue measure over the field of Rn×n. In other words, if you randomly pick

a square matrix over the real numbers, the probability that it is singular is zero. The following

lemma states that the situation where the correlation matrix is non-singular is extremely rare

in the continuous case and the proof is omitted for the known result.

Lemma 4.2 Suppose the basis functions φ = (φ1, . . . , φF ) are non-zero and linearly indepen-

dent µ-almost surely where µ is the invariant probability measure of the Markov chain. Then
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the correlation matrix ∫
Xπ
µ(dx)φ(x)

(
φ(x)− γ

∫
Xπ
P (x, dx′)φ(x′)

)T
is invertible for all but at most finitely many γ ∈ (0, 1).

By imposing stronger assumptions on the basis functions and the discount factor, lemma

4.3 shows how the invertibility of the correlation matrix is guaranteed in the continuous case.

The result is used in section 7 where orthonormality of basis functions can be obtained by

construction. We further describe a way to modify the parameter estimates of the algorithm

so that we can avoid the strong assumption on the discount factor.

Lemma 4.3 (Non-singularity of the correlation matrix) Suppose we have orthonormal

basis functions with respect to the invariant measure µ of the Markov chain and λ < 1
F

where

F is the number of basis functions. Then the correlation matrix∫
Xπ
µ(dx)φ(x)

(
φ(x)− λ

∫
Xπ
P (x, dx′)φ(x′)

)T
is invertible.

Proof:

For shorthand notation, we write
∫
Xπ µ(dx)φi(x) = µφi and

∫
Xπ P (x, dx′)φi(x

′) = Pφi(x). It

is worth noting that µφi is a constant and Pφi(x) is a function of x. Then, we can write the

correlation matrix explicitly as the F × F matrix

C =


µφ2

1 − λµφ1Pφ1 µφ1φ2 − λµφ1Pφ2 . . . µφ1φF − λµφ1PφF
µφ2φ1 − λµφ2Pφ1 µφ2

2 − λµφ2Pφ2 . . . µφ2φF − λµφ2PφF
. . .
. . .
. . .

µφFφ1 − λµφFPφ1 . . . . µφ2
F − λµφFPφF

 .

Since φ(s) is a vector of orthonormal basis functions with respect to the invariant measure µ,

we have

C =


1− λµφ1Pφ1 −λµφ1Pφ2 . . . −λµφ1PφF
−λµφ2Pφ1 1− λµφ2Pφ2 . . . −λµφ2PφF

. . .

. . .

. . .
−λµφFPφ1 . . . . 1− λµφFPφF

 .
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By applying Jensen’s inequality on P , we have that

µ(Pφi)
2 ≤ µPφ2

i = µφ2
i = 1.

Then, for all 1 ≤ i, j ≤ F we have

µφiPφj ≤
µφ2

i + µ(Pφj)
2

2
≤ 1.

Similarly, we have µφiPφj ≥ −1 for all 1 ≤ i, j ≤ F . As a result, C = I − λA where A is

a matrix with entries Ai,j ∈ [−1, 1]. C is invertible iff |C| 6= 0, so it suffices to show that

|A− 1
λ
I| 6= 0. In other words, we need to show that 1

λ
is not a real eigenvalue of A. Suppose

λ is an eigenvalue of A and its corresponding eigenvector is v. Let v̄ = max1≤i≤F{|vi|}. Since

Ai,j ∈ [−1, 1], −F v̄ ≤ λv̄ ≤ F v̄. Hence, all the real eigenvalues of A are bounded between −F

and F . This implies that C is invertible if 1
λ
> F . Equivalently, C is non-singular if λ < 1

F
.

In general, the discount factor γ in MDPs may be larger than 1
F

, which can be quite small

as the number of basis functions increases. However, we can modify the parameter estimates

of the algorithm by collapsing k transitions (x0 → xk) into 1 transition so that we can still

use the previous lemma. Since γ ∈ (0, 1), there exists k ∈ N such that γk < 1
F

. The following

fixed point equation must be satisfied if we keep substituting Bellman’s equation (13) back

into itself k − 1 times:

V π(x0) =

∫
Xπ×...×Xπ

k−1∏
i=0

P (xi, dxi+1)

{
k−1∑
i=0

γiCπ(xi, xi+1) + γkV π(xk)

}
.

Hence, we can rewrite the linear model as

k−1∑
i=0

γiCπ(xi, xi+1) = (φ(x0)− γk
∫
Xπ×...×Xπ

k−1∏
i=0

P (xi, dxi+1)φ(xk))
T θ∗

+
k−1∑
i=0

γiCπ(xi, xi+1)−
∫
Xπ×...×Xπ

k−1∏
i=0

P (xi, dxi+1)
k−1∑
i=0

γiCπ(xi, xi+1).

Finally, the parameter estimates become

θ′m =

[
1

m+ 1

m∑
i=0

φi(φi − γkφi+k)T
]−1 [

1

m+ 1

m∑
i=0

φi

k−1∑
j=0

γjCi+j

]
. (15)
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The proof of lemma 4.3 still goes through with the replacement of P with P k and λ with

γk. Since we assume the known linear structure of the policy value function, the convergence

of policy evaluation is reduced to the convergence of linear parameter estimates, as stated

in the following theorem. The proof is omitted since the technique is standard in proving

convergence of regression estimates.

Theorem 1 Under assumptions 3.1, 3.1 and 4, suppose that the controlled Markov chain

for a fixed policy π ∈ Π with state space X π has transition kernel P (x, dy) and invariant

probability measure µ. Further assume that the policy value function V π satisfies assumption

4 with known basis functions that are either linearly independent (with invertible correlation

matrix) or orthonormal with respect to the invariant measure µ. Then, θm → θ∗ and θ′m → θ∗

µ-almost surely.

In practice, estimating θ using least squares, which requires matrix inversion at each

iteration, is computationally expensive. Instead, recursive least squares method is used to

obtain the well-known updating formulas (Bradtke & Barto (1996)):

εm = Cm − (φm − γφm+1)T θm−1, (16)

Bm = Bm−1 −
Bm−1φm(φm − γφm+1)TBm−1

1 + (φm − γφm+1)TBm−1φm
, (17)

θm = θm−1 +
εmBm−1φm

1 + (φm − γφm+1)TBm−1φm
. (18)

In the initialization of θ0 and B0, θ0 can be any finite vector and B0 is usually chosen to be

βI for some small positive constant β. The following corollary states that the RLS estimate

of θ∗ also converges to the true parameters. The proof only requires simple calculation and is

virtually the same as the proof of theorem 1, so it is omitted.

Corollary 4.1 Suppose we have the same assumptions as in theorem 1. Further assume that

1+(φm−γφm+1)TBm−1φm 6= 0 for all m, then θm → θ∗ almost surely using recursion formulas

(16), (17) and (18).
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5 Almost sure convergence of exact policy iteration

Convergence of the exact policy iteration is well known (see Bertsekas & Shreve (1978)). The

primary result is stated as follows:

Proposition 4 Let (πn)∞n=0 be a sequence of policies generated recursively as follows: given

an initial policy π0, for n ≥ 0,

πn+1(x) = arg max
u
{C(x, u) + γ

∫
W
Q(x, u, dw)V πn(SM(x, u, w))}.

Then V πn → V ∗ uniformly where V ∗ is the optimal value function.

In this section, we fit the above convergence result in the LSPI setting when we assume we

can evaluate the expected performance of the policy exactly for all states in an almost sure

sense. Owing to the assumptions on the value function and state space, we obtain almost sure

convergence not only for the value functions and but also for the policies. The result then sets

the theoretical background for the next section where we show convergence in expectation for

a form of approximate policy iteration.

We would like to show the almost sure convergence of the algorithm so that we build up

the corresponding probability space and related probability measure. For a fixed policy π as

in the previous section, we follow the convention of letting the sample space Ωπ be (X π)∞,

which is the whole history of the Markov chain, and the corresponding σ-algebra Fπ be the

product Borel σ-algebra on Ωπ. Assume that for each initial state x0 ∈ X π of the chain, there

exists a probability measure Pπx0
that governs the probability law of the chain on (Ωπ,Fπ). If

an event E occurs Pπx0
-a.s. for all x0 ∈ X π then we write that E occurs Pπ∗ -a.s. In the case of a

positive Harris chain, Pπ∗ corresponds to the invariant probability measure µπ of the chain and

the convergence results in theorem 1 do not depend on the initial state of the chain. Hence,

we have that for a fixed policy π the parameter estimates converge to the true value Pπ∗ -a.s.

For the policy iteration algorithm, we consider the product sample space Ω = Ωπ0×Ωπ1×· · ·

and the corresponding product σ-algebra F = Fπ0 ⊕ Fπ1 ⊕ · · · . It is worth noting that Ωπn

depends on the sample spaces of previous inner iterations, Ωπ0 , · · · ,Ωπn−1 . In other words,
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any element ω ∈ Ω has the form

ω = (ωπ0 , ωπ1(ωπ0), ωπ2(ωπ0 , ωπ1(ωπ0)), · · · ).

Moreover, we need to point out that, except for π0, all the policy updates πn’s are random

and depend on the sample spaces of previous inner iterations. To reflect the dependence, we

let the probability measure for Ωπn be Pπn|π0,··· ,πn−1
∗ . Then, the probability measure for Ω is

P∗ = Pπ0
∗ · P

π1|π0
∗ · Pπ2|π0,π1

∗ · · · · .

Before getting to the convergence theorem, we present the following preliminaries. Lemma

5.1 proves the convergence of a sequence of monotonic policies to the optimal policy given the

convergence of corresponding value functions, and Lemma 5.2 shows that integration preserves

certain properties of the integrand such as boundedness and continuity required in the proof

of the theorem 2. The proofs are omitted for brevity since the technique is standard (see

Stokey et al. (1989)).

Lemma 5.1 Suppose X and U satisfy assumption 3.1 and the correspondence Γ is nonempty,

compact and convex-valued, and continuous for each x ∈ X . Let fn : X ×U → R be a sequence

of continuous functions for each n. Assume f has the same properties and fn → f uniformly.

Define πn and π by πn(x) = arg maxu∈Γ(x) fn(x, u) and π(x) = arg maxu∈Γ(x) f(x, u). Then,

πn → π pointwise. If X is compact, πn → π uniformly.

Lemma 5.2 Suppose X ,U ,W, Q satisfy assumptions 3.1 and 3.1. If g : X × U × W →

R is bounded and continuous, then Tg(x, u) =
∫
W Q(x, u, dw)g(x, u, w) is also bounded and

continuous.

Theorem 2 (Almost sure convergence of exact LSPI) Suppose assumptions 3.1, 3.1, 4

hold and Γ satisfies the same condition as in lemma 5.1. Further assume that for all π ∈ Π

the policy value function V π satisfies the same assumption as in theorem 1. Let n be the

iteration counter for policy improvement and mn be the number of samples in iteration n for

policy evaluation. Assume mn →∞ for all n. As n→∞, the exact policy iteration algorithm

converges. That is πn → π∗ uniformly P∗-a.s.
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Proof:

We divide the proof into two parts. (a) Suppose that, by following the fixed policy πn, we can

obtain the exact post-decision value function in the linearly parameterized form of φ(xu)′θ∗n.

Then define

fn(x, u) = C(x, u) + γ

∫
W
Q(x, u, dw)V πn(SM(x, u, w)) = C(x, u) + γφ(xu)′θ∗n,

and

f(x, u) = C(x, u) + γ

∫
W
Q(x, u, dw)V ∗(SM(x, u, w)).

Let Vn = MnV π0 and define

f̃n(x, u) = C(x, u) + γ

∫
W
Q(x, u, dw)Vn(SM(x, u, w)).

By proposition 4, V πn ↗ V ∗ uniformly, so fn ↗ f pointwise. f̃n ↗ f uniformly by Stokey

et al. (1989). Since policy evaluation and improvement are both exact, by proposition 4,

we have Vn ≤ V πn , so f̃n ≤ fn. In turn, we conclude that fn ↗ f uniformly. Since the

contribution function and value functions for fixed policies are continuous, they are uniformly

bounded on the compact state space X . By lemma 5.2 we have fn and f are bounded and

continuous. By lemma 5.1, πn → π∗ pointwise. Since X is compact, the convergence is

uniform.

(b) By assumption, in the inner loop the system evolves according to a positive Harris

chain given a fixed policy. By theorem 1 or corollary 4.1, for a fixed initial policy π0 (n=0),

θ0,m0 → θ∗0 Pπ0
∗ -a.s. Denote the almost sure set by Ω̄π0 . For any ωπ0 ∈ Ω̄π0 , we can obtain

the exact post-decision value function φ(xa)′θ∗0 and, in turn, the exact policy update π1.

Similarly, there exists a Pπ1|π0
∗ -a.s. set Ω̄π1(Ω̄π0) such that θ1,M → θ∗1 to obtain the exact

post decision value function for π1 and policy update π2. If we keep going like this and let

Ω̄ = Ω̄π0 × Ω̄π1(Ω̄π0)× · · · , we have

P∗(Ω̄) = Pπ0
∗ (Ω̄π0) · Pπ1|π0

∗ (Ω̄π1(Ω̄π0)) · Pπ2|π0,π1
∗ (Ω̄π2(Ω̄π0 , Ω̄π1(Ω̄π0))) · · · = 1.

Since on Ω̄ the post decision value functions for πn’s and policy updates are obtained exactly,

by part (a) we conclude that πn → π∗ uniformly P∗-a.s.
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In practice, the condition of having a positive Harris chain in each policy evaluation step

may not be guaranteed through the properties of the problem. For example, it might be

that the chain is non-irreducible but has Harris decomposition, that is the chain can be

decomposed into one transient set and a countable disjoint family of absorbing Harris sets

with respective ergodic stationary measures. If one sample realization of the chain is trapped

in some absorbing set (i.e. an atom of the chain) whose order is less than the number of basis

functions, there is not sufficient support to identify the least squares parameter estimates.

Hence, a properly designed exploration step such as adding a random exploration component

to the policy function is necessary in an actual implementation of the algorithm.

A weaker condition than positive Harris chain is a chain that admits an invariant proba-

bility measure (not necessarily unique) on a rich enough full subset of the state space, which

means the subset has measure 1 and suffices to identify the least squares parameter estimates.

The condition is rather weak because there is no regularity or even irreducibility assumptions

on the chain. If we can initialize the chain according to the invariant probability measure

rather than from some fixed state, the chain becomes a stationary process and we can apply

the Strong Law of Large numbers for stationary processes (Doob (1953)) to achieve conver-

gence of the parameter estimates. In practice, we need to add a sampling stage to estimate

the invariant probability measure in the inner loop of the algorithm and then initialize the

chain according to the empirical probability measure obtained.

6 Convergence in the mean of approximate policy iter-

ation

The exact policy iteration algorithm is only conceptual, since the policy evaluation step goes

to infinity to achieve convergence. As a result, we introduce the approximate policy iteration

algorithm, in which the policy evaluation stops in finite time. In our approximate policy

iteration algorithm, the estimated value function of the approximate policy is random, since

it depends on the sample path of the chain and also the iteration number of the inner loop.

That is to say, for fixed x ∈ X , V̂ π̂n(x) is a random variable. Given the state space being

compact and the norm being the sup norm || · ||∞ for continuous functions, the following

27



theorem proves convergence in mean of the approximate policy iteration algorithm when both

policy evaluations and policy updates are performed within error tolerances that converge to

0 according to a certain rate. In other words, the mean of the norm of the difference between

the optimal value function and the estimated policy value function using approximate policy

iteration converges to 0 if the successive approximations become better and better. The proof

is omitted since it follows the same line as the proof of error bounds for approximate policy it-

eration with discrete and deterministic (or in almost sure sense) value function approximations

in Bertsekas & Tsitsiklis (1996).

The only complication involved is the conditional expectation notation of Eπ̂n [·], which is

defined to be the expectation taken with respect to the random sample path during iteration n

by following the approximate policy π̂n conditioning on the known sample paths from previous

iterations of 1 through n − 1. Mathematically, Eπ̂n [·] = Eωπ̂n [·|ωπ̂0 , · · · , ωπ̂n−1 ]. It is worth

pointing out that π̂n conditioning on the known finite sample paths of previous iterations from

1 through n − 1 is deterministic during iteration n, and so is the true value function of the

approximate policy V π̂n . As a result, in iteration n the only randomness comes from ωπ̂n , the

sample path by following π̂n. In other words, in our algorithm the sample paths ωπ̂0 , · · · , ωπ̂n−1

of previous iterations are known at iteration n, so Eπ̂n [·] feeds back a deterministic number.

Theorem 3 (convergence in the mean of approximate policy iteration) Let π̂0, π̂1,

. . . , π̂n be the sequence of policies generated by an approximate policy iteration algorithm and

let V̂ π̂0 , V̂ π̂1 , . . . , V̂ π̂n be the corresponding stochastic approximate value functions. Let {εn}

and {δn} be positive scalars that bound the mean errors in approximations to value functions

and policies (over all iterations) respectively, that is ∀n ∈ N,

Eπ̂n||V̂ π̂n − V π̂n||∞ ≤ εn, (19)

and

Eπ̂n||Mπ̂n+1V̂
π̂n −MV̂ π̂n||∞ ≤ δn. (20)
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Suppose the sequences {εn} and {δn} converge to 0 and

lim
n→∞

n−1∑
i=0

γn−1−iεi = lim
n→∞

n−1∑
i=0

γn−1−iδi = 0,

e.g. εi = δi = γi. Then, this sequence eventually produces policies whose performance con-

verges to the optimal performance in the mean:

lim
n→∞

Eπ̂n||V̂ π̂n − V ∗||∞ = 0.

The above theorem can be directly applied to show that the LS/RLSAPI algorithm con-

verges in the mean.

Corollary 6.1 (Convergence in the mean of LS/RLSAPI) Under assumption 3.1, 3.1,

and 4, suppose that for all policy π ∈ Π the policy value function V π satisfies the same as-

sumption as in theorem 1. Then, theorem 3 holds for the LS/RLS approximate policy iteration

algorithm.

Proof:

We only need to check whether the conditions (19) and (20) in theorem 3 governing the error

tolerances for evaluating policies are satisfied. If we can make policy updates exactly, we can

take δn = 0 for all n. If the policy update is done inexactly, that is using an approximate

nonlinear proximal point algorithm, we can force the procedure to be within the error tolerance

satisfying the condition on δn in theorem 3. Then, it suffices to show that the mean errors

between the approximate and the true value functions of the approximate policy in each inner

loop can be made arbitrarily small.

By the Cauchy-Schwartz inequality and the simple relations (10) and (11) between pre-

and post-decision value functions, we have for all x ∈ X ,

|V̂ π̂n(x)− V π̂n(x)|2 = γ2|φ(xa)T (θn,M − θ∗n)|2 ≤ γ2||φ(xa)||22||θn,M − θ∗n||22.
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By assumption 3.1 and 3.1, X π is compact, which implies that ||φ(xa)||2 ≤ c for some finite

positive constant c for all xa. Then,

||V̂ π̂n(x)− V π̂n(x)||∞ ≤ γc||θn,M − θ∗n||2.

Recall that for fixed M , θn,M is a random vector of dimension F . Let θn,M,i be the i-th

component where i ∈ {1, . . . , F}. We have

||θn,M − θ∗n||2 =

√√√√ F∑
i=1

(θn,M,i − θ∗n,i)2 ≤
F∑
i=1

|θn,M,i − θ∗n,i|.

Recall that θm =
[

1
m+1

∑m
i=0 φi(φi − γφi+1)′

]−1 [ 1
m+1

∑m
i=0 φiCi

]
. Since the post-decision

state space is compact, φ is continuous and C is bounded, φi(φi−γφi+1) and φiCi are uniformly

bounded for all i. As a result, both 1
m+1

∑m
i=0 φi(φi−γφi+1) and 1

m+1

∑m
i=0 φiCi are uniformly

bounded for all m. Since matrix inversion is continuous, θm is uniformly bounded for all m.

Hence, for each fixed i and n, (θn,M,i) is a sequence of uniformly bounded random variables.

As a result, (θn,M,i) is uniformly integrable. By assumption and theorem 4.1, θn,M,i → θ∗n,i

µπ̂n-almost surely as M →∞. Then, we obtain that θn,M,i → θ∗n,i in L1 for all i ∈ {1, . . . , F}.

Hence, for any εn > 0, there exists Mn ∈ N such that

F∑
i=1

Eπ̂n|θn,Mn,i − θ∗n,i| ≤
εn
γc
.

Then,

Eπ̂n||θn,Mn − θ∗n||2 ≤
F∑
i=1

Eπ̂n|θn,Mn,i − θ∗n,i| ≤
εn
γc
.

Therefore, in the inner loop of each iteration we can uniformly bound the mean difference

between the approximate value function and the true function of the approximate policy:

Eπ̂n||V̂ π̂n − V π̂n||∞ ≤ γcEπ̂n||θn,Mn − θ∗n||2 ≤ εn.
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It is worth noting that the subscript n of M implies that it is not fixed but depends on the

outer loop iteration counter n, since it is an on-policy algorithm and the chain changes as the

policy gets updated.

Hence, we conclude that theorem 3 applies to the LS/RLSAPI algorithm.

Remark: Since the parameter estimates using instrumental variable are unbiased, we have

for each i

Eπ̂n|θn,Mn,i − θ∗n,i| ≤ Eπ̂n|θn,Mn,i − Eπ̂nθn,Mn,i|+ |Eπ̂nθn,Mn,i − θ∗n,i|

≤
√
V arµπ̂n (θn,Mn,i).

So the mean absolute deviation of a parameter from the true value is bounded by the

standard deviation of the parameter estimate. In addition, it is worth pointing out that the

variance term approach zero asymptotically and it depends on the unknown true variance of

samples. In an actual implementation of the algorithm, we use an estimated variance from

samples (or standard error) instead to specify a stopping criterion for the inner loop.

7 Extension with Chebyshev polynomial approximation

To apply the convergence results in section 6, we make the strong assumption that the value

function of all policies in the policy space are spanned by a finite set of known basis functions.

By assuming that the value function of all policies are in smooth function spaces, we can extend

the convergence results to value functions with unknown form. For simplicity of presentation,

we restrict ourselves to a 1-dimensional state space, a closed interval [a, b], and only consider

the function space Ck[a, b], the set of all continuous functions with up to k-th derivative. The

convergence result can be generalized to high-dimensional state spaces.
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7.1 Orthogonal polynomials

We first introduce the idea of orthogonal polynomials by defining the inner product with

respect to a weighting function w in Ck[a, b] to be

〈f, g〉w =

∫ b

a

f(x)g(x)w(x)dx.

This inner product defines a quadratic semi-norm ||f ||2w = 〈f, f〉w. Let Gw = {gwn }∞n=1 be

a set of orthogonal basis functions with respect to w in Ck[a, b] and Gw
N = {gwn }Nn=1 be the

finite subset of order N . Let Gw and GwN denote the function spaces spanned by G and GN

respectively. Given any f , the best least-square approximation of f with respect to w onto

Gw
N is the solution to the following optimization problem:

inf
g∈GwN

∫ b

a

(f(x)− g(x))2w(x)dx,

and the solution is fwN =
∑N

n=1
〈f,gwn 〉w
||gwn ||2w

gwn .

7.2 Chebyshev polynomial approximation

We focus on one specific weighting function: the Chebyshev weighting function c(x) = (1 −

(2x−a−b
b−a )2)−

1
2 on [a, b]. For example, if we take the interval [a, b] to be [−1, 1], the family of

Chebyshev polynomials T = {t̃n}∞n=0 is defined as t̃n(x) = cos(n cos−1 x) (Judd (1998)). It

can also be recursively defined as

t̃0(x) = 1,

t̃1(x) = x,

t̃n+1(x) = 2xt̃n(x)− t̃n−1(x), n ≥ 1.

We normalize them by letting t0 = t̃0
π

and tn = 2t̃n
π

for all n ≥ 1. Chebyshev polynomial

approximators are good for smooth functions because they have the desirable uniform con-

vergence property Judd (1998).

Let µπ be the invariant measure of the Markov chain of following a fixed policy π. Suppose

V π ∈ Ck[a, b] for all π ∈ Π. Assume that the invariant probability measure µπ has a continuous
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density function fπ i.e. µπ(dx) = fπ(x)dx, and fπ is strictly positive on [a, b] and has up to

k-th order derivative. Let Ṽ π = V π
√

fπ

c
and CN denote the function space spanned by the

finite orthonormal Chebyshev basis set TN = {tn}Nn=0 on [a, b]. We consider the following

Chebyshev least square approximation problem,

inf
g̃∈CN

(Ṽ (x)− g̃(x))2c(x)dx.

The solution to this problem is the N -th degree Chebyshev least squares approximation

g̃∗(x) = CN(x) =
N∑
j=0

cjtj(x)

where cj =
∫ b
a
Ṽ π(x)tj(x)c(x)dx.

Let T π = {tn
√

c
fπ
}∞n=0. It is easy to see that T π is an orthonormal basis set with respect

to fπ in Ck[a, b]. Finding the best least squares approximation for the value function of policy

π on the basis set T πN is

inf
g∈T πN

∫ b

a

(V π(x)− g(x))2fπ(x)dx.

It can be verified that the solution is

g∗(x) = V π
N (x) = CN(x)

√
c(x)

fπ(x)
.

Let φj(x) = tj(x)
√

c(x)
fπ(x)

. We have

V π(x) = V π
N (x) + r(x) =

N∑
j=0

cjφj(x) + r(x),

where r(x) is the residual function orthogonal to φj(x) for all 0 ≤ j ≤ N . Then, Bellman’s

equation (13) gives us

φ(x)T θ∗ + r(x) =

∫
Xπ
P π(x, dx′)[Cπ(x, x′) + γ(φ(x′)T θ∗ + r(x′))],

and the linear model becomes

Cπ(x, x′) =

(
φ(x)− γ

∫
Xπ
P π(x, dx′)φ(x′)

)T
θ∗ +

(
r(x)− γ

∫
Xπ
P π(x, dx′)r(x′)

)
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+

(
Cπ(x, x′)−

∫
Xπ
P π(x, dx′)Cπ(x, x′)

)
.

If we only regress on φ(x) − γ
∫
Xπ P (x, dx′)φ(x′), r(x) − γ

∫
Xπ P (x, dx′)r(x′) enters the error

term, which is not necessarily mean zero and uncorrelated with the input variables. As a

result, the parameter estimate of the errors-in-variable model is not asymptotically unbiased

anymore. With the same approach as in theorem 1, we can show that the m-th parameter

estimate θm as in equation (14) converges to θ∗ + b almost surely where

b =

[∫
Xπ

µπ(dx)φ(x)
(
φ(x)− γ

∫
Xπ

Pπ(x, dx′)φ(x′)
)T]−1 [∫

Xπ
µπ(dx)φ(x)(r(x)− γ

∫
Xπ

Pπ(x, dx′)r(x′))
]

=

[∫
Xπ

µπ(dx)φ(x)
(
φ(x)− γ

∫
Xπ

Pπ(x, dx′)φ(s′)
)T]−1 [∫

Xπ
µπ(dx)φ(x) · (−γ

∫
Xπ

Pπ(x, dx′)r(x′))
]
.

We are now ready to extend the mean convergence result developed in theorem 3 to find

an error bound for Chebyshev polynomial approximation. Before presenting the main result,

we introduce the following lemma.

Lemma 7.1 Let C be a F ×F perturbed identity matrix i.e. C = I−λA where A is a matrix

with entry Aij ∈ [−1, 1]. If λ ≤ 1
2F

, then

||C−1||∞ = max
1≤i≤F

F∑
j=1

|C−1
ij | ≤ 2

where || · ||∞ denotes the maximum absolute row sum norm for matrix.

Proof:

By lemma 4.3, we know that C is invertible given λ ≤ 1
2F

. It is easy to check that

||λA||∞ ≤ λF ≤ 1

2
.
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Since the maximum absolute row sum norm is sub-multiplicative, we have

||C−1||∞ = ||(I − λA)−1||∞

= ||I + λA+ λ2A2 + λ3A3 + · · · ||∞

≤ ||I||∞ + ||λA||∞ + ||λ2A2||∞ + ||λ3A3||∞ + · · ·

≤ ||I||∞ + ||λA||∞ + ||λA||2∞ + ||λA||3∞ + · · ·

≤ 1 +
1

2
+

1

4
+ · · ·

= 2.

Theorem 4 (Mean error bound of LS/RLSAPI with exact Chebyshev polynomi-

als) Suppose assumption 3.1, 3.1 and 4 hold and further assume that, for any policy π ∈ Π, the

value function V π is in Ck[a, b] and the invariant density function fπ is known and bounded

away from 0 on X π. Given a desired approximation error tolerance ε, for each n and V π̂n

we can construct an approximate policy value function V π̂n
Fn

= CFn
√

c
f π̂n

with a finite set of

Chebyshev basis functions of order Fn + 1 such that ∀n ∈ N

Eπ̂n||V̂ π̂n
Fn
− V π̂n ||∞ ≤ ε, (21)

where V̂ π̂n
Fn

is the statistical estimate of V π̂n
Fn

using Chebyshev basis functions.

Furthermore, let δ be the positive scalar that uniformly bound the mean errors in policies

(over all iterations), that is ,

Eπ̂n||Mπ̂n+1V̂
π̂n
Fn
−MV̂ π̂n

Fn
||∞ ≤ δ. (22)

Then, LS/RLSAPI with exact Chebyshev polynomial generates a sequence of policies whose

mean performance bound (away from the optimal) satisfies:

lim sup
n→∞

Eπ̂n||V̂ π̂n
Fn
− V ∗||∞ ≤

δ + (1 + γ2)ε

(1− γ)2
.

35



Proof:

To prove the first part of the theorem, we consider a general policy π (dropping subscript n)

and the case of k = 1 (that is, V π is once differentiable) for simplicity of presentation. Let

Ṽ π = V π
√

fπ

c
. By uniform convergence of Chebyshev approximator, there exists K1 > 0 such

that

||Ṽ π − CF ||∞ ≤ K1
logF

F
.

Let K2 = ||
√

c
fπ
||∞. Then,

||r||∞ = ||V π − V π
F ||∞ = ||V π − CF

√
c

fπ
||∞ ≤ K1K2

logF

F
.

Then, V π
F = CF

√
c
fπ

is the approximate policy value function for V π.

To apply lemma 7.1, we collapse transitions as in section 4 and use parameter estimates

as in equation (15). There exists k such that γk ≤ 1
2(F+1)

. We rewrite the asymptotic bias of

the parameter estimates in shorthand notation as

b =
[
µπφ(φ− γk(P π)kφ)T

]−1 [
µπφ(−γk(P π)kr)

]
. (23)

Since we have orthonormal basis functions, the correlation matrix is a non-singular perturbed

identity matrix by lemma 4.3 and µπφ is a vector with entries in [−1, 1]. For each i ∈

1, · · · , F + 1, by lemma 7.1 we obtain

|bi| ≤ γk||
[
µπφ(φ− γk(P π)kφ)T

]−1 ||∞||r||∞ ≤ 2γk||r||∞ ≤ K1K2
logF

F (F + 1)
.

As in the proof of corollary 6.1), it is easy to see that, for each i, θm,i → θ∗i + bi in L1 with

respect to µπ. For each i, there exists Mi ∈ N such that

Eπ|θM,i − θ∗i | ≤ Eπ|θM,i − θ∗i − bi|+ |bi| ≤ 2|bi|.

Hence, there exists M ∈ N such that

Eπ||θM − θ∗||2 ≤
F+1∑
i=1

Eπ|θM,i − θ∗i | ≤ 2K1K2
logF

F
.
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Let K3 = maxxa ||φ(xa)||2. Hence, we have

Eπ||V̂ π
F − V π

F ||∞ ≤ γK3Eπ||θ̂M − θ∗||2 ≤ 2γK1K2K3
logF

F
.

Finally, we have

Eπ||V̂ π
F − V π||∞ ≤ Eπ||V̂ π

F − V π
F ||∞ + ||V π

F − V π||∞

≤ (2γK3 + 1)K1K2
logF

F
.

For each ε > 0, there exists finite F ∈ N such that

(2γK3 + 1)K1K2
logF

F
≤ ε.

Hence, for each policy evaluation step n we can construct a finite set of basis functions of order

Fn + 1 given a desired approximation error tolerance ε in the inner loop of the LS/RLSAPI

algorithm.

In the second part of the theorem, we have uniform bounds on the mean errors in approxi-

mations to value functions and policies (over all iterations) respectively, so the proof is similar

to the proof of the error bound for approximate policy iteration in Bertsekas & Tsitsiklis

(1996) and theorem 3. The details are omitted for brevity.

One major limitation of the algorithm with exact Chebyshev basis functions is that we need

the exact invariant density function fπ to construct a finite set of basis functions. To address

this difficulty, we call a procedure that produces approximations of fπ in the implementation of

the algorithm. Since we have sequential observations of states from the Markov chain, we can

obtain estimates of the invariant density with increasing accuracy and construct approximate

basis functions from the estimated density function. By relaxing the assumption of known

invariant density function to a known lower bound, the following lemma and theorem provide

theoretical support to the asymptotic property of the algorithm using approximate Chebyshev

basis functions.
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Lemma 7.2 Suppose Φ is a positive Harris chain with invariant probability measure µ. For

f, fi ∈ L1(X ,B(X ), µ), assume (fi), f are uniformly bounded and fi → f uniformly. Then

lim
n→∞

1

n

n∑
i=1

fi(xi) =

∫
X
µ(dx)f(x)

µ-almost surely.

Proof:

Let ε > 0. Since fi → f uniformly, there exists N ∈ N such that for all x ∈ X and i > N ,

|fi(x)− f(x)| < ε
4
. Since fi and f are bounded, there exists B > 0 such that |f(x)| ≤ B and

|fi(x)| ≤ B for all x ∈ X and i ∈ N. Hence, there exists M1 (> N) large enough such that

for any finite sequence (xi)
N
i=1 in X , 1

M1

∑N
i=1 |fi(xi)− f(xi)| ≤ 2BN

M1
< ε

4
. Then,

∣∣∣∣∣ 1

M1

M1∑
i=1

[fi(xi)− f(xi)]

∣∣∣∣∣ ≤ 1

M1

M1∑
i=1

|fi(xi)− f(xi)|

=
1

M1

N∑
i=1

|fi(xi)− f(xi)|+
1

M1

M1∑
i=N+1

|fi(xi)− f(xi)|

<
ε

4
+
M1 −N
M1

· ε
4

<
ε

2
.

By lemma 4.1, there exists M2 ∈ N such that for all n > M2,∣∣∣∣∣ 1n
n∑
i=1

f(xi)−
∫
X
µ(dx)f(x)

∣∣∣∣∣ < ε

2
.

Let M = max{M1,M2}. We have

∣∣∣∣∣ 1

M

M∑
i=1

fi(xi)−
∫
X
µ(dx)f(x)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

M

M∑
i=1

fi(xi)−
1

M

M∑
i=1

f(xi)

∣∣∣∣∣+

∣∣∣∣∣ 1

M

M∑
i=1

f(xi)−
∫
X
µ(dx)f(x)

∣∣∣∣∣
< ε.

Hence, we conclude that limn→∞
1
n

∑n
i=1 fi(xi) =

∫
X µ(dx)f(x) µ-almost surely.
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Theorem 5 (Mean error bound of LS/RLSAPI with approximate Chebyshev poly-

nomials) Under assumption 3.1, 3.1 and 4, suppose the value function V π is in Ck[a, b] for

any policy π ∈ Π and there is a procedure producing a sequence of functions (fπi ) such that

fπi converges to the invariant density fπ uniformly. Further assume fπi and fπ are uniformly

bounded with known bounds. We construct the set of approximate basis functions at each it-

eration i in the inner loop by letting T π,iF = {tn
√

c
fπi
}Fn=0. Then, the error bound developed

in theorem 4 holds for the LS/RLS approximate policy iteration algorithm with approximate

Chebyshev polynomials.

Proof:

Let ε > 0. First, we use the same approach as in the proof of theorem 4 to determine the order

of the basis function set F for ε
2
. Let the vector of approximate basis functions at iteration i in

the inner loop be φ(i)(x) =
[
t0(x)

√
c(x)
fπi (x)

, · · · , tF (x)
√

c(x)
fπi (x)

]T
. Again, we collapse transitions

to find k ∈ N such that γk ≤ 1
2(F+1)

. Then, the parameter estimate becomes

θ(m)
m =

[
1

m+ 1

m∑
i=0

φ
(i)
i (φ

(i)
i − γkφ

(i)
i+k)

T

]−1 [
1

m+ 1

m∑
i=0

φ
(i)
i

k−1∑
j=0

γjCi+j

]
.

Hence, we obtain the m-th approximation for V π: V̂ π
F,(m) = (φ(m))T θ

(m)
m . It is worth noting

that it is different from V̂ π
F = φT θm in theorem 4 due to the approximation of basis functions.

By lemma 7.2, θ
(m)
m → θ∗ + b µπ-almost surely where b is defined as in (23). Since

θm → θ∗ + b µπ-almost surely, there exists M1 ∈ N such that for all m ≥M1,

Eπ||φT θ(m)
m − φT θm||∞ ≤

ε

4
.

Since φ(m) converges to φ uniformly componentwise and θ
(m)
m is uniformly bounded for all m,

there exists M2 ∈ N such that for all m ≥M2,

Eπ||(φ(m))T θ(m)
m − φT θ(m)

m ||∞ ≤
ε

4
.

Then, for all m ≥ max{M1,M2} we have

Eπ||V̂ π
F,(m) − V̂ π

F ||∞ ≤ Eπ||(φ(m))T θ(m)
m − φT θ(m)

m ||∞ + Eπ||φT θ(m)
m − φT θm||∞ ≤

ε

2
.
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As shown in theorem 4, there exists M3 ∈ N such that for all m ≥M3,

Eπ||V̂ π
F − V π||∞ = Eπ||φT θm − V π||∞ ≤

ε

2
.

Let M = max{M1,M2,M3}. Then,

Eπ||V̂ π
F,(M) − V π||∞ ≤ Eπ||V̂ π

F,(M) − V̂ π
F ||∞ + Eπ||V̂ π

F − V π||∞ ≤ ε.

The conclusion follows since we can also uniformly bound the mean errors in approxima-

tions of value functions for arbitrary ε > 0 in the algorithm with approximate Chebyshev

polynomials.

One of the key assumptions in theorem 5 is that the density estimates converge uniformly to

the true invariant density of the chain. There are a variety of common methods for estimating

density functions from a finite data set, including histogram, frequency polygon, kernel, nearest

neighbor, orthogonal series, wavelet, spline, and likelihood based procedures (see Scott (1992)).

Since the kernel estimates of density function converges uniformly under the assumption that

the underlying Markov chain has differentiable transition density and satisfies the strong

Doeblin condition (see Kristensen (2008)), in the algorithm we select the kernel approach to

achieve the invariant density estimates by letting

f̂n(x) =
1

nh

n∑
i=1

K(
xi − x
h

),

where K is some kernel function with bandwidth h satisfying some regularity conditions.

Finally, the details of the algorithm using approximate Chebyshev basis functions are

summarized in figure 3. The algorithm is a modified version of the LS/RLSAPI in figure

2, and the only technical complications reside in the step of policy evaluation where 1) the

algorithm determines the order of the Chebyshev basis set F (based on the criterion discussed

in the proof of theorem 4) and the corresponding number of collapsing transitions k ≤ 1
2F

, 2)

it produces initial estimates of invariant density and corresponding approximate Chebyshev

basis functions based on the first k sampled state transitions in the first iteration of policy

evaluation (step 2.1) and update the estimates in subsequent iterations with new samples

(step 2.2).
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Step 0: Initialization:

Step 0.2 Set the initial policy π0.

Step 0.2: Set the iteration counter n = 0.

Step 1: Do for n = 0, . . . , N ,

Step 1.1: Set the initial State xn0 .

Step 1.2: Determine Fn (order of the basis function set) and kn (number of transition collapse).

Step 2: Do for m = 0, · · · ,M ,

Step 2.1: If m = 0, do the following:
Step 2.1.1: Initialize θ̂n,0 = 0 and v̂0 = 0.
Step 2.1.2: Draw randomly or observe W1, · · · ,Wkn+1 from the stochastic process.
Step 2.1.3: Do for j = 0, · · · , kn:

Step 2.1.3.a: Set unj = πn(xnj ),

Step 2.1.3.b: Compute xn,πj = SM,π(xnj , u
n
j ) and xnj+1 = SM (xn,πj , unj ,Wj+1).

Step 2.1.4: Produce the initial kernel density estimate fn,π0 from xn,π0 , · · · , xn,πkn .

Step 2.1.5: Construct the initial approximate Chebyshev basis functions φ(0) using fn,π0

Step 2.2: If m = 1, . . . ,M , do the following:
Step 2.2.1: Draw randomly or observe Wm+kn+1 from the process.
Step 2.2.2 Set unm+kn

= πn(xnm+kn
).

Step 2.2.3 Compute xn,πm+kn
= SM,π(xnm+kn

, unm+kn
) and

xnm+kn+1 = SM (xnm+kn
, unm+kn

,Wm+kn+1).
Step 2.2.4 Compute unm+kn+1 = πn(xnm+kn+1) and

xn,πm+kn+1 = SM,π(xnm+kn+1, u
n
m+kn+1).

Step 2.2.5 Update density estimate fn,πm from fn,πm−1 and xn,πkn+m.

Step 2.2.6 Update approximate Chebyshev basis functions φ(m) using fn,πm

Step 2.3: Compute regressor φ(m)(xn,πm )− γknφ(m)(xn,πm+kn
).

Step 2.4: Compute response variable v̂m =
∑kn−1
j=0 γjC(xn,πm+j , x

n,π
m+j+1).

Step 2.5: Update parameters θ̂n,m with LS/RLS method

Step 3: Update the parameter and the policy:

θ̂n = θ̂n,M ,

πn+1(x) = arg max
u∈Γ(x)

{C(x, u) + γφ(M)(xu)T θ̂n}.

Step 4: Return the policy πN+1 and parameters θ̂N .

Figure 3: Infinite-horizon approximate policy iteration algorithm with approximate Chebyshev
basis functions
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8 Conclusion

In this paper we propose an online, on-policy least squares approximate policy iteration algo-

rithm with linear approximation for infinite-horizon Markov decision process problems with

continuous state and action spaces. Under the assumptions that the stochastic system evolves

according to a positive Harris chain for any deterministic stationary policy and the true post-

decision value functions of policies are spanned by a finite set of known basis functions, we

have shown that the algorithm is convergent in the mean, meaning that the mean error be-

tween the approximate policy value function and the optimal value function goes to 0 as

successive approximations become more accurate. Furthermore, the convergence analysis is

extended to the case when the true value functions are in some smooth function space so that

we can construct a finite set of orthonormal basis functions from Chebyshev polynomials.

Our next goal would be searching for provably convergent online, on-policy algorithms using

non-linear function approximations (parametric or non-parametric) suitable for MDP prob-

lems with value functions of unknown form. Other advanced and sophisticated value function

updating rules and approximation techniques will be considered, including neural networks,

kernel smoothing and local polynomial regression (see Fan & Gijbels (1996)).
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Sutton, R., Szepesvári, C. & Maei, H. (2009), ‘A convergent O (n) algorithm for off-policy

temporal-difference learning with linear function approximation’, Advances in Neural In-

formation Processing Systems 21.

Szita, I. (2007), Rewarding Excursions: Extending Reinforcement Learning to Complex Do-

mains, Eotvos Lorand University, Budapest.
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