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The Stochastic Dynamic Vehicle Allocation problem involves managing a fleet of vehicles over time
in an uncertain demand environment to maximize expected total profits. The problem is formulated
as a Stochastic Programming problem. A new heuristic algorithm is developed and is contrasted to
various deterministic approximations. The paper presents computational results that were obtained
by employing a Rolling Horizon Procedure to simulate the operation of the truckload carrier. Results
indicate the superiority of the new algorithm over other approaches tested.

INTRODUCTION

The vehicle allocation problem arises when a
common carrier must manage a fleet of vehicles to
maximize profits over a planning horizon. Demand
materializes as shippers call the carrier requesting a
vehicle to be available in a specific location on
a specific day to carry something to a given destina-
tion. We refer to the above request as a load, or loaded
movement ; note that the carrier may decline a load if
it is considered unprofitable or the vehicle supply
available cannot accommodate it. Each load may be
served by a single vehicle and the vehicle is dedicated
to that load; no vehicle can be shared by loads. Truck-
load motor carriers, container companies, rental car
agencies and (in some aspects) railroads fall into this
category. Time is discretized into intervals, typically
one day, and on each day, the operator must either
assign each vehicle to a requested loaded movement
or move it empty to another region to pick up a
requested or expected loaded movement, or to hold it
in the same region until the next day. The dynamic
element of the problem is obviously very important:
decisions made on one day influence directly the ve-
hicle supplies of regions in the future and thus the
decisions to be made at that time. The use of the term
“Dynamic Vehicle Allocation Problem” (DVA) under-
lines the importance of future consequences of deci-
sions made at any time concerning the management
of the vehicle fleet.

The major difficulty of the DVA problem lies in the
fact that the demands are typically uncertain and the
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level of uncertainty increases further into the future.
For example, in the truckload market (which is the
application of the DVA that motivates our research)
it is unusual for shippers to book a load more than 2
or 3 days in advance and typically the carrier at the
beginning of the day knows only about 40% of the
loads that will be carried or requested on that day,
and about 10% or less of the loads to be carried on the
next day. Consequently, the motor carrier must be
able to estimate future demands and to make decisions
that anticipate their impacts on future periods. Travel
times between regions may also be treated as random,
thus causing the supply of vehicles in a region at a
time period to be stochastic, even after the dispatch
decisions have been made.

A variety of formulations of the DVA problem have
been proposed to handle both uncertainty and the
infinite horizon nature of the problem. DEJAX and
CRAINIC,®! as well as BOOKBINDER and SETHL®
review models of empty vehicle repositioning and dy-
namic transportation problems. POWELL!>®! specifi-
cally reviews alternative formulations of the DVA and
contrasts methods for handling uncertainty. Earlier
papers include MiSRA!*” and BAKER,!! which deal with
the static deterministic case for repositioning empty
freight cars, COOPER and LEBLANC® which handles
the static stochastic case and WHITE and BOMBER-
AULT*® which formulates the deterministic dynamic
case as a linear transshipment network. The models
developed to deal with both the dynamic and the
stochastic nature of the problem are usually applica-
tion-specific, since certain modeling simplifications
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appropriate for each application are necessary to re-
duce the complexity of the problem.

Papers by JORDAN!®! and JORDAN and TURN-
QuisT!!" show the first effort to incorporate the un-
certainty of demands and vehicle supplies into the
model and result in a network optimization model for
the allocation of empty freight cars in the railroad
carrier’s case. The model is a nonlinear optimization
problem with linear decomposable constraints, where
the objective is to maximize total expected profits.
Since its concavity was not proven by the authors, the
model is considered a heuristic. After the model is
solved for a specific day, the first period decisions are
implemented. As time passes, the additional infor-
mation that becomes available is used in the construc-
tion of the model for the next day. An important
feature of the model is that the solution of the model
for the next day may revise decisions made on previous
days, by rerouting empty cars in transit. The model is
solved using a FRANK-WOLFE algorithm™! and it is
computationally very efficient.

The truckload carrier case, which is in the focus of
our interest, is characterized by a high level of com-
petition among the carriers and a high degree of
uncertainty of the future demands. The models devel-
oped for the stochastic DVA are primarily heuristic
and face the difficulty in the choice of the decision
variables to describe the shippers’ recommended ac-
tions. The choice usually leads to unreasonable as-
sumptions in the shippers’ behavior that limit the
applicability of those models. In POWELL et al.?!! the
decision variables are the fractions of the vehicle
supply of a region at a time period to be dispatched
empty or loaded to another region. The model, thus,
requires a certain fraction of the vehicle supply of a
region at a time period to be sent to a destination,
where this fraction is statistically independent of
the demand for loads for that destination. Also, at the
same time that empty vehicles are sent to one desti-
nation because of unavailability of loads, the vehicles
assigned to another destination may be insufficient to
handle the actual demand. An alternative model by
POWELL? requires that if vehicles assigned to a des-
tination are not used due to insufficient demand, they
are not sent empty to that destination (as the previous
model did), but instead they are held in the same
region. Again, no substitutability of vehicles for des-
tinations facing excess demand is allowed. Another
theoretical weak point of these models is that no
consideration is given to the truncation of the plan-
ning horizon, which is to say that the end effects are
ignored. These models result in constrained nonlinear
optimization formulations, where concavity is guar-
anteed only in [21], and are solved by the application

of the Frank-Wolfe algorithm. The optimal solutions
are not integer, however, which limits their use as
real-time vehicle routing tools.

The primary goal of this research is to introduce an
alternative heuristic approach as well as to review and
contrast alternative modeling and solution ap-
proaches. Particular attention is given to the handling
of forecasting uncertainties. The algorithms tested
cover deterministic models and stochastic dynamic
models. Their performance is tested on a particular
realistic dataset. The presentation is organized as
follows. In Section 1 we formulate the problem math-
ematically and Section 2 presents the algorithm. Sec-
tion 3 describes briefly representatives of static and
dynamic deterministic formulations. Section 4 pro-
vides the details of the rolling horizon procedure used
to simulate the operation of the carrier over time and
provide results on the models’ performance. Section 5
presents the results of a series of numerical experi-
ments contrasting the new procedure to deterministic
static and dynamic formulations. Finally, Section 6
concludes the paper.

1. PROBLEM FORMULATION

THIS SECTION presents a stochastic programming for-
mulation of the DVA problem with a planning horizon
of N periods. Let us restate the problem: at the present
time period and with the available vehicle allocation,
the carrier must decide which loads to accept or refuse
and how many vehicles to relocate or hold over (in
order to obtain a more favorable future vehicle allo-
cation) to maximize the total expected profits over a
planning horizon of N periods in an environment of
independent random future demands with a known
distribution. The carrier’s fleet has a certain number
of vehicles and each vehicle can accommodate any
loaded movement; there is no compatibility problem
between vehicles and loads.

In order to gain insight into a problem which is
easily obscured by a variety of tedious details, we
make certain simplifying modeling assumptions which
were applied to all the models to be presented. The
continuum of the United States is divided into
60 discrete regions and let R = {1, ..., R} denote the
set of regions, while R refers, according to the
context, to either the Rth region or the cardinality
of the set R.

Listed below are the assumptions that were made
in the development of the models:

(Al) The travel times between all regions are equal
to an integer number of time periods and each
time period is one day.
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(A2) The carrier at the beginning of the day knows
all the loads that will be called in to be picked
up that day; in addition, it does not know any of
the loads that will be called in to be picked up
on the following days. That allows the decision
maker (the carrier, in our case) to solve the
model once per day.

(A3) Loads that are not picked up on the first day are
lost. Thus, the performance of the models can
be evaluated on a day by day basis and the
necessary bookkeeping is reduced.

Some of these assumptions are not particularly re-
alistic, but the resulting problem is still quite complex.
Furthermore, the analysis still provides insights into
the solution of the original problem. It should be
emphasized here that assumptions (A1) and (A2) are
not necessary modeling restrictions and can be easily
relaxed; they are made only to simplify the presenta-
tion of the problem and provide a clearer picture of
the optimal dispatch strategies of the carrier. In ad-
dition, two more simplifications were made to ease the
mathematical presentation:

(A4) All vehicles are available for the first time at
time period ¢t = 1, and

(A5) Travel times between all regions are uniformly
equal to one time period, either for a loaded or
empty move.

It should be emphasized that these assumptions
are not actually used in the construction of the
models whose performance evaluation is presented
in Section 5.

We begin the presentation of the formulation of the
DVA problem by giving the necessary notation. In
this paper we will use the convention that the first
time period is ¢ = 1, and, when a time period is
mentioned, it is implied that we refer to the beginning
of that time period. Revenues from carrying a load are
treated as negative costs, in order to formulate the
problem as a cost minimization problem (as is more
common in this area of research). Additionally, since
each vehicle carries one load, we will use the terms
“flow of vehicles” and “number of vehicles” without
distinction. Let us denote:

x;; (t) = number of trucks moving loaded from region
i to region j, departing from i in the begin-
ning of period ¢, t=1,..., N,
=0, fort=<O,
¥;; (t) = number of trucks moving empty from region
i to region j, departing from i in the begin-
ning of period ¢, t=1,..., N,
=0, fort=<O,

®;;(t) =random variable denoting the number of
loads that will be called from i to j to be
picked up at timet, t=2,..., N,

r; = average contribution (revenue minus direct
operating cost) for pulling a load from i to j.
¢;; = cost of moving empty from i to j,

L;; (1) = actual number of loads known at time ¢t = 1
to be available moving from i to j at the first
time period,

T;(t) = number of trucks becoming available for the
first time in region : at time ¢,
=0, fort=2,...,N
(by our simplification A4),
S:(t) =supply of trucksat iondayt, t=1,...,n
= Yrer [xni(t — 1) + yu(t — 1)] + T3(2),
(by our simplification A5).

In the model formulations that are presented in the
remainder of the paper, we follow the notation that:

—bold letters define a matrix or a vector with
known or random elements, for example, r = {r;,
Vi=1,...,R,Vj=1,..., R},

—Greek capital letters are reserved for random
variables,

—Greek small letters denote a realization of the
random variable,

—a bar on a random variable denotes its expected
value,

—vectors are implied to be column vectors,

—A =+ B denotes matrix or vector multiplication,

—1 represents a column vector of size R with elements
equal to 1,

—AT denotes the transpose of vector or matrix A,

—Inequality constraints in vector or matrix form
imply inequalities in each individual element of the
vectors or matrices.

Let us now define the following optimization prob-

lem, for each time period t =2,..., N —1:
Yi(S(¢), ¢(t))
= min@yen[—rTx() + e¢Ty(t) (1
+ Eoeeny [¥H(S( + 1), (¢ + 1]
subject to: x(t) < ¢(¢) (1a)
[x(t) + y()] = (1) = S(¢) (1b)

x@) +y&)"= (1) =8S¢t+1) ()

Note that we will use ¢*(S(t), ¢(t)) to denote the
realization of the random wvariable ¥*'(S(¢), ®(¢))
when the link capacities ® (¢) = ¢ (¢) for period ¢. This
choice of notation, instead of the more conventional
Vi(S(t), ®(t)| B(t) = ¢(t)), was made to ease the
presentation.
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Let us additionally define for the last time period:
YyY(S(N), ¢(N))
= ming o, [—rTX(N) + eTy(N)] (2)
subject to: x(N) < ¢ (V) (2a)
[x(N) + y(N)] = (1) = S(N). (2b)

The problem of maximizing total profits over the N
time periods horizon can now be formulated as the

following N-stage Stochastic Program: -
Y1(8(1))
= mingqyay[-r"x(1) + ¢y (1) (3)
+ Eay[¥*(S(2), #(2))]]
subject to: x(1) < L(1) (3a)

[x(1) +y(D)] = (1) =8(1)  (3b)
[x(1) + y(]" * (1) =8(2). (Bc)

Admittedly, in the above formulation we used the
small Greek symbol ¢!(S(1)) for the deterministic
quantity of the total expected profits over the N-
period planning horizon, given the initial vehicle al-
location S(1). This abuse of notation was made only
to expose the similarity of the problems for different
time periods.

In these formulations, the first set of constraints
ensures that no loaded movements take place in excess
of the demand for such movements. The second set of
constraints implies that the total number of vehicles
dispatched out of region i at time period ¢ does not
exceed the vehicle supply available in i at ¢. Since the
option of holding a vehicle in region ¢ at time ¢ until
the next time period is available in the formulation
(and represented by y;(¢)), these constraints are for-
mulated as equality rather than inequality constraints.
The third set of constraints in formulations (1) and
(3) are flow conservation constraints.

Problems with uncertain objective or constraint (as
in our case) coefficients fall in the realm of Stochastic
Programming. The complexity of those problems ne-
cessitates the truncation of their planning horizon to
a fixed number N of time periods, although this may
introduce deviations from the optimal solution of the
infinite horizon problem. When such a problem con-
siders the uncertainty of the future up to N time
periods, it is classified as an N-stage Stochastic Linear
Program with recourse.

The most general case is the one of fixed recourse,
where uncertainty is restricted to the right-hand side
of the constraints and the constraint set has the
general form Ax = b. Network recourse arises when
the problem, conditioned on a specific realization of

the random variables, is a pure network; that is, A is
an arc-node incidence matrix. The simplest case of
recourse is the case of simple recourse, where the
problem, conditioned on a specific realization of
the random variables, involves just the incurrence
of a penalty whenever the first time period decisions
anticipated different values of the random variables
than their actual realizations. When the realization is
higher than the estimated value of the random vari-
able, a cost is incurred per unit of discrepancy; this
cost is called “underage cost.” In the reverse case,
when the realization was overestimated, an “overage
cost” per unit of discrepancy is incurred.

Most of the research in Stochastic Programming,
since it was introduced by BEALE? and DANTzZIG,"”
has focused on 2-stage linear programs with random
variables described by discrete distributions and for
the case of fixed recourse with the uncertainty re-
stricted to the right-hand side vector of the con-
straints. DANTZIG and MANDANSKY!'? solve the dual
of this problem by using DANTZIG-WOLFE decompo-
sition,"!! while KALL"® and STRAzICKY?*® present
another dual method based on basis factorization tech-
niques. Important work on the problem of fixed re-
course is presented in WETS!***® and WALKUP and
WETS.?®?! The L-shaped Decomposition, introduced
by VAN SLYKE and WETS,?"! is the first method that
solves the primal problem and is based on the use of
cutting planes (outer linearization or Bender’s decom-
position). WOLLMER,*!! finally, deals with the prob-
lem of fixed recourse when the first stage variables
are 0-1 integer variables, by using Bender’s Decom-
position and an implicit enumeration scheme.

Methods for handling simple recourse include al-
gorithms by WETS® and ZiEMBA,*? who also intro-
duces the convex simplex method. For an application
of Wets’ algorithms for the simple recourse problem,
see WALLACE and BREKKE.?* For the particular case
of a Transportation problem with uncertain demands,
which is a special case of the simple recourse problem,
the Forest Iteration Method has been introduced
by QI.[24]

The problem of network recourse has been exten-
sively examined by WALLACE,"®® who first proved that
in a transportation problem the constraint set decom-
poses into polyhedral cones. WALLACE®" also intro-
duces a method for solving these problems by using
Shurr complements modified for the network case and
applied these basis factorization and partitioning tech-
niques in [32] and [33].

Multistage Stochastic Linear Problems have been
treated primarily for the case of linear objective func-
tion and linear constraints and for the case where the
randomness is restricted to the right-hand sides of
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the constraints. BEALE, FOREST and TAYLORY! deals
with the case where the uncertainty is restricted to
the total inventory constraints of the type (1b).
BEALE, DANTZIG and WATSON'™ solves it by assuming
a suitable functional for the value function y° (such as
a quadratic function) and fit the problem into the
dynamic programming framework. BIRGE!" ¢! uses de-
composition and partitioning techniques to solve the
problem. LOUVEAUX!™ for the case of a stochastic
integer program uses the concept of block separability
(which may be inherent in the structure of some
problems) and develops efficient solution techniques.
Even if such a separability is not present in the
structure of a problem, procedures have been devel-
oped to force it onto the problem. These procedures
are basically bounding procedures and are based on
the ray approximation procedure in BIRGE and
WETS."! It uses the sublinearity property of the re-
course function to obtain a separable function that
dominates the recourse function. A different solution
approach to the Multistage problem is the Scenario
Analysis approach, where the problem is solved for a
limited number of realizations (scenarios) and conclu-
sions are drawn from their optimal solutions. Such an
approach is appropriate when no probability distri-
butions can be assumed for the random variables of
the problem. ROCKAFELLAR and WETS!®* introduced
the Scenario Aggregation Algorithm, which is a rig-
orous procedure for combining the optimal solutions
for the alternative scenarios to obtain a general deci-
sion policy. The deterministic equivalent program to
the multi-stage network problem increases with the
planning horizon, and the cardinality of the discreti-
zation of the random variables. Thus, approximation
techniques have been introduced by Wets!®® and Birge
and Wets.l”)

In the context of the Dynamic Vehicle Allocation
Problem, the uncertainty involved is due to the ran-
dom demands on the links rather than on the nodes
of a network. Thus the random coefficients are the
right-hand sides in the constraints that imply that
the flow on a link cannot exceed the demand for that
link. Another characteristic of the problem is that
the 2-stage problem reduces to a pure network
(see Powell®!). Additionally, the flow of vehicles be-
tween a pair of regions does not solely depend on the
demand between those regions and the vehicle avail-
ability in the origin region, but also, through the
network conservation constraints, it is jointly depend-
ent on the realizations of the demand between other
pairs of regions. Thus, it is a Stochastic Linear prob-
lem with the network recourse. In the effort to solve
such a complicated problem, many attempts have been
made to relax the network recourse condition and
treat the problem in a different level of difficulty;
some of them are described next.

The simple recourse strategy corresponds to the
case where, when the demand between & pair of regions
falls short of the fraction of the vehicles assigned to
it, the excess vehicles move empty anyway. Thus, the
overage cost of this problem equals the cost of making
that empty move, while the underage cost is the lost
revenue of that move. The model introduced by Powell
et al.,””"! actually deals with that problem.

Null recourse, a term introduced by Powell,!*! im-
plies that neither a corrective action is taken when
the values of the random variables are known, nor any
penalties are incurred for not anticipating their real-
ized value. In the context of the DVA problem, this
corresponds to the case where, when the demand
between a pair of regions falls short of the fraction of
vehicles assigned to it, the excess vehicles are held in
the origin region (incurring no cost) rather than dis-
patched empty. The model introduced by Powell
actually corresponds to this case.

The strong dynamic nature of the DVA problem
can only be accommodated by a multistage Stochastic
Program. The decomposition and partitioning meth-
ods of Birge'® and Louveaux,*® though, are developed
for the case of fixed recourse and if applied to the case
of network recourse would eliminate the desirable
network structure of the constraint set. Thus, our
heuristic approach attempts to maintain the network
structure, allowing the use of efficient network opti-
mization techniques.

In the next section we develop a heuristic algorithm
for the DVA problem, after which Section 3 discusses
alternative formulations of the DVA problem (or,
equivalently, relaxations of the N-stage Stochastic
Linear Program with network recourse).

2. THE SUCCESSIVE LINEAR APPROXIMATION
PROCEDURE

IN THIS section we develop a new heuristic algorithm,
which we will refer to as Successive Linear Approxi-
mations Procedure (SLAP). First, we present the in-
tuitive motivation behind the basic idea of the algo-
rithm. Then, in Section 2.2 we introduce the recursion
which is central to the procedure, while Section 2.3
discusses in detail the linear approximations needed.

2.1. Motivation

It is common sense that the total expected profits
in a region j at a time period depends on the number
of available vehicles there. Let us assume that the
available vehicles are given an arbitrary index number
and we decide that the vehicle with index number 1
will take the best available load, the 2nd will take the
second best, and so forth. Under this arbitrary dis-
patch logic, it is obvious that the expected profits
of the kth vehicle will be higher than those of the
(k + 1)th one, since they both compete for the same
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loads and the first one has dispatch priority over the
second. Thus, the total expected profits in that region
does not grow linearly with the number of available
vehicles; the function is concave. To get into the cost
minimizing context that Stochastic Programming re-
quires, we have that (changing the signs) the total
expected future costs in a region at a time period
(which is the recourse function) is a convex func-
tion of the vehicle supply, as proven later (see
Proposition 1). )

Let us consider now the last period of an N-stage
Stochastic Programming problem. For every region j,
the future after the beginning of period N is summa-
rized by a function that has the convexity property
discussed above. Let us now try to devise a dispatch
policy for region i at time N — 1, that is a rule on
where a vehicle should be dispatched when the de-
mands for period N — 1 are known. Let us assume
that this dispatch policy will be used for all vehicles
available in that region at that time. If a vehicle is
dispatched empty or loaded to region j, the expected
cost of that decision is equal to ¢;; or ~r;;, respectively,
plus the expected cost incurred by the vehicle once in
a region j at time N. That second component is ac-
tually the marginal cost of having one more vehicle in
region j at time N. Although the recourse function for
that region at time N is known, that marginal cost
(which is the slope of that function) cannot be deter-
mined unless the “existing” vehicle supply is known
(i.e., the point where the slope should be taken). In
Figure 1a, for example, that marginal cost is known
only if we know how many vehicles the other regions
sent to region j. But this supply depends on the
dispatch of all the other regions at time N — 1, making
the problem very complicated. This is essentially what
the concept of network recourse implies: dispatch
decisions in different regions cannot be made individ-
ually, because they are interrelated through the future
vehicle supplies that they induce.

Suppose now that the convex function describing
the total expected cost in region j at time N is replaced
by a linear one (which implies a constant marginal
cost of a vehicle), as shown in Figure 1b. Then the
expected cost of a dispatch decision in region i at time
N — 1 does not depend on the vehicle supply of region
J at time N and thus does not depend on the dispatch
decisions of the other regions at time N — 1 either. So
the problem in period N — 1 is decomposed by region.

The choice of the linear approximation to be used
in the place of the recourse function of period j at
time N is crucial. Consider, for example, a model that
would substitute the function by the slope of the
function at point 0, 6° Let us examine a simple
example with two regions and with known vehicle
supplies, as depicted in Figure 2a. Suppose (for the
sake of the argument) that the cost to move empty or
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Fig. 1. Decomposition of the Network Recourse when a linear
approximation is used.

loaded from one region to another is ¢ and —r respec-
tively. Let us also suppose that the demands between
any pair of regions happens to be uniformly equal to
zero for period N — 1 so that all vehicles are moving
empty or are held over. Note that the expected re-
course functions depicted level off when the supply
exceeds a certain limit, This implies that excess ve-
hicles do not cost anything; that is the cost of holding
a vehicle until the next dispatch instant is zero. Let
us assume that j = 1 is the region that has the biggest
slope, 89, of the recourse function at point 0 and F be
the fleet size. Then, it is obvious that, if ¢ + ¢ < 49,
region 1 will accumulate at time N the entire fleet size
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Fig. 2. Problems associated with the choice of the linear ap-
proximation. (a) Resulting network of proposed model. (b) Optimal
flows of the above network.

F, as shown in Figure 2b. This makes the marginal
cost of a vehicle in 1 at time NN equal to the slope 4%,
which may be much higher than our initial estimate
#?, resulting naturally in a very poor vehicle allocation
time N.

The intention of the Successive Linear Approxi-
mations procedure is the substitution of the expecta-
tion of the recourse of a region for a period ¢ by a
linear approximation in a way that avoids the above
mentioned complication. Section 2.2 describes the
above line of thought for the time period ¢, shows the
impact of that substitution when the optimization
problem of period ¢ — 1 is considered and how the
multistage problem decomposes in that sense in solv-
ing successive 2-stage problems. Thus, the SLAP pro-
cedure is essentially a backward recursion combined
with a linear approximation of a convex function at
each step of the recursion. The last Section 2.3 dis-
cusses the issues related to the choice of the linear
approximation.

2.2. A Step in the SLAP Algorithm

In this section, the step of the SLAP algorithm
involving the (¢t — 1)th time period is described. We
assume that from the step involving period ¢t we have

for every region i the expected recourse function
W (S(t), ®(t)).

The convexity of ¥:(S;(t) = s, ®(t)) with respect
to s (which is proven in Section 2.3) implies that we
can form a tangential linear approximation of
¥i(S:(t) = s, ®(¢)) as follows:

\_I;f(Si(t)
®(t))

where 6;(¢) is an approximate “average” or marginal
expected cost of a vehicle in region i at time ¢, and
b;(t) is a constant term depending on the region ¢ and
time t. Note that the constant b;(¢) term does not
need to be determined from the optimization point of
view, as will become apparent later. More details on
how this linear approximation is fitted are given in
Section 2.3.

Consider next the objective function of the optimi-
zation problem (1) for period ¢t — 1:

YIS - 1), ¢t — 1)) (®)

i

5 (4)
0:(t)s + b;(¢) Vi=1,...,R

>

= min [-r"x(t-1) + "yt - 1)
{x(t—1),y(t—1)}
+ V4S(t), ()] (5a)
= min [—rTx(t -1 +c"yt—1)
fx(t=1),y(t—1)]
+ 3 \le(Sj(t) = s, (Ii(t))] (5b)
JER
2  min [—rTx(t -1 +cy(it—-1)
{x(t—1),y(t—1)}

+ 3 [G@)S;t) + bxm} (5¢)

JER

min > X [zt — 1) + ¢yt — 1))

{x(t=1),¥(t~1)] ;eR jER

+ 3 [@(t) Y (xy(t = 1)

jER i€R
+ y,(t — 1)) + b}-(t)]. (5d)

From (5a) to (5b) we used the decomposition of the
function ¥* by region and then in (5¢) substituted the
region contribution ¥! with its linear approximation.
From (5¢) to (5d) we used the flow conservation
constraints (1c) fort =¢ — 1.

If we ignore the constant terms of the linear
approximations from the perspective of finding the
optimal solution, we obtain that:

YISt — 1), ¢(t — 1))
2 min Y 3 (~r; + G®)xit — 1) (6)

fe(t—1),y(t—-1)! (€R jER

+ (c; + 0;,(t)yy(t — 1)]
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subject to:
x(t—1)<s¢t—1) (6a)
[x(t —1) + y(t — D"« 1) =S(t). (6b)

This problem clearly decomposes by region i, since
the objective function is separable and there are no
binding constraints.

In order to understand better the structure of the
optimal solution of the above problem, let us view it
in the context of the individual vehicles rather than
the flows between regions. Since a vehicle in region i
at time t — 1 can move loaded or empty to any other
region or can be held in ¢ until time ¢, there are 2R
possible dispatch decisions for it, which we will call
options. The 2R dispatch options for a vehicle in region
i at time t — 1 are ranked in a decreasing order
according to their direct contribution to total costs
plus the average (negative) value of a truck at the
destination of the option at time ¢. That is, —r; +
ﬁj(t) for loaded movements to region j, and c; + ﬁj(t)
for empty movements to that region. It is thus possible
for an empty move to be ranked higher than a loaded
move. Then define for period ¢ — 1:

gi7!=the contribution of the nth ranked possible
movement, forn=1,...,2R
=— r; + §;(t) ifthe nth ranked option is to
move loaded to region j,
if the nth ranked option is to
move empty to region j.

= ¢; + (1)

All vehicles in region i at time ¢ — 1 have the same
dispatch options, but the destination of each of them
depends on the realizations, ¢;; (¢ — 1), of the random
demands, ®;; (¢ — 1), out of region i at time ¢ — 1. Let
us assume that the vehicles in region i at time ¢ — 1
have an index number k, k=1, ..., S;(¢t — 1) and that
vehicles with higher index number have higher prior-
ity in the dispatch process. Thus, for example, the
kth vehicle will take, under any demand realizations
¢.; (t — 1), an option at least as profitable as the option
that the (k + 1)th vehicle. So, let us introduce the
random variable:

AEY(®)=n, ifthe kth vehicle in region i at time
t — 1is dispatched on the nth option,
n=1, ..., 2R, when the vector of
demands is &.

-1 = the probability that the kth vehicle in re-
gion 1 at time ¢ — 1 will be dispatched on
the nth ranked possible movement.

= Prob[A% ' (®) = n].

Let us additionally define:

0% '(®) = random variable denoting the contribution
of the kth vehicle in region i at time ¢t — 1,
when the vector of demands is (¢ — 1).

The solution to the optimization problem (6) is
obvious. Each vehicle k in region ¢ at time ¢ — 1 is
dispatched to the highest ranked available dispatch
option n. Therefore, at optimality and for a given
realization of the random demands ¢ (¢t — 1), the actual
contribution of any vehicle will be equal to the contri-
bution of the highest ranked option n that this vehicle
can take given ¢ (¢t — 1). Thus:

O (&) =gl (7)

where n is the index number of the highest ranked
available option.

The objective value of the optimization problem for
region i at time ¢t — 1 given the vector of demands
¢(t — 1) is then:

NSt — 1), ¢t — 1)) = T84V 057 (¢)  (8)

Finally, combining the optimal solutions of the sub-
problems, we have for problem (2) as a whole:
YoHS(E - 1), ¢t — 1))

= Ywer YISt — 1), ¢(t — 1)) 9
= Yier [Z34Y 051(9)]

Introducing the optimization problem in the context
of random demands, we have:

TEUS@E - 1), ®(t— 1))
= B[ ¥7HS(E - 1), #(t = 1))]  (10)
= Yier YIUSi(t — 1), ®(t — 1))

where

(St = 1), &t — 1))
= Eo-n[¥{71(Si(t = 1), @(¢t — 1))] (11)

= Ea [TV 057 ()] = T30 85!
where, by definition:

8! = Eg(_n)[051(®)]

— T 2R

(12)
Boghl'dh Vi=1,...,Rk
The dispatch probabilities for the period ¢ — 1 can
be derived as described in the “Appendix,” as long as
distributions of the random variables are known.
The above exhibits how, once the expected recourse
functions of period ¢ are known, the expected recourse
functions for period ¢ — 1 can be constructed through
the use of a linear approximation. Thus a backward
recursion is employed, which starts from period t = N
where, since the Nth period is the last to be consid-
ered, 9,- (N + 1) is equal to zero for all regions j. When
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we reach the problem for ¢ = 1, we have that:

Y'(8(1)

2 min 3 ¥ [(—=r; + 6,(2)x;(1) (13)

(x(1).5(1)} jeR jER
+ (c; + 61(2))3’&(1)]
subject to: x(1) < L(N — 1)
x(1) + y(D)]*1=8(1)

Note that as the above described procedure goes
backward in time, the individual optimization prob-
lems are all solved trivially. What is required is the
calculation of the dispatch probabilities (as shown in
the “Appendix”) and the evaluation of the parameters
of the linear approximations. To satisfy that last
requirement we only need to decide on the estimated
vehicle supply, to give us the point where the linear
approximation will be fitted. Finally, an easy network
optimization problem ¢ '(S(1)) has to be solved.

The resulting first-period network is depicted in
Figure 3. Notice that each region I is now represented
in all periods from ¢ = 1 until ¢ = max; (1 + ¢), of all
loads [ that have region i as their destination, where ¢
denotes the travel time needed for the completion of
load /. The multiple representation of the unique super
sink node SS is only for reasons of clarity of the
resulting network.

2.3. Linear Approximations

We begin this section by proving the convexity of
the expectation of the recourse function for the prob-
lem in region i at period t.

PROPOSITION 1. Vi(S;(t), ®(t)) is a convex function
of S;(¢).

Proof. As shown in Appendix A of [15], for any
region f and time period ¢, 7, is an increasing function
of k. This is a result of diminishing returns of the
available trucks in region i at time period ¢. The slope
of Wi(S;(t), ®(t)), which is the contribution of region
i to the expected costs of that period ¥(S(¢t), ®(t)),
with respect to supply S;(¢t) = k is equal to 8. Since
®., is a decreasing function, ¥:(S;(t), ®(t)) is a con-
vex function of the available supply of vehicles

S;(t). (Q.ED.)

It would be reasonable for the linear approximation
of the type (4) for the total expected contribution (to
costs) of region i at time period ¢:

TESi(t)=s,®(t)) £ 6:(t)s +b;(t)
Yi=1,...,R

to be fitted around an approximation of the expected
vehicle supply of region i at period ¢, m;(t) & E[S;(¢)].

One source of information for estimating m;(f) in
advance is the forecasted frequencies of outbound and
inbound loaded movements of region i on a weekday
corresponding to day t. These frequencies were typical
of the operation of an actual carrier. The total out-
bound flow of region i, though, depends not only on
the vehicle supply of i at that day, but also on the
demand for loads out of i; similarly for the total
inbound flow. Our approach is to take a weighted
average of the total inbound and outbound flow of the

TIME PERIODS
S, () —3=1(TH.
S, (1) =—3 SS
2 ® —3-TVS
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NETWORK LINKS (OUT OF REGION 1 AT TIME 1)
LOAD EMPTY MOVE HOLDING STOCHASTIC LINK DUMMYLINKS
(DESTINATION ) (DESTINATION J) FOR VEHICLE K FOR SS
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Fig. 3. Resulting network of the SLAP procedure.
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region at that day:
mi(t) =q Srer Pri(t — 1)
+(1—q) Y,er o,(t)

Regions with high outbound and low inbound flow
are expected to attract empty vehicles from other
regions to satisfy their vehicle deficit. Thus, one would
expect that, since the historical empty flows are not
available, the estimate of m;(t) should depend heavily
on the outbound flow; thus, a value of ¢ approaching
zero would be more appropriate for these regions.
Alternatively, regions with low outbound and high
inbound flow are not expected to attract any empty
vehicles. Thus, the total inbound flow is a good esti-
mation of m;(t) and a value of g approaching 1 would
be appropriate for these regions. In our experiments
we used uniformly the value 0.5 for the parameter g.

Alternatively,

m(t) = max[Trer Puilt — 1), Yier 5;‘,‘(”] (14a)

may be used as an extreme case.

It is important to emphasize that the critical step
for relaxing the network recourse structure in model
SLAP is one that uses the linear approximation (4)
instead of the nonlinear expected contribution func-
tion ¥i(s, ®(t)) of region i at time ¢ when the vehicle
supply is s. This is equivalent to stating that the value
of a truck in region i at time ¢ when we consider the
problem for the previous stage is treated as constant,
and not decreasing with the supply s of that region at
that time. The choice of this constant average value
of a truck in i at ¢ is very important.

In our procedure, an estimate for the expected value
m;(t) is first obtained by (14). Then a choice for the
average value of a truck in region { at time ¢t may be
the value of the (m;(¢))th vehicle in that region at
that time:

(14)

bi(t) = f,mi(t) (15)

This choice is depicted in Figure 4. Note that the
expected recourse function is piecewise linear so this
choice actually selects the slope of the appropriate
linear piece.

Alternatively, a distribution p#(t) = P(S;(t) = k)
may be assumed. For example, it may be reasonable
to assume that S;(¢) can be approximately described
using a Poisson distribution with mean m,(¢). Then:

6i(t) = Biey BE(E)0(E) (16)

The use of an average value of a truck in a region
at time ¢t essentially allows the model to decouple the
dispatch decisions of different regions at time ¢ — 1.
When the dispatch options out of region i at time
t — 1 are reviewed, the average value of a truck in each
destination region j of an option is required at time ¢.

A
Expected

Recourse
Function

¥ (210
b'(') -

m. Vehicle Supply
Si{1)

: Expected Recourse Function
—-—-—:Linear Tangential Approximation

Fig. 4. Choice of the linear approximation for the SLAP
procedure.

The model assumes that the dispatch decisions of the
other regions k at time £ — 1 (which, naturally, affect
the vehicle supply of j at £ and hence the average value
of a truck there) are sufficiently described by their
expected value (i.e., the historical frequencies). This
defines a new type of recourse, which we call Nodal
Recourse, and justifies the use of a linear approxima-
tion around the approximate average vehicle supply

Three variations of the SLAP approach were devel-
oped. In the first two, the estimates m;(t) are com-
puted by (14) for a value of the parameter « equal to
0.5 uniformly. Model SLLAP1 used the linear approxi-
mation of the type (15), while model SLAP2 used the
approximation in (16) (with the assumption of a Pois-
son distribution). Finally, the third variation, SLLAP3,
used (14a) to obtain estimates for the vehicle supplies
and a linear approximation of the type (15).

3. ALTERNATIVE FORMULATIONS

THE DEVELOPMENT of a stochastic programming heu-
ristic raises the question of whether explicit treatment
of randomness provides a measurable improvement
than a deterministic model, especially since it gener-
ally results in a substantially more complicated model.
To address that issue we contrast the SLAP model
with two deterministic approximations, which were
chosen based on an extensive series of experiments
reported in [15]. The deterministic models are divided
into single stage (or static) and dynamic models. Sec-
tion 3.1 presents the single-stage formulation, which
not only ignores the uncertainty of the problem, but
its dynamic nature as well. Noteworthy is that, despite
their obvious theoretical limitations, these models are
the most commonly used in practice. Section 3.2 pre-
sents a dynamic formulation with a planning horizon
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of length P. Certain modeling issues are tackled with
different approaches, giving rise to several alternative
dynamic formulations.

3.1. Single-Stage Deterministic Formulation

A successful single-stage deterministic formulation
is an assignment model which assigns available drivers
to available loads with the objective of maximizing
total profits in the first time period plus an estimate
of the future profits, where the second term is included
to induce empty repositioning moves to handle the
anticipated future demand.

The goal is to find desirable vehicle allocations for
the beginning of the 2nd period based on estimates
about the future load demands, without losing the
attractive simplicity of the model. One way is to
introduce “regional salvage values” on each vehicle
left in a region ¢ at the end of the 1st period. This
value, denoted by p;(2) should represent the average
return of a vehicle in ¢ for the beginning of the 2nd
period until the end of an appropriate planning hori-
zon H. Those salvage values can be calculated using a
backward recursion scheme, where starting from
period H + 1 (where they are uniformly equal to zero)
the procedure goes backward assuming that in every
period dispatches are done in an average way. To do
this, it uses the historical frequencies of loaded and
empty movements between regions. The complete pro-
cedure is described in Appendix B of [15]. In this
paper the salvage values, whenever necessary, were
calculated using a planning horizon of H = 21 days.

In this representative model:

V2(S(2), #(2) £ ¥ jer p;(2)S;(2) (17)

and since:
S;(2) = Yier (x;(1) + ¥;;(1))
Vi=1,...,R (18)
the objective function reduces to:
YH(S(1))
= maX., Yier Xjer % (D[r; + p(2)]  (19)
+ ¥ (D[=c; + p;(2)]

The approximation of the quite complex function
¥2(s, #(2)) by a separable and linear function leads
to an easily handled network formulation. A weakness
of this approach is that the resulting model may prefer
empty repositioning moves, which only represent an-
ticipation of random future demands, over already
existing loads L;;(1). This problem can be tackled by
adding a large profit M to the objective coefficients of
the known loads appropriately, to give them prefer-
ence in the optimal solution. Additionally, as all linear
models seek their optimal solutions at the extreme
points of the feasible region, such a model may force
too many trucks to a region j with an attractive salvage
value p;(2). This tendency can be reduced by imposing
upper bounds on the number of vehicles into each
region. Incorporating the big M profit bonus, the
objective function becomes:

T1(S(1))
=maX;uyay 2 & % (D[r+M+p;(2)]  (20)

i€R jER
+ i, (D]—ci;; + p; (2)]

The network representation of this model, which

we will refer to as DETAS, is depicted in Figure 5.
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Fig. 5. Network representation of the single-stage deterministic formulation.
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Notice the use of a time-space network to accommo-
date the empty movements and of a super sink node
to accommodate the inclusion of upper bounds on the
truck distribution after the empty repositioning. It
should also be emphasized that the network represen-
tation of this model (as well as the ones to follow)
does not consider simplifications A4 and A5, but de-
picts the model in its actually applied form. That is
why we have initial vehicle supplies in regions on
periods other than the first, and why a complete time-
space network is needed to accommodate travel times
of more than 1 day.

3.2. Dynamic Deterministic Formulations

The major weakness of the static single-stage deter-
ministic formulations is the use of the salvage values
p:(2) to approximate the forecasted activities after the
assignment of loads and the empty repositioning
moves. Dynamic formulations model forecasted activ-
ities deterministically over a finite planning horizon.
The future activities beyond that planning horizon
may be ignored, or may be approximated by the sal-
vage values p; (P + 1). Additionally, the random vari-
ables representing the demands ®;;(¢) for the periods
t=1,..., Pare substituted by their expected values,
®,;(t). In our models we used a planning horizon
P =17. Use of a larger planning horizon is expected to
improve the performance of these models, but since it
produces a much larger network it requires prohibitive
computational effort.

Then, the deterministic dynamic model is given by:

v(S(1))

P
= max Y rTx(t)—cTy(t)] (21)

fx(1),y(1},...,x(P),¥(P)| i=1

+ Y p(P+1)S;(P+1)

JER
subject to:
x(1) < L(1) (21a)
x(t)<3(t) Vi=2,...,P (21b)

[x(t)+y(E)]«1=8() Vi=1,...,P (21c)
[x(t)+y(@&)]["+1=8(t+1) Vi=1,...,P (21d)

This model can be represented as a time-space
network, where a node represents a region at a time
period. There are three types of links in this network:

—Links representing known loads: they have a cost
coefficient equal to the direct contribution of the
load, and an upper bound of 1. Because of this
assumption that only loads for the first day are
known, these links emanate only from nodes rep-
resenting regions at the first time period.

—Links representing empty movements: they have a
cost coefficient equal to minus the cost of moving
empty between the origin and destination regions,
and are unbounded.

—Links representing forecasted loads: they have a
cost coefficient equal to the historical average direct
contribution of loaded movements between the or-
igin and destination regions involved. Because of
the assumption that all loads for the first day are
known, these links emanate only from nodes that
represent regions at time periods greater than or
equal to 2. A natural upper bound for the links
representing forecasted loads would be the historical
frequencies of loaded movements, &;;(w), between
the origin and destination regions on a weekday w
corresponding to that time period. These frequen-
cies are typically fractional and 90% of them are
between 0 and 1 and to use them results in a network
with fractional upper bounds. To solve it, the units
of the network are changed to V1o or Y100 of a truck
and after the optimal solution is obtained, the op-
timal flows are rounded to multiples of 10 or 100
accordingly to correspond to “whole” trucks. The
network representation of that model, which we will
refer to as DETD, is depicted in Figure 6.

There are many variations of these deterministic
approximations. Frantzeskakis and Powell!** compare
a number of these variations. The models used here
produced the best results among the static and dy-
namic models that were tested.

4. EXPERIMENTAL DESIGN

THIS SECTION provides details about our experimental
design. The following sections include comments
made on the implementation of the rolling horizon
procedure and a discussion of the data requirements.
The performance indicators that we are interested in
are explained in the third section. Finally, a useful
deterministic model which can be used as an upper
bound on the performance of the models is presented
in the last section.

4.1. Comments on the RHP Procedure

In order to contrast the performance of the alter-
native models, we use a rolling horizon procedure
(RHP). The implementation of an RHP for a model
is quite simple. At any time £, the RHP models time
from tup to t + P — 1, where P is the planning horizon
of that model. The model is solved for that time ¢ and
its recommended actions are identified. However, we
only implement the instructions for time ¢, and then
we advance the clock to handle time ¢t + 1. This is
done for t = 1, ..., T, where T is the length of the
simulation. It is important to choose T sufficiently
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Fig. 6. Network representation of the dynamic deterministic function.

large to capture the dynamic effects and to mitigate
statistical sampling errors.

As the rolling horizon procedure (RHP) proceeds,
the profits of the implemented recommended actions
of the model are accumulated. When the RHP termi-
nates, the total profits obtained by each model serve
as the evaluating criterion for its performance. Notice
that the sum does not involve discounting, since the
length of a time period is relatively small (1 day). If
financial models were to be evaluated with an RHP
approach, discounting should probably be present,
since they usually involve monthly or even longer time
periods.

The RHP spans a period of T'= 12 days and actually
simulates the operation of a carrier that uses that
model as his dispatching tool during that period. All
the models are tested under uniform conditions, that
is under the same vehicle allocation in the beginning
of the RHP (¢t = 1) and with the same load opportu-
nities during the period that the RHP spans. Since no
loads are carried from one day to another, the results
are easier to evaluate and the performance of each
model on a particular day of the RHP is directly and
entirely dependent on whether the model had success-
fully predicted the future in the previous days of
the RHP and arranged for an appropriate vehicle
allocation.

4.2. Data Requirements

This section describes the data used in the numer-
ical testing of the models; all the experiments are
based on data obtained from a major motor carrier.

All models were tested in the RHP environment
with the same initial vehicle allocation. For each ve-
hicle, the region and the time of first availability have
to be known. The peformance of the models is ex-
pected to depend on the fleet size. In the extreme case
of too many vehicles, the models that are myopic,
which do not recommend any empty movements, may
do as well as the more advanced models that forecast
the future, or even better. When the fleet is too small,
all models basically assign the vehicles to the best
available loads and the different approaches basically
converge, in terms of the recommended solution.
Thus, the models are tested for fleet sizes of 100, 250,
500, 750, 1000 and 1500 vehicles. All vehicles are
assumed of the same type and all loads can be carried
from that type of vehicle.

Necessary data for the dispatch of the vehicles
include average travel times and costs for empty and
loaded movements between each pair of regions. Also
(to evaluate forecasted loaded movements) the average
revenue obtained by carrying a load is needed for each
pair of regions. Note that the part of the loaded move
between the location of the vehicle (assumed to be the
centroid of the origin region) and the location from
which the load is to be picked up (within the same
region) is ignored. Also ignored is the part of the move
between the unloading location of a load at its desti-
nation region and the centroid of that region. Thus,
as soon as a vehicle unloads, it is assumed to be
available for the next dispatch immediately. The cost
of holding a vehicle overnight in a region is assumed
equal to zero and the vehicles can load or unload
anytime during the day or any day during the week.
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Historical data on the average frequencies of loaded
and empty moves between each pair of regions are
needed for the dynamic models. The loaded moves are
assumed to follow a weekly pattern (so the frequencies
are a function of the day of the week) and, since the
span of the RHP is small, no adjustments were made
for seasonal effects.

The load opportunities that the models are faced
with during the time span of the RHP are represented
by a list of loads that will materialize in that period
of T days. This realization of the random -demands
®,(t) fort =2, ..., T, (with the known loads L;; (1)
attached to it) was created randomly, using the his-
torical average frequencies &;; described above. The
origin and the destination of each load is needed, as
well as the date of departure of the load and the
revenue associated with that move. Remember that,
because of our assumptions, the date that the shipper
calls in to request a vehicle coincides with the date
that the vehicle is to pick-up the load from the carrier.
That list of loads contains on the average 316 loads
per day for the regular weekdays and 32 loads per day
for the weekend days.

4.3. Performance Measures

The major criterion in assessing the performance of
the models was the total profits that the carrier would
obtain by actually implementing their dispatching rec-
ommendations. These profit figures obviously refer to
the period span of the RHP and to the particular
realization of the loads for that period.

Since the motor carrier environment is highly com-
petitive, it is reasonable for the carriers to be con-
cerned with the level of service that they provide; this
may be represented, in a way, by the percentage of
loads accepted by the carrier. Additional measures are
the number of empty movements recommended by the
model and the percentage of the empty miles (over
the total miles) traveled, as well as the average revenue
per accepted load and the average distance of an empty
movement recommended by the model. Additional
insight may be obtained by examining the daily values
of the above mentioned performance measures.

Finally, the required CPU time on a MICROVAX-
2 is reported to indicate the usefulness of each model
as a real-time dispatching tool. These times include
only the processing time needed to solve the models
and did not include all the necessary updating of the
vehicle allocation and the list of known loads for the
rolling horizon procedure.

4.4. Upper Bound

The numerical experiments focus on the relative
performance of the SLAP algorithm versus the deter-
ministic approximations. A separate measure of per-

formance is obtained by comparing these results to a
theoretical upper bound, obtained as follows. We take
the realizations of the forecasted loads that were used
in the RHP procedure (that is, the list of loads de-
scribed above) and build a single, deterministic net-
work spanning the 12 days of the simulation. The
result of this single optimization provides an upper
bound, which we will refer to as UB, since decisions
made in time ¢t are based on what will actually happen
in the future. In addition, the optimization can take
into account the actual length of the simulation, al-
lowing it to “cheat” toward the end of the simulation
period. For example, its solution does not include any
empty movements on the last day of the simulation.

5. EVALUATION OF EXPERIMENTAL RESULTS

THE COMPUTATIONAL results of the performance of
the models for the 12-day period are presented in
Table I for the different fleet sizes. For each model
the following performance measures are reported: to-
tal profits, percentage of loads accepted, revenue per
accepted load, number of empty movements recom-
mended, average distance per empty movement rec-
ommended, percentage of empty miles traveled (over
total miles), total revenues and costs. Additional re-
sults involving the daily patterns of these performance
measures, as well as of the pattern of accesssible loads,
were provided, but are not presented in this paper.

As far as the three SLAP models are concerned, the
inclusion of the Poisson distribution in SLAP2 gen-
erally resulted in slightly higher total profits than
SLAP1 (up to 4%), while SLAP3 had equivalent per-
formance for small fleet sizes but performed worse as
the fleet size increased. Hence, SLAP2 will be the
representative of the stochastic models used in the
following comparisons to the deterministic modeling
approaches.

It should be emphasized that the strongest point of
the stochastic models is not necessarily the percentage
of accepted loads. Actually, for fleet sizes up to 750
vehicles they were outperformed by the dynamic de-
terministic models, only to reverse that when greater
fleet sizes were involved. Nevertheless for fleet sizes
of up to 250 vehicles, model DETD was accepting
more loads than the UB model, which indicates that
DETD was forcing into its optimal solution loads that
ultimately were not as profitable. Notice also that for
the biggest fleet size (1500 vehicles), the optimal so-
lution of the UB model accepted virtually all (99.5%)
of the materialized loads.

As far as the profitability of the accepted loads is
concerned, the DETD model consistently yielded the
lowest average revenue per accepted load, even when
it was accepting fewer loads. When the models SLAP
and DETD are compared, the difference in profitabil-
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TABLE I

Results Obtained by the 12-Day RHP for the Alternative Models
Fleet % Reven./ # % Miles/ Total Total
S Ml Peme o Lwk o led Ty By EwY e G
(th. $) ($) (mi.)s (th. $) (th. $)
100 DETAS 209.7 10.3 1875 13 0.5 214 624 415
DETD 201.6 14.6 1236 18 0.9 233 580 378
SLAP-1 214.2 12.9 1476 4 0.1 169 614 . 400
SLAP-2 214.5 12.8 1494 5 0.2 236 617 403
SLAP-3 215.7 12.8 1510 2 0.0 107 620 405
UB 249.7 13.3 1743 25 0.2 64 746 496
250 DETAS 486.4 28.0 1618 75 1.3 224 1461 975
DETD 465.1 32.6 1299 75 1.7 261 1367 902
SLAP-1 504.2 30.6 1497 32 0.5 185 1476 972
SLAP-2 505.0 30.3 1517 36 0.5 189 1482 977
SLAP-3 505.2 30.0 1537 34 0.5 194 1484 979
UB 545.0 31.7 1607 35 0.6 244 1644 1099
500 DETAS 813.9 52.6 1478 349 3.0 198 2505 1691
DETD 805.2 57.0 1329 255 3.5 289 2442 1603
SLAP-1 893.3 54.9 1522 169 1.6 228 2691 1798
SLAP-2 893.0 54.9 1522 170 1.6 225 2692 1789
SLAP-3 891.0 54.1 1546 183 1.8 245 2699 1808
UB 923.9 57.7 1526 157 1.6 253 2841 1917
750 DETAS 984.0 67.6 1421 667 4.6 198 3096 2112
DETD 1026.4 76.6 1277 424 4.1 263 3152 2126
SLAP-1 1140.6 74.7 1462 413 3.3 253 3522 2382
SLAP-2 1154.2 76.2 1453 429 3.3 251 3568 2414
SLAP-3 1133.9 74.7 1468 421 3.9 302 3537 2403
UB 1188.0 79.2 1455 355 2.6 244 3712 2524
1000 DETAS 1045.5 74.4 1405 1012 6.2 193 3367 2322
DETD 1128.7 85.9 1242 451 3.3 215 3439 2310
SLAP-1 1255.8 88.4 1398 669 5.1 283 3983 2727
SLAP-2 1268.2 89.4 1392 638 4.9 283 4012 2743
SLAP-3 1217.3 86.4 1408 741 6.2 305 3923 2706
UB 1332.6 95.7 1377 536 3.7 267 4246 2913
1500 DETAS 1087.9 82.0 1391 1681 9.2 194 3677 2590
DETD 1181.2 89.3 1229 282 1.7 187 3537 2355
SLAP-1 1203.8 90.4 1401 1104 9.3 334 4082 2878
SLAP-2 1254.6 92.6 1395 1008 8.0 317 4166 2911
SLAP-3 1132.0 87.6 1413 1294 11.5 352 3989 2857
UB 1394.8 99.5 1362 395 2.3 229 4367 2972

ity was very clear, ranging from 13% to 22%, and
generally dropping as the fleet size increases. When
models SLAP and DETAS are contrasted, for small
fleet sizes (up to 250 vehicles) the stochastic model
fell short of the deterministic model in terms of the
quality of the accepted loads. This is, nevertheless,
misleading since the DETAS model was accepting
much fewer loads and was in that sense able to be
more selective about their profitability. For medium
fleet sizes (500 and 750 vehicles), the stochastic model
maintained higher (up to 5%) revenue per accepted
load, although it was accepting slightly more loads
(2-8%). For bigger fleet sizes, the two models had
virtually equal revenue per accepted load, while the
stochastic model was accepting substantially more
loads (11-14%).

In terms of the empty repositioning moves, the
DETAS model generally created more than any other
model, while the number of empty moves recom-
mended by SLAP increased with the fleet size. Thus,
while the stochastic model created fewer empty moves
than DETD for fleet sizes of up to 500 vehicles, the
situation reversed dramatically after that fleet size. In
terms -.of the average distance of the empty moves,
model DETAS maintained an approximately steady
figure of about 200 miles, while model DETD in-
creased the distance from 230 miles (100 vehicles) to
290 miles (500 vehicles) and then decreased it to 190
miles (1500 vehicles). Meanwhile, the stochastic
model recommended empty moves with average dis-
tance that increased from 170 to 320 miles as the
fleet size increased. Nevertheless, for fleet sizes of
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TABLE II
Comparative Results of Profits Obtained by RHP and of Upper Bound
Best Best Best
Fleet f b) - (a)/(a) (d) — {a)/(a) (@) — (b)/(b) Upper (g) — (d)/(d)
N Stat D . Stoch.
Size Detl:zrl;l. DZ::‘:L % Motciel ° ° Bound %
(a) (b) (c) (d) (e) (§2) (g) (h)
100 209.7 201.6 -3.8 215.7 2.8 7.0 249.7 15.8
250 486.4 465.1 —4.4 505.2 3.9 8.6 545.0 7.9
500 813.9 805.2 -1.1 893.3 9.8 10.9 923.9 3.4
750 984.0 1026.4 43 1154.2 17.3 12.5 1188.0 2.9
1000 1045.5 1128.7 8.0 1268.2 21.3 12.4 1332.6 5.1
1500 1087.9 1181.2 8.6 1254.6 15.3 6.2 1394.8 11.2

I

500~1000 vehicles, the UB model recommended empty
movements of average distance that was closer to that
of the SLAP model’s empty movements, rather than
the other models. The combination of these two fac-
tors caused the substantial increase in percentage of
empty mileage recommended by the stochastic model
as the fleet size increased, with obvious effects in the
total costs of implementing those decisions.

The total profits obtained by the RHP procedure
for the alternative models are reproduced in Table II
in columns (a), (b) and (d). Columns (¢) and (e)
indicate the percent improvement in profits from us-
ing the DETD and SLAP model over using the DE-
TAS model. They range from —4.4% to 8.6% for the
DETD model and from 2.8% to 21.3% for the SLAP
model and they generally increase with the fleet size.
Column (f) presents the percent improvement from
using the SLAP model over using the DETD model,
ranging from 7.0% to 12.5% and (with the exception
of the 1500 vehicles) increases with the fleet size.

The fact that the gap in profits between the best
representatives of the three major approaches in-
creases generally with the fleet size, indicates that the
diminishing returns effect is stronger when the vehi-
cles are dispatched with deterministic models. Thus,
it is clear that a poor strategy of managing a fleet may
lead to false strategic planning decisions concerning
the optimum fleet size of a company.

In column (g) of the same table, the upper bound
in profits is presented. This bound is obtained by
solving optimally a 12-day network with the same
initial vehicle allocation, where all the loads that will
materialize all through that period are known in ad-
vance. In column (k) the gap between the SLAP model
and the upper bound is presented, as a percent of the
upper bound value. This gap ranged from 15.8% to
only 2.9%, and reaffirmed our belief that there would
be a mid-range “optimum” fleet size for the SLAP
model. This is inherent in the construction of the
SLAP algorithm, since big fleet sizes make the as-
sumption of a constant “average value” of a truck in
aregion at a time period less valid and forces into the
solution a higher number of empty moves (some of

which will turn out to be not so unprofitable in the
future).

Finally, average CPU times for solving the models
for one day of the rolling horizon were of the order of
31 sec for DETAS, 72 secs for DETD and 767 secs for
SLAP.

6. GENERAL CONCLUSIONS AND FUTURE
RESEARCH

WE BELIEVE that the experiments conducted showed
a clear superiority of the SLAP algorithm, as far as
the carrier’s total profits are concerned. Future re-
search should probably concentrate into this area and
especially in algorithms that would produce an accu-
rate representation of the stochastic vehicle supplies
of the regions at any time period.

Additionally, more strict upper bounds on the total
profits could be obtained that would not totally dis-
regard the presence of uncertainty, as the one used in
this paper was. This would indicate more clearly where
these models stand and how much room for their
improvement exists.

APPENDIX: CALCULATION OF THE DISPATCH
PROBABILITIES

THE DERIVATION of the dispatch probabilities d},, is
described in this Appendix. Under the demand reali-
zations ¢ (¢ ), the event that the kth vehicle is dis-
patched on the 1st option is equivalent to the event
that the demand for that option is more than or equal
to k (if that option is a loaded movement) or it is an
event with probability 1 (if that option is an empty
one). So:

i = Proble;; () = k]

if the first option is a loaded movement to region j, or
dy; = 1 if it is an empty movement.

Under the demand realizations ¢ (¢), the event that
the kth vehicle is dispatched on the nth option out of
region ¢ is equivalent to the joint event that cumula-
tively the first (best) n — 1 options take less than &
vehicles and the first n options take more than or
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equal to k vehicles. To state it mathematically, let:

g, = j, if the nth dispatch option out of region i at
time ¢ is to move to region j.
Then:
¢ (t) = Tt dig,, ()
and

tn = Prob[¢? () < k and ¢7(t) = k]
= Prob[¢?!(t) < k] + Prob[¢}(t) = k]
— Prob[¢?7'(t) < k or ¢7(t) = k]
= Prob[¢? ' (t) < k] + Prob[¢(t) = k] — 1
= Prob[¢?7'(t) < k] — Prob[¢? (t) < k]

We may assume that the actual number of loads
¢;; (t) follows a Poisson distribution with mean equal
to the historical frequency 5,»,» (t). Since the cumulative
variable ¢7 is the sum of variables following Poisson
distributions, it follows Poisson distribution as well
with mean equal to the sum of the individual variables’
means. We should note that the assumption of the
Poisson distribution is not necessary but greatly sim-
plifies the calculation of the dispatch probabilities and
can be justified theoretically.

The empty options, on the other hand, can accom-
modate an unbounded number of vehicles. Thus,
if the highest ranking empty option out of region i
has rank n. and if the kth vehicle is dispatched
on that option, then all the other vehicles with in-
dices I, V! = k, are dispatched on n. as well. So, for
k< Si(t),

fen, = Prob[¢? ' (t) < k and ¢7*(t) = K]
= Prob[¢ ' (¢t) < k] + Probl¢(¢) = k]
— Prob[¢; " (t) < k or ¢7(t) = k]
= Prob[¢p ' (t) < k] +1 -1
= Prob[¢;™" (¢t) < k]

and dj,, =0, Yn; > n,. Thus, the summation in (12)
actually runs up to n = n..

We would like to emphasize that no assumption has
been made to limit the number of vehicles dispatched
on the highest ranked empty option. Although such
an assumption seems very reasonable for practical
applications, it is inconsistent with our linear approx-
imation and was thus avoided.
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