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A sequential information collection problem, where a risk-averse decision maker updates a Bayesian belief about the unknown
objective function of a linear program, is used to investigate the informational value of measurements performed to refine
a robust optimization model. The information is collected in the form of a linear combination of the objective coefficients,
subject to random noise. We have the ability to choose the weights in the linear combination, creating a new, nonconvex
continuous-optimization problem, which we refer to as information blending. We develop two optimal blending strategies:
(1) an active learning method that maximizes uncertainty reduction and (2) an economic approach that maximizes an expected
improvement criterion. Semidefinite programming relaxations are used to create efficient convex approximations to the non-
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1. Introduction. Consider planning problems that can be reformulated as linear programs (LPs) in stan-
dard form:

maximize c>x subject to Ax = b1 x � 00 (1)

In practice, inaccuracies in the problem data (for example, in the objective coefficients c) may lead to decisions
x that may perform much worse than predicted. To hedge against such cases, a risk-averse decision maker may
apply the framework of robust optimization (Ben-Tal et al. [5]) to obtain more conservative decisions. Typically,
we would first infer an uncertainty set C for c with good geometric properties to retain tractability, and then
optimize the worst-case bilinear objective maxx∈X minc∈C c>x, where X = 8x ∈ �n2 Ax = b1x � 09 is assumed
to be bounded. The question then arises: How should C be chosen? Recent work (Bertsimas and Gupta [8]) has
considered the possibility that it may be based on exogenous data, such as a field experiment or a stochastic
simulation. In other words, the uncertainty set and the robust decision may be based on noisy information.

Suppose now that such information can be progressively acquired over multiple time periods. Each new piece
of information has the potential to change C, and with it the worst-case decision over C. Furthermore, if we
have some degree of control over the collection of new information, and a limited number of opportunities
to collect it, this gives rise to a new optimization problem. We now have to collect information to guide the
evolution of C in a way that will optimize the quality (in the statistical or economic sense) of the eventual
robust decision x ∈X.

We adopt a Bayesian perspective, in which any unknown quantity is modeled a random variable. To emphasize
this interpretation, we use the notation ctrue to represent the unknown “true” values of c. The statement that ctrue

follows a multivariate Gaussian distribution with mean c̄ and covariance matrix è, written

ctrue
∼N4c̄1è51 (2)

represents our subjective assessment of what might be a reasonable range of values for the problem parameters.
The prior parameters c̄ and è represent our beliefs about ctrue, and may be based on data or domain knowledge,
but the model in (2) includes uncertainty and allows for the possibility that our beliefs may be inaccurate (we
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further discuss the role of the normality assumption below). Then, a natural choice for the uncertainty set C is a
confidence ellipsoid constructed from (2), and consequently, the worst-case maximization may be reformulated
as the second-order cone program (SOCP) (Alizadeh and Goldfarb [2]),

v�4c̄1è5= max
x∈X

{

c̄>x−�
√

x>èx
}

1 (3)

for some �> 0; see, for instance, Ben-Tal et al. [5, Example 1.3.3] on ellipsoidal uncertainty.
Every time we obtain new information, we modify our beliefs, which changes the distribution in (2) and the

risk-averse decision in (3). We assume that new information on ctrue is obtained in the form

y = u>ctrue
+w1 (4)

where u ∈�n is a measurement vector chosen in the ball �= 8u ∈�n2 �u�2 ≤ 19, whereas w ∼N401�2
w5 is an

independent Gaussian noise with zero mean and known variance �2
w > 0. Whereas the noise w is exogenous,

the measurement vector u is chosen by the decision maker. Under normality assumptions on ctrue and w, the
posterior distribution of ctrue, given a choice of u and the resulting observation y, is again multivariate normal
with parameters

c̄′
= c̄+

èu

u>èu+�2
w

4y− c̄>u51 (5)

è′
=è−

èuu>è

u>èu+�2
w

1 (6)

and the optimal value v�4c̄1è5 in (3) is updated to v�4c̄
′1è′5. This structure, where the unknown coefficients

are “blended” into a single scalar observation, is further motivated in §2.1; for now, we briefly note that it arises
in applications of linear regression, where we have the ability to choose the feature vector of a new data point.

The closed-form update given in (5)–(6) allows us to consider problems where multiple observations can be
collected in a sequence. Given an initial prior ctrue ∼ N4c̄01è05 with user-specified 4c̄01è05, and a sequence
8uk2 k ≥ 09 of measurement vectors, we can recursively apply (5)–(6) to obtain c̄k+1, èk+1 from c̄k, èk, uk,
and yk+1 = u>

k c
true + wk+1, where the noise terms 8wk+19 are independent and identically distributed (i.i.d). A

standard result from Bayesian analysis (Minka [38]) holds that, under normality assumptions, the pair 4c̄k1èk5
is a sufficient statistic (in the sense of Bickel and Doksum [11]) for the entire history u01 y11 : : : 1 uk−11 yk of the
learning process up to time k. Furthermore, the conditional distribution of ctrue given the history up to time k is
N4c̄k1èk5. Thus, normality enables us to concisely characterize the decision maker’s evolving beliefs after each
blended observation.

In applications where the information yk+1 is nonnormal, the simulation literature suggests using the method
of batch means (Kim and Nelson [35]), where multiple observations are collected for a single uk and averaged to
obtain an approximately normal output yk+1. Additionally, Gelman et al. [25] observes that a normal distribution
may be a good approximation for unimodal distributions, as long as the mean is not too close to the boundary
of the parameter space. Finally, (5)–(6) are equivalent to the update used in recursive least squares, where the
estimator is known to be asymptotically normal. We work with the normality assumption throughout this paper.

The primary technical focus of this paper is on developing strategies for choosing the measurement sequence
8uk9 to efficiently guide the evolution of the uncertainty set, in a way that improves the solution to (3). A
policy �, defined on the direct product of �n and the cone �n

+
of symmetric positive semidefinite matrices

of size n × n, determines the kth measurement vector uk = �4c̄k1èk5 dynamically based on the most current
information (by convention, quantities are indexed by k if they are known, or can be exactly computed, after k
measurements). Because 4c̄k1èk5 is a sufficient statistic for u01 y11 : : : 1 uk−11 yk, it is enough to only consider c̄k
and èk when computing uk, because the sigma-algebra generated by 4c̄k1èk5 is the same as the sigma-algebra
generated by 4c̄01è01 u01 y11 : : : 1 uk−11 yk5. The theoretical optimal policy �∗ is obtained by solving

sup
�∈ç

Ɛ� v�4c̄K1èK51 (7)

where K is a fixed information budget (number of measurements), and where the supremum is taken over an
appropriate class ç of measurement policies over K stages. By restricting ç to the class of functions mapping
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4c̄k1èk5 to uk ∈ �, we are optimizing over the set of all nonrandomized Markov policies defined in Bertsekas
and Shreve [7].

Problem (7) is an example of offline learning, where a finite period of exploration is followed by a single
implementation decision at time K. It is important to note that, in (7), the decision maker is risk-averse with
respect to the implementation decision (represented by v�), but risk neutral with respect to the outcomes of the
measurements (represented by Ɛ�). The work by Ryzhov et al. [55] provides additional theoretical justification
for this model; essentially, risk aversion with respect to measurements leads to overly conservative policies that
do not learn enough about the problem. Furthermore, in many applications, the cost of a poor measurement
(obtained, e.g., from a computer simulation) is much less than the cost of a poor implementation in the field.

The state space for (7), corresponding to the set of all possible 4c̄1è5, is continuous and high dimensional,
even for small n. This makes the optimal policy computationally intractable and motivates the development of
policies that are suboptimal for (7), but may be optimal with respect to other relevant and more tractable criteria.
In this paper, we study two such policies. First, we analytically derive a policy that optimizes the uncertainty
reduction in our beliefs about ctrue. We show that this policy chooses u to be a dominant eigenvector of the
posterior covariance matrix of c at each time step. Second, we develop a policy that trades uncertainty reduction
against the performance of the robust solution in (3) by measuring the vector uk that optimizes the expected
improvement (Jones et al. [33]) criterion

��4u1 c̄k1èk5 = Ɛ
{

v�4c̄k+11èk+15
∣

∣u1 c̄k1èk

}

− v�4c̄k1èk51 (8)

uk ∈ arg max
u∈�

��4u1 c̄k1èk50 (9)

The expectation in (8) is taken over the conditional distribution of yk+1 given the information available at
time k, meaning that ctrue ∼ N4c̄k1èk5. Thus the problem (9) anticipates (in expectation) the effect of the
next measurement uk on the solution to v�4c̄k+11èk+15. This policy is optimal for (7) if K = 1, and we also
demonstrate that, as K → �, the same policy is guaranteed to obtain perfect information about each feasible
solution x ∈X. We assume that the decision maker is able to identify a nonempty compact subset of X, where
the optimal solutions x for the possible ctrue’s may lie; therefore, without loss of generality, this work assumes
X is a nonempty compact set wherever the assumption is convenient.

Equation (9) defines a nonconvex optimization problem, which is known to present computational difficul-
ties when the measurement space � is continuous. We address this issue by developing new, computationally
tractable convex relaxations that reformulate (9) as a semidefinite program. The stochastic dynamic programming
(SDP) can be applied even though (8) is not expressible in closed form. We then present numerical examples
demonstrating that this SDP relaxation has the potential to perform well under small information budgets K.

This paper makes the following contributions: (1) We provide a rigorous treatment of information collection
in risk-averse problems, which is novel from three perspectives. First, offline learning traditionally considers
risk-neutral rather than risk-averse implementation decisions; second, the literature has considered (Ryzhov and
Powell [54], Bubeck et al. [12]) learning in linear models, but not the technical challenge of learning in an SOCP;
third, robust optimization typically does not allow the decision maker to adjust the uncertainty set over time.
(2) We develop computationally tractable learning policies based on two criteria. The first policy is proved to
optimally reduce the uncertainty of our beliefs, whereas the second policy (based on the expected improvement
criterion) is proved to asymptotically obtain perfect information about every feasible solution to the SOCP.
(3) We provide a novel convex approximation of expected improvement, based on optimal quantization and SDP
relaxation, that can be applied when the criterion itself is not expressible in closed form. Whereas the tightness
of SDP relaxations, in general, is an open problem, we present one special case where it can be demonstrated.
(4) We incorporate the dimension of learning in linear regression (relevant in numerous applications) into the
learning model and proposed algorithms.

The paper is organized as follows. Section 2 discusses related work. Section 3 derives the robust objec-
tive (3) from the definition of uncertainty sets for c. Section 4 establishes properties of optimal solutions for
the measurement selection problem (9). Section 5 studies the measurement policy that maximizes the rate of
uncertainty reduction. Section 6 presents the main results of the paper on the optimization of (9). Section 7
discusses the asymptotic convergence of the expected improvement policy. Section 8 presents numerical work,
and §9 concludes.

2. Context and related work. This section provides additional context for our study. First, in §2.1, we
discuss applications that motivate our key modeling choices. Second, in §2.2, we discuss related theoretical and
methodological work from optimal learning.
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2.1. Motivating applications. Our model has three important distinguishing features: (1) an offline objec-
tive, where the information collection process is separated from the final implementation decision at time K;
(2) a risk-averse implementation decision, expressed as the solution to a SOCP; (3) blended observations, where
information takes the form of a linear combination of the unknown parameters, rather than a noisy observation
of an individual parameter. We now discuss two classes of applications where these features may be needed to
address key problem characteristics.

First, the model of a LP with random coefficients can be applied to characterize the optimal policy solving a
finite-state Markov decision process (MDP) (Puterman [46]), where randomness in c corresponds to the situation
of a one-period reward function that is not perfectly known. Recent work that has specifically considered
MDPs with known transition probabilities, but unknown reward functions, includes (McMahan [37]), Xu and
Mannor [61], Regan and Boutilier [47]. Specific applications include problems in artificial intelligence McMahan
et al. [37], where the state is the position of a robotic agent, and the reward is based on the agent’s environment
(e.g., searching for an object or detecting a source of radiation).

Second, our model is applicable to problems involving learning in linear regression. For exam-
ple, Negoescu et al. [39] considers a problem in drug discovery in which there is a large number of possible
configurations for a molecule, but the value of a configuration can be modeled a linear combination of the
values at individual sites. A single laboratory experiment produces a scalar outcome for a chosen configuration,
which is then used to update our beliefs about the regression features using (5)–(6). A second example is the
recent work by Bertsimas et al. [10], which proposes a linear regression model for the effectiveness of a cancer
treatment using features such as the dosages of various component drugs. Robust optimization can be used to
create a treatment with a good worst-case outcome subject to linear constraints on the dosage levels.

Such applications exhibit a feedback loop between statistics and optimization: first, we learn the coefficients
of a regression model, and then optimize the regression features to be used in practice, based on the estimated
coefficients. Our model, studied in this paper, provides a way to integrate these two stages. In practice, data
from previous experiments (such as clinical trials) can be used to guide the design of new experiments, which,
in turn, will change our beliefs about the regression coefficients. We can now use (5)–(6) to update our beliefs
after every new observation, and we can also use (8)–(9) to guide the design of the next clinical trial. Thus,
our work has the potential to contribute to applications of analytics, where incoming data are used to guide
high-impact decisions with significant penalties for worst-case outcomes.

2.2. Literature review. The present paper builds on work in robust optimization (Ben-Tal et al. [5], Bertsimas
and Sim [9]), which has extensively studied LPs with uncertainty (Ben-Tal et al. [6]) as well as MDPs (Nilim
and Ghaoui [41], Iyengar [32], Regan and Boutilier [48]). See also Ruszczyński [52] for recent work connecting
the robust solution and the uncertainty set to a risk measure chosen by the decision maker. Particularly relevant
to the present paper is Delage and Mannor [19], which derived an expression of the form (3) applied specifically
to MDPs. However, the notion that sequential information collection may change the uncertainty set over time,
thus also changing the robust solution, has received much less attention. To give an example, Equation (8) for
measurement selection in robust MDPs was previously stated in Delage and Mannor [18] for u ∈ 8e11 : : : 1 en9;
however, the computational approach in this study was based on an approximation that did not take into account
the change of the optimal solution from arg maxx v�4c̄1è5 to arg maxx v�4c̄

′1è′5. See Appendix A for a more
detailed discussion of this approach.

Also relevant is the literature on statistical learning and sequential information collection, usually known in
different communities by the name of a particular problem. Examples include ranking and selection in simulation
(Kim and Nelson [34]), multiarmed bandits in applied probability (Gittins et al. [27]) and computer science (Auer
et al. [3]), and global optimization (Jones et al. [33]). This paper is closest to the simulation perspective (see
Chick [14] or Powell and Ryzhov [45] for a survey of Bayesian methods in simulation), in which the information
collection process (“ranking”) is usually separated from the final implementation decision (“selection”). This
literature typically considers the problem of learning the largest value in a finite set; by contrast, our model
is closer to Ryzhov and Powell [53, 54], where ranking and selection is generalized to include mathematical
programs with unknown parameters.

The multiarmed bandit literature has also considered similar problems from the point of view of online
learning, where the objective is to maximize a cumulative reward earned across all experiments, rather than
the value of a single final implementation. Recent work in this area has considered problem variants that allow
information blending (Russo and Van Roy [51], Dani et al. [17]), as well as risk-averse performance measures
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(Bubeck et al. [12]). However, the offline setting considered in this paper has substantial structural differences
from the bandit setting: for example, an index policy is optimal for an online problem (Gittins et al. [27]),
but not an offline problem. Furthermore, although we model information as a linear function of u, the problem
that we are learning about is no longer linear, but rather is a SOCP obtained by transforming the robust
optimization problem. In the language of this community, our problem can be described as “offline SOCP with
linear feedback.”

We first study a policy that optimizes the reduction achieved by each measurement. This approach is along
the lines of active learning in statistics (Cohn et al. [16]), where the objective is to minimize uncertainty, with
no regard for the economic value of a set of estimates. The second policy proposed in our paper is based on the
expected improvement criterion, previously developed by Jones et al. [33] for global optimization and Gupta and
Miescke [31] for ranking and selection. This approach provides an economic valuation of information in terms
of the average improvement contributed by a single measurement to the optimal value of (3). This computation
balances the expected value of the current solution to (3) against the decision maker’s uncertainty about that
solution (and therefore the potential to improve it).

In the simulation literature, the decision maker is almost always assumed to be risk neutral (Chick and
Gans [15]), and the expected improvement criterion is defined in terms of the risk-neutral problem, given by (3)
with �= 0. Recently, however, there has been some interest in integrating concepts of risk aversion and robust
optimization into simulation optimization (Waeber et al. [60], Dellino et al. [20]). To our knowledge, the work
by Ryzhov et al. [55] is the first to formally link ranking and selection with robust optimization, using a model
that is risk-neutral with respect to information, but risk averse with respect to implementation. The present
paper also adopts this approach, and the formulation in (3) covers risk neutral (� = 0) and risk averse (�> 0)
implementation decisions.

3. Robust optimization criterion. In statistics, confidence intervals can describe uncertain scalar param-
eters. The intervals are often mean centered, although nonsymmetric choices are possible. The width of the
interval is chosen to achieve a given confidence level 1 − �. For c ∼ N4c̄1è5 with è positive definite (è � 0),
we consider for some �> 0 the confidence ellipsoid

C=
{

c ∈�n2 4c− c̄5>è−14c− c̄5≤ �2
}

0 (10)

Choosing �2 = F −1
�2
n
41 − �5, where F −1

�2
n
4 · 5 is the inverse cumulative distribution function (cdf) of the chi-square

distribution with n degrees of freedom, ensures that c ∈C with probability 1 − �.
By selecting C as the uncertainty set for c, tractable robust optimization programs can be obtained. Some

proofs, here and throughout the paper, are omitted for space considerations, but can be found in Appendix B.

Lemma 1. With X = 8x ∈ �n2 Ax = b1x � 09 and C given by (10), the problem maxx∈X minc̃∈C c̃>x is
equivalent to maxx∈X8c̄

>x−�
√
x>èx9.

If è is only positive semidefinite (è� 0 but è 6� 0), we consider the confidence ellipsoid

C̃=
{

c =Q0Q
>
0 c̄+Q+c+ ∈�n2 c+ ∈C+

}

C+ =
{

c+ ∈�p2 4c+ −Q>
+
c̄5>è−1

+
4c+ −Q>

+
c̄5≤ �2

}

1
(11)

where Q+ ∈�n×p and Q0 ∈�n×4n−p5 come from the singular value decomposition (svd)

è=QSQ>
= 6Q+ Q07

[

è+ 0
0 0

]

6Q+ Q07
>1 (12)

è+ being the diagonal matrix containing the p positive singular values of è.

Lemma 2. With X = 8x ∈ �n2 Ax = b1x � 09 and C̃ given by (11), the problem maxx∈X minc∈C̃ c>x is
equivalent to maxx∈X8c̄

>x−�
√
x>èx9.

Recall that we have adopted a Bayesian approach to the estimation of ctrue. We assume that the belief
about ctrue, expressed by ctrue ∼ N4x̄1è5, is correct. It follows that for any x ∈ X, the belief on the quantity
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x>ctrue is expressed by x>ctrue ∼N4x>c̄1 x>èx5. In particular, for a solution x̄ to maxx∈X8c̄
>x−�

√
x>èx9, the

belief on the quantity x̄>ctrue is expressed by x̄>ctrue ∼N4x̄>c̄1 x̄>èx̄5. Now, by definition of v�4c̄1è5, we have
v�4c̄1è5= x̄>c̄−�

√
x̄>èx̄, whence

�8x̄>ctrue
≥ v�4c̄1è59 = �

{

x̄>ctrue
≥ x̄>c̄−�

√

x̄>èx̄
}

= �

{

x̄>ctrue − x̄>c̄
√
x̄>èx̄

≥ −�

}

=ê4�51

where ê is the cdf of N40115. Thus, if we want to ensure with confidence 1 − � that x̄>ctrue ≥ v�4c̄1è5, we can
choose �=ê−141 − �5, which is less conservative than the choice �2 = F −1

�2
n
41 − �5.

Finally, let us mention that (3) can be solved as a quadratic program with quadratic constraints (QCQP).

Lemma 3. If è� 0, a dual formulation to (3) is

v�4c̄1è5= min
c1 z

b>z subject to c ∈C1 A>z� c1

using C given by (10). Otherwise, using C̃ given by (11),

v�4c̄1è5= min
c+1 z

b>z subject to c+ ∈C+1 A>z�Q0Q
>

0 c̄+Q+c+0

Proof. A dual problem to maxx∈X c̄>x−�
√
x>èx or equivalently maxx∈X minc∈C c>x is minc∈C maxx∈X c>x,

relying on the fact that X and C are nonempty compact convex sets. The dual to maxx∈X c>x is minz∈Z b>z for
Z= 8�m2 A>z� c9, hence the overall problem. The version with C̃ can be established similarly. �

4. Structural properties for optimal measurements. Convex functions have their supremum on the bound-
ary of their effective domain (Rockafellar [49]). A similar result holds for the nonconvex function ��4 · 1 c̄1è5.
Any proofs omitted from this section can be found in Appendix B.

Theorem 1. Let U be an arbitrary nonempty closed-convex bounded set. Let ¡U denote the boundary of U.
We have

max
u∈U

��4u1 c̄1è5= max
u∈¡U

��4u1 c̄1è50

If we now restrict ourselves to the case where U is the L2 ball �, Theorem 1 indicates that we should seek
solutions u on the L2 sphere ¡�= 8u ∈�n2 �u� = 19.

It will be convenient to rewrite the objective (8) as

��4u1 c̄1è5 = Ɛt

{

v�4c̄+ tèdu1è
′5 � u1 c̄1è

}

− v�4c̄1è51 (13)

where t ∼N40115 and where we have introduced the vector

du =
u

√

u>èu+�2
w

0 (14)

In the special case �u� = 1, we have u>èu+�2
w = u>4è+�2

wIn5u, where In denotes the identity matrix in �n×n.
This leads us to define

P =è+�2
wIn0 (15)

The matrix P is positive definite and thus invertible.
In the risk-neutral case 4�= 05, we can go further in the characterization of optimal solutions.

Theorem 2. Assume the risk-neutral case (�= 0). Then, either any u ∈� is optimal for maxu∈��04u1 c̄1è5,
or the solutions u∗ optimal for maxu∈��04u1 c̄1è5 satisfy

u∗
∈

{

±
P−1èƐ8tx̄4t59

�P−1èƐ8tx̄4t59�

}

1 x̄4t5 ∈ arg max
x∈X

(

c̄+
t èu∗

�P 1/2u∗�

)>

x1

where the expectation is taken over t ∼N40115, and where without loss of generality, the vector-valued function
x̄4 · 5 is piecewise constant on � with a finite number of pieces.
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Corollary 1 (Norm-Maximization Reformulation). In the risk-neutral case (�= 0), we have

max
u∈�

�04u1 c̄1è5= max
x4 · 52 x4t5∈X

{

Ɛt8c̄
>x4t59+ �P−1/2èƐt8tx4t59�

}

− v04c̄1è51 (16)

where u is recovered from an optimal x∗4 · 5 by u∗ = P−1èƐt8tx
∗4t59/�P−1èƐt8tx

∗4t59�.

Theorem 2 and its corollary concern the case � = 0 only. They will not be used in the rest of the paper.
However, the structure of the problem (16) makes it easier to establish a complexity result.

Proposition 1 (NP-Completeness). The decision problem associated with (8) with a discretized expecta-
tion is NP-complete.

Proof. For establishing a complexity result, without loss of generality, we can set �= 0, c̄ = 0, è= In, and
consider maxu∈��04u101 In5. From (16), we obtain maxx4 · 52 x4t5∈X41 +�2

w5
−1/2�Ɛ8tx4t59�, which is equivalent to

maxz∈Z �z� with Z= 8z ∈�n2 z= Ɛ8tx4t591 x4t5 ∈X9. By discretizing the random variable t into N samples ti,
we obtain a set ZN in �n, which is the projection of a polyhedral set in �n4N+15, where each x4ti5 can be assumed
to be a vertex of X. In that case, ZN is polyhedral. The decision problem associated to the maximization of the
L2 norm of a vector over a polyhedral set is known to be NP-complete (Mangasarian and Shiau [36]). �

Proposition 1 indicates that we should not expect to develop exact solution algorithms for our problem. Rather
it emphasizes the need for good approximations.

5. Optimal uncertainty reduction. Consider the sequential measurement setting, where measurements are
taken iteratively. For a given sequence 8uk2 k ≥ 09 of measurements, let è0 = è ∈ �n

+
be the initial covariance

matrix, and consider the matrix sequence 8èk2 k ≥ 09 defined from (6) by

èk+1 =èk −èkuku
>

k èk/4u
>

k èkuk +�2
w50

Independently of the objective (9) based on the expected value of information from the next measurement, a
direct approach for reducing the uncertainty is to acquire information on ctrue by making measurements uk such
that èk provably tends to the zero matrix. By the degeneracy of the posterior distribution of ctrue

k ∼ N4c̄k1èk5,
Doob’s consistency theorem (Doob [23]) implies that the sequence of updated means c̄k tends to ctrue in L2.

This section studies such a method, and shows that it achieves a rate of convergence, which is optimal in a
certain sense. Namely, we consider uk taken as a dominant eigenvector of èk:

uk ∈Emax4èk51 (17)

using the following notations defined for any symmetric matrix S ∈�n×n:
• �max4S5= max8� ∈�2 Su= �u1u>u= 19: largest eigenvalue of S;
• Emax4S5= 8u ∈�n2 Su= �max4S5u1u

>u= 19: the set of normalized eigenvectors in the eigenspace associ-
ated to �max4S5, excluding the zero vector.

For any � > 0, we can ensure that trace èk < � after a certain number of measurements, made precise by the
following lemma.

Lemma 4. Let �11 : : : 1 �n be the eigenvalues of è0, with repetition according to eigenvalue multiplicity. Fix
� > 0. Then, the matrix sequence 8èk2 k ≥ 09 associated with uk given by (17) satisfies traceèk < � for any
k > k0 =

∑n
i=1 log4n/�5/log41/si5, where si = 61 −�i/4�i +�2

w57 for i = 11 : : : 1 n.

Proof. By the eigenvalue decomposition of èk ∈ �n
+

, we have èk =
∑n

i=1 �ikuiku
>
ik, where �1k ≥ �2k ≥

· · · ≥ �nk ≥ 0, and where u>
ikujk = 1 if i = j , u>

ikujk = 0 if i 6= j . Taking uk = u1k in the update equation gives
èk+1 =èk − 4�2

1ku1ku
>
1k/4�1k +�2

w55= �1k41−�1k/4�1k +�2
w55u1ku

>
1k +

∑n
i=2�ikuiku

>
ik. Therefore, iterations leave

the original eigenvectors unchanged.
If the noise variance �2

w = 0, the covariance would become the zero matrix after at most n iterations (exactly
n iterations if the matrix is full rank). With �2

w > 0, we evaluate the number of iterations needed to have
trace4èk5 < � as follows. For each i, let si = 1 − �i0/4�i0 + �2

w5. Define ki = inf8k ∈ �2 ski < �/n9, that is,
ki = �log4�/n5/ log4si5�. Since each iteration shrinks the current largest eigenvalue, we are guaranteed to have
�ik < �/n for each i after k0 =

∑n
i=1 ki iterations. This implies traceèk =

∑n
i=1 �ik < �. �
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Corollary 2. The matrix sequence 8èk2 k ≥ 09 associated to uk ∈ Emax4èk5 converges to the zero matrix
(in the metric space of the Frobenius norm).

Proof. �èk�F = 4
∑n

i=1

∑n
j=1 è

2
k1 ij5

1/2 = 4
∑n

i=1 �
2
ik5

1/2 ≤
∑n

i=1 ��ik� =
∑n

i=1 �ik = trace4èk5, so trace4èk5 < �
implies �èk�F < �. �

Taking new measurements at iterations k + 11 k + 21 : : : 1 can never increase the uncertainty, in the sense
that trace4èl5 ≤ trace4èk5 for l > k. This will hold true for any measurement policy, say, �, that maps an
information state 4c̄k1èk5 to some measurement uk. Now, suppose � has some interesting properties, but is
not asymptotically consistent. By alternating measurements selected by � and measurements selected by the
trace-minimization policy, one can synthetize a new policy, which is asymptotically consistent. This observation
is summarized in the following corollary.

Corollary 3. Let �2 �n ×�n
+

7→�n denote a measurement policy with values uk =�4c̄k1èk5, where k is
the iteration counter. Let � be an integer greater or equal to 2. Let ��2 �n×�n

+
×� 7→�n be a new measurement

policy defined by ��4c̄k1èk1 k5=�4c̄k1èk5 if mod4k1�5 6= �−1, ��4c̄k1èk1 k5 ∈Emax4èk5 if mod4k1�5= �−1.
Then, the policy �� is asymptotically consistent in the sense that traceèk < � for any k > �k0, where k0 is given
by Lemma 4.

Proof. The result follows from the definition of ��. �
The following result shows that the rate of convergence cannot be improved.

Theorem 3. All the measurement sequences defined by uk ∈ Emax4èk5 achieve the optimal rate of conver-
gence of 8trace4èk52 k ≥ 09 to 0, among the sequences such that �uk� ≤ 1.

Proof. The rate of convergence is maximized if we minimize the trace of èk+1 given èk. To see why this
is true, consider a sequence of M measurements uk1 : : : 1 uk+M−1. Observe that èk+M given èk is invariant under
permutations of the measurements. This can be seen from the M rank-one updates of the precision matrix:
6èk+M 7

−1 = 6èk7
−1 +

∑M−1
l=0 ulu

>
l /�

2
w. Therefore, we don’t have to consider postponing a measurement that brings

the largest trace reduction, when we jointly optimize over the sequence of measurements.
Writing è′ for èk+1 and è for èk, we consider

min
u2�u�=1

trace
(

è−
èuu>è

u>èu+�2
w

)

= trace4è5− max
u2�u�=1

u>èèu

u>Pu
0

The solution to the maximization problem in the second term is obtained by considering the generalized eigen-
value problem è2u= �Pu and taking the vector u associated to the dominant generalized eigenvalue �. Since P is
nonsingular, the generalized eigenvalue problem is equivalent to the standard eigenvalue problem P−1è2u= �u.
Therefore, the sequence defined by uk ∈Emax44èk + In�

2
w5

−1è2
k5 maximizes the rate of convergence of trace4èk5

to 0.
We will now prove that Emax4P

−1è25= Emax4è5, allowing us to conclude that uk ∈ Emax4èk5 is also optimal.
To do that, we use the eigenvalue decomposition è=QDQ>, where D is diagonal with elements Dii = �i such
that �1 ≥ �2 ≥ · · · ≥ �n ≥ 0, and Q = 6q1: : : qn7 is the matrix of eigenvectors such that Q>Q = In = QQ>. By
the Rayleigh quotient representation, uk ∈Emax4P

−1è25 iff uk ∈ arg maxu2�u�=1 u
>P−1è2u. Now, we have

arg max
u2�u�=1

u>4è+ In�
2
w5

−1è2u

= arg max
u2�u�=1

u>4Q4D+ In�
2
w5Q

>5−1QD2Q>u= arg max
u2�u�=1

u>Q4D+ In�
2
w5

−1D2Q>u

= arg max
�2 ���=1

�>4D+ In�
2
w5

−1D2� = arg max
�2���=1

n
∑

i=1

�2
i �

2
i

�i +�2
w

= arg max
�2���=1

n
∑

i=1

�i�
2
i 1

where we have used the change of variable � =Q>u and defined �i = �2
i /4�i +�2

w5. We have �i = �j iff �i = �j .
The ordering of the �i’s implies �1 ≥ �2 ≥ · · · ≥ �n ≥ 0. If �1 > �2, the optimal solution �∗ is the unit vector e1,
so u∗ = Q�∗ = Qe1 = q1. If �1 = · · · = �k > �k+1, we have �∗ ∈ 8

∑k
i=1 wkek2

∑k
i=1 wi = 11wi ≥ 09, and thus

u∗ ∈ 8
∑k

i=1 wkqk2
∑k

i=1 wi = 11wi ≥ 09, showing that the principal eigenspaces of è and P−1è2 coincide. �
Note that the condition èk → 0 is sufficient but not necessary for the convergence of xk to a maximizer of the

true problem (1). To see that, imagine that some coefficient cj plays no role in the optimization problem, because
of a constraint xj = 0. Say that cj is statistically independent of the other coefficients, and has a prior with an
arbitrarily large variance. A sequential measurement algorithm defined by (17) will dedicate many measurements
to the reduction of uncertainty on cj . However, with � = 0, we should never measure cj since updates of c̄j
never improve the objective.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

11
2.

66
.6

6]
 o

n 
09

 N
ov

em
be

r 
20

15
, a

t 0
5:

29
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Defourny et al.: Optimal Information Blending with Measurements in the L2 Sphere
1068 Mathematics of Operations Research 40(4), pp. 1060–1088, © 2015 INFORMS

6. Optimal expected improvement. We now come back to the problem of solving (9) as a stochastic
program. A prerequisite is the construction of a finite approximation to the expectation in (8). To do that,
consider

• �4t5= 42�5−1/2 exp8−t2/29: pdf of N40115;
• ê4t5=

∫ t

−�
�4t′5dt′: cdf of N40115;

• a sequence −� =2 t0 < t1 < t2 < · · ·< tN < tN+1 2= +�;
∫ 4ti+ti+15/2

4ti−1+ti5/2
4t − ti5�4t5dt = 01 1 ≤ i ≤N0 (18)

The relation (18) expresses a stationary property satisfied by the optimal solution to the quantization problem
(Graf and Luschgy [28]),

DN = inf
q∈QN

Ɛ8�t − q4t5�291 t ∼N401151

where QN denotes the class of measurable functions q2 � 7→ � with at most N values t11 : : : 1 tN . Because
N40115 is one dimensional and strongly unimodal, the points ti are uniquely determined by (18) (Graf and
Luschgy [28, Theorem I.5.1]). The points can be computed by methods described in Pages and Printems [42].

• 8pi91≤i≤N with pi = ê44ti + ti+15/25 − ê44ti−1 + ti5/25. For a function f that is Lipschitz continuous
modulus L,

∣

∣

∣

∣

Ɛ8f 4t59−

N
∑

i=1

pif 4ti5

∣

∣

∣

∣

≤ LƐ8�t − q4t5�90

For a convex function f , we have (Pages and Printems [42]),

N
∑

i=1

pif 4ti5≤ Ɛ8f 4t590 (19)

Using the optimal N -quantization of N40115, we then define

�̂N
� 4u1 c̄1è5=

N
∑

i=1

piv�4c̄+ tièdu1è
′5− v�4c̄1è50 (20)

The following result relates this approximation to the exact expected improvement.

Lemma 5. For all N , �̂N
� 4u1 c̄1è5≤��4u1 c̄1è5.

Proof. For each fixed 4x1è5, the function c̄>x − �
√
x>èx is linear in c̄ and thus convex in c̄. The max-

imum over an infinite family of convex functions indexed by x is convex, thus v�4c̄1è5 is convex in c̄. Since
composition with linear functions preserves convexity, v�4c̄ + tèdu1è

′5 is convex in t. The inequality of the
lemma follows from (19). �

Finally, noting that to each v�4c̄ + tièdu1è
′5, i = 11 : : : 1N , is associated a program with decision vec-

tor xi ∈�n, and using the update formula for the inverse covariance matrix 6è′7−1 = è−1 + uu>/�2
w, we

expand (20) as

�̂N
� 4u1 c̄1è5= max

x1∈X1 : : : 1xN ∈X

{ N
∑

i=1

pi

[

4c̄+ tièdu5
>xi −�

√

x>

i 4è
−1

+ uu>/�2
w5

−1xi
]

− v�4c̄1è5

}

0 (21)

In maxu �̂
N
� 4u1 c̄1è5, the term −v�4c̄1è5 is constant with u, so one can omit it.

6.1. The case N = 1. We first study the maximization of �̂N
� 4 · 1 c̄1è5 with N = 1, where N40115 is reduced

to a single mass point. In that case, t1 = 0 and p1 = 1 in (21), and we obtain the problem

max
u2�u�≤11 x2Ax=b1x�0

{

c̄>x−�
√

x>4è−1
+ uu>/�2

w5
−1x

}

0 (22)

To get some insights on the nature of (22), suppose momentarily that we are given an optimal solution x for (22),
say, x̄. Then, a corresponding optimal u is given by

ū ∈ arg max
u2�u�=1

{

c̄>x̄−�

√

x̄>

(

è−
èuu>è

u>èu+�2
w

)

x̄

}

= arg max
u2�u�=1

u>èx̄x̄>èu

u>èu+�2
w

0
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This is formally equivalent to the problem solved for establishing Proposition 10 and presented in Appendix A.2,
so we immediately obtain ū = P−1èx̄/�P−1èx̄�. The maximization of �̂N

� 4 · 1 c̄1è5 with N = 1 is thus closely
related to the fixed-decision approximation used in Appendix A2, except that the reference solution x = x̄ is
now optimal for the problem with the current c̄ and the updated covariance matrix è′, which depends on u.

Proposition 2. With � > 0, the problem (22) is equivalent to the following program over x ∈ �n, s ∈ �,
and the symmetric matrix W ∈�n×n:

maximize c̄>x−�s

subject to Ax = b1 x � 01
[

s x>

x sè−1 +W

]

� 01 trace4W5= s/�2
w1 rank4W5= 11

where u corresponds to a normalized dominant eigenvector of W provided èx 6= 0.

Proof. The constraint rank4W5 = 1 implies that W = �uu> for some � ∈ �, with u corresponding to the
unique normalized eigenvector of W . Since trace4W5= �, the condition trace4W5= s/�2

w implies �= s/�2
w and

thus W = suu>/�2
w. By substitution into the SDP constraint, we have

[

s x>

x s4è−1 + uu>/�2
w5

]

� 00

By the Schur complement formula, this constraint means that either s = 0 (and thus x = 0), or s > 0 and
s− x>4s6è−1 +uu>/�2

w75
−1x ≥ 0, that is, s ≥

√

x>4è−1 + uu>/�2
w5

−1x. The objective with �> 0 ensures that s
is made small, so at optimality, we get s =

√

x>4è−1 + uu>/�2
w5

−1x. �
Proposition 2 suggests the use of a classical convexification technique where the rank-one constraint is relaxed

(Shor [57]), and then a solution u with �u� = 1 is recovered by extracting the dominant eigenvector of W . When
the rank-one constraint is relaxed, we must add the constraint W � 0, which is no longer implied by the other
constraints. Hence, a first approximate solution scheme:

1. Solve the semidefinite program

maximize c̄>x−� s

subject to Ax = b1 x � 01
[

s x>

x sè−1 +W

]

� 01 trace4W5= s/�2
w1 W � 00

(23)

2. Return for u the normalized dominant eigenvector of W .
Step 2 is justified by the fact that the best rank-one approximation to W (in the Frobenius norm metric) is the
matrix X = �max4W5uu>. If W has rank one, then �max4W5= trace4W5= s/�2

w.
In general, already with a single linear constraint a>x = b, a semidefinite programming relaxation can be

arbitrarily bad (Nesterov et al. [40, §13.2.4]). In this specific case, we can establish tightness. First, we state a
technical lemma, proved in Appendix B. We then prove the main result.

Lemma 6. For an arbitrary nonzero x̄ ∈�n and for any è−11G� 0, the minimum of the semidefinite program

minimize x̄>4è−1
+U5−1x̄

subject to trace4GU5= 11 U � 0

is attained by the rank-one solution

U ∗
=

G−14G−1 +è−15−1xx>4G−1 +è−15−1G−1

x>4G−1 +è−15−1G−14G−1 +è−15−1x
0

Proposition 3. The relaxation (23) is tight.

Proof. If we set W = sU/�2
w, assuming that s > 0, the problem (23) becomes

maximize c̄>x−�s subject to Ax = b1 x � 01 s2
≥ x>4è−1

+U5−1x1 trace4U5= 11 U � 00

For any fixed x, the best value of the objective is obtained by minimizing s, which, in turn, leads to the
minimization of fx4U5 = x>4è−1 +U5−1x subject to trace4U5 = 1 and U � 0. By Lemma 6, the minimum of
fx4U5 is attained by a rank-one matrix U , so there also exists an optimal rank-one matrix W = sU/�2

w. When
s = 0, we have W = 0 from trace4W5= 0/�2

w and W � 0. �
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We have thus established that there exists an optimal solution to (23), where W has rank one. We also observe
a preference for the rank-one solution. To see this, let � ∈�n with elements �1 ≥ · · · ≥ �n ≥ 0 denote the vector
of sorted eigenvalues of W . We have trace4W5 =

∑n
i=1 �i =

∑n
i=1 ��i� = ���1. Since L1 norm regularization

induces sparsity in the solution, one can see that the constraint trace4W5 = s/�2
w, combined with the fact that

s is minimized in the objective, has a beneficial effect on the formulation: it induces zero eigenvalues in W ,
and thus rank reduction. Nuclear norm minimization, or trace minimization in the special case of positive
semidefinite matrices, is a convex technique for inducing low-rank solutions (Fazel et al. [24]); in our case, the
trace-minimization effect is a by-product of the original objective.

Another solution approach to (22) is also possible, which directly exploits the structure of the optimal solution
for u.

Proposition 4. Define C such that C>C = P−1è, where as usual P = 4�2
wIn +è5. Then, an optimal solution

4x∗1 u∗5 to the problem (22) can be obtained by solving the following conic program over 4x1 s5 ∈�n ×�,

maximize c̄>x−�s

subject to Ax = b1 x � 01

�Cx� ≤ �−1
w s1

(24)

then setting u∗ = P−1èx∗/�P−1èx∗�.

Proof. Explained at the beginning of this section, the vector ū= P−1èx̄/�P−1èx̄� is optimal given x̄. This
means that at optimality,

s̄2
= x̄>6è−1

+ ūū>/�2
w7

−1x̄ = x̄>

[

è−
èP−1èx̄x̄>èP−1è

x̄>èP−1PP−1èx̄

]

x̄

= x̄>èx̄−
4x̄>èP−1èx̄52

x̄>èP−1èx̄
= x̄>4è−èP−1è5x̄ = x̄>4�2

wP
−1è5x̄ = �2

w�Cx̄�21

where we have defined C such that C>C 2= P−1è. The subproblem for optimizing x follows immediately. �

6.2. The case N > 1, � = 0. When N > 1, the problem takes into account the update of c̄ to c̄′, which
depends on t and u. The following lemma is instrumental for dealing with the nonlinear dependence of du on
u, as defined in (14). From Theorem 1, we know we can restrict our attention to measurements u with �u� = 1.

Lemma 7. The nonconvex set

D =

{

d =
u

√

u>èu+�2
w

2 �u� = 11 u ∈�n

}

(25)

admits the alternative representations

D =
{

d′
= P−1/2u′2 �u′

� = 11 u′
∈�n

}

1 (26)

D =
{

d′′
∈�n2 trace4Pd′′d′′>5= 1

}

0 (27)

The following lemma will be useful to strengthen the relaxations.

Lemma 8. Assume X= 8x ∈�n2 Ax = b1x � 09 is bounded and not reduced to 809. Fix � ∈�n with �i > 0
for each i, and define �̄� = supx∈X �>x. Then, the following relation holds true for any x ∈X:

xx>
� �̄� Diag4x5Diag4�5−11

where Diag4z5 denotes the diagonal matrix with elements zi.

Proof. Since x � 0 and X 6= 809, �̄� > 0. Since X is bounded, �̄� < �. A lemma established in Zheng
et al. [62] shows that, for any x ∈ X, diag4�5xx> diag4�5 � �̄� diag4�5diag4x5. Recall that S � 0 iff PSP> � 0,
where P can be any invertible matrix. Applying this rule to the inequality with P = diag8�9−1 establishes the
result. �

We have now the necessary ingredients for proposing a solution scheme to (9), first, in the case � = 0. As
usual, P =è+�2

wIn.
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1. Choose a quantization 8pi1 ti9
N
i=1 of t ∼N40115.

Construct the symmetric matrices

Ci =
1
2





0 c̄> 0>

c̄ 0 tiè

0 tiè 0



 ∈�42n+15×42n+151 1 ≤ i ≤N0

2. Generate a set of vectors 8�l9
M
l=1, �l � 0, and evaluate

�̄l = max
x∈X

�>

l x0

3. Solve the following SDP over the symmetric optimization matrices Y ∈�n×n and

Zi =





Z11
i Z1x

i Z1d
i

Zx1
i Zxx

i Zxd
i

Zd1
i Zdx

i Zdd
i



=





1 x>
i d>

xi Z
xx
i Zxd

i

d Zdx
i Y



 ∈�42n+15×42n+151 1 ≤ i ≤N2

maximize
N
∑

i=1

pi trace4CiZi5

subject to ∀ i2 Zi � 01

Z11
i = 11 AZx1

i = b1 Zx1
i � 01

AZxx
i A> = bb>1 6Zxx

i 7qr ≥ 0 ∀q1 r1

Zxx
i � �̄l Diag4Zx1

i 5Diag4�l5
−1 ∀ l1

Zdd
i = Y 1

trace4PY 5= 10

4. Return for u the eigenvector associated to the largest eigenvalue of Y .
The scheme is based on the relation

4c̄+ tièd5
>xi =

1
2 trace









0 c̄> 0>

c̄ 0 tiè
0 tiè 0









1
xi
d









1
xi
d





>

 1

where we define

Zi =





1
xi
d









1
xi
d





>

=























1 x>
i

u>

√

u>èu+�2
w

xi xix
>
i

xiu
>

√

u>èu+�2
w

u
√

u>èu+�2
w

ux>
i

√

u>èu+�2
w

uu>

u>èu+�2
w























1

which is semidefinite positive and has rank 1.
The constraints Ax = b and x � 0 imply Axix

>
i A

> = bb> (linear equality between matrices) and 6xix
>
i 7qr ≥ 0

for 1 ≤ q, r ≤ n (nonnegativity of the matrix xix
>
i ). In terms of the matrix Zi, we write AZxx

i A> = bb> and
6Zxx

i 7qr ≥ 0. The constraint trace4Zxx
i AA>5= b>b would be of no use here because it is implied by AZxx

i A> =

bb>, so we use Lemma 8 to further control Zxx
i by the constraint Zxx

i � �̄l Diag4Zx1
i 5Diag4�l5

−1. A single
inequality suffices since we impose Zx1

i ∈ X, which is bounded by assumption. Introducing additional valid
inequalities can strengthen the relaxation but can also increase the rank of the solution Y , since the minimal
rank solution is affected by the number of constraints (Pataki [43], Barvinok [4]).

We introduce the variable Y = uu>/4u>èu+�2
w5 to write the constraints Zuu

i = Y = Zuu
j , 1 ≤ i, j ≤N . From

Theorem 1, we want �u� = 1. From Lemma 7, this is possible by imposing trace4PY 5= 1 and rank4Y 5= 1. All
the rank-one constraints are then relaxed. We obtain our approximation of the optimal u through the normalized
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eigenvector associated to the largest eigenvalue of Y , since we have Yu = 4u>u/u>Pu5u = �u with � = u>Pu
when Y follows its rank-one definition.

When the feasible set X can be expressed in terms of the squares of the coordinates of x, then this rep-
resentation should be used to create constraints on Zxx

i . For example, box constraints 80 � 6x7j � 6b7j9 imply
80 � 6x72

j � 6b72
j 9 and thus diag4Zxx

i 5≤ diag4b52. Binary constraints with value ±1 would imply diag4Zxx
i 5= 1.

It is also insightful to state the problem as a general nonconvex QCQP. Recalling Corollary 1 and discretizing
the expectation, one would obtain

maximize c̄>

( N
∑

i=1

pixi

)

+ t

subject to z=

N
∑

i=1

pitixi1

t2
− z>Qz≤ 01 t ≥ 01

Axi = b1 x � 01 1 ≤ i ≤N1

where Q =èP−1è� 0 makes the quadratic constraint utterly nonconvex. The constraint t ≥ 0 is redundant given
the objective function. A corresponding optimal u∗ is given by u∗ = P−1èz∗/�P−1èz∗�.

6.3. General case: N > 11� > 0. The solution scheme for the general case combines the techniques used
in the two preceding cases:
1. Choose a quantization 8pi1 ti9

N
i=1 of t ∼N40115.

Define the symmetric matrices

Ci =
1
2





0 c̄> 0>

c̄ 0 tiè
0 tiè 0



 ∈�42n+15×42n+151 1 ≤ i ≤N0

2. Generate a set of vectors 8�l9
M
l=1, �l � 0, and evaluate �̄l = maxx∈X �>

l x.
3. Solve the following SDP over u ∈�n, si ∈�, and the symmetric matrices Y , Wi ∈�n×n, and

Zi =









Z11
i Z1x

i Z1d
i

Zx1
i Zxx

i Zxd
i

Zd1
i Zdx

i Zdd
i









=









1 x>
i d>

xi Zxx
i Zxd

i

d Zdx
i Y









∈�42n+15×42n+151 1 ≤ i ≤N2

maximize
N
∑

i=1

pi6trace4CiZi5−�si7

subject to trace4PY 5= 11

∀ i2 Zi � 01

trace4Wi5= si/�
2
w1

[

si Z1x
i

Zx1
i siè

−1 +Wi

]

� 01

[

Wi wi

w>
i 1

]

� 01

[

Y wi

w>
i trace4PWi5

]

� 01

Z11
i = 11 AZx1

i = b1 Zx1
i � 01

AZxx
i A> = bb>1 6Zxx

i 7qr ≥ 0 ∀q1 r1

Zxx
i � �̄l Diag4Zx1

i 5Diag4�l5
−1 ∀ l1

Zdd
i = Y 0
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4. Return for u the eigenvector associated to the largest eigenvalue of Y .
In the SDP, using �u� = 1, we define Y = dd> = uu>/u>Pu = uu>/ trace4Puu>5. We have trace4PY 5 =

trace4u>Pu/u>Pu5 = 1. For each i, we define si ≥ 0 and wiw
>
i = Wi = siuu

>/�2
w. We have trace4Wi5 = si/�

2
w.

Assuming si > 0, we have uu> = �2
wWi/si, so we can rewrite Y as

Y =
�2
wWi/si

trace4P�2
wWi/si5

=
wiw

>
i

trace4PWi5
0

We relax the definitions of Wi and Y to Wi �wiw
>
i and Y �wiw

>
i /trace4PWi5, which can be expressed using a

Schur complement logic by the constraints
[

Wi wi

w>
i 1

]

� 01
[

Y wi

w>
i trace4PWi5

]

� 00

The rest of the construction of the program follows the logic of §§6.1 and 6.2.

7. Convergence. In this section, we show a form of asymptotic convergence for the expected improvement
policy. The main result is that the quantity ��4u1 c̄k1èk5 converges to zero for all points u on the L2 sphere.
We also show that, as a consequence, we have x>èkx → 0 for all x ∈X, which means that the objective value
x>ctrue of every feasible implementation decision x is learned perfectly (with zero variance) in the limit. Unlike
the policy studied in §5, this does not necessarily mean that the posterior covariance èk converges to zero under
the expected improvement policy; rather, it means that we obtain perfect information about every decision of
interest.

We assume that X is bounded and the risk-aversion parameter �> 0. We also require one simplifying technical
assumption for Propositions 8 and 9: we assume that our prior covariance matrix is given by è0 = �In for
some constant � > 0. A consequence of this assumption is that uTè0u = � for all u on the L2 sphere. The
assumption can be a reasonable choice for some applications of recursive least squares; for example, Powell [44]
recommends using this initialization in MDPs with basis function approximations.

We begin by showing that the expected improvement in the direction u is bounded above by a function of
the maximum variance reduction possible by measuring u.

Proposition 5. For any u,

��4u1 c̄1è5≤

(

�+
2

√
2�

)

max
x∈X

�x>èdu�1

where du = u/
√

u>èu+�2
w.

Proof. We write

��4u1 c̄1è5 = Ɛ
{

max
x∈X

c̄>x−�
√

x>è′x+ tx>èdu

}

− v�4c̄1è5

≤ v�4c̄1è
′5− v�4c̄1è5+ Ɛ

{

max
x∈X

tx>èdu

}

0

Now, observe that

v�4c̄1è
′5− v�4c̄1è5 ≤ max

x∈X
�
(

√

x>èx−
√

x>è′x
)

≤ max
x∈X

�
√

x>4è−è′5x

= max
x∈X

��x>èdu�0

Furthermore,

Ɛ
{

max
x∈X

tx>èdu

}

= Ɛ
{

max
x∈X

t18t≥09x
>èdu

}

+ Ɛ
{

max
x∈X

t18t<09x
>èdu

}

=

(

max
x∈X

x>èdu

)

Ɛ8t18t≥099+

(

min
x∈X

x>èdu

)

Ɛ8t18t<099

=
1

√
2�

(

max
x∈X

x>èdu − min
x∈X

x>èdu

)

≤
2

√
2�

max
x∈X

∣

∣x>èdu

∣

∣1

which completes the proof. �
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By the Cauchy-Schwarz inequality, it follows that, if 8c̄k1èk9 is a sequence satisfying u>èku → 0, we also
have ��4u1 c̄k1èk5 → 0. If the variance of our beliefs about u decreases to zero (for example, if we measure
u infinitely often), the expected improvement in this direction also vanishes. Our next result is related to the
converse of this statement.

Proposition 6. Let u be a point on the L2 sphere with ��4u1 c̄1è5= 0. Then, x>èu= 0 for all x ∈X.

Proof. The function h4t5= v�4c̄+ tèdu1è
′5 is a maximum of linear functions of t, and therefore is convex.

Thus, by Jensen’s inequality,
Ɛv�4c̄+ tèdu1è

′5≥ v�4c̄1è
′50

Letting x̄ = arg maxx∈X8c̄
>x−�

√
x>èx9, we have

v�4c̄1è
′5 ≥ c̄>x̄−�

√

x̄>è′x̄

≥ v�4c̄1è51

since the variance of our beliefs about any x is always decreasing after each measurement.
However, since we assume that ��4u1 c̄1è5= 0, all of the above inequalities must hold with equality. Conse-

quently, it follows that x̄>èu= 0. For this reason,

c̄>x̄−�
√

x̄>è′x̄+ tx̄>èdu = c̄>x̄−�
√

x̄>èx̄ = v�4c̄1è5

almost surely. We can then write

v�4c̄+ tèdu1è
′5= max

{

v�4c̄+ tèdu1è
′51 v�4c̄1è5

}

0

Since the expected improvement is zero, it follows that

Ɛ
{

max8v�4c̄+ tèdu1è
′51 v�4c̄1è59− v�4c̄1è5

}

= 00

However, the random variable inside the expectation is a.s. positive, whence

max
{

v�4c̄+ tèdu1è
′51 v�4c̄1è5

}

= v�4c̄1è5

and
c̄>x−�

√

x>è′x+ tx>èdu ≤ v�4c̄1è51

almost surely, for all x ∈X. However, since t can take on any real value, this is only possible if x>èu= 0 for
every x ∈X. �

From Propositions 5 and 6, it follows that ��4u1 c̄1è5= 0 if and only if u>èx = 0 for all x ∈X. In particular,
if x ∈ X, we have zero expected improvement along x/�x� if and only if x>èx = 0. Our next result connects
this limiting case to the asymptotic behavior of the expected improvement.

Proposition 7. For fixed u, the expected improvement ��4u1 c̄1è5 is continuous in c̄ and è.

Proof. We first address continuity in c̄. Observe that, for any fixed t, v�4c̄ + tèdu1è
′5 is convex in c̄,

because it is a maximum of linear (and thus convex) functions of c̄. Taking expectations preserves convexity, so
��4u1 c̄1è5 is convex in c̄. However, convex functions are continuous in the interior of their domain, which, in
the case of c̄, is all of �n.

Next, we address continuity in è. Let 8èk9 be a sequence of positive semidefinite matrices that converges
componentwise to a positive semidefinite matrix è�. Let t ∼ N40115 and define random variables Tk =

v�4u1 c̄+ tèkdu1è
′
k5 for k = 1121 : : : and k = �. We show that Tk → T� in L1 by writing

Ɛ �Tk − T�� ≤ Ɛmax
x∈X

∣

∣

∣

∣

�
(

√

x>è′

�
x−

√

x>è′

kx
)

+ t

(

x>èku
√

�2
w + u>èku

−
x>è�u

√

�2
w + u>è�u

)

∣

∣

∣

∣

≤ �max
x∈X

√

x>4è′

�
−è′

k5x+ 4Ɛ �t�5max
x∈X

∣

∣

∣

∣

x>èku
√

�2
w + u>èku

−
x>è�u

√

�2
w + u>è�u

∣

∣

∣

∣

0

For any �> 0 and large enough k, we will have Ɛ �Tk − T�� ≤ 4�+ Ɛ �t�5�, completing the proof. �
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This result has two consequences. First, ��4u1 c̄k1èk5 always has a limit for any u. This occurs because, for
any sequence of measurements, we can write c̄k = Ɛ4ctrue � Fk5 and èk = Ɛ4ctrue4ctrue5> � Fk5− c̄k4c̄k5

>, where
Fk is the sigma-algebra generated by the first k measurements and their outcomes. Therefore, by martingale
convergence theory, c̄k and èk have a.s. limits.

The second main consequence is that ��4u1 c̄k1èk5→ 0 if and only if u>èx → 0 for all x ∈X. This follows
from Propositions 5, 6, and 7.

Our next objective is to show that the posterior variance of our beliefs converges to zero for vectors that are
accumulation points of the sequence of measurements. This is done in the following two propositions, which
rely on the assumption that è0 = �In.

Proposition 8. Given some fixed ū on the L2 sphere and some small � > 0, let B = 8u2 �u� = 11
�u− ū�<�9. Consider an arbitrary u ∈ B and define

ũ= arg min
u′∈B

�u>è0u
′
� = arg min

u′∈B

�u>u′
�0

Note that, for small enough �, ũ cannot be orthogonal to u. Suppose that, at time k′, a total of k measurements
have been made in the set B. Then, it follows that the posterior variance of our beliefs about u satisfies the
inequality

u>èk′u≤ �−
�2

0k

�k+�2
w

1 (28)

where �0 = ũ>è0u.

Proof. The posterior variance u>èku is monotonically decreasing in k, and depends only on the vectors we
measure, not on the observations. Because any measurement decreases the variance, the posterior variance at
time k is bounded above by the matrix created by applying (6) only after those measurements uk that are in the
set B. All measurements outside B can be ignored, because they only decrease the variance further.

Consider a policy that measures u1 = u2 = · · · = uk = ũ. Using the Sherman-Morrison formula, we find that

u>èku= �−
�2

0k

�k+�2
w

0

Suppose that uk+1 = ũ as well. Then, the variance reduction in our beliefs about u, achieved between time k and
time k+ 1, is given by

u>èku− u>èk+1u=
�2

0�
2
w

44k+ 15�+�2
w54k�+�2

w5
0

Now, consider a situation where uk+1 = u′ for some u′ ∈ B. In this case, it can be worked out that

u>èku− u>èk+1u=

(

�2 −
k�0�1

k�+�2
w

)2(

�2
w +�−

k�2
1

k�+�2
w

)−1

1 (29)

where �1 = ũ>è0u
′ and �2 = u>è0u

′.
We now study the numerator of (29). Observe that

(

�2 −
k�0�1

k�+�2
w

)2

=

∣

∣

∣

∣

�2 −
k�0�1

k�+�2
w

∣

∣

∣

∣

2

and
∣

∣

∣

∣

�2 −
k�0�1

k�+�2
w

∣

∣

∣

∣

≥ ��2� −
k��0� · ��1�

k�+�2
w

0 (30)

Note that the right-hand side of (30) is positive because ��0� ≤ ��2� by the definition of ũ, and ��1� ≤ � by the
Cauchy-Schwarz inequality. Consequently, (29) leads to

u>èku− u>èk+1u≥

(

��2� −
k��0� · ��1�

k�+�2
w

)2(

�2
w +�−

k��1�
2

k�+�2
w

)−1

0

Now, it is possible to apply the arguments given in the proof of Proposition 5.3 in Scott et al. [56], which
show that the variance reduction obtained when uk+1 = u′ is greater than the variance reduction obtained when
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uk+1 = ũ. This is true for all k. Consequently, the smallest variance reduction that is possible with k measurements
in the set B is achieved by always measuring ũ. The bound in (28) follows. �

Now, suppose that the reference point ū is an accumulation point of the sequence 8uk9 of measurements.
We know that such a point must exist since the sequence is bounded. In this case, we know that infinitely
many measurements will be made inside the set B = 8u2 �u� = 11�u− ū�< �9. Letting è� be the limit of the
sequence 4èk5 of posterior covariance matrices, and applying Proposition 8 to the point ū, we find that

ū>è�ū≤ �
(

1 − min
u∈B

4ū>u52
)

0 (31)

This leads to the following limiting result.

Proposition 9. Let ū be an accumulation point of the sequence of measurements. Then, ū>è�ū= 0.

Proof. We rewrite the set B as

B =
{

u2 �u� = 11 u>u− 2u>ū+ 4ū>ū− �25≤ 0
}

=
{

u2 �u� = 11 u>ū≥
(

1 −
1
2�

2
)}

0

For small enough �, 41 −
1
2�

25 > 0. Then,

min
u∈B

4ū>u52
=

(

min
u∈B′

ū>u
)2
1

where B′ = 8u2 �u� = 11 u>ū= 41 −
1
2�

259. It follows that

min
u∈B

4ū>u52
=
(

1 −
1
2�

2
)2
1

whence (31) becomes
ū>è�ū≤ �

(

1 −
(

1 −
1
2�

2
)2)

0 (32)

Taking �→ 0 leads to the desired result. �
Theorem 4. Suppose that

uk = arg max
u2�u�=1

��4u1 c̄k1èk51

that is, measurements are chosen according to the expected improvement policy. Then, ��4u1 c̄k1èk5 → 0 for
all u on the L2 sphere.

Proof. Recall that c̄k → c̄� and èk →è� almost surely. For all u, define g4u5= limk→� ��4u1 c̄k1èk5. By
Proposition 7, g4u5 exists and is finite for all u.

We argue that supu2�u�=1 g4u5= 0. To see this, we write

sup
u2�u�=1

g4u5 = sup
u2�u�=1

lim inf
k→�

��4u1 c̄k1èk5

≤ lim inf
k→�

sup
u2�u�=1

��4u1 c̄k1èk5

= lim inf
k→�

��4uk1 c̄k1èk5

≤ lim inf
k→�

1
�w

(

�+
2

√
2�

)

max
x∈X

�x>èkuk�

≤ lim inf
k→�

1
�w

(

�+
2

√
2�

)(

max
x∈X

√

x>è0x

)

√

u>

k èkuk0

The third line follows by the definition of uk. The fourth line follows by Proposition 5. The final line is due to
the Cauchy-Schwarz inequality and the monotonicity of the posterior variance. Thus we have

sup
u2�u�=1

g4u5≤C lim inf
k→�

√

u>

k èkuk (33)

for some constant C. We can then take a subsequence 8ukj
9 of 8uk9 such that ukj

→ ū. By Proposition 9,
we know that ū>è�ū = 0, whence u>

kj
èkj

ukj
→ 0. Consequently, the right-hand side of (33) is also equal to

zero. �
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Combining Theorem 4 with Propositions 6 and 7, we find that u>èkx → 0 for all u on the L2 sphere and all
x ∈X. It follows that x>èkx → 0 for all x ∈X. That is, asymptotically, we obtain perfect information about the
objective value x>ctrue for any feasible x ∈X. This can be viewed as a form of consistency for the policy (as in
Scott et al. [56]), in that the policy learns about every decision of interest.

Note that this does not necessarily mean that any u is measured infinitely often (or even once). In fact, it is
easy to see from Proposition 9 that u>èku→ 0 for any u that is in the span of the accumulation points of 4uk5,
even if u itself is never measured. However, one way or another, we asymptotically obtain perfect information
about all relevant x.

8. Numerical tests. Our numerical experiments are implemented in Matlab 7.10. The LPs and SOCPs are
solved with the commercial solvers Cplex 12.2.0.2, Gurobi or Mosek 7.0.0.64. The SDPs are formulated through
cvx (Grant and Boyd [29, 30]) in Matlab and then solved with SDPT3 (Tütüncü et al. [59]) or the commercial
solver Mosek 7.

We compare the following algorithms to select measurements when the information state is 4c̄1è5:
• eig: u set to the eigenvector relative to the largest eigenvalue of è.
• sdp-1: select u to maximize �̂1

�4u1 c̄1è5, using the one-sample approximation scheme of §6.1.
• sdp-2: select u to maximize �̂N

� 4u1 c̄1è5 with N = 5, using the general scheme of §6.3, with M = 5 random
positive directions �l.

• unit: select the unit vector ei that maximizes �̂N
� 4 · 1 c̄1è5 with N = 21.

• rand: select the best random vector u that maximizes �̂N
� 4 · 1 c̄1è5 with N = 21, among a set of M = 100

normalized vectors generated randomly.
• Thompson: select the vector u= x̃/�x̃�, where x̃ is the solution to maxx∈X c̃>x−�

√
x>èx with the vector

c̃ sampled from N4c̄1è5.
The algorithms unit and rand are enumeration algorithms that select u out of a finite set of measurements

to maximize a good approximation of the expected improvement, �̂N
� 4 · 1 c̄1è5 with N = 21 in the present case.

The policy rand chooses from a set of M = 100 random vectors u generated a priori.
The algorithm Thompson adapts the principle of Thompson sampling to our context. Thompson sampling

(Thompson [58]) is a randomized algorithm based on the optimization of a problem formed with a single sample
from the posterior belief distribution. Thompson sampling has been shown to lead to good empirical and theo-
retical performance in online learning (Chapelle and Li [13], Agrawal and Goyal [1], Russo and Van Roy [51]).

In our case, we sample a coefficient c̃ from N4c̄k1èk5, the current belief distribution for ctrue. We solve a
single deterministic SOCP, maxx∈X c̃>x − �

√

x>èkx. One issue here is that the solution, say, x̃, cannot serve
directly as a measurement, because it lives in a different feasibility set. But we can still determine a measurement
direction by normalizing x̃, that is, we set u = x/�x̃�. Consequently, this policy can only measure vectors that
are scaled versions of feasible implementation decisions.

8.1. Example with robust MDPs. First, we present results obtained on a randomly generated MDP with
�S� = 10 states and �A� = 2 actions. The comparison is done based on the measurement policy induced by the
algorithms over a sequence of 10 measurements. We are interested in the true value of the MDP policy that is
obtained after k measurements for k = 11 : : : 110, that is,

f 4xk1 c
true5= x>

k c
true1 xk ∈ arg max

x2Ax=b1x�0

{

x>c̄k −�
√

x>èkx
}

1

where c̄k, èk are the end result of the method that optimizes the measurement vectors u11 0 0 0 1 uk, and of the
random observations y1 = u>

1 c
true +w11 : : : 1 yk = u>

k c
true +wk. See Appendix A for additional discussion of this

setting; here, we briefly mention that x encodes a stochastic policy for a robust MDP, whereas ctrue represents
the unknown reward function.

Figures 1 to 6 show the results of 100 simulations run on the same fixed MDP. All simulations start from
a same belief distribution 4c̄01è05. There are six graphs, corresponding to eig, unit, rand, Thompson, sdp-1
and sdp-2. The same 100 samples of a sequence of Gaussian noises 8wk2 1 ≤ k ≤ 109 for making 10 consecutive
measurements are used for comparing the six methods. The true maximum is indicated by a horizontal line at
76.59. We have plotted the curve of the estimated mean of V �k over the 100 samples as a function of the number
k = 01 : : : 110 of past measurements. We have also plotted vertical bars between the 25th and 75th percentiles
of the distribution of V �k . The support of V �k cannot cross the horizontal line of the true maximum.
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Figure 1. Distribution of the true performance with sdp-2 for a
growing number of measurements.
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Figure 2. Distribution of the true performance with sdp-1 for a
growing number of measurements.
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Figure 3. Distribution of the true performance with eig for a
growing number of measurements.
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Figure 4. Distribution of the true performance with unit for a
growing number of measurements.
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Figure 5. Distribution of the true performance with rand for a
growing number of measurements.
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Figure 6. Distribution of the true performance with Thompson
for a growing number of measurements.

The results show that the two policies proposed in our paper, eig and sdp-2, generally outperform the other
policies. Since our paper considers learning in the context of robust optimization, it is important to look at
worst-case performance in addition to the average case. For example, we see that eig is competitive with sdp-2,
on average, but is more irregular in terms of the evolution of the 25th quantile. The policy sdp-1 also performs
reasonably well, but exhibits much greater variance compared to sdp-2, illustrating the value added by using
N > 1 in the SDP framework. Similarly, Thompson exhibits steady improvement over time, but likewise exhibits
much greater variance compared to sdp-2. It is also noteworthy that the negative tails for sdp-2 are much smaller
than the positive tails—the best-case performance is considerably better than the average case, but the worst
case is not too much worse.
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Table 1. Computation times (in seconds).

eig unit rand Thompson sdp-1 sdp-2

On 100 sample paths: (1) (615) (5,849) (8.5) (124) (1,239)
Per measurement: 4< 00015 (3.7) (35) (0.05) (0.74) (7.4)

We believe that the good performance of eig in this setting can be explained as follows. The terminal value
function v�4c̄101è105 that we wish to optimize includes a penalty term based on our posterior variance. Because
the measurement noise �2

w is known, any measurements will contribute a deterministic improvement to the
variance term, regardless of the outcome of the observation. Thus, a policy that is designed purely to reduce the
uncertainty may actually produce reasonable performance in a risk-averse setting. However, the sdp-2 policy,
which considers the deterministic improvement due to variance reduction and the stochastic improvement coming
from the observation, is able to achieve good results faster and reduce the negative tails more consistently.

The computation time to run the experiments over the 100 sample paths in parallel, using six processes, are
given in Table 1. To get an estimate of the average time to select a single measurement, we divide those numbers
by 10, the number of measurements per sample path, and then by (100/6), the number of sample paths divided
by the number of processes.

8.2. Example with learning in linear regression. Next, we consider a test problem whose structure is
motivated by the multidrug therapy trial problem of Bertsimas et al. [10]. The underlying LP is given by

maximize c>x subject to a>x ≤ b1 0 � x � xmax0

We can view the objective function c>x as a prediction of the overall survival of a group of patients, where c
is a vector of predicted impacts per unit of each drug, and x is a vector of prescribed dosages. The vector xmax

represents the maximum dosage levels allowed for the drugs, whereas a is a vector of per unit toxicities, and b
is the maximal permissible toxicity in the treatment. Given a belief c ∼N4c̄1è5, we wish to prescribe dosages
that perform well in worst-case scenarios at a certain level of confidence relative to the beliefs. This leads to
the robust formulation

maximize
{

c>x−�
√

x>èx
}

subject to a>x ≤ b1 0 � x � xmax0

Before deciding on x, we have the ability to collect information about c (e.g., by conducting lab experiments
before moving on to trials with human subjects). We model the outcome of such an experiment as y = c>u+w,
where u reflects the weights of the different drugs for the pretrial study. Essentially, the learning process in
this problem is an instance of Bayesian linear regression (Minka [38]). We assume that u� 0 and �u� = 1. To
illustrate the behavior of the model, we consider n= 40 drugs with the chosen parameters

c̄i = 3 +
i− 1
n− 1

1 ai = 2 +
i− 1
n− 1

1 xmax
i = 11 b = 41

èii = 005 + 105
i− 1
n− 1

1 èij = 4−15i−je−2�i−j�
√

èiièjj 0

Thus the drugs go gradually from moderate impact, low variance drugs to higher impact, higher variance drugs.
(With the definition of the covariance matrix, the inverse covariance matrix is tridiagonal and nonnegative.) The
noise variable w is centered Gaussian with variance 1.

Table 2 describes the distribution of the optimal median objective value, for values of the risk-aversion
coefficient �= 0 (risk neutral), �= 005, and �= 100. It can be seen that the risk of getting a low true objective
value can be decreased, in exchange for a moderate mean reduction, in accordance with the typical behavior of
robust optimization models.

Table 3 gives the result of the optimization of the expected improvement in the cases �= 0, 0.5, 1.0. As before,
the unit approach reduces the set of possible studies to those that test one drug at a time (choosing the one with
the best expected improvement), whereas rand maximizes the expected improvement over a finite set of 1,000
randomly generated measurement vectors. The number of sampled vectors was chosen to make rand run for
about as long as the SDP approach. We did not include the eig policy in this comparison because the dominant
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Table 2. Distribution of the optimal value of the implementation problem for different risk aversions.

Percentiles Density

Mean Std 25th 10th 5th

�= 0 5.99 0.27 5.70 5.63 5.53
�= 005 5.96 0.15 5.80 5.77 5.71
�= 1 5.94 0.12 5.81 5.78 5.74

� � = 1

�

5.0 5.5 6.0 6.5 7.0
0

1

2

3

4

� = 0

Table 3. Value of the expected improvement for different risk aversions and optimization approaches.

unit rand Thompson sdp-2

�� Time �� Time �� Time �� Time

�= 0 0.67 11.2% (33) 0.73 12.2% (644) 0.66 11.0% (20) 0.73 12.19% (627)
�= 005 0.38 6.43% (49) 0.43 7.28% (991) 0.18 3.12% (19) 0.55 9.31% (556)
�= 1 0.21 3.61% (49) 0.29 4.98% (990) 0.13 2.26% (20) 0.47 8.78% (511)

Notes. The expected improvement is given in absolute units, and in percentage of the optimal value of the
program. Computation times in seconds, using six parallel processes. SDP-1 gives, in all cases, an expected
improvement close to 0 and is omitted in this table.

eigenvector of è may have negative elements, and we require u � 0. The Thompson policy is randomized, so
for it, we report the expected improvement averaged over 100 realizations of Thompson sampling.

The maximization of the expected improvement over vectors u � 0 with �u� = 1 is performed with the
semidefinite programming approach. The constraint u � 0 is implemented by adding the constraint Yij ≥ 0 for
all i1 j to the program of §6.3, using the property that a nonnegative matrix admits a nonnegative eigenvector.
We run the SDP approach with N = 1 and N = 2 samples only. The computation of the expected improvement
for a fixed u (the output of the algorithm) is also done with N = 21.

We see in Table 3 that the one-sample approximation (sdp-1) leads to poor results in this setting. In the
risk-neutral case (� = 0), this is not a complete surprise because the formulation was established under the
assumption �> 0. In contrast, the two-sample approximation leads to measurements that dominate those from
the other benchmarks, thus illustrating the value added by using multiple samples. Figure 7 demonstrates the
dependence of the expected improvement on the risk-aversion parameter �.

Finally, we consider a sequential version of the problem with K = 10 measurements and �= 1. In the interests
of brevity, we only compare sdp-2 and Thompson here, because eig is inapplicable here, and Figure 7 has
illustrated that the other policies are much less effective than sdp-2 in optimizing the expected improvement.

SDP-2

SDP-1

THOMPSON

UNIT

0 1.00.5

0

2.00

4.00

6.00(%
)

(%)

8.00

10.00

12.00

14.00

RAND

Figure 7. Expected improvement, with different risk aversions.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

11
2.

66
.6

6]
 o

n 
09

 N
ov

em
be

r 
20

15
, a

t 0
5:

29
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Defourny et al.: Optimal Information Blending with Measurements in the L2 Sphere
Mathematics of Operations Research 40(4), pp. 1060–1088, © 2015 INFORMS 1081

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

0 1 2 3 4 5 9 106 7 8

Figure 8. Distribution of the true performance with sdp-2 for a
growing number of measurements.
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Figure 9. Distribution of the true performance with Thompson
for a growing number of measurements.

Figures 8 and 9 report the means and the 25th and 75th percentiles of the distributions of the implementation
decisions for the two policies. We see that sdp-2 outperforms Thompson, on average, but much more importantly,
the performance of sdp-2 exhibits much smaller variation. This shows the efficacy of the method in a risk-averse
setting.

Note that when there is no measurement (origin of the horizontal axis), the implementation decision x0 is in
all cases selected as the maximizer of c̄>x − �

√
x>èx. This leads to a single value for the performance with

no measurements, namely, ctrue>x0. This value can be viewed as being sampled from the distribution reported in
the row relative to �= 1 in Table 3.

9. Conclusion. We have posed an optimal learning problem in which a decision maker improves a robust
solution to a stochastic LP by sequentially collecting information about the unknown objective coefficients.
A single piece of information takes the form of a linear combination (a “blend”) of the true underlying objective
vector, subject to Gaussian noise. Bayesian updating is then used to combine this new information with a
multivariate normal prior distribution on the unknown parameters. Previous work has considered weighted sums
of unknown parameters where the weights were prespecified by a linear regression model. To our knowledge,
the present paper is the first to pose the continuous-optimization problem of choosing the optimal weight vector.
Our formulation of this problem allows for risk-neutral and risk-averse decision makers.

Within this setting, we have proposed two policies for choosing information blends. The first was shown
to optimize uncertainty reduction (analogous to active learning methods in statistics) by selecting the largest
eigenvector of the posterior covariance matrix. The second approximates the optimal solution to an expected
improvement criterion (a nonconvex optimization problem) via an SDP reformulation technique. The approach is
applicable to robust LP formulations of MDP problems, where risk-averse decision-making policies are desired.
We show that our approach generalizes a previous heuristic for such problems. In numerical examples, the SDP
approximation consistently outperforms a number of benchmarks. We believe that the present paper contributes
to the interface of robust optimization and optimal learning, and that the idea of information blending offers a
new way to think about sequential information collection.

Acknowledgments. Warren B. Powell acknowledges the support from the Air Force Office of Scientific Research [Grant
FA9550-11-1-0172], along with the support from the SAP initiative for energy systems research.

Appendix A. Application to Markov decision processes. Let the tuple 4S1A1P1R5 define a Markov decision pro-
cess (Puterman [46]), where S is a finite-state space with �S� states, A is a finite-action space with �A� actions, P2 S×A×S 7→

60117 with values p4s′ � s1 a5 is a transition probability function, and R2 S×A 7→� is a reward function with bounded values
r4s1 a5. Let 0 <� < 1 be a discount factor, and let b4j5=�8s0 = j9 specify an initial state distribution, states being labeled
from 1 to �S�. The maximization of the expected discounted cumulated reward

v�� = Ɛ�
{

�
∑

t=0

�tr4st1 at5

}
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by the choice of a stochastic policy �2 S × A 7→ 60117 with values �4s1a5 = �8at = a � st = s9 admits a dual linear
programming formulation (D’Epenoux [21])

maximize
∑

s∈S

∑

a∈A

r4s1 a5x4s1a5

subject to
∑

a∈A

x4j1a5−
∑

s∈S

∑

a∈A

� p4j � s1 a5x4s1a5= b4j5 for j ∈ S1

x4s1a5≥ 0 for s ∈ S1 a ∈A1

(A1)

which is of the form (1). Given an optimal x∗ ∈��S�×�A�,

�∗4s1 a5= x∗4s1 a5
/

∑

a′∈A

x∗4s1 a′5 (A2)

is an optimal stochastic policy. The optimization variables x4s1a5 (occupation measures) represent the total discounted
probability of being in state s and choosing action a, when the system starts from state j with probability b4j5. The optimal
policy (A2) will be independent of the initial distribution.

A.1. MDP with Bayesian prior. In our framework, we assume that the rewards r4s1 a5 are unknown but endowed with
a prior N4r̄1è5, where r̄ collects the means r̄ 4s1 a5 and è is the covariance matrix collecting elements è4s1a3 s′1 a′5. The
framework is less general than (Bayesian, model-based) reinforcement learning, where transition probabilities would also be
endowed with a prior. Nonetheless, the framework is already a valuable step for studying model ambiguity in MDPs from a
Bayesian standpoint.

Under the risk-neutral approach (� = 0), the rewards r4s1 a5 in (A1) are set to their Bayesian mean r̄ 4s1 a5. The opti-
mization problem has still the structure of an MDP, implying the existence of an optimal deterministic policy. To see that
from (A1), note that the simplex algorithm returns a vertex solution x∗ defined by �S� · �A� linear equations, �S� coming from
the equality constraints and �S� · �A� − �S� coming from active inequalities x4s1a5 = 0. Hence x∗ has at most �S� nonzero
coordinates. The definition of a proper policy requires one nonzero coordinate being assigned to each state, implying that
the policy (A2) is, in fact, deterministic.

When the robust optimization approach is used (�> 0), the program for finding an optimal policy becomes

maximize
∑

s∈S

∑

a∈A

r̄ 4s1 a5x4s1a5−�
√

∑

s∈S

∑

a∈A

∑

s′∈S

∑

a′∈A

x4s1a5è4s1a3 s′1 a′5x4s′1 a′5

subject to
∑

a∈A

x4j1a5−
∑

s∈S

∑

a∈A

� p4j � s1 a5x4s1a5= b4j5 for j ∈ S1

x4s1a5≥ 0 for s ∈ S1 a ∈A0

(A3)

Generically, optimal solutions to SOCPs are not vertex solutions. Thus more elements x∗4s1 a5 will be nonzero, and the
resulting stochastic policy (A2) does not necessarily degenerate into a deterministic one.

The program (A3) is a tractable robust MDP obtained by applying generic robust linear programming techniques. The
covariance matrix è4s1a3 s′a′5 allows one to model worst-case reward dependencies among state-action pairs.

A.2. Optimal measurements with fixed decisions. Consider now the measurement selection problem based on the
maximization over u of ��4u1 c̄1è5 as defined by (8). An approximation proposed in Delage and Mannor [18] for robust
MDPs with the measurement u valued in 8e11 : : : 1 en9 assumes that, inside the expectation in (8), for each outcome y,
the optimal solution x′ attaining v�4c̄

′1è′5 is replaced by the solution x̄ attaining v�4c̄1è5. By doing so, ��4u1 c̄1è5 is
approximated by

�̃�4u1 c̄1è5= Ɛy
{[

c̄′>x̄−�
√

x̄>è′x̄
]

−
[

c̄>x̄−�
√

x̄>èx̄
]

∣

∣u1 c̄1è
}

= �
(

√

x̄>èx̄−
√

x̄>è′x̄
)

1 (A4)

where Ɛy8c̄
′9= c̄ has been used.

Note that �̃�4u1 c̄1è5= 0 for all u if �= 0, suggesting that this approximation is uninformative in the risk-neutral case.
Despite this undesirable behavior, we can still investigate the problem of maximizing �̃�4u1 c̄1è5.

Proposition 10. Let x̄ ∈ arg maxx∈X8c̄
>x − �

√
x>èx9, and let �̃�4 · 1 c̄1è5 be the approximation relative to x̄. Then,

either èx̄ = 0 and any u ∈ � is optimal for maxu∈� �̃�4 · 1 c̄1è5, or èx 6= 0 and the maximum of �̃�4 · 1 c̄1è5 over � is
attained by selecting

ū ∈

{

±
4è+ In�

2
w5

−1èx̄

�4è+ In�2
w5

−1èx̄�

}

1 (A5)

where In is the identity matrix in �n×n.
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Proof. Assuming �> 0, we have, from (A4),

arg max
u∈�

�̃�4u1 c̄1è5= arg max
u∈�

{

√

x̄>èx̄−

√

x̄>

(

è−
èuu>è

u>èu+�2
w

)

x̄

}

0

If èx̄ = 0, then any u ∈ � is optimal. Otherwise, èx̄ 6= 0, and we can justify that any optimal u will satisfy u>u = 1 by
the proof technique used in Theorem 1. Then, we have

arg max
u∈�

�̃�4u1 c̄1è5 = arg max
u2�u�=1

{

√

x̄>èx̄−

√

x̄>

(

è−
èuu>è

u>èu+�2
w

)

x̄

}

= arg min
u2�u�=1

√

x̄>

(

è−
èuu>è

u>èu+�2
w

)

x̄

= arg min
u2�u�=1

x̄>

(

è−
èuu>è

u>èu+�2
w

)

x̄

= arg max
u2�u�=1

x̄>èuu>èx̄

u>èu+�2
w

= arg max
u2�u�=1

u>èx̄x̄>èu

u>4è+�2
wIn5u

0

We can then proceed as in the proof of Theorem 2, or observe that an optimal solution ū can be obtained by considering
the generalized eigenvalue problem 4èx̄x̄>è5u= �4è+�2

wIn5u and taking for ū a normalized generalized vector associated
to the largest generalized eigenvalue �. Since 4è+�2

wIn5 is nonsingular, the generalized eigenvalue problem is equivalent to
the standard eigenvalue problem 4è+ In�

2
w5

−14èx̄x̄>è5u= �u, which is of the form

fg>u= �u with f = 4è+ In�
2
w5

−1èx̄1 g =èx̄0

Therefore the rank-one matrix fg> has a single positive eigenvalue g>f /�f � with a normalized eigenvector f /�f � or
−f /�f �, and ū= ±4è+ In�

2
w5

−1èx̄/�4è+ In�
2
w5

−1èx̄�. �

From (A5), we can better understand the effect of the fixed-decision approximation. If we assume momentarily that �2
w

is small with respect to the eigenvalues of è, then 4è+ In�
2
w5

−1è is close to In, so ū is close to x̄/�x̄�. Therefore ū tends
to measure the coordinates of ctrue according to the magnitude of their believed contribution to the objective value given the
current optimal solution x̄. For any value of �2

w , if è is diagonal, the coordinates cj for j ∈ 8i2 x̄i = 09 are not measured.
This analysis suggests that using the approximation (A4) would lead to a measurement policy that is not asymptotically

consistent, in the sense that wrong beliefs would not necessarily be corrected by an infinite sequence of measurements.

Appendix B. Proofs. Below, we give proofs that were omitted from the main text.

B.1. Proof of Lemma 1. If �= 0, C= 8c̄9 and the result is trivially verified. If �> 0, for any fixed x, the inner minimum
minc̃∈C c̃>x is computed by applying the change of variable z=è−1/24c̃− c̄5, which yields minz2 z>z≤�24è1/2z+ c̄5>x, where
c̄>x is fixed. The minimum is attained at z∗ = −�è1/2x for � such that �z∗�2

2 = �2, that is, � = �/
√
x>èx. In terms of c̃,

the optimal solution is c̃ = c̄−�èx/
√
x>èx, hence the value for the inner minimum, c̄>x−�

√
x>èx. �

B.2. Proof of Lemma 2. Using (12), c can be re-expressed as

c =Q0Q
>

0 c̄+Q+c+1 c+ ∼N4Q>

+ c̄1è+50

Then,

max
x∈X

min
c∈C

c>x = max
x∈X

min
c+∈C+

4Q0Q
>

0 c̄+Q+c+5
>x

= max
x∈X

{

c̄>Q0Q
>

0 x+ min
c+∈C+

c>

+4Q
>

+x5
}

= max
x∈X

{

c̄>Q0Q
>

0 x+ 4Q>

+ c̄5
>4Q>

+x5−�
√

4Q>

+x5
>è+Q

>

+x
}

= max
x∈X

{

c̄>4Q0Q
>

0 +Q+Q
>

+5x−�
√

x>Q+è+Q
>

+x
}

1

which reduces to maxx∈X8c̄
>x−�

√
x>èx9 using (12) and Q0Q

>
0 +Q+Q

>
+ = 6Q0 Q+76Q0 Q+7

> =Q>Q = I . �
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B.3. Proof of Theorem 1. Fix u in the interior of U. Define u+ by extending u to ¡U as follows: define t∗ = max8t ≥ 0:
tu/�u� ∈ U9, � = t∗/�u�, u+ = �u ∈ ¡U. Necessarily, � ≥ 1. Essentially, we show that the measurement based on u+

dominates the measurement based on u, so that optimal measurements are on ¡U.
Define

�=
u>èu+�2

w

u>èu+ 4�w/�5
2
1 å=

èuu>è

u>èu+�2
w

0

Note that 1 ≤ �≤ �2. From the update of è after measurements yu = c>u+w or yu+
= c>u+ +w, we deduce the ordering

of the two updated covariance matrices in the cone of the positive semidefinite matrices:

è′

u+ =è−
èu+u

>
+è

u>
+èu+ +�2

w

=è−
�2èuu>è

�26u>èu+ 4�w/�5
27

=è−�å�è−å=è′

u1

meaning (informally) that the residual uncertainty is “smaller” with u+. From the update of c̄ after the observations yu or yu+
,

c̄′

u = c̄+
èu

u>èu+�2
w

4yu − c̄>u51 c̄′

u+ = c̄+
èu+

u>
+èu+ +�2

w

4yu+
− c̄>u51

and from the distribution of the observations,

yu ∼N4u>c̄1 u>èu+�2
w51 yu+

∼N4�u>c̄1 �2u>èu+�2
w51

we deduce the distribution of the updated means,

c̄′

u ∼N4c̄1å51 c̄′

u+
∼N4c̄1�å50

Using the zero mean random vector z∼N401å5, we have

Ɛ
{

v�4c̄
′

u+
1è′

u+
5
}

= Ɛ
{

v�4c̄+
√

�z1è′

u+
5
}

≥ Ɛ
{

v�4c̄+ z1è′

u+
5
}

= Ɛ
{

v�4c̄
′

u1è
′

u+
5
}

1

where the inequality is justified by an extension of Jensen’s inequality, that states that a function g4t5= Ɛ8f 4x0 + tz59 defined
for t ≥ 0 is monotone increasing if f is convex and Ɛ8z9= 0. Since è′

u+
�è′

u, we have

c̄′>

u x−�
√

x>è′

u+
x ≥ c̄′>

u x−�
√

x>è′

ux1

implying v�4c̄
′
u1è

′
u+
5≥ v�4c̄

′
u1è

′
u5 and thus

Ɛ
{

v�4c̄
′

u1è
′

u+
5
}

≥ Ɛ
{

v�4c
′

u1è
′

u5
}

0

Therefore �4u+1 c̄1è5≥�4u1 c̄1è5. Since u was arbitrary, the result follows. �

B.4. Proof of Theorem 2. Let æ denote the space of all measurable vector-valued functions x4 · 52 � 7→�n with values
x4t5 ∈ X, defined for all t ∈ �. Note first that for any u ∈ �, there exists for each t a selection x4t5 (Dontchev and
Rockafellar [22]) of the optimal solution set X4t5 = arg maxx∈X4c̄ + tèdu5

>x such that x4 · 5 ∈ æ is a piecewise constant,
vector-valued function with a finite number of pieces (Ghaffari-Hadigheh and Terlaky [26], Ryzhov and Powell [54]). Thus
we can actually restrict æ to that space of functions. Consider

max
u∈�

�04u1 c̄1è5 = max
u∈�

Ɛt

{

max
x4 · 5∈æ

(

c̄+ t
èu

√

u>èu+�2
w

)>

x4t5

}

− v04c̄1è5

= max
x4 · 5∈æ

max
u∈�

Ɛt

{(

c̄+ t
èu

√

u>èu+�2
w

)>

x4t5

}

− v04c̄1è51

where the interchange between Ɛt and maxx4 · 5∈æ is possible because the optimization problem is written in terms of a
function x4 · 5 that does not explicitly depend on u; see also Rockafellar and Wets [50, Theorem 14.60].

One can check that maxu∈��04u1 c̄1è5≥ 0 by plugging in the constant-valued function x4 · 5= x̄0, where x̄0 ∈X attains
v04c̄1è5: for any u, one obtains Ɛt84c̄+ tèdu5

>x̄09= c̄>x̄0 + Ɛ8t9d>
u èx̄0 = v04c̄1è5.

Assume that we are given an optimal function x̄4 · 5 ∈ æ for the problem. The set of the vectors u ∈ � that attain
maxu∈��04u1 c̄1è5 along with x̄4 · 5 can be expressed by

arg max
u∈�

Ɛ

{(

c̄+ t
èu

√

u>èu+�2
w

)>

x̄4t5

}

= arg max
u∈�

u>

√

u>èu+�2
w

èƐ8tx̄4t591

dropping the constant term Ɛ8c̄>x̄4t59 on the right-hand side.
If èƐ8tx̄4t59= 0, then any u ∈� is optimal. Otherwise, èƐ8tx̄4t59 6= 0, and by Theorem 1,

arg max
u∈�

�04u1 c̄1è5= arg max
u2�u�=1

u>èƐ8tx̄4t59
√
u>Pu

0
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Moreover, using v = P 1/2u, we have

max
u2�u�=1

u>èƐ8tx̄4t59
√
u>Pu

= max
v2�P−1/2v�=1

v>P−1/2èƐ8tx̄4t59

�v�
0

Recall that for any z, here taken to be z= P−1/2èƐ8tx̄4t59,

�z� = max
y∈�

y>z= max
y 6=0

y>z/�y�0

Therefore, an optimal v is given by v∗ = �P−1/2èƐ8tx̄4t59 with � such that �P−1/2v∗� = 1. Then, it follows that u∗ =

P−1/2v = P−1èƐ8tx̄4t59/�P−1èƐ8tx̄4t59� is optimal. Moreover, if u∗ is optimal, then −u∗ is optimal, by the symmetry of
the Gaussian distribution and the expression of du∗ . �

B.5. Proof of Corollary 1. Let f 4x4 · 55 = Ɛt8c̄
>x4t59+ �P−1/2èƐt8tx4t59�9. Since f is convex, optimal solutions are

attained on the extreme points of the feasibility set. Thus without loss of generality, we can assume that x4t5 is a vertex
of X for each t. Let x̄4 · 5 ∈æ be an optimal solution with æ defined as in the proof of Theorem 2, that is, we can restrict
ourselves to the space æ of measurable, piecewise-constant, vector-valued functions x4 · 5 with values x4t5 ∈X for all t and
a finite number of pieces.

First, consider the degenerate case where èƐt8tx̄4t59= 0. Then, f 4x̄4 · 55= Ɛt8c̄
>x̄4t59. Since x̄4t5 is optimal by assump-

tion, and since any solution x̄0 that attains v04c̄1è5 is in arg maxx∈X c̄>x, we can assume without loss of generality that
x̄4t5= x̄0 almost surely, so that Ɛt8c̄

>x̄4t59= c̄>x̄0 = v04c̄1è5. Hence, in that case, any measurement is optimal (in fact, no
new measurement is needed).

Next, consider the nondegenerate case where èƐt8tx̄4t59 6= 0. The relation maxu∈��04c̄1è5= maxx4 · 5∈æ2 x4t5∈X8f 4x4 · 55−

v04c̄1è59 can be checked by comparing the two objectives with u set to P−1èƐ8tx4t59/�P−1èƐ8tx4t59�: one gets

Ɛ

{(

c̄+ t
èū

√

ū>èū+�2
w

)>

x̄4t5

}

− v04c̄1è5= c̄> Ɛ8x̄4t59+ �P−1/2èƐ8tx̄4t59� − v04c̄1è50

At the same time, with èƐt8tx̄4t5 6= 0, the subdifferential of f 4x4 · 55 at x̄4 · 5 is a singleton corresponding to the gradient
of f 4x4 · 55 at x̄4 · 5. The gradient of f 4x4 · 55 with respect to x4t′5 for some fixed t′ is given by

ïx4t′5f 4x4 · 55=�4t′5c̄+�4t′54t′P−1/2è5>
P−1/2èƐ8tx4t59

�P−1/2èƐ8tx4t59�
=�4t′5

[

c̄+ t′
èP−1èƐ8tx4t59

�P−1/2èƐ8tx4t59�

]

0

At x̄4 · 5, we have the implicit definition ū= P−1èƐ8tx̄4t59/�P−1èƐ8tx̄4t59�, so we have

èū

�P 1/2ū�
=

èP−1èƐ8tx̄4t59

�P−1/2èƐ8tx̄4t59�
0

Therefore, the gradient with respect to x4t′5 at x̄4 · 5 can be written as

ïx4t′5f 4x4 · 55
∣

∣

x̄
=�4t′5

[

c̄+ t′
èP−1èƐ8tx̄4t59

�P−1/2èƐ8tx̄4t59�

]

=�4t′5

[

c̄+ t′
èū

�P 1/2ū�

]

0

From the basic variational inequality for minimization (Dontchev and Rockafellar [22, Theorem. 2A.6]), a necessary
condition for attaining a maximum is ïx4t′5f 4x̄4 · 55x̄ ∈NX4x̄4t

′55 for almost every t′, where NX4x̄4t
′55 is the normal cone to

X at x̄4t′5. Since �4t′5 > 0, we can invoke the property that x ∈K iff ax ∈K for a cone K and some positive scalar a, and
deduce that x̄4 · 5 must satisfy

c̄+
tèū

�P 1/2ū�
∈NX4x̄4t551 for almost every t0

Now, note that these conditions are necessary and sufficient for ensuring that

x̄4t5 ∈ arg max
x∈X

(

c̄+
tèū

�P 1/2ū�

)>

x1 for almost every t1

because the latter problem is convex. We have thus verified that (16) fulfills at optimality the necessary conditions of
Theorem 2. �
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B.6. Proof of Lemma 6. Consider first the case G = I. Recall that the boundary of the spectrahedron ì1 = 8U ∈ �n:
trace4U5= 1, U � 09 is the set of rank-one matrices 8uu>2 �u� = 19. Now, representing the objective with a Legendre
transform, we have

min
U∈ì1

x̄>4è−1
+U5−1x̄ = min

U∈ì1

max
y

{

2x̄>y− y>4è−1
+U5y

}

0

Note that: (i) ì1 is a nonempty compact convex set; (ii) Since è−1 � 0, we can confine y to a compact convex set without
loss of generality; (iii) The objective is concave in y and convex in U (in fact, linear in U ). Therefore we can write

min
U∈ì1

x̄>4è−1
+U5−1x̄ = max

y

[

min
U∈ì1

{

x̄>y− y>è−1y− trace4yy>U5
}

]

0

The inner objective being concave in U (in fact, linear in U ), its minimum is attained on the boundary of ì1. Without loss
of Optimality, we can thus assume that U is of the form U = uu> with �u� = 1. Thus − trace4yy>U5= −4u>y52, which is
minimized for u∗ = y/�y�. The overall objective becomes

min
U∈ì1

x̄>4è−1
+U5−1x̄ = max

y

{

2x̄>y− y>4I +è−15y
}

= x̄>4I +è−15−1x̄1

where the maximum is attained for y∗ = 4I +è−15−1x̄. Setting B = 4I +è−15−1, the expression for U ∗ follows immediately:

U ∗
= u∗u∗>

= y∗y∗>
/

y∗>y∗
= Bx̄x̄>B

/

x̄>B>Bx̄0

Consider now the case with a general G� 0. Since 8d ∈�n2 trace4Gdd>5= 19= 8d′ =G−1/2u′2 �u′� = 19, the boundary
of ìG = 8U ∈ �n2 trace4GU5 = 11 U � 09 is the set of rank-one matrices G−1/2uu>G−1/2 with �u� = 1. This leads to the
representation ìG = 8U =G−1/2VG−1/2 2 V ∈ì19. Therefore, the minimization problem over U ∈ìG can be recast as

min
V∈ì1

x̄>4è−1
+G−1/2VG−1/25−1x̄ = min

V∈ì1

x̄>G1/246G1/2è−1G1/2
+V 75−1G1/2x̄0

Using the substitution x̄ 7→ G1/2x̄, and è−1 7→ G1/2è−1G1/2 in the case for G = I, we obtain the optimal solution V ∗ =

Bx̄x̄>B/x̄>B>Bx̄ with B 2= 4I +G1/2è−1G1/25−1G1/2 =G−1/24G−1 +è−15−1, and thus U ∗ =G−1/2V ∗G−1/2. �

B.7. Proof of Lemma 7. If d ∈D, there exists u ∈�n with u>u= 1 such that

d =
u

√

u>èu+�2
w

=
u

√
u>Pu

=
P−1/2P 1/2u

�P 1/2u�
= P−1/2u′1

where u′ = P 1/2u/�P 1/2u� satisfies �u′� = 1, showing (25) → (26). Conversely, if d′ ∈ D, there exists u′ ∈ �n with
u′>u′ = 1 such that

d′
= P−1/2u′

= �P−1/2u′
�v1

where we have defined v = P−1/2u′/�P−1/2u′�; then noting that v>v = 1, we evaluate

6v>èv+�2
w7

−1/2
= 6v>Pv7−1/2

=

[

u′>P−1/2PP−1/2u′

�P−1/2u′�2

]−1/2

= �P−1/2u′
�1

so that d′ = 6v>èv + �2
w7

−1/2v, showing (26) → (25) with u = v = P−1/2u′/�P−1/2u′�. This establishes the equivalence
between (25) and (26).

The well-known identity 8Q1/2z2 �z� = 11 z ∈�n9= 8z ∈�n2 z>Q−1z= 19 applied to Q = P−1, and the relation z>Q−1z=

trace4z>Q−1z5= trace4Q−1zz>5= trace4Pzz>5, establish the equivalence between (26) and (27). �
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