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Abstract

Multi-armed bandit problem is studied when the arms are not always avail-

able. The arms are first assumed to be intermittently available with some

state/action-dependent probabilities. It is proven that no index policy can

attain the maximum expected total discounted reward in every instance of that

problem. The Whittle index policy is derived, and its properties are studied.

Then it is assumed that arms may break down, but repair is an option at

some cost, and the new Whittle index policy is derived. Both problems are

indexable. The proposed index policies cannot be dominated by any other

index policy over all multi-armed bandit problems considered here. Whittle

indices are evaluated for Bernoulli arms with unknown success probabilities.
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1. Introduction

The classical multi-armed bandit problem considers the trade-off between explo-

ration and exploitation. It deals with the situations in which one needs to decide

between the alternative actions of either maximizing immediate reward or acquiring

information that may help increase one’s total reward in the future. In its typical

formulation, decision maker has to choose at each stage one of N -arms of a slot machine

to play in order to maximize expected total discounted reward over an infinite time

horizon. The reward obtained from an arm depends on the state of a stochastic process

that changes only when the arm is played.
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Gittins and Jones [6] showed that each arm is associated with an index that is a

function of the state of the arm, and that the expected total discounted reward over

an infinite-horizon is maximized if an arm with the largest index is played every time.

We call an arm active if it is played and passive otherwise. The proof (see Whittle [25]

and Tsitsiklis [22]) relies on the condition that only active arms change their states.

Due to this limitation, the range of problems where some index policies are guaranteed

to be optimal is small. Nevertheless, the Gittins index policy is important because, by

splitting the optimization problem into N independent smaller subproblems, it reduces

the problem dimension considerably. Moreover, at each stage only one arm changes

its state, and so at most one index has to be re-evaluated. For those reasons, many

authors have generalized the classical multi-armed bandit problem and studied the

performance of index policies designed for them.

In this paper, we study bandit problems where passive and active arms may become

unavailable temporarily or permanently. Therefore, these are not classical multi-armed

bandit problems, and the Gittins index policy is not optimal in general.

For example, in a flexible manufacturing system, a foreman may be unable to

schedule some of the jobs on a day when certain raw materials are absent because

of an unexpected transportation delay. In a construction project, bad weather may

not allow the contractors to perform certain outside jobs that can otherwise be done

simultaneously with other jobs. For a related but different set of scheduling problems

involving servers subject to periods of unavailability, see Glazebrook [7, 8].

Bandit problems are also common in economics. Faced with a trade-off between

exploration and exploitation, rational decision makers are assumed to act optimally

using Gittins index policy. This framework was used to explain, for example, insuffi-

cient learning (Rothschild [21], Banks and Sundaram [1], Brezzi and Lai [4]), matching

and job search (Jovanovic [13] and Miller [17]) and mechanism design (Bergemann

and Valimaki [3]). However, decision makers do not act in the same way when the

alternatives are likely to become unavailable in the future. Intuitively, the more

pessimistic a decision maker is about the future availability of the alternatives, the

more attention he pays to the immediate payoffs. Therefore, it is unlikely to expect

that decision makers will use the Gittins index policy in these situations.

In a variation of the above-mentioned problem, we assume that arms may break

down, but the decision maker has the option to fix them. For example, if an energy

company loses its access to oil due to an unexpected international conflict, is it better

to reestablish the access or to turn to an alternative energy source, e.g., natural gas or

coal? A classical bandit problem with switching costs (see, for example, Jun [14]) is
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a special case; arms break down immediately if they are not engaged, and if a broken

arm is engaged, then the switching cost is incurred to pay for the repair. According to

Bank and Sundaram [2], it is difficult to imagine an economic problem where the agent

can switch between alternatives without incurring a cost. They also showed that, in

the presence of switching costs, there does not exist an index policy that is optimal for

every multi-armed bandit problem.

We generalize the classical multi-armed bandit problem as follows. There are N

arms, and each arm is available with some state/action-dependent probability. At

each stage, the decision maker chooses M arms to play simultaneously and collects

rewards from each played arm. The reward from a particular arm n depends on a

stochastic process Xn = (Xn(t))t≥0, whose state changes only when the arm is played.

The process Xn may represent, for example, the state of the knowledge about the

reward obtainable from arm n.

At every stage, only a subset of the arms is available. We denote by Yn(t) the

availability of arm n at time t; it is one if the arm is available at time t, and zero

otherwise. Unlike Xn, the stochastic process Yn changes even when the arm is not

played. The objective is to find an optimal policy that chooses M arms so as to

maximize the expected total discounted reward collected over the infinite time horizon.

We study the following two problems:

Problem 1. Each arm is intermittently available. Its availability at time t is unob-

servable before time t. The conditional probability that an arm is available at time

t+ 1 given

(i) the state X(t) and its availability Y (t) of the arm, and

(ii) whether or not the arm is played at time t

is known at time t. An arm cannot be played when it is unavailable.

This problem will not be well-defined unless there are at least M available arms to

play at each stage. We can, however, let the decision maker pull fewer than M arms at

a time by introducing sufficient number of arms that are always available and always

give zero reward.

Problem 2. The arms are subject to failure, and the decision maker has the option to

repair a broken arm. Irrespective of whether an arm is played at time t, it may break

down and may not be available at time t+ 1 with some probability that depends on

(i) the state X(t) of the arm at time t, and
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(ii) whether or not the arm is played at time t.

If an arm is broken, the decision maker then has the option to repair it at some cost

(or negative reward) that depends on X(t). Repairing an arm is equivalent to playing

the arm when it is broken. If a broken arm is repaired at time t, then it will become

available at time t + 1 with some conditional probability that depends only on the

state X(t) of the arm at time t. On the other hand, if it is not repaired, then the arm

remains broken at time t+ 1.

We show that there does not exist a single index policy which is optimal for every

instance of either problems. We propose a competitive index policy based on the

Whittle index for restless bandit problems and show that there is not a single index

policy that is better than the Whittle index policy for every instance of either problems.

We evaluate the performance of the Whittle index policy for each type of problem both

analytically and numerically.

The restless bandit problem was introduced by Whittle [26], and it is a generalization

of the classical bandit problem in three directions: (i) the states of passive arms may

change, (ii) rewards may be collected from passive arms, and (iii) M ≥ 1 arms can

be played simultaneously. Therefore, Problems 1 and 2 fall in the class of restless

bandit problems, which are computationally intractable; Papadimitriou and Tsitsiklis

[19] proved that they are PSPACE-hard. As in a typical restless bandit problem, we

assume that rewards may be collected from passive arms and that more than one arm

may be pulled simultaneously.

Whittle [26] introduced the so-called Whittle index to maximize the long-term

average reward and characterized the index as a Lagrange multiplier for a relaxed

conservation constraint, which ensures that on averageM arms are played at each stage.

See Niño-Mora [18] for the discounted case. The Whittle index policy makes sense if

the problem is indexable. Weber and Weiss [23, 24] proved that under indexability, the

Whittle index policy is asymptotically optimal as M and N tend to infinity while M/N

is constant. The verification of indexability is difficult in general. Whittle [26] gave

an example of an unindexable problem. However, indexability can be verified, and

Whittle index policy can be developed analytically, for example, for the dual-speed

restless bandit problem (see Glazebrook and Mitchell [10]) and a special problem with

improving active arms and deteriorating passive arms (see Glazebrook et al. in [11]).

Glazebrook et al. [9] considered a problem in which passive arms are subject to

permanent failure. They modeled it as a restless bandit, showed its indexability, and

developed the corresponding Whittle index policy. Problems 1 and 2 are generalizations

of their problem in that a broken arm is allowed to get back to the system, and that
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both passive and active arms may break down. We prove that Problems 1 and 2 are

indexable and derive the Whittle indices for them. Glazebrook et al.’s [9] and Gittins’

indices turn out to be their special cases.

We also evaluate Whittle index policies numerically. Like the Gittins index, the

Whittle indices for Problems 1 and 2 are also the solutions to suitable optimal stopping

problems. We generalize Katehakis and Veinott’s [15] restart-in formulation of the

Gittins index to Problem 1’s Whittle index. Problem 2’s Whittle index turns out to

be similar to the Gittins index, and we use the original restart-in problem to calculate

the index for Problem 2.

In Section 2, we start by modeling Problems 1 and 2 as restless bandits. In Section 3,

we review Whittle index and indexability. In Sections 4 and 5, we verify the indexability

of Problems 1 and 2 and develop corresponding Whittle indices. We prove that no index

policy can attain the maximum expected total discounted reward over the infinite time

horizon in general in the class of Problems 1 and 2. A generalization of the restart-in

problem to calculate Problem 1’s Whittle index is discussed in Section 6. In Section

7 we introduce a numerical example with a Bernoulli reward process whose success

probability is unknown and evaluate the index policies for Problems 1 and 2. Section

8 concludes with remarks.

2. Model

Using the same notation, X and Y defined in the previous section, the state of arm

n at time t can be denoted by Sn(t) = (Xn(t), Yn(t)). Then (S1(t), . . . , SN (t)) is the

state at time t ≥ 0 of the system with N arms. Suppose that Xn takes values in a

countable state space Xn for every n = 1, . . . , N , and let Sn = Xn × {0, 1}. Each

process (Sn(t))t≥0 is a controlled time-homogeneous Markov chain with (Sn(t))t≥0-

adapted control process

an(t) =

{
1, if arm n is played at time t,

0, otherwise.

For every 1 ≤ n ≤ N , the process (Xn(t))t≥0 evolves according to some transition

probability matrix P (n) = (p(n)
xx′)x,x′∈Xn

, if arm n is available and is played, and does

not change otherwise; that is, for every x, x′ ∈ Xn,

P {Xn(t+ 1) = x′|Xn(t) = x, Yn(t) = y, an(t) = a} =

 p
(n)
xx′ , if y = a = 1,

δxx′ , if y = 0 or a = 0,
(1)

where δxx′ equals one if x = x′ and zero otherwise. Hence, even if arm n is active,

the process Xn does not change if the arm is unavailable. In Problem 2, activating an
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unavailable arm is equivalent to repairing it. In that case, the process Xn does not

change; namely, repairing an arm changes only its availability. In Problem 1, activating

an unavailable arm is not allowed.

The conditional probability that arm n is available at time t+1, given Xn(t), Yn(t),

and an(t), is denoted by

θa
n(x, y) := P {Yn(t+ 1) = 1|Xn(t) = x, Yn(t) = y, an(t) = a} (2)

for every (x, y) ∈ Sn, a ∈ {0, 1}, t ≥ 0, and 1 ≤ n ≤ N . The random variable Yn(t+1)

is conditionally independent of Xn(t+1) and has conditionally a Bernoulli distribution

with success probability θan(t)
n (Xn(t), Yn(t)) given Xn(t), Yn(t), and an(t). Let

Ra
n(x, y) := the expected reward collected from arm n

given that Xn(t) = x, Yn(t) = y, an(t) = a for every (x, y) ∈ Sn, a ∈ {0, 1},

and as in the classical bandit problem, we assume that Ra
n(x, y) is bounded uniformly

in (x, y) ∈ Sn. Let 0 < γ < 1 be a given discount rate. Then the expected discounted

immediate reward at time t equals E
[
γt

∑N
n=1R

an(t)
n (Xn(t), Yn(t))

]
.

The process (S1(t), . . . , SN (t))t≥0 is time-homogeneous and Markov; hence, we con-

sider stationary policies π : S1 × . . .×SN 7→ A :=
{
a ∈ {0, 1}N : a1 + . . .+ aN = M

}
.

Denote for every fixed ((x1, y1), . . . , (xN , yN )) ∈ S1 × . . . × SN , the value under a

stationary policy π by Jπ(((x1, y1), . . . , (xN , yN ))), and it equals

Eπ

[ ∞∑
t=0

γt
N∑

n=1

Ran(t)
n (Xn(t), Yn(t))

∣∣∣∣∣ (Xn(0), Yn(0)) = (xn, yn), n = 1, 2, . . . , N

]
,

where (a1(t), . . . , aN (t)) = π((X1(t), Y1(t)), . . . , (XN (t), YN (t))) for every t ≥ 0. A

policy π∗ ∈ Π is optimal if it maximizes Jπ(((x1, y1), . . . , (xN , yN ))) over π ∈ Π for

every initial state ((x1, y1), . . . , (xN , yN )) in S1 × . . .× SN .

3. The Whittle index and indexability

Let us fix an arm and drop the arm-specific indices from the notation in Section

2; instead, write S(t) = (X(t), Y (t)), t ≥ 0 for its state process on S = X × {0, 1},
controlled by the {0, 1}-valued (S(t))t≥0-adapted process a(t) according to transition

probabilities

pa
(x,y),(x′,y′) := P{(X(t+1), Y (t+1)) = (x′, y′) | (X(t), Y (t)) = (x, y), a(t) = a}, (3)

for every (x, y), (x′, y′) ∈ S and a ∈ {0, 1}, which are determined by the transition

probabilities (pxx′)x,x′∈X of the Markov chain (X(t))t≥0 on the space X and the
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availability probabilities θa(x, y) (a, y ∈ {0, 1}, x ∈ X ), as described in (1) and (2),

respectively. Finally, let Ra(x, y) (a, y ∈ {0, 1}, x ∈ X ) denote the expected reward

collected from the arm, and

{0, 1} ⊇ A(x, y) := the set of actions available in state (x, y) ∈ S. (4)

Recall that A(x, 1) = {0, 1} and A(x, 0) = {0} for every x ∈ X in Problem 1, and

A(x, y) = {0, 1} for every x ∈ X and y ∈ {0, 1} in Problem 2.

Consider the following auxiliary problem. At each time, the decision maker can

either activate the arm or leave it resting. Suppose that the current state of the arm is

(x, y) ∈ S. If 1 ∈ A(x, y) and the arm is activated, then reward R1(x, y) is obtained.

If it is rested, then a passive reward R0(x, y) and a subsidy in the amount of W ∈ R
are obtained. The objective is to maximize the expected total discounted reward.

Whittle [25] called this problem as the W -subsidy problem, which is a variation of the

retirement problem; see, for example, Ross [20, Chapter VII]. The so-called Whittle

index in state (x, y) corresponds by definition to the smallest subsidy amount W for

which it is optimal to rest the arm.

After the Whittle index is calculated for every arm in their current states, the

Whittle index policy is to activate M arms with the largest indices. However, this

policy makes sense only if any arm rested under a subsidy W remains rested under

every subsidy W ′ greater than W . Namely, the set of states at which it is optimal to

rest the arm increases as the value of subsidy W increases. This property is called the

indexability. These concepts were introduced originally by Whittle [26] in the average-

reward case, and in the discounted case they were described by other authors; see, e.g.,

Niño-Mora [18].

For every fixed W ∈ R, the value function V ((x, y),W ), (x, y) ∈ S of the W -subsidy

problem satisfies the dynamic programming equation

V ((x, y),W ) = max
a∈A(x,y)

(LaV )((x, y),W ), (5)

where

(L1V )((x, y),W ) = R1(x, y) + γ
∑

(x′,y′)∈S

p1
(x,y),(x′,y′)V ((x′, y′),W ),

(L0V )((x, y),W ) = W +R0(x, y) + γ
∑

(x′,y′)∈S

p0
(x,y),(x′,y′)V ((x′, y′),W )

(6)

are the maximum expected total discounted rewards if the initial action is to activate

or to rest the arm, respectively, whenever those actions are allowed in state (x, y) ∈ S.
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Let Π(W ) be the subset of S in which it is optimal to rest the arm when the subsidy

is W ; namely,

Π(W ) := {(x, y) ∈ S : A(x, y) = {0}}⋃ {
(x, y) ∈ S : A(x, y) = {0, 1} and L1((x, y),W ) ≤ L0((x, y),W )

}
, W ∈ R. (7)

If the arm is indexable and resting it is optimal for the subsidy amount W , then doing

the same is also optimal whenever the subsidy amount is greater than W .

Definition 1. (Indexability.) An arm is indexable if Π(W ) is increasing in W ; namely,

W2 < W1 =⇒ Π(W2) ⊆ Π(W1). (8)

Definition 2. (Whittle index.) The Whittle index of an indexable arm is defined as

W (x, y) := inf{W ∈ R : (x, y) ∈ Π(W )} in every state (x, y) ∈ S. (9)

Under indexability and whenever the infimum in (9) is attained, the Whittle index

W (x, y) is the smallest subsidy amount W for which both active and passive actions

are optimal in state (x, y) ∈ S.

Definition 3. (Whittle index policy.) Suppose that the arms of a restless bandit

problem are indexable. The Whittle index policy plays M arms with the largest

Whittle-indices.

The W -subsidy problem is one particular instance of Problems 1 and 2. If an index

policy is optimal for every instance of Problems 1 or 2, then it must also be optimal for

every W -subsidy problem. This observation will imply the non-existence of an index

policy which is optimal for every instance of Problems 1 or 2; see Proposition 4 and 7.

4. The Whittle index for Problem 1

This section presents an index policy for Problem 1. We obtain the Whittle index by

studying the W -subsidy problem and prove that no single index policy can be optimal

for every instance of Problem 1.

Because in Problem 1 an unavailable arm cannot be activated, we have

A(x, 0) = {0} and A(x, 1) = {0, 1} for every x ∈ X , (10)

and (7) guarantees that no amount of passive subsidy is enough to change this con-

straint:

(x, 0) ∈ Π(W ) for every x ∈ X , W ∈ R. (11)
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As in Section 3 let us fix an arm and drop the indices. For every subsidy amount

W ∈ R, the value function V ((x, y),W ), (x, y) ∈ S of the W -subsidy problem satisfies

the dynamic programming equation in (5), where (6) becomes

(L1V )((x, 1),W ) = R1(x, 1)

+ γ
∑

x′∈X
pxx′

[
(1− θ1(x, 1))V ((x′, 0),W ) + θ1(x, 1)V ((x′, 1),W )

]
,

(L0V )((x, y),W ) = W +R0(x, y)

+ γ
[(

1− θ0(x, y)
)
V ((x, 0),W ) + θ0(x, y)V ((x, 1),W )

]
for every x ∈ X and y ∈ {0, 1}. Let P1,0 be the probability law induced by the policy

that the arm is active whenever it is available, and it is passive otherwise. Similarly,

let P0,0 be the probability law induced when the arm is always rested. That is, for

every (x, y) ∈ S,

P1,0{X(t+ 1) = x′, Y (t+ 1) = y′|X(t) = x, Y (t) = y}

=

 pxx′
[
θ1(x, 1)

]y′ [
1− θ1(x, 1)

]1−y′

, y = 1

δxx′
[
θ0(x, 0)

]y′ [
1− θ0(x, 0)

]1−y′

, y = 0

 , and

P0,0{X(t+ 1) = x′, Y (t+ 1) = y′|X(t) = x, Y (t) = y}

= δxx′
[
θ0(x, y)

]y′ [
1− θ0(x, y)

]1−y′

.

Let E1,0
x,y[·] and E0,0

x,y[·] be the expectations under P1,0 and P0,0, respectively, given that

X(0) = x and Y (0) = y. Denote by ρ(x, y) the expected total discounted reward from

a passive arm whose current state is (x, y) ∈ S; namely,

ρ(x, y) := E0,0
x,y

[ ∞∑
t=0

γtR0(X(t), Y (t))

]
= E0,0

x,y

[ ∞∑
t=0

γtR0(x, Y (t))

]
. (12)

Let (Ft)t≥0 be the filtration generated by (X(t), Y (t))t≥0, and S be the set of all

P1,0-almost-surely (a.s.) positive stopping times of (Ft)t≥0, and define

S :=
{
τ ∈ S : Y (τ) = 1, P1,0-a.s. on {τ <∞}

}
as the set of positive stopping times at which the arm is available.

The following proposition states the existence of an index policy which is optimal for

the W -subsidy problem, the indexability and the Whittle index for Problem 1. Most

of the proofs are given in the appendix.
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Proposition 1. In the W -subsidy problem, it is optimal to rest an arm in state (x, 1)

(namely, (x, 1) ∈ Π(W )) for some x ∈ X if and only if

W ≥ (1− γ) sup
τ∈S

E1,0
x,1

[∑τ−1
t=0 γ

tRY (t)(X(t), Y (t)) + γτρ(X(τ), 1)
]
− ρ(x, 1)

1− E1,0
x,1

[
(1− γ)

∑τ−1
t=1 γ

t1{Y (t)=0} + γτ
]
=: W (x, 1). (13)

Moreover, the arm is indexable, and its Whittle index W (x, y) in state (x, y) ∈ S equals

−∞ if y = 0 and is given by the righthand side of (13) if y = 1.

The index W (x, y), (x, y) ∈ S generalizes Glazebrook et al.’s [9] index for a problem

where only passive arms may become unavailable and unavailable arms never become

available.

It is easy to check that the Whittle index W (x, 1), x ∈ X coincides with the Gittins

index if θ0(x, y) = θ1(x, y) = 1 and R0(x, y) = 0 for every (x, y) ∈ S and with the

immediate reward R1(x, 1) if θ0(x, y) = θ1(x, y) = R0(x, y) = 0 for every (x, y) ∈ S.

The next proposition shows that, if R0(x, y) = 0 for every (x, y) ∈ S, then W (x, 1)

converges to the same limits as θ0(x, y) = θ1(x, y) ≡ θ , (x, y) ∈ S tend simultaneously

to the corresponding extreme values.

Proposition 2. Suppose that θ0(x, y) = θ1(x, y) = θ and R0(x, y) = 0 for every

(x, y) ∈ S. Then the Whittle index W (x, 1) in (13) converges to the Gittins index as

θ ↗ 1, and to the one-time reward R1(x, 1) as θ ↘ 0, uniformly in x ∈ X .

The next two propositions show that there cannot be a single index policy that is

optimal in every instance of Problem 1. It turns out that, if there exists such an index

policy, then its index must be a strict monotone transformation of the Whittle index

W (·, ·) defined in Proposition 1. Then the non-existence of an index policy which is

optimal in every instance of Problem 1 follows from an example in which the Whittle

index policy is not optimal.

Proposition 3. The index function of every index policy that performs better than

other index policies for every instance of Problem 1 must be a strict monotone trans-

formation of the Whittle index W (·, ·) of Proposition 1.

Proposition 4. There does not exist a single index policy that performs as good as

the Whittle index policy in every instance of Problem 1 and strictly better in at least

one of the instances. Therefore, there is not an index policy optimal in every instance

of Problem 1.
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Proof of Proposition 4. According to Proposition 3, the index function of every

index policy that performs, in every instance of Problem 1, at least as good as the

Whittle index policy is a strictly monotone transformation of the Whittle index;

therefore, the performance of those index policies cannot be strictly better than that

of the Whittle index policy in any given instance of Problem 1. This proves the first

part of Proposition 4. By the same token, if there is an index policy which is optimal

in every instance of Problem 1, then so must the Whittle index policy be. We will now

give a counter-example to the latter.

Consider a case with two arms. Arm 1 is always available, and arm 2 is available

with probability ε ∈ (0, 1). Passive arms do not give rewards and M = 1 arm is played

in each period. The reward from arm 1 changes deterministically under the active

action as in 1 → 100 → 10 → 10 → . . . → 10 → . . . . Let the corresponding states of

arm 1 be x11, x12, x13, . . . . The state x2 of arm 2 never changes and gives a constant

reward of 40 when it is available and activated. Arms 1 and 2 are initially available

in states x11 and x2, respectively. Let ε = 0.01 and γ = 0.7. After obvious choices of

stopping times τ in (13), the Whittle index W1(·, 1) for arm 1 satisfies the bounds

W1(x11, 1) ≥ 1 + γ100
1 + γ

= 41.76, W1(x12, 1) ≥ 100
1

= 100,

W1(x1n, 1) = 10, n ≥ 3,
(14)

and W2(x2, 1) = 40 and W2(x2, 0) = −∞ for arm 2.

According to the Whittle index policy, arm 1 must be pulled when X1 = x11 and

x12, and arm 2—if it is available and arm 1 otherwise—when X1 = x13, x14, . . .. That

is, the optimal policy is to pull arm 1 twice first and later pull arm 2 always if arm 2

is available and arm 1 otherwise. Therefore, the value function U(·, ·) of the Whittle

index policy becomes

U((x11, 1), (x2, 1)) = 1 + γ100 + γ2[10(1− ε) + 40ε] + γ3[10(1− ε) + 40ε] + . . .

≈ 87.8233,

and U((x11, 1), (x2, 0)) = U((x11, 1), (x2, 1)). However, pulling arm 2 initially in the

state ((x11, 1), (x2, 1)) and then executing Whittle index policy gives a better value:

40 + γ[εU((x11, 1), (x2, 1)) + (1− ε)U((x11, 1), (x2, 0))]

≈ 101.4763 > U((x11, 1), (x2, 1)).

Therefore, the Whittle index policy is not always optimal, and there is not an index

policy which is optimal in every instance of Problem 1.
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5. The Whittle index for Problem 2

Unlike as in the previous section, here we assume that the active action is always

available—even when the arm is unavailable. An unavailable arm is regarded as a

broken arm that needs a repair before it can start giving rewards. Activating a broken

arm is equivalent to repairing it. Therefore, −R1
n(x, 0) denotes the repair cost when

arm n is broken in state x ∈ X . If a broken arm is not repaired, then it will remain

unavailable and stay broken until the next stage with probability one. We assume that

passive arms do not give rewards, and that the reward obtained from activating an

available arm is positive as in the following condition.

Condition 1. For every (x, y) ∈ S, and n = 1, . . . , N , suppose that R1
n(x, 1) ≥ 0,

R1
n(x, 0) < 0, R0

n(x, y) = 0, and θ0n(x, 0) = 0.

Let us fix an arm, drop all of the indices identifying the arm, and consider the

W -subsidy problem. In every state (x, y) ∈ S of the arm both the active and passive

actions are available; i.e., A(x, y) = {0, 1} for every (x, y) ∈ S, and the value function

V ((x, y),W ), (x, y) ∈ S, W ∈ R of the W -subsidy problem satisfies (5), where (6)

becomes under Condition 1 that

(L1V )((x, 1),W ) = R1(x, 1)

+ γ
∑

x′∈X
pxx′

[
(1− θ1(x, 1))V ((x′, 0),W ) + θ1(x, 1)V ((x′, 1),W )

]
,

(L1V )((x, 0),W ) = R1(x, 0) + γ
[
(1− θ1(x, 0))V ((x, 0),W ) + θ1(x, 0)V ((x, 1),W )

]
,

(L0V )((x, 1),W ) = W + γ
[
(1− θ0(x, 1))V ((x, 0),W ) + θ0(x, 1)V ((x, 1),W )

]
,

(L0V )((x, 0),W ) = W + γV ((x, 0),W ).

Let P1,1 be the probability law induced by the policy that activates the arm forever

and E1,1 denote the expectation under P1,1. Let ψ(x) be the expected total discounted

reward if the arm is active forever starting in state (x, 1) at time zero; namely,

ψ(x) := E1,1
x,1

[ ∞∑
t=0

γtR1(X(t), Y (t))

]
, x ∈ X .

Condition 2. Suppose ψ(x) ≥ R1(x, 0)/(1− γ) ≡
∑∞

t=0 γ
tR1(x, 0) for every x ∈ X .

Condition 2 is satisfied if (i) the arm never breaks down under the active action; i.e.,

θ1(x, 1) = 1 for every x ∈ X , or (ii) R1(X(t), 0) is constant or non-decreasing almost

surely under the active action.
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Proposition 5. Under Condition 2, activating the arm in state (x, y) ∈ S is optimal

in the W -subsidy problem for Problem 2 if and only if

W ≥ (1− γ) sup
τ∈S

E1,1
x,y

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]

1− E1,1
x,y [γτ ]

=: W (x, y). (15)

The arm is indexable with Whittle index W (x, y) defined by the righthand side of (15).

If active arms do not break down and broken arms cannot be repaired, then Problem

2 reduces to a problem studied by Glazebrook et al. [9] where passive arms do not give

rewards, and the indices coincide.

Problem 2 reduces to the bandit problem with switching costs if θ1(x, 1) = 1 and

θ0(x, 1) = θ0(x, 0) = 0, and −R1(x, 0) is the cost of switching to the arm, currently

idling in state x. Because θ1(x, 1) = 1, Condition 2 is satisfied, and this version of

Problem 2 is indexable. Glazebrook et al. [12] formulated the same problem, slightly

differently from us, as a restless bandit problem where one does not wait for the broken

arm to be fixed before the reward stream is again available: if one plays a broken

arm, then he obtains its immediate reward minus the switching cost, and the arm is

guaranteed to be available in the next period. However, the forms of their and our

Whittle indices are the same. Their numerical studies suggest that the Whittle index

policy is near-optimal for their version of Problem 2.

As in Problem 1, an index policy which is optimal in every instance of Problem 2

does not exist. We show that if there exists one, then its index function must be a

strictly monotone transformation of the Whittle index, and we give an example where

the Whittle index policy is not optimal. The proof of Proposition 6 is very similar to

that of Proposition 3.

Proposition 6. If an index policy is optimal in every instance of Problem 2, then its

index function is a strictly monotone transformation of Whittle index W (·, ·) in (15).

Proposition 7. An index policy optimal in every instance of Problem 2 does not exist.

Proof of Proposition 7. Suppose that γ, arms 1 and 2 are the same as in the proof

for Proposition 4, except that arm 2 does not break down if it is active but it breaks

down as soon as it is passive; if it is repaired, then it becomes available the next period

with probability one (namely, θ12(x2, 1) = θ12(x2, 0) = 1, θ02(x2, 0) = θ02(x2, 0) = 0), and

the repair cost equals R1
2(x2, 0) = 100. The Whittle index of arm 1 still satisfies the
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inequalities in (14) while the Whittle index of arm 2 satisfies W2(x2, 1) ≤ 40, and

W2(x2, 0) = sup
τ∈S

E1,1
x2,0

[∑τ−1
t=0 γ

tR(X(t), Y (t))
]

E1,1
x2,0

[∑τ−1
t=0 γ

t
] ≤ sup

τ∈S
E1,1

x2,0

[
τ−1∑
t=0

γtR(X(t), Y (t))

]

≤ R1
2(x2, 0) + γ40 + γ240 + . . . = −100 +

40γ
1− γ

≤ 10.

Hence, Whittle index policy pulls arm 1 forever because it starts with pulling arm 1 at

time 0, and arm 2 breaks down immediately as a result. Thus, its value function U(·)
satisfies U((x11, 1), (x2, 1)) = 1 + 100γ + 10γ2 + 10γ3 + . . . ≈ 87.3. However, pulling

arm 2 forever gives 40 + 40γ + 40γ2 . . . ≈ 133 > 87.3, and Whittle index policy in (15)

is not optimal, and by Proposition 6 no index policy is optimal in every instance of

Problem 2.

6. The restart-in problem

We have developed the Whittle indices for Problems 1 and 2 in the previous sections.

Here we discuss how to compute the indices in (13) and (15). For this purpose, we

develop the restart-in problem representation of the indices. The restart-in problem

representation of the Gittins index for the classical multi-armed bandit problem was

introduced by Katehakis and Veinott [16]. The index in (15) is similar to the Gittins

index; therefore, we first formulate it as a restart-in problem. We then propose a

generalization of restart-in problem representation for the Whittle index in (13).

6.1. The restart-in problem for the Gittins index

We first review Katehakis and Veinott’s [16] formulation of the Gittin’s index as a

restart-in problem. Consider a classical multi-armed bandit problem where the state of

a fixed arm evolves according to a Markov chain S = (S(t))t≥0 on some countable state

space S with transition probability matrix P = (pss′)s,s′∈S under the active action,

and let R(s) be the one-time reward obtained if the arm is activated in state s ∈ S.

Katehakis and Veinott [16] showed that the Gittins index of the arm in state s̃ ∈ S
equals (1− γ)ν(s̃)

s̃ with

ν
(s̃)
s̃ = sup

τ>0

E
[∑τ−1

t=0 γ
tR(S(t))

∣∣S(0) = s̃
]

(1− γ)E
[∑τ−1

t=0 γ
t
] = sup

τ>0

E
[∑τ−1

t=0 γ
tR(S(t))

∣∣S(0) = s̃
]

E [1− γτ ]
, (16)

where the suprema are taken over strictly positive stopping times of the state process

S, and (ν(s̃)
s )s∈S is the value function of the so-called restart-in-state-s̃ problem. In a
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restart-in-state-s̃ problem, the state process S evolves according to transition proba-

bility matrix P and a reward is collected in each state until every time we decide to

restart the process S in state s̃ and then continue to collect the rewards afterwards. The

objective is to choose the restart times so as to maximize the expected total discounted

reward over an infinite time horizon, and the value function (ν(s̃)
s )s∈S of this Markov

decision process is easily shown to satisfy the optimality equations

ν(s̃)
s = max

{
R(s) + γ

∑
s′∈S

pss′ν
(s̃)
s′ , R(s̃) + γ

∑
s′∈S

ps̃s′ν
(s̃)
s′

}
, s ∈ S. (17)

The Gittins index (1 − γ)ν(s̃)
s̃ for every fixed state s̃ ∈ S is obtained after solving |S|

equations in (17) simultaneously for (ν(s̃)
s )s∈S , for example, by applying the value-

iteration algorithm to (17). We will now characterize the Whittle indices in (13) and

(15) of a potentially unavailable arm in terms of the value function of a restart-in

problem.

6.2. The representation of the Whittle index of Problem 2 in terms of

restart-in problems

Because the Whittle index W (x, y) in (15) and Gittins index in (16) are similar,

we can use the restart-in problem in (17) associated with the Gittins index. Let

(X,Y ) be the state process of a fixed arm on the state space S as described in Section

5. Then, for every fixed state (x̃, ỹ) ∈ S, the Whittle index W (x̃, ỹ) in (15) equals

(1 − γ)ν(x̃,ỹ)
x̃,ỹ , where (ν(x̃,ỹ)

x,y )(x,y)∈S is the value function of the restart-in-state-(x̃, ỹ)

problem for the process (X,Y ) under probability measure P1,1 (namely, the arm is

always activated—both when it is available and when it is unavailable) and satisfies

the optimality equations

ν(x̃,ỹ)
x,y = max

{
R1(x, y) + γ

∑
x′∈X

pxx′

[
(1− θ1(x, y))ν(x̃,ỹ)

x′,0 + θ1(x, y)ν(x̃,ỹ)
x′,1

]
,

R1(x̃, ỹ) + γ
∑

x′∈X
px̃x′

[
(1− θ1(x̃, ỹ))ν(x̃,ỹ)

x′,0 + θ1(x̃, ỹ)ν(x̃,ỹ)
x′,1

]}
, ∀(x, y) ∈ S. (18)

6.3. The representation of the Whittle index of Problem 1 in terms of

restart-in problems

Let now (X,Y ) be the state process of a fixed arm on the state space S as described

in Section 4. For every fixed x̃ ∈ X , recall from Proposition 1 that the Whittle index

W (x̃, 0) in state (x̃, 0) ∈ S equals −∞, and W (x̃, 1) in state (x̃, 1) ∈ S is given by the
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expression in (13). In Proposition 8 below, we show that W (x̃, 1) = (1 − γ)ν(x̃,1)
(x̃,1) if

(ν(x̃,1)
x,y )(x,y)∈S is the solution of the equations

ν
(x̃,1)
x,1 = max

{
(Lν(x̃,1)

• )x,1, (Lν
(x̃,1)
• )x̃,1

}
, (19)

ν
(x̃,1)
x,0 = (1− γ)

[
ν

(x̃,1)
x̃,1 − ρ(x, 1)

]
+R0(x, 0) + γ

[
(1− θ0(x, 0))ν(x̃,1)

x,0 + θ0(x, 0)ν(x̃,1)
x,1

]
(20)

where ρ(·, ·) and (Lw•)x,1 for any w : X × {1} 7→ R are defined by (12) and by

R1(x, 1)− ρ(x, 1) + γ
∑

x′∈X
pxx′ρ(x′, 1)

+ γ
∑

x′∈X
pxx′

[
(1− θ1(x, 1))w(x̃,1)

x′,0 + θ1(x, 1)w(x̃,1)
x′,1

]
,

respectively, for every x ∈ X . If we substitute ν(x̃,1)
x′,0 , x′ ∈ X from (20) into (19), then

ν
(x̃,1)
x,1 = max

{
R(x) + γ

∑
x′∈X

p
(x̃)
xx′ν

(x̃,1)
x′,1 , R(x̃) + γ

∑
x′∈X

p
(x̃)
x̃x′ν

(x̃,1)
x′,1

}
, ∀x ∈ X , (21)

where

p
(x̃)
xx′ :=


pxx′qxx′ , if x′ ∈ X \ {x̃} ,

pxx̃qxx̃ +
∑

x′′∈X
pxx′′ q̃xx′′ , if x′ = x̃,

(22)



R(x) := R1(x, 1)− ρ(x, 1) + γ
∑

x′∈X
pxx′

[
θ1(x, 1)− γ(1− θ0(x, 0))

1− γ(1− θ0(x, 0))
ρ(x′, 1)

+
1− θ1(x, 1)

1− γ(1− θ0(x, 0))
R0(x′, 0)

]
qxx′ := θ1(x, 1) + (1− θ1(x, 1))

γθ0(x′, 1)
1− γ(1− θ0(x′, 0))

q̃xx′ := (1− θ1(x, 1))
1− γ

1− γ(1− θ0(x′, 0))
for every x, x′ ∈ X


. (23)

Let (X̃(t))t≥0 be a new Markov chain on the state space X with one-step transition

probabilities (p(x̃)
xx′)x,x′∈X in (22); note that qxx′ + q̃xx′ = 1, and

∑
x′∈X p

(x̃)
xx′ = 1. Then

(21) shows that (ν(x̃,1)
x,1 )x∈X is the value function of the restart-in-state-x̃ problem for

the Markov chain X̃ with running-reward function (R(x))x∈X . Indeed, because this is a

discounted Markov decision process problem with a finite number of actions (“continue”

or “restart”) and a bounded running-reward function on a countable state space, the

function (ν(x̃,1)
x,1 )x∈X is the unique solution of the equations in (21) and is the uniform
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limit of a sequence of functions obtained successively by applying the value-iteration

algorithm to any initial bounded function defined on the state space; see Katehakis

and Veinott [16], Ross [20, Chapter II].

Proposition 8. For every fixed x̃ ∈ X , let (ν(x̃,1)
x,y )x∈X ,y∈{0,1} be the unique solution

of (19) and (20), equivalently, (21). Then for Problem 1 the Whittle index W (x̃, 1) of

the arm (X,Y ) in state (x̃, 1) ∈ S equals (1− γ)ν(x̃,1)
x̃,1 ; namely,

ν
(x̃,1)
x̃,1 =

W (x̃, 1)
1− γ

≡ sup
τ∈S

E1,0
x,1

[∑τ−1
t=0 γ

tRY (t)(X(t), Y (t)) + γτρ(X(τ), 1)
]
− ρ(x, 1)

1− E1,0
x,1

[
(1− γ)

∑τ−1
t=1 γ

t1{Y (t)=0} + γτ
] .

Remark 1. Suppose that R0(x, y) = 0, θ1(x, 1) = 1 for every x ∈ X , y ∈ {0, 1} as in

the classical multi-armed bandit problem. Then (23) and (22) become R(x) = R1(x, 1),

qxx′ = 1− q̃xx′ = 1, and p(x̃)
xx′ = pxx′ for every x, x′, x̃ ∈ X , and (19) and (21) reduce to

ν
(x̃,1)
x,1 = max

{
R1(x, 1) + γ

∑
x′∈X

pxx′ν
(x̃,1)
x′,1 , R

1(x̃, 1) + γ
∑

x′∈X
px̃x′ν

(x̃,1)
x′,1

}
, ∀x ∈ X ,

(24)

which is the restart-in-state-x̃ problem uniquely solved by (ν(x̃,1)
x,1 )x∈X in the Gittins

index (1− γ)ν(x̃,1)
x̃,1 of the arm in state (x̃, 1), as shown by Katehakis and Veinott [16].

Thus, the problem in (21) is the natural generalization of that in (24) from an arm

that is always available to an arm that is intermittently available as in the description

of Problem 1.

7. Numerical example

We evaluate the performance of the Whittle index policies defined by (13) and (15)

for Problems 1 and 2, respectively, through an example in which the reward of each

active arm is a Bernoulli random variable with some unknown success probability.

The success probability of arm n is a random variable λn, having a beta posterior

distribution with parameters a and b, which depend on the prior distribution at time

0 and the number of successes in the previous trials with the same arm; namely,

P {λn ∈ dr | a, b} =
Γ(a+ b)
Γ(a)Γ(b)

ra−1(1− r)b−1dr, r ∈ (0, 1).

More precisely, if the prior distribution of λn is beta with parameters (a, b), then

after c successes and d failures in the plays so far with this arm, the posterior probability

distribution of λn is also beta with parameters (a + c, b + d). Thus, the parameters
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Xn(t) of the posterior beta distribution of λn after t plays is a Markov chain with

one-step transition probabilities

p(a,b),(a+1,b) =
a

a+ b
, p(a,b),(a,b+1) =

b

a+ b
, a, b > 0.

Let Yn(t) be the indicator of whether the arm is available at time t, and (Xn, Yn) =

(Xn(t), Yn(t))t≥0 be a Markov process as in the model of Section 2. The conditional

expected reward from active arm n at time t given Xn(t) = (a, b) and Yn(t) = 1 is

a/(a + b). Finally, let −R1
n((a, b), 0) = Cn > 0 be the constant repair cost for arm n

in Problem 2.

We calculate Whittle indices by solving the Bellman equations for the restart-in

problem defined in Section 6. In a classical bandit problem with two Bernoulli arms,

Katehakis and Derman [15] calculated Gittins index for each arm after truncating the

state space of X to

ZL =
{
(a, b) ∈ N2 : a+ b ≤ L

}
for some fixed integer L > 0. (25)

Similarly, we only consider states s = (x, y) where x = (a, b) ∈ ZL and y ∈ {0, 1}.
Katehakis and Derman [15] proved that as L increases, their approximation converges

to the value of the Gittins index. It is easy to prove that the same result holds in our

settings.

We now evaluate the Whittle index policies for Problems 1 and 2 and compare them

to other index policies based on Monte Carlo simulations with 1, 000, 000 samples. See

Dayanik et al. [5] for more numerical results and comparisons to the optimal policies.

7.1. Numerical results for Problem 1

We compare the value function of the Whittle index policy with that of the Gittins

index policy defined below.

Definition 4. Gittins index policy chooses M available arms with the largest Gittins

indices, and ties are broken randomly. Gittins and Whittle indices coincide when θ = 1.

We compared Whittle and Gittins index policies in three cases shown in Table 1, where

M arms have θ = 1 and every time M of N arms are played. The parameters of the

initial beta distribution of the reward from each arm is (a, b) = (1, 1). Whittle index

policy outperforms Gittins index policy in most examples. Gittins index policy does

not use the likelihood of each arm’s future availability, but Whittle index policy does.

Gittins index policy should still give tight lower bounds because it is optimal when

each arm is always available.
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7.2. Numerical results for Problem 2

Problem 2 will be more realistic if the controller has the option to retire, because

fixing some of the broken arms may not be worthwhile. We introduce M dummy arms

(of type 0), which are initially broken and have zero repair costs, and they always break

down immediately after a repair (i.e., θ1(x, 0) = 0). Their Whittle indices are always

zero. Choosing one of those arms is equivalent to retiring (i.e., collecting zero reward

from) one of the original arms. The retirement option can be added to Problem 2 in

this way. We compare the Whittle index policy with Policies 1 and 2 defined below.

(i) Policy 1 chooses up to M available arms from those with the largest Gittins

indices. Every broken arm is retired permanently.

(ii) Policy 2 chooses M arms with the largest Gittins indices regardless of availability.

The Gittins index is calculated regardless of the value of the breakdown probability or

repair cost. Policy 1 is pessimistic while Policy 2 is optimistic about repairing arms.

Table 2 compares the performances of the Whittle index policy and Policies 1 and 2

when M = 1, the parameters of the beta prior distribution of each arm is (a, b) = (1, 1),

each arm is initially available (i.e., Y (0) = 1), and the probability that an arm is

available does not depend on the state of X or whether or not it is active; namely,

θ1n(x, 1) = θ0n(x, 1) = θn(1), θ1n(x, 0) = θn(0), θ0n(x, 0) = 0 for every x ∈ X and

n = 1, . . . , N for some θn = (θn(0), θn(1)).

We expect Policies 1 and 2 to work well because they are optimal if arms never break

down. However, they behave oppositely when all the arms are unavailable; Policy 1

does well when Policy 2 does not, and vice versa. As observed from Table 2, the Whittle

index policy handles the trade-off between repairing and retiring arms effectively.

8. Conclusion

We have studied an important extension of classical multi-armed bandit problem,

in which arms may become intermittently unavailable, or they may break down, and

repair is an option at some cost. Bandit problems with switching costs can be handled

with this extension.

We showed that multi-armed bandit problems with availability constraints consid-

ered here do not admit an index policy which is optimal in every instance of the

problem. However, the Whittle index policies we derived for each problem cannot be

outperformed uniformly by any other index policy and are optimal for the classical

bandit and the W -subsidy problems. Moreover, their index policies converge to the
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Gittins index as the probability of availability approaches to one and to the immediate

reward as it approaches to zero.

The Whittle indices can be computed by the value-iteration algorithm applied to a

suitable restart-in problem reformulation. Finally, the numerical results suggest that

the Whittle index policies perform well in general.
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Appendix A. Proofs

A.1. Proof of Proposition 1

Consider the W -subsidy problem with fixed W ∈ R. We show that if the process

(X,Y ) enters a state (x, 1) ∈ S where the passive action is optimal, then the passive

action remains optimal at every future stage.

Suppose that (X(0), Y (0)) = (x, 1) for some (x, 1) ∈ Π(W ), and the passive action is

initially optimal. Then the state of X does not change, and the passive action remains

optimal as long as the arm is available. However, if the arm becomes unavailable

one day (i.e., (X,Y ) enters (x, 0)), then the passive action is still optimal by (11).

When the arm becomes available again, the next state will become (x, 1), and the

passive action remains optimal. Consequently, once the process (X,Y ) enters the state

(x, 1) ∈ Π(W ), the arm must be rested forever.

Thus, the W-subsidy problem reduces to an optimal stopping problem, where the

optimal time to switch, while the arm is available, to the passive action has to be

found. For every (Ft)t≥0-stopping time τ such that Y (τ) = 1 P1,0-a.s., we consider

the following strategy: activate the arm whenever it is available (and leave it rested

otherwise) until time τ − 1, and never activate it again at and after time τ . The

corresponding expected total discounted reward is

E1,0
x,1

[
τ−1∑
t=0

γt
(
RY (t)(X(t), Y (t)) +W1{Y (t)=0}

)
+

∞∑
t=τ

γtW + γτρ(X(τ), Y (τ))

]
.

On the other hand, immediate stopping in state (x, 1) gives
∑∞

t=0 γ
tW + ρ(x, 1) =

W/(1 − γ) + ρ(x, 1). Therefore, (x, 1) ∈ Π(W ) if and only if for every τ ∈ S the
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quantity W/(1 − γ) + ρ(x, 1) is greater or equal to the displayed expectation, which

can be rewritten as

E1,0
x,1

[
τ−1∑
t=0

γtRY (t)(X(t), Y (t)) + γτρ(X(τ), Y (τ))

]
+WE1,0

x,1

[
τ−1∑
t=1

γt1{Y (t)=0} +
γτ

1− γ

]
,

and some algebra gives

W ≥ (1− γ)
E1,0

x,1

[∑τ−1
t=0 γ

tRY (t)(X(t), Y (t)) + γτρ(X(τ), Y (τ))
]
− ρ(x, 1)

1− E1,0
x,1

[
(1− γ)

∑τ−1
t=1 γ

t1{Y (t)=0} + γτ
] , ∀τ ∈ S .

Thus, (x, 1) ∈ Π(W ) if and only if (13) holds.

If the arm is unavailable, then the Whittle index follows from its definition and (11).

Suppose now that the arm is available. By the first part, (x, 1) ∈ Π(W ) if and only if

(13) is satisfied. Then {(x, 1) ∈ S : (x, 1) ∈ Π(W1)} ⊇ {(x, 1) ∈ S : (x, 1) ∈ Π(W2)}
if W1 > W2, and (11) implies that Π(W1) ⊇ Π(W2) whenever W1 > W2. Therefore,

the arm is indexable, and W (x, 1) ≡ inf{W : (x, 1) ∈ Π(W )} in (13) gives the Whittle

index.

A.2. Proof of Proposition 2

In order to emphasize the dependence of W and P1,0 on θ ∈ [0, 1], we replace them

with Wθ and Pθ, respectively. Then Wθ(x, 1) = (1− γ) supτ∈S Γ(θ, τ, x), where

Γ(θ, τ, x) :=
Eθ

x,1

[∑τ−1
t=0 γ

tR1(X(t), 1)1{Y (t)=1}

]
[1− γ(1− θ)]Eθ

x,1 [1− γτ ]
, ∀θ ∈ [0, 1], τ ∈ S , x ∈ X .

The Gittins index corresponds to M(x) = W1(x, 1) ≡ (1− γ) supτ∈S Γ(1, τ, x). Let R̄

be a finite constant such that |R(x, 1)| < R̄ for every x ∈ X .

We first prove the convergence to the immediate reward as θ ↘ 0. Because

immediate stopping gives R1(x, 1), we have Wθ(x, 1) ≥ R(x, 1). Note Wθ(x, 1) is

less than or equal to

(1− γ)R1(x, 1) + (1− γ)R̄Eθ
x,1

[∑∞
t=1 γ

t1{Y (t)=1}
]

[1− γ(1− θ)]Eθ
x,1(1− γτ )

=
(1− γ)R1(x, 1) + γR̄θ

[1− γ(1− θ)]Eθ
x,1(1− γτ )

.

Suppose first that R1(x, 1) ≥ 0. Let K = min{t ≥ 1; Y (t) = 1} be the first

time in the future that the arm is available. Then Eθ
x,1γ

K =
∑∞

t=1 γ
t(1 − θ)t−1θ =

γθ/[1− γ(1− θ)]. Because τ ≥ K a.s. for every τ ∈ S , we obtain

0 ≤Wθ(x, 1)−R1(x, 1) ≤ (1− γ)R1(x, 1) + γR̄θ

[1− γ(1− θ)]Eθ
x,1(1− γK)

−R1(x, 1) =
γR̄θ

1− γ
.
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Suppose now that R1(x, 1) < 0. For every 0 ≤ θ < (1 − γ)/γ, we have (1 −
γ)R1(x, 1) + γR̄θ ≤ −(1− γ)R̄+ γR̄θ < 0, and

0 ≤Wθ(x, 1)−R1(x, 1)

≤ (1− γ)R1(x, 1) + γR̄θ

[1− γ(1− θ)] supτ∈S Eθ
x,1(1− γτ )

−R1(x, 1) =
γR̄θ

1− γ(1− θ)
.

Thus, for 0 ≤ θ < (1− γ)/γ we have supx∈X |Wθ(x, 1)−R1(x, 1)| ≤ γR̄θ
1−γ(1−θ)

θ↓0−−→ 0.

To show the convergence of Wθ(x, 1) to the Gittins index as θ ↗ 1 uniformly in

x ∈ X , we will need the following lemma.

Lemma 1. For some function B : (0, 1) 7→ R we have supτ∈S , x∈X |Γ(1, τ, x)− Γ(θ, τ, x)| ≤
B(θ) for every θ ∈ (0, 1), and that B(θ) → 0 as θ → 1.

Proof. For θ ∈ (0, 1), τ ∈ S , x ∈ X , we have |Γ(1, τ, x)− Γ(θ, τ, x)| less than or

equal to∣∣∣E1
x,1

[∑τ−1
t=0 γ

tR1(X(t), 1)
]
− Eθ

x,1

[∑τ−1
t=0 γ

tR1(X(t), 1)1{Y (t)=1}

]∣∣∣
1− γ

+
R̄

1− γ

∣∣∣∣∣ 1
1− E1

x,1 [γτ ]
− 1

[1− γ(1− θ)]Eθ
x,1 [1− γτ ]

∣∣∣∣∣ .
It is now sufficient to prove the existence of functions B1(θ)

θ↑1−−→ 0 and B2(θ)
θ↑1−−→ 0

such that∣∣∣∣∣E1
x,1

[
τ−1∑
t=0

γtR1(X(t), 1)

]
− Eθ

x,1

[
τ−1∑
t=0

γtR1(X(t), 1)1{Y (t)=1}

]∣∣∣∣∣ ≤ B1(θ), (26)∣∣∣∣∣ 1
1− E1

x,1 [γτ ]
− 1

[1− γ(1− θ)]Eθ
x,1 [1− γτ ]

∣∣∣∣∣ ≤ B2(θ). (27)

Let L be the first time the arm is unavailable. For every l ≥ 1, the joint con-

ditional Pθ-distribution of {(X(t), Y (t)); 0 ≤ t ≤ l − 1} given L = l is the same as

the joint unconditional P1-distribution of {(X(t), Y (t)); 0 ≤ t ≤ l − 1}, and we have

Pθ {L = l} = θl−1(1− θ), l ≥ 1 and Eθ
x,1

[
γL

]
= γ(1− θ)/(1− γθ) < (1− θ)γ/(1− γ).

The inequality in (26) holds with B1(θ) := (1 − θ)2γR̄/(1 − γ)2 because the lefthand

side is less than or equal to

∞∑
l=1

Pθ
x,1 {L = l}

∣∣∣∣∣E1
x,1

[
τ−1∑
t=0

γtR1(X(t), 1)

]
− Eθ

x,1

[
τ−1∑
t=0

γtR1(X(t), 1)1{Y (t)=1}

∣∣∣∣∣L = l

]∣∣∣∣∣ ,
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where for every l ≥ 1, the absolute difference is less than or equal to

∣∣∣E1
x,1

[ l−1∑
t=0

γtR1(X(t), 1)1{τ>l−1}

]
−Eθ

x,1

[ l−1∑
t=0

γtR1(X(t), 1)1{Y (t)=1}1{τ>l−1}

∣∣∣L = l
]∣∣∣

+
∣∣∣E1

x,1

[ τ−1∑
t=l

γtR1(X(t), 1)1{τ>l−1}

]
−Eθ

x,1

[ τ−1∑
t=l

γtR1(X(t), 1)1{Y (t)=1}1{τ>l−1}

∣∣∣L = l
]∣∣∣

=
∣∣∣E1

x,1

[ τ−1∑
t=l

γtR1(X(t), 1)1{τ>l−1}

]
−Eθ

x,1

[ τ−1∑
t=l

γtR1(X(t), 1)1{Y (t)=1}1{τ>l−1}

∣∣∣L = l
]∣∣∣,

which is less than 2R̄
∑∞

t=l γ
t; therefore, the left-hand side of (26) is less than or

equal to
∑∞

l=1 Pθ
x,1 {L = l}

∑∞
t=l γ

t2R̄ = 2R̄
1−γ Eθ

x,1

[
γL

]
= (1 − θ) 2γR̄

(1−γ)2 ≡ B1(θ). The

inequality in (27) holds with B2(θ) := γ(1− γ)2(1− θ)/[1− γ(1− θ)]
θ↑1−−→ 0 because∣∣∣∣∣ 1

1− E1
x,1 [γτ ]

− 1
[1− γ(1− θ)]Eθ

x,1 [1− γτ ]

∣∣∣∣∣
=

∣∣[1− γ(1− θ)]Eθ
x,1 [1− γτ ]−

(
1− E1

x,1 [γτ ]
)∣∣(

1− E1
x,1 [γτ ]

)
[1− γ(1− θ)]Eθ

x,1 [1− γτ ]

≤
∣∣E1

x,1 [γτ ]− Eθ
x,1 [γτ ]

∣∣ + γ(1− θ)Eθ
x,1 [1− γτ ](

1− E1
x,1 [γτ ]

)
[1− γ(1− θ)]Eθ

x,1 [1− γτ ]
≤

∣∣E1
x,1 [γτ ]− Eθ

x,1 [γτ ]
∣∣ + γ(1− θ)

[1− γ(1− θ)](1− γ)2
,

and
∣∣E1

x,1 [γτ ]− Eθ
x,1 [γτ ]

∣∣ ≤ ∑∞
l=1 Pθ

x,1 {L = l}
∣∣E1

x,1 [γτ ]− Eθ
x,1 [γτ |L = l]

∣∣ equals

∞∑
l=1

Pθ
x,1 {L = l}

∣∣E1
x,1

[
γτ1{τ>l−1}

]
− Eθ

x,1

[
γτ1{τ>l−1}|L = l

]∣∣
≤

∞∑
l=1

Pθ
x,1 {L = l}

∞∑
t=l

γt =
1

1− γ
Eθ

x,1

[
γL

]
< (1− θ)

γ

(1− γ)2
.

Finally, Lemma 1 follows with B(θ) := B1(θ)/(1− γ) +B2(θ)R̄/(1− γ).

Now thanks to Lemma 1, we have supx∈X |Wθ(x, 1)−M(x)| equals

sup
x∈X

∣∣∣∣∣ sup
τ∈S

Γ(θ, τ, x)− sup
τ∈S

Γ(1, τ, x)

∣∣∣∣∣ ≤ sup
τ∈S , x∈X

|Γ(θ, τ, x)− Γ(1, τ, x)|

≤ B(θ)
θ↓0−−→ 0.

A.3. Proof of Proposition 3

Suppose that there are two arms. Arm 1 follows a stochastic process (X(t), Y (t))t≥0

as in Section 2, and arm 2 is always available and gives some constant reward a. Let
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(x1, 1) and (x2, 1) be the current states of arms 1 and 2, respectively. Then W (x2, 1) =

(1− γ) sup
τ∈S

E1,0
x2,1

[∑τ−1
t=0 γ

tR1(X(t), 1)1{Y (t)=1}

]
1− E1,0

x2,1

[∑τ−1
t=1 (1− γ)γt1{Y (t)=0} + γτ

] = sup
τ∈S

E1,0
x2,1

[∑τ−1
t=0 γ

ta
]

E1,0
x2,1

[∑τ−1
t=0 γ

t
] = a.

By Proposition 1 resting arm 1 is optimal if and only if W (x1, 1) ≤ a ≡ W (x2, 1).

If there is an index policy which is optimal for every instance of Problem 1, then it

must also be optimal for the above problem; therefore, an optimal index policy’s index

function must be a strictly monotone transformation of the Whittle index W (·, ·).

A.4. Proof of Proposition 5

We prove the indexability and obtain Whittle index under Condition 1. We consider

cases W < R1(x, 0) and W ≥ R1(x, 0) separately after the following lemmas.

Lemma 2. For every x ∈ X and W ∈ R, if (x, 0) ∈ Π(W ), then V ((x, 0),W ) =

W/(1− γ), which is obtained by taking the passive action all the time.

Proof. The states of X and Y do not change under passive action. If (x, 0) ∈ Π(W ),

then the passive action remains optimal forever. Consequently, the expected total

discounted reward starting in (x, 0) becomes V ((x, 0),W ) =
∑∞

t=0 γ
tW = W/(1− γ).

Lemma 3. For every x ∈ X and W ∈ R, if (x, 1) ∈ Π(W ), then the stochastic process

(X,Y ) starting in (x, 1) visits only (x, 1) and/or (x, 0) under the optimal policy, and

V ((x, 1),W ) = max

{
E0,1

x,1

[ ∞∑
t=0

γt
{
W1{Y (t)=1} +R1(x, 0)1{Y (t)=0}

}]
,
W

1− γ

}
, (28)

where P0,1 is the probability law induced by the policy that activates the arm as long as

it is unavailable and leaves it rested otherwise.

Proof. The state of process X does not change under the passive action or if the arm

is unavailable. Therefore, at the next time the arm becomes available, the process X

is in state x. Because we assume that (x, 1) ∈ Π(W ), the passive action must be taken

whenever the arm is available. Therefore, the process (X,Y ) can visit only the states

(x, 0) and (x, 1). The optimal policy must be one of the following two: either that

the arm always remains passive or that the arm remains passive in state (x, 1), but is

activated in state (x, 0). Their values are W/(1− γ) by Lemma 2 and the expectation

in (28), respectively.

Lemma 4. If W < R1(x, 0), and Condition 2 holds, then (x, y) /∈ Π(W ) for every

y ∈ {0, 1}; therefore, Π(W ) = ∅.
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Proof. Suppose that (x, 0) ∈ Π(W ) for some x ∈ X . However, a lower bound on

V ((x, 0),W ) can be obtained by considering the policy under which the arm is active

at (x, 0) and passive otherwise. Because W < R1(x, 0), this policy gives V ((x, 0),W ) >

W/(1− γ), which contradicts with (x, 0) ∈ Π(W ) by Lemma 2 and implies

(x, 0) /∈ Π(W ), x ∈ X . (29)

Suppose now (x, 1) ∈ Π(W ) for some x ∈ X . Then, by Lemma 3 and (29), we obtain

V ((x, 1),W ) = E0,1
x,1

[∑∞
t=0 γ

t
{
W1{Y (t)=1} +R1(x, 0)1{Y (t)=0}

}]
< R1(x, 0)/(1 − γ).

However, this contradicts with the lower bound obtained by applying the policy under

which the arm is always active; namely, V ((x, 1),W ) = E1,1
x,1

[∑∞
t=0 γ

tR1(X(t), Y (t))
]
≥

R1(x, 0)/(1−γ), where the last inequality holds under Condition 2. Therefore, (x, 1) /∈
Π(W ), x ∈ X .

Lemma 5. Suppose that W ≥ R1(x, 0). Then (x, y) ∈ Π(W ) if and only if W ≥
(1− γ) E1,1

x,y

[∑τ−1
t=0 γ

tR1(X(t), Y (t))
]
/(1− E1,1

x,y [γτ ]) for every τ ∈ S .

Proof. We show that in the W -subsidy problem, once the passive action is optimal,

it remains optimal thereafter. This follows for y = 0 from Lemma 2.

Suppose (x, 1) ∈ Π(W ) for some x ∈ X . By Lemma 3, starting at (x, 1) under the

optimal policy, only (x, 0) and (x, 1) will be visited by (X,Y ), and (28) holds. Since

W ≥ R1(x, 0), in (28) we have E0,1
x,1

[∑∞
t=0 γ

t
{
W1{Y (t)=1} +R1(x, 0)1{Y (t)=0}

}]
≤

W/(1− γ); thus, V ((x, 1),W ) = W/(1− γ), and passive action is always optimal.

As in the proof of Proposition 1, the W -subsidy problem now reduces to an optimal

stopping problem. The optimal strategy must choose the active action until some

stopping time τ and the passive action at and after time τ . Differently from Problem

1, it may now be optimal to stop when the arm is unavailable. If we switch from the

active action to the passive action at some stopping time τ , then the expected total

discounted reward will be E1,1
x,y

[∑τ−1
t=0 R

1(X(t), Y (t)) +
∑∞

t=τ γ
tW

]
. As in the proof

of Proposition 1, (x, y) ∈ Π(W ) if and only if immediate stopping achieves greater

value than the previous expectation for every positive τ ∈ S . Because immediate-

stopping yields W/(1 − γ), we have (x, y) ∈ Π(W ) if and only if W/(1 − γ) ≥
E1,1

x,y

[∑τ−1
t=0 R

1(X(t), Y (t)) +
∑∞

t=τ γ
tW

]
for every τ ∈ S .

The inequality in (15) follows from Lemmas 4 and 5 and implies the monotonicity of

W 7→ Π(W ), the indexability of the arm, and the form of the Whittle index W (x, y).

A.5. Proof of Proposition 8

Fix any state x̃ ∈ X . The Whittle index in state (x̃, 0) ∈ S equals W (x̃, 0) = −∞,

and we want to calculate W (x̃, 1) given by (13) for state (x̃, 1) ∈ S. From the proof
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of Proposition 1 the value function V ((x, 1),W ) of the W -subsidy problem equals

supτ∈S E1,0
x,1

[∑τ−1
t=0 γ

t
(
RY (t)(X(t), Y (t)) +W1{Y (t)=0}

)
+ γτ

(
W

1−γ + ρ(X(τ), 1)
)]

for

every x ∈ X and W ∈ R, which satisfies the optimality equation

V ((x, 1),W ) = max

{
R1(x, 1) + γ

∑
x′∈X

pxx′
[
(1− θ1(x, 1))V ((x′, 0),W ) (30)

+ θ1(x, 1)V ((x′, 1),W )
]
,
W

1− γ
+ ρ(x, 1)

}
,

V ((x, 0),W ) = W +R0(x, 0) + γ
[
(1− θ0(x, 0))V ((x, 0),W ) + θ0(x, 0)V ((x, 1),W )

]
.

(31)

By Definition 2, Whittle index W (x̃, 1) of an arm in state (x̃, 1) is the smallest W ∈ R
in (30) for which one is indifferent in (x, 1) = (x̃, 1) between stopping and continuation:

V ((x̃, 1),W (x̃, 1)) =
W (x̃, 1)
1− γ

+ ρ(x̃, 1) = R1(x̃, 1)

+ γ
∑

x′∈X
px̃x′

[
(1− θ1(x̃, 1))V ((x′, 0),W (x̃, 1)) + θ1(x̃, 1)V ((x′, 1),W (x̃, 1))

]
. (32)

In (30) and (31), let us subtract ρ(x, 1) from both sides, and in the righthand side

of both equations add and subtract ρ(·, 1) to and from the functions V ((·, 0),W ) and

V ((·, 1),W ). Rearranging the terms gives V ((x, 1),W )− ρ(x, 1) =

max

{
R1(x, 1) + γ

∑
x′∈X

pxx′ρ(x′, 1) + γ
∑

x′∈X
pxx′ ·

[
(1− θ1(x, 1))(V ((x′, 0),W )− ρ(x′, 1)) + θ1(x, 1)(V ((x′, 1)− ρ(x′, 1),W )

]
,
W

1− γ

}
,

V ((x, 0),W )− ρ(x, 1) = W +R0(x, 0)− (1− γ)ρ(x, 1)

+ γ
[
(1− θ0(x, 0))(V ((x, 0),W )− ρ(x, 1)) + θ0(x, 0)(V ((x, 1),W )− ρ(x, 1))

]
.

In the last displayed equations, set W = W (x̃, 1), substitute

W (x̃, 1)
1− γ

= V (x̃, 1),W (x̃, 1))− ρ(x̃, 1) = R1(x̃, 1)

+ γ
∑

x′∈X
px̃x′ρ(x′, 1) + γ

∑
x′∈X

px̃x′ ·
[
(1− θ1(x̃, 1))(V ((x′, 0),W (x̃, 1))− ρ(x′, 1))

+ θ1(x̃, 1)(V ((x′, 1)− ρ(x′, 1),W (x̃, 1))
]

(33)

from (32), and to get (19) and (20) rewrite the resulting equations in terms of ν(x̃,1)
x,y :=

V ((x, y),W (x̃, 1)) − ρ(x, 1), (x, y) ∈ S. As shown before Proposition 8, (19) and (20)

have unique solution, and (1 − γ)ν(x̃,1)
x̃,1 = (1 − α) [V ((x̃, 1),W (x̃, 1))− ρ(x̃, 1)] = (1 −

γ)[W (x̃, 1)/(1− γ)] = W (x̃, 1) by (33).
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