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Abstract

While deterministic optimization enjoys an almost universally accepted canonical form, stochastic
optimization is a jungle of competing notational systems and algorithmic strategies. This is especially
problematic in the context of sequential (multistage) stochastic optimization problems, which is
the focus of our presentation. In this article, we place a variety of competing strategies into a
common framework which makes it easier to see the close relationship between communities such as
stochastic programming, (approximate) dynamic programming, simulation, and stochastic search.
What have previously been viewed as competing approaches (e.g. simulation vs. optimization,
stochastic programming vs. dynamic programming) can be reduced to four fundamental classes of
policies that are evaluated in a simulation-based setting. The result is a single coherent framework
that encompasses all of these methods, which can often be combined to create powerful hybrid
policies to address complex problems.
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1 Introduction

Arguably one of the most familiar pieces of mathematics in operations research (and certainly in

optimization) is the linear program, almost always written in its canonical form

minc’ z (1)
subject to

Az = b, (2)

x > 0. (3)

Often we are solving problems over time (the focus of this paper). If our problem is deterministic,

we would rewrite — as

T
: T
4
Jnin, 2l o
subject to
Aorg = bo, (5)
Atmt — Bt—lxt—l = bt, t= 1, cen ,T, (6)
x > 0, t=1,...,T. (7)

First introduced by Kantorovich| (1939) and then by Koopmans| (1947), it was made famous by
Dantzig with the introduction of the simplex method (a nice review of the history is given in [Dorfman
(1984))) which transformed equations — (or —) from a mathematical statement to a powerful
tool for solving a wide range of problems. While Dantzig is most often credited with inventing
the simplex method, the canonical form of a linear program is widely used (especially for integer
programs) even when the simplex method is not used. The language of equations — is spoken

around the world, by academics and industrial practitioners alike.

Now consider what happens when we introduce a random variable, especially for multiperiod
problems which require solving a sequence of decision problems interspersed with the revelation of
new information. Suddenly, the academic community starts speaking a dozen languages which can
quickly become arcane. It is hard to read more than a handful of papers without running into terms
such as admissible policies, F;-measurability, sigma-algebras, and filtrations. Not familiar with these
terms? Pity you. You may not have what it takes to work in the rarefied world of stochastic

optimization.



But wait... we all seem to make decisions over time, every day, in the presence of all sorts
of uncertainties. Think about the last time you took cash out of an ATM machine, chose a path
through a set of city streets, made an investment, or tried a new restaurant. Companies invest in
new projects, design products, and set pricing strategies. The health community runs tests and
prescribes medications, while scientists around the world design and run experiments to make new
discoveries. All of these are stochastic optimization problems. If this is something we all do, all the

time, why is stochastic optimization so arcane?

After floundering around the fields of stochastic optimization for 30 years, my conclusion is that
we have evolved solution strategies around specific problem classes, with vocabulary and notation that
often disguise common themes. These solution strategies evolve within communities with names such
as dynamic programming, stochastic programming, decision theory, stochastic search, simulation-
optimization, stochastic control, approximate dynamic programming, and reinforcement learning.
While these communities generally co-exist fairly peacefully, there are ongoing debates between the
use of simulation vs. optimization, or stochastic programming vs. dynamic programming. A helpful

referee for a recent paper (Powell et al. (20120)) offered the advice:

One of the main contributions of the paper is the demonstration of a policy-based modeling framework
for transportation problems with uncertainty. However, it could be argued that a richer modeling
framework already exists (multi-stage stochastic programming) that does not require approrimating
the decision space with policies.

This quote highlights one of the more contentious debates in stochastic optimization within the
operations research community: stochastic programming or dynamic programming? It is well known,
of course, that dynamic programming suffers from the curse of dimensionality, so there is no need
to learn this field if you want to work on real problems. Even I concluded this in the 1980s while
looking for methods to solve stochastic fleet management problems. But 20 years later, I finally
cracked these problems with successful systems that are planning driver fleets for one of the largest
truckload carriers in the country (Simao et al.| (2009))), and planning locomotives at one of the largest
railroads in the country (Bouzaiene-Ayari et al. (2012)). The same algorithmic strategy was used to
solve a stochastic energy investment problem in hourly increments over 20 years with 175,000 time
periods (see [Powell et al.| (2012d)). How were these ultra high-dimensional stochastic optimization
problems solved? Dynamic programming. However, an answer such as this perpetuates fundamental

misconceptions about stochastic programming and dynamic programming.

As a hint to where this discussion is going, by the end of this tutorial I will have made the

following points:

e Dynamic programming is a sequential (and for our purposes, stochastic) decision problem.
Bellman’s optimality equation is not a dynamic program; it is a) a way of characterizing an

optimal policy and b) an algorithmic strategy for certain problem classes of dynamic programs.

e Stochastic programming (for multistage problems) is, with some exceptions, a lookahead policy

which involves solving a lookahead model (which is itself a dynamic program) for solving a larger



dynamic program.

e The optimal solution of a multistage stochastic program is (with rare exceptions) not an optimal
policy. A bound on a (multistage) stochastic program is not a bound on the quality of the

policy (again, with rare exceptions).

e All properly modeled dynamic programs are Markovian. So-called “history-dependent” prob-
lems are simply dynamic programs with an incomplete state variable. If your system is not

Markovian, you have not properly modeled the state variable.

e With deterministic problems, we are looking for an optimal decision (or vector of decisions).
With (multistage) stochastic optimization problems, we are looking for optimal functions

(known as policies).

e In my experience, every (multistage) stochastic optimization problem can be solved using one
of four classes of policies (or hybrids formed from combinations of these four fundamental

classes). However, optimal policies are rare.

In the process of making these points, I will bring all the fields of stochastic optimization together

under a single umbrella which I suggest should be called computational stochastic optimization.

2 Modeling a sequential stochastic optimization problem

For many years, I was jealous of my colleagues working on deterministic integer programming prob-
lems who would present a model (difficult, but doable), and then focus on the challenging problem
of designing efficient, high quality algorithms. I was working on large-scale stochastic optimization
problems in transportation, but I did not enjoy the same type of roadmap to follow when writing

down a model.

Several styles have evolved to model a stochastic optimization problem (keep in mind our focus on
multiperiod, sequential problems). Below, we briefly describe two classical and widely used modeling
styles, drawn from the fields of dynamic programming and stochastic programming. However, we
are going to argue that these are not true models, but rather are closer to algorithms. We follow
this discussion with a presentation of what we feel is the correct way to model a sequential decision

process, using a format that is actually quite familiar in control theory.

2.1 A dynamic programming “model”

If the idea is to solve a problem with dynamic programming, many authors start by writing down

the canonical form of Bellman’s equation

Ve(St) = min <C(St, a)+7 Y p(s]S:, a)Vt+1(8’)> : (8)

s'eS



where:

S; = the state at time ¢,
a = the (typically discrete) action in set A,
C(S¢,a) = the cost of being in state S; and taking action a,
p(s'|s,a) = the probability of transitioning to state S;; = s’ if we are in state S; = s and take
action a,
Vi(s) = the value of being in state S; = s at time ¢ and following the optimal policy from ¢
onward.

This is the format introduced by Bellman| (1957) and popularized by many authors (such as|Puterman
(2005)). The format is elegant and has enabled a rich theoretical tradition. A well known concept in
dynamic programming is that of a policy which is typically denoted 7, where 7(s) gives the action

that should be taken when we are in state s. The policy (at time ¢) might be computed using

7(s) = arg min (C(s, a)+ Z p(s']s, a)%ﬂ(s’)) .

acA s'eS

The most difficult challenge with Markov decision processes is that the community almost uniformly
assumes that states are discrete, and that value functions and policies use lookup table representa-

tions. This sharply limits its applicability to relatively small problems.

2.2 A stochastic programming “model”

The stochastic programming community often models a stochastic programming model as follows:

t+H
1 / ’ . 9
xt,(zy (w),t<r21§11+H),Vw€Qt (Ctxt * Z p(W) Z “ (w)xt (W)> ( )

weN: t'=t+1

Here, w is called a scenario drawn from a sampled set €2; generated for the problem we are solving
at time ¢ (many authors prefer “s” for scenario, but w is widely used and avoids the conflict with
standard notation for state). If we have a random sample, the probability of scenario w might be
p(w) = 1/|€|. We make one decision x; for time ¢, but then we have to make a decision zy(w) for
each scenario w in the future. Note that we are writing the problem as if we are sitting at time ¢, to

be consistent with our dynamic program above.
The constraints are tricky to write out. We start with the time ¢ constraints which we might

write

At:ct = bt, (10)
(11)

Y
o

Tt



We then have to write out constraints for time periods ¢ > t, which have to be written for each

scenario w. These might be written

Ap(w)zy (W) — By (w)zy—1(w) = by(w), (12)
zp(w) > 0. (13)
Note that we require that x; = zy(w) for ' = ¢, a condition that is often imposed as a nonanticipa-

tivity constraint.

While this format is by far the most common, it is important to note that we have modeled the
problem as if we make a single decision at time ¢ (represented by z;), then see a scenario w that
describes all the random information over the planning horizon t+1,...,t+ H. Once this information
is revealed, we then choose xy41, ..., 2+ m. In reality, we choose x, then see the information Wi,
then we would choose z;1, after which we see Wy49, and so on. The model given by equations @-
is known as a two-stage approximation; it is widely used simply because the multistage version
is completely intractable for most applications. In a nutshell, scenario trees have their own curse
of dimensionality, which is actually worse than the one suffered by traditional dynamic programs

because the entire history is captured.

2.3 The five elements of a sequential decision problem

What is known as a “dynamic programming model” (equation ) or the “stochastic programming
model” (equations @—) are not actually models, but are closer to algorithms. Bellman’s equa-
tions, in particular, are like complementary slackness conditions for a linear program. It is not
a model, but rather is similar to the optimality conditions for a dynamic program. Clearly, we
need a canonical model for sequential (“multistage”) stochastic decision problems that parallels our
deterministic optimization model given by —.

There are five fundamental elements to any sequential stochastic optimization problem. These

are:

e State S; - This represents what we know at time ¢ before we make a decision (more on this
below).

e Actions - Depending on the community, these might be discrete actions a, continuous controls
u, or decisions x (which are typically vectors, and might be continuous, integer or a mixture).
We defer to later the choice of how a decision is made, but assume that we will design a policy
7. Dynamic programmers will write a policy as 7(s) returning an action a (or w or z), but
this leaves open the question of what 7(s) looks like computationally. For this reason, we
adopt a different notation. If our decision is action a;, we designate the policy as the function
AT(S;). If we are using decision x¢, we use the function X7 (S;). We assume that our policy
produces feasible actions (say, z; € X;), where the feasible region AX; might be a system of

linear equations that depends on the state S;.



e Exogenous information W; - Starting at time 0, we observe exogenous information (prices,
demands, equipment breakdowns) as the sequence Wi, W, .... We use the convention that
any variable indexed by ¢ is known at time ¢. This means that states, actions (decisions) and

information evolve as follows:
(S(]a Zo, W17 517 X1, W27 cee 7St7 Tt Wt+17 DRI ST)

An important concept is the post-decision state which we write as S¥ (or Si* if we are using
action a), which is the information in the system immediately after we make a decision (see
Powell (2011)[Chapter 4] for a thorough discussion of post-decision state variables). Introducing

the post-decision state in our sequence gives us
(SO7 Z0, Sga W17 Slv T, Sf) W27 ey Stu Tt, Szi,p7 Wt+l7 ey ST)

If the information process evolves exogenously, independently of current states and actions
(true for many, but not all, problems), it is convenient to let w be a sample realization of the
random variables Wi, Wy, ..., Wp. We then let £ be the set of all possible realizations. For

some models, it is useful to represent the history of the process h; at time ¢ as
hi = (Wi, ..., Wy). (14)

To allow for the possibility that states and/or actions do affect the information process, some
will model w as the sequence of states and actions (referred to as the induced stochastic process
in [Puterman (2005))), or the sequence of initial state, followed by all zy and Wy for ¢/ =
1,...,t. Our presentation assumes the information process is purely exogenous, so we use the
representation of history in .

e The transition function - We write this as Syy1 = SM(S;, z, Wiy1). The transition function
may include (controllable) systems of linear equations such as those shown in equation @
However, it may also represent the exogenous evolution of prices, weather, and customer de-
mands. For example, let p; be the price of electricity, and let p;11 be the exogenous change in

the price between ¢ and ¢t + 1 (p; would be an element of W;), we would write

Di+1 = Pt + Dis1-

This would be an example of a transition function for an exogenous information process such

as prices.

e The objective function - We assume we are given a cost/reward /utility function that we refer
to generically as the contribution function which may depend on the state S; and the action
x¢, so we write it as C'(S¢, x¢). In some settings, it also depends on the new information Wiq,
in which case we would write it as C'(Sy, x¢, Wiy1), which means it is random at time ¢. The
engineering controls community and the computer science community often deal with “model-

free” problems where the transition function is unknown and Wy, 1 is not observable, but where



the cost depends on the downstream state Siy1, in which case the contribution would be written

C(S¢, x4, St41), which is also random at time ¢.

The objective requires finding the policy that minimizes expected costs, which is written

T
: ™ ™
minE" ) C(Sy, X7 (S1)), (15)
t=0
where Sip1 = SM(Si, x4, Wiy1), and where the expectation is over all possible sequences

Wi, Wy, ..., Wr, which may depend on the actions taken. The notation E™ allows for the
possibility that the exogenous information might depend on prior actions (something that is
not allowed in traditional stochastic programming models). The goal here is to find the best

policy, which means that we are looking for the best function for making a decision.

This leaves open the computational question: How in the world do we search over some abstract
space of policies? Answering this question is at the heart of this chapter. We are going to argue
that different communities (dynamic programming, stochastic programming, simulation) get

around this problem by adopting a specific class of policies.

There is growing interest in replacing the expectation with various risk measures, which intro-
duces the issue of non-additivity (see [Shapiro et al.| (2009), Ruszczynski (2010) for thorough
discussions). For example, we might replace with

T
min Qo ;C(St,Xf (S1)), (16)

where Qo (W) is the a-quantile of the random variable W. Alternatively, we might use a robust

objective which uses

T

£rnell¥[1 Vryg]z(v 2 C(Se, X[ (Sy)), (17)

where the maximum over W € W refers to a search over random variables within an uncertainty
set W (Bandi & Bertsimas (2012))) that defines a set of “worst case” values. See Beyer &
Sendhoff| (2007)), Ben-Tal et al.| (2009) and for further discussions of robust optimization.

It is useful to stop and compare our stochastic model with our deterministic model, which we gave
previously as —. Our stochastic objective function, given by equation , should be compared
to its deterministic counterpart, equation . The linking equations @ can be written:

Apry = Ry, (18)
Ry = b+ Bi_q1xi-1. (19)



If we let S; = Ry, we see that equation @, in the form of equations -, represents the transition
function S; = SM (Si—1,x¢—1,-). Obviously, there is no deterministic counterpart to the exogenous

information process.

This style of modeling problems has not been used in operations research (or computer science),
but is widely used in the engineering controls community. The dynamic programming community
prefers to assume that the one-step transition matrix (used in equation ) is given. While it can, in
principle, be computed from the transition function and distributional information on the exogenous
information variable Wy, it is simply not computable for the vast majority of applications. The
transition function is widely used in stochastic programming, but without using the term or the

notation (for those familiar with stochastic programming, this is how scenario trees are built).

This model brings out the fundamental distinction between deterministic and stochastic opti-
mization (for sequential decision problems). In deterministic optimization, we are looking for the
best decisions (see (]) - (7). In stochastic optimization, we are looking for the best policy (see (1F))),
which is the same as searching over a class of functions. The operations research community is quite
skilled at solving for high-dimensional vectors of decision variables, but searching over functions is a

less familiar concept. This is going to need some work.

The two dimensions of our modelling framework that are least understood are the state variable,
and the concept of searching over policies in the objective function. For this reason, we deal with

these topics in more depth.

3 What is a state variable?

State variables appear to be a concept that everyone understands, but cannot provide a definition.
Bellman| (1957) offered “... we have a physical system characterized at any stage by a small set of
parameters, the state variables.” Puterman| (2005)) introduces state variables with “At each decision
epoch, the system occupies a state.” (Italics are in the original manuscripts). Wikipedia (in 2013)
suggests “State commonly refers to either the present condition of a system or entity,” which is true
but hopelessly vague, or “A state variable is one of the set of variables that are used to describe the
mathematical state of a dynamical system” (using the word you are trying to define in the definition
is a red flag that you do not have a definition). Other top experts have suggested that the state

variable cannot be defined, or they say they have simply given up. I think we can do better.

The graphs in figure |1/ help to illustrate the definition of a state variable. In figure a), we show
a deterministic graph where a traveler has to get from node 1 to node 11. The traveler is currently
at node 6. Let V; be the node number of the traveler after ¢ link traversals (¢t = 2 in the example).

There seems to be a consensus that the correct answer is

St:NtZG.



Figure 1: (a) Deterministic network for a traveler moving from node 1 to node 11 with known arc
costs. (b) Stochastic network, where arc costs are revealed as the traveler arrives to a node.

Note that we exclude from our state variable all data that is not changing (the arc costs are all

assumed to be deterministic).

Next assume that we have a stochastic graph, where the probability distribution of the cost of
traversing each arc is known, as depicted in figure (b) However, assume that if the traveler arrives
to node i, he is able to see the actual cost ¢; for each link (4, j) out of node i. Again, there seems

to be broad agreement that the correct answer is
Sy = (Ny, (en,,.)) = (6,(10.2,9.7,11.8)),

where (éy, .) represents the costs on all the links out of node N;. While our first example illustrates
a physical state (the location of our traveler), this second example illustrates that the state also

includes the state of information.

For our final example, we introduce the twist that there are left hand turn penalties for our
stochastic network in figure (b) Now what is the state variable? In the previous example, we saw
that we need to include all the information we need to make a decision. In this example, we need
to know the previous node, that is, N;_1. With this information, we can tell if the link from our
current node N; = 6 to node 5 is a left hand turn or not. So, our state variable in this setting would
be

Sy = (Ny, (en,.), Ny—1) = (6,(10.2,9.7,11.8), 3).



If we need Ny and N;_1, what about the other nodes we have visited? For the same reason that we
did not include the complete path in our first example, we do not need node N;_o (and earlier) in
this example simply because they are not needed. This situation would change if we introduced a
requirement that our path contain no cycles, in which case we would have to retain the entire path

as we progress.

There is an astonishing lack of agreement in the definition of a state variable. This question
was posed to a workshop of attendees from computer science and operations research. Two themes
emerged from the responses. The first (popular with the computer scientists) was that a state
variable should be a sufficient statistic, a term drawn from the statistics community (which has
its own definition for this term). The second was that a state variable should be parsimonious.
The concepts of sufficiency and parsimony (said differently, necessary and sufficient), are completely

consistent with the state descriptions given above.

I would conclude from all of these discussions that a state variable should include all the infor-
mation we need, but only the information we need. But to do what? In Powell (2007), I offer the

definition:

Definition 3.1 A state variable is the minimally dimensioned function of history that is necessary

and sufficient to compute the decision function, the transition function, and the contribution function.
It is useful to divide state variables into three broad classes:

e Physical (or resource state) Ry - This might be the node where we are located on a graph, the

amount of product in inventory, or the speed of an aircraft.

e Information state I; - This includes other information such as information about weather, the

costs out of a node, or the elapsed time since the last customer arrived to a queue.

e The knowledge (or belief) state K; - This comes in the form of a series of distributions about
unobservable parameters. For example, this might be the demand for a product at a particular
price, or the travel time on a path through an unfamiliar city. The knowledge state arises in
communities that use names such as partially observable Markov decision processes (POMDPs),
multi-armed bandit problems (Gittins et al. (2011])), and optimal learning (Powell & Ryzhov
(2012)).

Mathematically, the information state I; should include information about resources Ry, and
the knowledge state K; should include everything, as illustrated in figure However, in terms of
practical models, it helps to divide variables among the three categories, primarily because so many
people fall in the trap of equating “state” with “physical state.” Whether a variable is listed under
“physical state variables” or “information state variables” is not important. It is useful to separate

out the knowledge state, which comes in the form of a probability distribution.

10



K{

Knowledge/belief state

R,

Resource/physical state

Information state

Figure 2: Illustration of the growing sets of state variables, where information state includes physical
state variables, while the knowledge state includes everything.

Another way to envision the state variable is summing up the contributions while following some

SO};

which is computed given our initial state Sy. We assume states are related by
Siy1 = SM(S;, XT(S;), Wiy1), and the sequence Wi, W, ..., Wr follows a sample path w € €.

Now assume we want to do the same computation starting at time ¢, which we would write

S } (20)

policy, which we might write as

T
B { 3 €S X7 (S0)
t'=0

FF(S)) = {Zc (Sy, XE(Sp))

t'=t

We can, of course, write this as

FF(S)) = C(Sp, XT(Sy) { > C(Sy, X[ (Sy)) S} (21)
t'=t+1
= OS5, X7 (51)) + E{F] 1 (St41) 5} (22)

Now it is apparent that S; (or in the case of , S¢+1) has to carry all the information needed
to compute F3(S¢) (or Fy11(St+1)). We have to include in S; all the information needed to com-
pute the policy X[ (Sy), the contribution function C(Sy, X[ (Sy)), and the transition function
SM(Sy, XT(Sy), Wy 1), for all ¢ = t,...,T. Not surprisingly, we see no need to include any in-

formation in S} that is not needed to compute any of these functions.

While the principles behind this definition seem to have broad support, they carry implications
that run against conventional thinking in the operations research community. First, there is no
such thing as a non-Markovian system, because any properly modeled state variable includes all

the information needed to model the forward trajectory of the system (yes, even G/G/1 queues are

11



Markovian when properly modeled). Second, the oft-repeated statement that “any system can be
made Markovian by adding enough variables” needs to be replaced with the response “if your system
is not Markovian, you do not have a complete state variable, and if you can add information to make

the system Markovian, then you should!”

It is time to teach our students what a state variable is, so that they learn how to properly model

dynamic systems.

4 Designing policies

Far more difficult than understanding a state variable is understanding what in the world we mean
by “searching for a policy.” This is the type of statement that is easy to say mathematically, but
seems on the surface to have no basis in practical computation. Perhaps this was the reaction
to Kantarovich’s statement of a linear program, and the reason why linear programming became so
exciting after Dantzig introduced the simplex algorithm. Dantzig made Kantarovich’s linear program

meaningful.

First, we need a definition of a policy:
Definition 4.1 A policy is a mapping from a state to a feasible action. Any mapping.

Mathematically, we can think of an arbitrarily complex array of functions, but no-one knows how
to calculate these functions. Imagine, for example, that our action is a vector x that might include
thousands of continuous and integer variables that have to satisfy a large set of linear constraints.

How are we going to find a function that accomplishes this? This section is devoted to this question.

4.1 The four classes of policies

I would argue that rather than devise some dramatic breakthrough in functional approximations, all
we have to do is to look at the wide array of tools that have already been used in different applications.
In my own tour through the jungle of stochastic optimization, I have found four fundamental classes
of policies which I call PFAs, CFAs, VFAs, and Lookahead policies.

e Policy function approximations (PFAs) - A policy function approximation represents some
analytic function that does not involve solving an optimization problem. A PFA might be a
lookup table (“turn left at a particular intersection” or “move the knight when the chessboard
is in a particular state”), a rule (“sell if the price goes above 6”), or a parametric model such

as

X™(S;|6) = 6o + 01.5; + 6252 (23)

12



Another example of a PFA is an (s, S) inventory model: order product when the inventory is
below s to bring it up to .S. The engineering controls community often uses neural networks
to represent a policy. Many simulation models contain imbedded decisions (e.g. how to route
a job in a jobshop) that are governed by simple rules (we would call these policy function

approximations).

Optimizing a cost function approximation (CFAs) - Here, we replace the cost function (this
could be the cost over a single time period, or over a planning horizon H ) with an approximation

that we call CF(S;, z|0), giving us the policy

X7 (S¢|0) = argmin C™(Sy, z|0). (24)

rEX
The vector 6 represents tunable parameters that might appear as modifications to the cost
coefficients, right hand side coefficients, or even the coefficients of the constraint matrix itself.
We let m capture both the structure of our modified cost function as well as the tunable
parameters, but we express the tunable parameters 6 explicitly. A special case of a CFA policy
is where C™(Sy, z|0) = C(S;, ), in which case we would have a simple myopic policy. Another

special case uses a cost function of the form

X[ (S¢0) = argmin (C(S;, ) + Z 07 s(St, x)). (25)
zeXL feF

Here, (¢f(St,x)), f € F, is a set of basis functions (as they are known in the approximate
dynamic programming community) which might be of the form S;z, S;2?, z, 22, which serves

as a form of correction function (more on this below).

Policies that depend on a value function approximation (VFAs) - These are the policies most

often associated with dynamic programming, and are written

XZT(StW) = arg min (C(St, %) + E{VH_l(SH_l’g)‘St}). (26)

zEX:

where S;y1 = SM(Sy, x4, Wiy1). Since expectations can be notoriously hard to compute (imag-
ine if our random variable W; has, say, 100 dimensions), we can use the device of the post-
decision state variable (the state immediately after a decision has been made, but before any
new information has arrived). Let SF be the post-decision state, which means it is a determin-

istic function of z;. This allows us to write

X[ (S¢0) = argmin (C(S;, z) + V(S719)). (27)

rEX:

In both (26)) and (27)), we have to create an approximation of the value function. Again, we
assume that the index m captures the structure of the function, as well as any tunable parame-

ters represented by 6. For example, a popular approximation is linear regression. Assume that
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someone has devised a series of explanatory variables (“basis functions”) ¢;(Sf) for f € F.

Then we can write

X7 (S1|0) = argmin (C(Sp, x) + > 075(S7)). (28)
zeXy fer

Here, the index 7 carries the information that we are using a linear architecture for the value
function, the set of basis functions, as well as the coefficients 6 used in the linear model. We
note that while and look similar, the mechanisms for fitting the regression coefficients
are completely different. In , we are trying to approximate the future contributions given
that we are in state S¢; in , we are just computing an adjustment term which is unlikely

to bear any relationship to future contributions.

Lookahead policies - The simplest lookahead policy involves optimizing over a horizon H de-
terministically. Let #; represent the decision variables (this might be a vector) for time ¢’ in

the lookahead model that has been triggered at time f. A deterministic lookahead policy might

be written
t+H
X7 (S)]0) = argmin Y C (S, du). (29)
Tty T4 H pr_y
Normally, we optimize over the horizon (¢,...,t+ H) but only implement the first decision, so

X7 (S¢|0) = Ty. All variables in the lookahead model are indexed by (tt') where t represents
when the decision is being made (and therefore its information content), while ¢ is when
the decision impacts the physical system. We also use tilde’s to avoid confusion between the
lookahead model (which often uses a variety of approximations) and the real model. Here, the

parameter § might represent the horizon H.

We might also use a stochastic lookahead model

t+H
min N Ea+ D> p@) Y G (@)Fw (@) | - (30)
Tt (T (@)t <t/ <t+H) Vo oy =11

In this case, 6 captures parameters such as the number of information stages (two in this
example) and the number of samples per stage (this community refers to the elements of Q
as scenarios. We need to construct a lookahead stochastic process, captured by the set €Y,
to differentiate stochastic outcomes in the lookahead model from the sample path @ €
that we might be following in the real model. The choice of the number of stages, and the
construction of the set €, represent critical choices in the design of the lookahead model, which

we parameterize by 6.

We note that a stochastic lookahead model is the strategy favored by the stochastic program-
ming community. Equation can be described as a direct solution of the lookahead model,

which is to say that we explicitly optimize over all decisions, for each sample path (scenario)
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w, all at the same time. It is also possible to solve the lookahead model using value functions,

producing a policy that looks like

XZT(StW) = arg min (C(Stt, $tt> + E{‘Zﬁ,t-i—l(gt,t—i—l)‘st}); (31)

Tt €X

where ‘z’t_i_l(gt’t_l,_l) might be an exact (or nearly exact) estimate of the value of being in state
S’t7t+1 of the (approximate) lookahead model. We emphasize that lookahead models are almost
always approximations of the true model; we might use aggregation, discretization, and/or
Monte Carlo sampling along with a limited horizon to reduce the true model to something
tractable. For sequential convex optimization problems, it is possible to use Benders cuts, a
strategy that has become known as stochastic dual decomposition programming (SDDP) (see
Pereira & Pinto| (1991) and [Shapiro et al.| (2013))).

In addition to these four fundamental classes of policies, we can also create hybrids by mixing
and matching. For example, we might use a lookahead policy with a value function at the end of
the lookahead horizon. Another powerful strategy is to combine a low-dimensional policy function
approximation (say, “maintain 10 units of Type A blood in inventory”) as a goal in a larger, higher-
dimensional optimization problem (see Defourny et al.| (2013])). Cost function approximations, which
include any modification of costs or constraints to achieve a more robust policy, is often combined

with a lookahead policy so that forecasts can be accommodated.

4.2 Approximating functions

Three of our four policies require some sort of functional approximation: policy function approxi-
mations, cost function approximations, and value function approximations. There is a wide range of
methods for approximating functions, although the most popular can be divided into three classes:
lookup tables, parametric, and nonparametric (see Hastie et al.| (2009)) for a thorough review of sta-
tistical learning methods). For example, in the field of Markov decision processes, the use of policies
based on value functions represented by lookup tables is not an approximation under ideal circum-
stances. However, since lookup table representations do not scale, most applications require some
sort of parametric model (not necessarily linear). Indeed, the habit of equating “Markov decision
processes” with lookup table representations of value functions is the reason why so many have dis-
missed “dynamic programming” because of the curse of dimensionality. However, there is absolutely
no need to insist on using lookup tables, and this has made it possible for approximate dynamic
programming to produce practical solutions to some truly large-scale applications (e.g. |Simao et al.
(2009) and Bouzaiene-Ayari et al.| (2012)).

An important class of problems in operations research involves convex optimization models,
which frequently arise in the context of resource allocation. Figure [3|illustrates two (nonparametric)

methods for approximating convex functions: piecewise linear, separable approximations (a) (see
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(a) (b)

Figure 3: Approximating convex functions using piecewise linear, separable approximations (a), and
multidimensional Benders cuts (b).

Powell| (2011)[Chapter 13], and multidimensional Benders cuts (b) (see |Shapiro et al. (2009) and
Birge & Louveaux (2011)). An extensive literature on exploiting these approximation methods for

resource allocation problems is beyond the scope of our discussion.

4.3 Evaluating a policy

It would be nice if we could simply compute the objective function in equation , but situations
where we can compute the expectation exactly are quite rare. For this reason, we generally depend

on using Monte Carlo simulation to get a statistical estimate of the value of a policy. Let w represent

a sample realization of the sequence (Wi, Wa,...,Wr). A single simulation of a policy would be
written
T
F(w) =Y C(Si(w), X[ (S:(w))).
t=0

If T is large enough, we might feel that this is a reasonable estimate of the value of a policy =, but

more often we are going to compute an average using

N
_ 1
T T, n
F fNZF (W™). (32)
n=0
If we are simulating a policy based on value function approximations, we might write our VFA as

Vi(Sil0) = > 07d(Se)-

feF

There are different strategies for estimating the regression coefficients 6. If we are using adaptive

learning (common in approximate dynamic programming), the policy at iteration n would be given
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X7(Si|0"") = argmin | C(Sy,x0) + > 07 65(Sh)
e feF

Note that during iteration n, we might use estimates 8”1 obtained from iterations n — 1 and earlier.

4.4 Searching for the best policy

We can now put meaning to the statement “search over policies” (or “find the best function”) implied
by the objective function in equation . The label m on our policy X[ (S;) carries two types of
information:

Categorical information which describes the type of policy (PFA, CFA, VFA and Lookahead),
and would also have to specify the specific structure of a function approximation: lookup table,
parametric, or nonparametric (for example). If parametric (which is the most common), the
categorical information would have to describe the particular structure (e.g. the set of basis

functions in a linear approximation).

Tunable parameters that we refer to as ¢, which might be the regression parameters of a linear
model, the planning horizon in a lookahead policy, and the number of samples in a scenario

tree.
Let C' € C represent a class of policies, and let @ be the set of tunable parameters @ for that class.

So, 7¢ = (C,0) for C € C and § € ©. For a particular class of policy C' € C, we have to solve a
stochastic search problem to find the best § € ©F, which we write as

), X7 (Sp(w™)]0)). (33)

M'ﬂ

_ 1
min F° —
06 N —
t=0
This problem has to be solved for each of a (hopefully small) class of policies C' chosen by the

designer.

The literature for solving stochastic search problems is quite deep, spanning stochastic search
(e.g. Spall (2003), Chang et al. (2007))), two-stage stochastic programming (Birge & Louveaux| (2011),
Shapiro et al| (2009), [Kleywegt et al.| (2002)), simulation-optimization (Swisher et al.| (2000), [Fu et
al.| (2005)), Hong & Nelson| (2007)), |Chick et al.| (2007), Chick & Gans| (2009)), Andradéttir & Prudius
(2010)), ranking and selection (Barr & Rizvi (1966)), Boesel et al| (2003)), and optimal learning
(see the review of many techniques in |Powell & Ryzhov| (2012))). Algorithms vary depending on the

answers to the following questions (to name a few):

e Is the objective function convex in 67
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e Can we compute derivatives (for continuous, tunable parameters)?

e Are we simulating policies in the computer (offline), or are we observing policies as they are
being used in the field (online)?

e Can the objective function be quickly computed, or is it time consuming and/or expensive?

Is the dimensionality of # small (three or less), or larger?

5 Lookahead policies

By far the most complex policy to model is a lookahead policy, which solves the original model by
building a series of approximate models known as lookahead models. A lookahead model to be solved
at time t is typically formulated over a horizon t,...,f + H, and is used to determine what to do
at time t, given by x; (or a; or u;). Once we implement x;, we observe the transition from state S;
to Sy+1 and repeat the process. Lookahead policies are often referred to as rolling/receding horizon
procedures, or model predictive control. It is not unusual for authors to formulate a lookahead model

without actually writing down the true model.

But not everyone is using a lookahead model, which means it is not always clear whether a paper
is solving the true model or a lookahead model. Imagine that we are trying to model a business
problem over a horizon spanning time periods 0 up to 100. Is the intent to determine what to do
at time 07 Or are we modeling a system over a planning horizon to assess the impact of various
parameters and business rules? If we have a business simulator, then we will need to make decisions
at every time t within our simulation horizon ¢t = 0,...,7T, which we typically need to repeat for
different sample outcomes. In a lookahead model, we also need to make decisions over our planning
horizon ¢/ = t,...,t+ H, but the decisions we make at time periods t' > t are purely for the purpose

of making a better decision at time t.

5.1 An optimal policy using the original model

We begin our discussion by noting that we can characterize an optimal policy using the function

s }) | (30

where S;p1 = SM(S;, x4, Wii1). The imbedded optimization over policies can look mysterious, so

g)

X/ (S:) = argmin (C(St,xt +m1nE{ Z C(Sy, X7 (Sy))

Tt t=t+1

many use an equivalent formulation which is written

X/ (S;) = argmin (C(St,xt)—&— min { Z C(Sy,zy(w))

Tt (g (W), t<t! <t+H) Ywey =1
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Instead of writing a policy X/ (Sy), we are writing xy(w). To make this valid, we have to impose a
condition that means that zy(w) cannot “see” into the future (a condition that is satisfied when we
use our policy X7;(Sy)), since specifying the outcome w implies we know the entire future. One way to
do this is to write zy (hy), expressing the dependence of z¢ on the history of the information process
(see equation (14)). The problem is that since hy is typically continuous (and multidimensional),
xp (hy) is effectively a continuous function which is the decision we would make if our history is hy

(in other words, a policy).

Both and are lookahead policies that use the original model. Both require computing
not only the decision that determines what we do now (at time t¢), but also policies for every time
period in the future. The problem, of course, is that we cannot compute any of these policies, leading

us to consider approximate lookahead models.

5.2 Building an approximate lookahead model

To overcome the complexity of solving the exact model, we create what is called a lookahead model
which is an approximation of the original model which is easier to solve. To distinguish our lookahead
model from the real model, we are going to put tildes on all the variables. In addition, we use two
time indices. Thus, the decision Z;4 is a decision determined while solving the lookahead model at

time ¢, with a decision that will be implemented at time ¢’ within the lookahead model.

There are several strategies that are typically used to simplify lookahead models:

Limiting the horizon - We may reduce the horizon from (¢,7) to (t,t+ H), where H is a suitable
short horizon that is chosen to capture important behaviors. For example, we might want to
model water reservoir management over a 10 year period, but a lookahead policy that extends

one year might be enough to produce high quality decisions.

Discretization - Time, states, and decisions may all be discretized in a way that makes the resulting
model computationally tractable. In some cases, this may result in a Markov decision process
that may be solved exactly using backward dynamic programming (see |[Puterman| (2005)).
Because the discretization generally depends on the current state S;, this model will have to

be solved all over again after we make the transition from ¢ to ¢ + 1.

Outcome aggregation or sampling - Instead of using the full set of outcomes €2 (which is often
infinite), we can use Monte Carlo sampling to choose a small set of possible outcomes that start
at time ¢ (assuming we are in state S}* during the nth simulation through the horizon) through
the end of our horizon t + H. We refer to this as Q' to capture that it is constructed for the
decision problem at time ¢ while in state Sj*. The simplest model in this class is a deterministic

lookahead, which uses a single point estimate.

Stage aggregation - A stage represents the process of revealing information before making another

decision. A common approximation is a two-stage formulation (see figure[df(a)), where we make
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(a)
Figure 4: Illustration of (a) a two-stage scenario tree and (b) a multistage scenario tree.

a decision x, then observe all future events (until ¢+ H), and then make all remaining decisions.
A more accurate formulation is a multistage model, depicted in figure b), but these can be

computationally very expensive.

Dimensionality reduction - We may ignore some variables in our lookahead model as a form
of simplification. For example, a forecast of weather or future prices can add a number of
dimensions to the state variable. While we have to track these in the original model (including
the evolution of these forecasts), we can hold them fixed in the lookahead model, and then

ignore them in the state variable (these become latent variables).

5.3 A deterministic lookahead model

A simple deterministic lookahead model simply uses point forecasts of all exogenous variables, giving

us

t+H
XtLA_D’n(St) = arg min (C(St, -TUt) + Z C(Stt’y-itt’)> ) (36)

o t=t+1
where gt,t’—i—l = SM (gttui’tt/,th'), and where Wy = E{W;/|S,} is a forecast of Wy made at time

t. Deterministic lookahead policies go under names such as rolling horizon procedures or model

predictive control, and are widely used in practice.
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5.4 A stochastic lookahead model

A stochastic lookahead model can be created using our sampled set of outcomes Q?, giving us a

stochastic lookahead policy

t+H
X[ATIPR 9y = argmin [ C(SP, z¢) + min BT C(Sw i (@) Se g |- (37)
Tt (Zyyr (@) t<t! <t+H) NoeQ} =11

When computing this policy, we start in a particular state S{ (in the state space of the original

model), but then step forward in time using

Spevr = SM(SP, 2, Wi (@),
Sivvr = SM(Sur, T, Wypr 1 (@), ¢ =t +1,...,T — 1.

In (37), the expectation E” {-|S;} is over the sampled outcomes in QI which is constructed given that
we are in state Sj'. To help visualize these transitions, it is often the case that we have a resource
variable Ry = (Ry;)ier (e.g. how many units of blood we have on hand of type ), where we would

typically write the transition as
Ripi1(@) = A (@) + Repi1(@),

where Rt7t/+1((;)) represents a sample realization of blood donations between ¢’ and ¢’ +1 in our looka-
head model. In addition, we might have one or more information variables ftt/, such as temperature

(in an energy problem), or a market price. These might evolve according to
jt,t’+1(ffl) = I (@) + jt,t’—i—l(aj)v

where ft,turl(cb) is a sample realization of the change in our information variables. The evolution
of the information variables is captured in the scenario tree (figure [d{(a) or [d|(b)), while that of the

resource variables is captured in the constraints for Ty .

Now we have an expression that is computable, although it might be computationally expensive.
Indeed, it is often the case that the optimization problem in is so large that we have to turn
to decomposition methods which solve the problem within a tolerance (see [Rockafellar & Wets
(1991), Birge & Louveaux| (2011)). However, our notation now makes it clear that we are solving a
lookahead model. Bounds on the performance of a lookahead model do not translate to bounds on

the performance of the policy in terms of its ability to minimize the original objective function ([15).

An alternative approach is to approximate the future using a value function approximation, giving
us a VFA-based policy that looks like

X EANS) = argmin (C(Sh ) + E{V (St41)[S1}). (38)

Tt
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where

T

mell
t'=t+1

st}.

Here, we are using some sort of functional approximation Vl:ll(StH) which has been estimated using
information collected during earlier iterations (that is why it is indexed n — 1). What is important
here is that we are approximating the real model, not the lookahead model. If we have access to a

convenient post-decision state Sy, we can drop the expectation and use

X/FAMS) = argmin (C(S, ) + V(SF)). (39)

Tt

where the post-decision value function approximation is different than the pre-decision value
function approximation in .

We note that once we have the value function approximations V(S;) (or V4(S¥)) fort =0,...,T,
we have a complete policy for the original model, where we assume that the approximation V;(S;)
gives us a value for every possible state. By contrast, the lookahead policy XtL A_SP’”(St) works
only for a particular state S; at time ¢t. In the process of solving the stochastic lookahead policy,
we produce a series of decisions jtt/(gtt/) that can be interpreted as a policy within the lookahead
model. But because it is only for a small sample of states Sy, this policy cannot be used again as we
step forward in time. As a result, if we make a decision z; = XtL AiSP’"(St) and then step forward

to Syp1 = SM(Sy, x4, Wiy1(w)), we have to solve from scratch.

The need to recompute the lookahead model is not limited to deterministic approximations or
approximations of stochastic models through scenario trees. We might solve the lookahead model

using a value function, as we did previously in equation (31)), repeated here for convenience:

X7 (Sy) = argmin (C(Sy, 241) + E{Vi141(St.+1)[Se}). (40)

Tt €EX

Here, we might assume that Tz7t+1(§t7t+1) is an exact estimate of the downstream value of being in
state §t7t+1 when solving our simplified lookahead model. Because the lookahead model typically
involves information available at time ¢, when we make a decision at time ¢ and step forward in time
(in the real process), we generally have to start all over again from scratch. This is not the case when
we use a value function approximation V;(S;) that is an approximation of the downstream value in
the real model.

5.5 Evaluating a lookahead policy

The correct way to evaluate a lookahead policy (or any policy) is in the context of the objective
function in . Figure [5| illustrates the process of solving a stochastic lookahead model using
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Forecast of the future
Forecast of the future

The real process The real process

Figure 5: Illustration of rolling horizon procedure, using a stochastic model of the future (from Powell
et al.| (20128)).

scenario trees, then stepping forward in time to simulate the performance of our lookahead policy.
As of this writing, there is very little research evaluating the performance of lookahead policies.
Considerably more attention has been given to this topic in the engineering controls community
under the umbrella of model predictive control, but this work assumes a particular structure to the
problem that generally does not apply in operations research (see (Camacho & Bordons| (2004) for a
good introduction to MPC, and Bertsekas| (2012)) for a modern introduction to approximate dynamic

programming and optimal control).

5.6 Comments

The distinction between models and lookahead models has not entered the literature, so care has
to be used when deciding if a paper is solving the true model or just a lookahead model. It is our
experience that the vast majority of papers using stochastic programming for multistage problems
are using lookahead policies (see, for example, |Jacobs et al.| (1995), |Takriti et al. (1996), Dupagova
et al.| (2000), |Wallace & Fleten| (2003), |Jin et al.|(2011)). This means that after implementing the
first-period decision and stepping forward in time, the problem has to be solved again with a new

set of scenario trees.

But this is not always the case. [Shapiro et al.| (2013)) formulates and solves a 120-period stochas-
tic program (we would call it a dynamic program) using Benders cuts (a form of value function
approximation) for an application that does not require the use of a scenario tree. While this could
be viewed as a 120-period lookahead model, it is perfectly reasonable to define his original model as
consisting of 120 periods (whether he needs 120 periods to make a good decision at time 0 is up for
debate). Our own work (Powell et al. (2012a), Simao et al.| (2009) and Powell & Topaloglu (2006)
for example) also uses value functions that are approximations of the true model, over the entire
horizon. In both sets of research, once the value functions (Benders cuts in [Shapiro et al.| (2013)) and
Sen & Zhou| (2012)) have been estimated, they can be used not just to determine the first period
decision, but all decisions over the horizon. These are examples of algorithms that are solving the

true model rather than a lookahead model.

23



Scenario trees almost always imply a lookahead policy, because stepping forward in the real model
will invariably put us in a state that is not represented in the scenario tree. Sen & Zhou| (2012
introduces multi-stage stochastic decomposition (MSD) building on the breakthrough of stochastic
decomposition for two-stage problems (Higle & Sen| (1991)). The MSD algorithm generates scenarios
which asymptotically cover the entire state space, but any practical implementation (which is limited
to a finite number of samples) would still require re-optimizing after stepping forward in time, since

it is unlikely that we would have sampled the state that we actually transitioned to.

Even with these simplifications, optimal solutions of the lookahead model may still be quite
difficult, and a substantial literature has grown around the problem of solving stochastic lookahead
models (Rockafellar & Wets| (1991)), Higle & Sen| (1996), Romisch & Heitsch| (2009), |Birge & Louveaux
(2011)), King & Wallace (2012)). Often, exact solutions to even a simplified stochastic model are not
achievable, so considerable attention has been given to estimating bounds. But it is important to

realize:

e An optimal solution to a lookahead model is, with rare exceptions, not an optimal policy.

e A bound on a lookahead model is not a bound on the performance of the resulting policy (with

rare exceptions, such as|Shapiro et al.| (2015)).

For an in-depth treatment of the properties of lookahead policies, see the work of Sethi (see [Sethi
& Haurie] (1984)), Sethi & Bhaskaran (1985) and [Bhaskaran & Sethi (1987)). Not surprisingly, this

literature is restricted to very simple problems.

This is a good time to return to the comment of the helpful referee who felt that multistage
stochastic programming offered a richer framework than dynamic programming. The comment
ignores the idea that the stochastic program is actually a lookahead policy for solving a dynamic
program, and that what we care most about is the performance of the policy (that is, equation )
rather than the lookahead objective (equation ([30))). This comment also ignores the fact that the
lookahead model is itself a dynamic program (no matter how it is solved), and many in the stochastic
programming community even use value function approximations (in the form of Benders cuts) to
solve the lookahead model (see [Shapiro et al. (2009) and Jacobs et al. (1995) for examples). We
feel that placing stochastic programming within the broader framework of dynamic programming
separates the lookahead model from the real model (which is usually ignored). In addition, it helps
to build bridges to other communities (especially simulation), but raises new research questions, such
as the performance of stochastic programming as a policy rather than the value of the lookahead

objective function.

6 Direct policy search versus Bellman error minimization

Lookahead policies represent powerful approximations for many problems, and are especially popular

for more complex problems. However, there are problems where it is possible to compute optimal
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policies, and these can serve as useful benchmarks for approximate policies such as CFAs (estimated

using direct policy search), and policies based on VFAs (estimated using Bellman error minimization).

Consider a policy given by

X (8116) = argmin | C(S2) +7 > 0565(57) | - (41)
weXt fE.F

We now face a choice between two methods for choosing #: Bellman-error minimization (which
produces a value function approximation), or direct policy search (which gives us a cost function
approximation). In this section, we are going to compare a series of strategies for estimating CFA-

and VFA-based policies using a relatively simple energy storage application.

With direct policy search, we choose 6 by solving equation using any of a range of stochastic
search methods (see Maxwell et al.| (2010)[Section 5.4] for an example). If we use Bellman-error
minimization, we need to create estimates of the value of being in a state S;, and then use these
estimates to update our value function approximation. One method, approximate value iteration,

computes estimates 0} (in iteration n) of the value of starting in some state S;* using

o7 = min (C(SP,2) +V;(S5™)),
TEX:

where S} is the post-decision state given that we are in state S;* and take action .

A second method involves defining our policy using , and then simulating this policy from

time ¢ until the end of the horizon following sample path w™ using

T
o =) O(SE, X(Sp10" ),

t'=t

where Sy = SM( v, xy, Wy 1(w™)). This is the foundation of approximate policy iteration, origi-
nally derived as backpropagation in the early work of Paul Werbos (Werbos| (1974)), Werbos| (1989)),
Werbos| (1992)) who introduced the idea of backward differentiation. It is beyond the scope of our
presentation to discuss the merits of these two approaches (see chapters 9 and 10 of [Powell (2011))),
but the key idea is to create an observation (or set of observations) of the value of being in a state

and then use these observations to obtain 6™.

To provide a hint into the performance of these different methods, we have been running a series
of experiments on a relatively simple set of energy storage problems (some infinite horizon, others
finite horizon) which we are able to solve optimally, providing a benchmark. While this is just one
class of applications, the results are consistent with our experiences on other problems. Here are the

algorithms we have run:

1) A simple myopic policy (minimizes real-time costs now without regard to the future).
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2) Basic least squares approximate policy iteration described in [Lagoudakis & Parr| (2003).

3) Least squares approximate policy iteration using instrumental variables (or projected Bellman
error minimization), also described in [Lagoudakis & Parr| (2003) and implemented in [Scott et
al| (2013).

4) Direct policy search, using the same basis functions used in the testing with least squares policy
iteration (Scott et al. (2013), using Scott et al.| (2011) to do the stochastic search).

5) Approximate value iteration with a backward pass (known as TD(1) in the reinforcement learning
community Sutton & Barto (1998]) or backpropagation in the controls community Werbos
(1992))), but using a piecewise linear value function (in the energy resource variable) which

maintains concavity (see |Salas & Powell (2013))).

6) Approximate policy iteration - Pham|(2013) evaluated API using linear models, support vector re-
gression, Gaussian process regression, tree regression, kernel regression, and a local parametric

method, on a library of test problems with optimal solutions.

The first four problems were run on a steady state (infinite horizon) problem, while the rest were
all run on a finite horizon, time-dependent set of problems. Optimal policies were found using classical
value iteration to within 1 percent of optimality (with a discount factor of .9999, given the very small
time steps). Optimal policies were calculated by discretizing the problems and solving them using
classical (model-based) backward dynamic programming. These datasets were also evaluated by

Pham| (2013)) who tested a range of learning algorithms using approximate policy iteration.

Figure [6] shows the results of the first four experiments, all scaled as a percent of the optimal.
The runs using direct policy search were almost all over 90 percent of optimality, while the runs
using least squares policy iteration, which is based on Bellman error minimization, were much worse.
By contrast, the runs using approximate value iteration but exploiting concavity all consistently
produced results over 99 percent of optimality on the finite horizon problems (Salas & Powell (2013))).

These observations need to be accompanied by a few caveats. The use of the piecewise linear
value function approximation (used in Salas & Powell (2013))) scales well to time-dependent problems
with hundreds or thousands of storage devices and hundreds to thousands of time periods, but cannot
handle more than one or two “state of the world” variables which might capture information about
weather, prices and demands. Direct policy search works well when searching over a small number
of parameters (say, two or three), but would not scale to a time dependent problem where the

parameters vary over time (the VFA-based approach had no trouble with many time periods).

From this work (and related computational experience), we have been drawing the following

conclusions:

e Bellman error minimization works extremely well when we exploited convexity (Salas & Powell

(2013)), but surprisingly poorly (e.g. around 70 percent of optimal) using simple, quadratic
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Figure 6: The performance of a series of approximation algorithms relative to the optimal solution
for 20 benchmark storage problems. These include: a myopic policy, a basic form of least squares
approximate policy iteration, LSAPI with instrumental variables, and direct policy search using the
same structure for the policy (from Scott et al.| (2013)).

basis functions (which appeared to provide very reasonable estimates of the value function).

Higher order basis functions performed even worse.

e Policy search using the same structure of policy (same basis functions) performed very well
(around 95 percent of optimal). However, this is limited to low dimensional parameter vectors,

which excludes problems where the regression vector 6 is a function of time.

e Approximate value iteration when exploiting convexity works best of all (over 98 percent of
optimal), but depends on our ability to approximate the value of multiple storage devices
independently using low-dimensional lookup tables where convexity is maintained (in the con-

trollable dimension). Without convexity, we have had no success with either approximate value

iteration or its close cousin, Q-learning (see Sutton & Barto| (1998)).

e A deterministic lookahead policy underperformed approximate value iteration, but performed
as well as policy search (approximately 95-99 percent of optimal). The lookahead policy did not
require any training, but would require more computation compared to using a value function
once the VFA has been fitted.

e Approximate policy iteration, which seems to enjoy much better convergence theory (see e.g.
Bertsekas, 2012), worked adequately. Our best results on the storage problems, using sup-

port vector regression, might get over 80 percent of optimal (sometimes to 90 percent) after
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10 policy iterations (each iteration required several thousand policy simulations). However,
support vector regression is not well suited to recursive estimation, needed in algorithms such
as approximate value iteration.

One conclusion that emerged consistently from these results was that the presence of an optimal
benchmark provided tremendous insights into the quality of the solution. It was only through these
benchmarks that we were able to see that many of these apparently sophisticated algorithms actually
work quite poorly, even on a relatively simple problem class such as energy storage (we would never
have been able to get optimal benchmarks on more complex problems). We have been able to
get near-optimal solutions using value iteration, but only when we could exploit structure such as
convexity or concavity, and only when using a lookup table representation, which clearly limits the
scalability of these approaches to additional state variables. We were never able to get high quality
solutions using linear models using approximate value iteration (this was not a surprise, given known

theory) or approximate policy iteration (this was more of a surprise).

We note in closing this discussion that a number of authors have recognized that you can “tune
the value function” for a policy such as using direct policy search (see |[Maxwell et al.| (2013]) for
a good example of this). However, if you are choosing 6 to tune the policy in , we would argue
that the regression term ) rerbro #(S%) is no longer an approximate value function. For example, if
your decision variable is z, there is no reason to include any basis function that does not depend on
z if you are doing policy search, where all we care about is the optimal x given 6. For this reason,
if we are doing policy search, there is no reason to expect » feF Orp¢(S*) to bear any relationship

to a value function.

If you are using policy search, we would argue that you are using a cost function approximation,

where the CFA policy is given by

XOFA(810) = argmin C™(Sy, z4|6)

t

argmin | C(Sy,z¢) + Y 05d5(ST) |- (42)
e feF

When we do direct policy search, there is no reason to include any basis functions that are not a
function of x;, since terms that do not depend on x; are simply constants in the argmin in equation
. In our energy storage example, we used basis functions such as S;z¢, z; and 22. Thus, there is
no reason to expect the correction term (involving the basis functions) to approximate in any way

the downstream value of being in state S}.

We suspect that such an approach for designing a cost function approximation probably works
well when the myopic policy

X7(St) = argmin C (S, z¢)
Tt EXY
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works “reasonably well.” In our energy storage experiments, the myopic policy produced results that
were about 30 percent of optimal, which is hardly stellar, but it is not hard to think of examples

where a myopic policy would be terrible.

7 How do we choose a policy?

Instead of making choices such as “stochastic programming,” “dynamic programming,” or “simula-

bR

tion,” we would like to ask readers to pose their choice as between “lookahead policies,” “policies
based on value function approximations,” or “policy function approximations.” Deterministic looka-
head policies which have been tweaked to produce more robust solutions (such as introducing safety
stocks or reserve capacities) should be viewed as lookahead cost function approximations. Cost func-
tion approximations are widely used in practice, but are generally dismissed as some sort of heuristic
compared to more elegant and “sophisticated” policies based on stochastic lookaheads (“stochas-
tic programming”) or value function approximations (“approximate dynamic programming”). We
would argue that all of these methods are, in the end, approximations that have to be tested, and

there is no reason to believe a priori that one will be better than another on a specific problem.

The reality is that with rare exceptions, all of these classes of policies are almost guaranteed
to be suboptimal. There is no apriori reason why a cost function approximation, policy function
approximation, policy based on value function approximation, or a lookahead which provides an
optimal solution to an approximate model, should be better than all the rest. Each class of policy

offers specific features that could produce superior results for a specific problem class.

So how to choose? Based on our experience, the following comments might provide guidance:

e Policy function approximations work best for low-dimensional actions, where the structure of
the policy is fairly obvious. (s,S) inventories are an easy example. Another is that we might
want to sell a stock when its price goes above a particular price. Policy function approximations
can also work well when the policy is a relatively smooth surface, allowing it to be approximated
perhaps by a linear function (known in the literature as “affine policies”) or locally linear

functions.

e Cost function approximations, which are typically variations of deterministic models, work
best when a deterministic model works well, and when the impact of uncertainty is easy to
recognize. It may be easy to see, for example, that we should provide a buffer stock to protect
against supply chain disruptions. Cost function approximations can be particularly attractive
when the decision x; is multidimensional, since we can typically solve a CFA-based policy using

a solver.

e Value function approximations are particularly useful when the value of the future given a state
is easy to approximate. When solving multidimensional resource allocation problems, keep in

mind that the value function only needs to communicate the marginal value, not the value of
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being in a state. Also, the issue of value functions has nothing to do with size (we have used
value function approximations on very high dimensional applications in transportation with
state variables with 10,000 dimensions or more). Large problems can be easily approximated
using separable approximations. The real issue is nonseparable interactions. These are easy to

capture in a lookahead model, but are hard to approximate using a statistical model.

e Lookahead policies are particularly useful for time-dependent problems, and especially if there
is a forecast available that evolves over time. The parameters of a stochastic lookahead model
(e.g. the number of scenarios in a scenario tree, the number of stages, the horizon) should always
be tested in a simulator that is able to compare the performance of different policies. Also, a
stochastic lookahead model should always be compared to the performance of a deterministic
lookahead model. Just because the underlying problem is stochastic does not mean that a

deterministic lookahead model will not work.

Hybrid policies can be particularly valuable. Instead of building a lookahead policy over a long
horizon H, we can use a shorter horizon but then introduce a simple value function approximation
at the end. Cost function approximations over planning horizons can make a deterministic approxi-
mation more robust. Finally, you can tune a high-dimensional myopic policy (e.g. assigning drivers
to loads or machines to tasks) with low-order policy function approximations (“assign team drivers
to long loads”) by adding the low order policy functions as bonus or penalty terms to the objective

function.

We hope this discussion has helped to place stochastic programming, dynamic programming, and
simulation (using policy function approximations) in a common framework. Over time, these terms
have evolved close associations with specific classes of policies (lookahead policies, value functions,
and policy function approximations, respectively). It is for this reason that we suggest a new name,

computational stochastic optimization, as an umbrella for all of these fields (and more).
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