Advances in Risk-Averse Optimization

Andrzej Ruszczyński
Department of Management Science and Information Systems, Rutgers University, Piscataway, New Jersey 08854, rusz@business.rutgers.edu

Abstract We discuss main ideas of formalizing risk-averse preferences and using them in optimization problems: utility theories, risk measures, and stochastic order constraints. We also present methods for solving risk-averse optimization problems. Multistage models are discussed as well.

Keywords dynamic measures of risk; stochastic order; decomposition methods

1. Introduction

Modeling and optimization of risk have been objects of intensive research in the last 15 years. Even the classical approaches, such as the expected and dual utility theories, experience revival of interest, but the main activity is associated with new models, involving measures of risk or stochastic order constraints, with increasing interest in dynamic models of risk. We try to discuss the new contributions and their relation to the existing knowledge. Also, because of special relevance for the operations research community, we characterize main ideas of numerical methods for solving risk-averse optimization models.

This article is not a typical review paper, but rather a compressed version of the notes of the author’s lectures on risk-averse optimization. We hope that the readers will find it useful not only in their search for relevant literature but also for getting an overview of the area and its most important results.

This paper has two main parts. In §2 we discuss risk-averse preferences—the utility theories, measures of risk, and stochastic order constraints—by providing a concise and modern perspective on these models. In §3 we show how these models of preferences can be used in optimization problems and how these problems can be solved numerically. We include there a long subsection on dynamic risk-averse optimization, which is a relatively new direction of research, with the hope to inspire the interest of other scientists.

2. Risk-Averse Preferences

The question of numerical representation of preferences is a classical topic of economics. A preference relation \(\preceq \) on a prospect space \(Z \) is a total preorder, that is, a binary relation that is reflexive, transitive, and complete. The corresponding indifference relation \(\sim \) is defined in a usual way: \(Z \sim V \), if \(Z \preceq V \) and \(V \preceq Z \). We say that \(Z \) is strictly preferred over \(V \) and write it as \(Z \prec V \), if \(Z \preceq V \), and \(V \not\preceq Z \).

In this paper, we are mainly interested in the case when \(Z \) is a space of random variables, that is, measurable functions \(Z: \Omega \to \mathbb{R} \), where \((\Omega, \mathcal{F}, P)\) is a probability space. If \(Z \) is a topological space, we call a preference relation \(\preceq \) continuous, if for every \(Z \in Z \) the sets \(\{V \in Z: V \preceq Z\} \) and \(\{V \in Z: Z \preceq V\} \) are closed.

A functional \(U: Z \to \mathbb{R} \) is a numerical representation of the preference relation \(\preceq \) on \(Z \), if

\[
Z \prec V \iff U(Z) < U(V).
\]
It is known that a continuous preorder on a separable and connected topological space Z has a continuous numerical representation Eilenberg [21, §6]. Other sufficient conditions have been formulated and analyzed in Debreu [9, 10, Theorem II], Rader [55, Theorem 1], and Jaffray [30].

In our applications, if (Ω, \mathcal{F}, P) is a standard probability space, and $Z = \mathcal{L}_p(\Omega, \mathcal{F}, P)$ with $p \in [1, \infty]$, a continuous preference relation does have a continuous numerical representation. We shall interpret the relations \preceq and \succeq as “less risky” and “no more risky,” respectively.

The preference relation \preceq on Z is called law invariant if $Z \preceq W$ implies that $Z \sim W$.

2.1. Utility Theory

Originally, the utility theory of von Neumann and Morgenstern [73] has been proposed for preference relations on the space of measures on \mathbb{R}. Here we adapt it to the case when the prospect space is the space Z of real random variables.

2.1.1. Axioms. Every preference relation \preceq on the space of probability measures on \mathbb{R} defines a law invariant preference relation \preceq on Z as follows:

$$Z \preceq W \iff \mu_Z \preceq \mu_W.$$

The converse statement is true, if we additionally require that every probability measure μ on \mathbb{R} is a distribution of some $Z \in Z$. This can be guaranteed if (Ω, \mathcal{F}, P) is a standard atomless probability space (see Dudley [20, Theorem 11.7.5], Skorohod [71]). In this case, we can consider an operation on random variables in Z corresponding to the operation of taking a convex combination of measures on \mathbb{R}.

For three elements Z, V, W in Z, we say that W is a lottery of Z and V with probabilities $\alpha \in (0, 1)$ and $(1 - \alpha)$, if an event $A \in \mathcal{F}$ of probability α exists, such that the conditional distribution of W, given A, is the same as the (unconditional) distribution of Z, whereas the conditional distribution of V, given $A = \Omega \setminus A$, is the same as the unconditional distribution of V. In this case, the probability measure μ_W induced by W on \mathbb{R} is the corresponding convex combination of the probability measures μ_Z and μ_V of Z and V, respectively:

$$\mu_W = \alpha \mu_Z + (1 - \alpha) \mu_V.$$

We write the lottery symbolically as

$$W = \alpha Z \oplus (1 - \alpha) V.$$

It should be stressed that only the distribution μ_W of the lottery is defined uniquely, not the random variable W itself. However, if the preference relation \preceq on Z is law invariant, it makes sense to compare lotteries.

For law-invariant preferences on the space of real random variables, we introduce axioms corresponding to the axioms of the expected utility theory for distributions, due to von Neumann and Morgenstern [73].

Independence Axiom. For all $Z, V, W \in Z$ one has

$$Z \preceq V \implies \alpha Z \oplus (1 - \alpha) W \preceq \alpha V \oplus (1 - \alpha) W \quad \forall \alpha \in (0, 1).$$

Archimedean Axiom. If $Z \preceq V \preceq W$, then $\alpha, \beta \in (0, 1)$ exist such that

$$\alpha Z \oplus (1 - \alpha) W \preceq V \preceq \beta Z \oplus (1 - \beta) W.$$

If a total preorder \succeq on Z satisfies the independence and Archimedean axioms, then a numerical representation $U: Z \to \mathbb{R}$ of \succeq exists, which satisfies for all $Z, V \in Z$ and all $\alpha \in [0, 1]$ the equation

$$U(\alpha Z \oplus (1 - \alpha) V) = \alpha U(Z) + (1 - \alpha) U(V).$$
The original proof of this statement (formulated in the space of probability distributions) is due to von Neumann and Morgenstern [73]; for a modern approach via convex analysis, see Dentcheva and Ruszczyński [18].

2.1.2. Utility Functions. To formulate the integral representation of the utility functional \(U(\cdot) \), we need to introduce the topology on the space \(\mathcal{Z} \) and assume continuity of the preorder \(\preceq \) in this topology. For this purpose we adopt the topology of convergence in distribution. Recall that a sequence of random vectors \(Z_n; \Omega \to \mathbb{R} \) converges in distribution to a random vector \(Z; \Omega \to \mathbb{R} \), if for every continuous and bounded function \(f: \mathbb{R} \to \mathbb{R} \),

\[
\lim_{n \to \infty} \mathbb{E}[f(Z_n)] = \mathbb{E}[f(Z)].
\]

If a total preorder \(\preceq \) on \(\mathcal{Z} \) is law invariant, continuous with respect to convergence in distribution, and satisfies the independence axiom, then a continuous and bounded function \(u: \mathbb{R} \to \mathbb{R} \) exists, such that the functional

\[
U(Z) = \mathbb{E}[u(Z)] = \int_{\Omega} u(Z(\omega)) P(d\omega)
\]

is a numerical representation of \(\preceq \) on \(\mathcal{Z} \) (see Fishburn [23], Föllmer and Schied [26], Dentcheva and Ruszczyński [18], and references therein).

In this paper we assume that lower valuers of the outcome \(Z \) are preferred; that is, \(Z \) represents “cost” or “loss.” Then it makes sense to assume that the preorder \(\preceq \) is monotonic; that is, \(Z \preceq V \) a.s. implies that \(Z \preceq V \). It is obvious that for a monotonic preorder, the utility function \(u(\cdot) \) in the numerical representation (1) is nondecreasing.

2.1.3. Risk Aversion. If the space \(\mathcal{Z} \) contains only random variables that are integrable up to power \(p \geq 1 \), i.e., \(\mathcal{Z} = L_p(\Omega, \mathcal{F}, P) \), then we can prove that the representation (1) is true with a utility function \(u(\cdot) \), which is not necessarily bounded but has growth rate not exceeding \(p \), that is, \(|u(z)| \leq C(1 + z^p)\) for some constant \(C \). In this case the expected value

\[
\mathbb{E}[Z] = \int_{\Omega} Z(\omega) P(d\omega)
\]

is well defined. We can call a preference relation weakly risk averse if \(\mathbb{E}[Z] \preceq Z \) for all \(Z \in \mathcal{Z} \). In this case, the utility function \(u(\cdot) \) in the numerical representation (1) is convex.

Observe that the convexity of \(u(\cdot) \) implies the convexity of the numerical representation \(U(\cdot) \) in \(\mathcal{Z} \). For every \(\alpha \in [0, 1] \), we have

\[
U(\alpha Z + (1 - \alpha)V) = \int_{\Omega} u(\alpha Z(\omega) + (1 - \alpha)V(\omega)) P(d\omega) \\
\leq \alpha \int_{\Omega} u(Z(\omega)) P(d\omega) + (1 - \alpha) \int_{\Omega} u(V(\omega)) P(d\omega) \\
= \alpha U(Z) + (1 - \alpha)U(V).
\]

2.2. Dual Utility Theory

2.2.1. Axioms. Again, we are considering a law invariant preorder \(\preceq \) in the space \(\mathcal{Z} \) of real random variables on a standard and atomless probability space \((\Omega, \mathcal{F}, P) \). However, we make different assumptions than those of the expected utility theory. Instead of considering lotteries, we consider convex combinations of comonotonic random variables. Recall that real random variables \(Z_i, i = 1, \ldots, n \), are comonotonic, if

\[
(Z_i(\omega) - Z_i(\omega'))(Z_j(\omega) - Z_j(\omega')) \geq 0
\]

for all \(\omega, \omega' \in \Omega \) and all \(i, j = 1, \ldots, n \).

The following axioms were formulated in Yaari [74], when the theory of dual utility was axiomatized.
Dual Independence Axiom. For all comonotonic random variables Z, V, and W in \mathcal{Z}, one has

$$Z \preceq V \implies \alpha Z + (1 - \alpha)W \preceq \alpha V + (1 - \alpha)W \quad \forall \alpha \in (0, 1).$$

Dual Archimedean Axiom. For all comonotonic random variables Z, V, and W in \mathcal{Z}, satisfying the relations $Z \preceq V \preceq W$, numbers $\alpha, \beta \in (0, 1)$ exist such that

$$\alpha Z + (1 - \alpha)W \preceq V \preceq \beta Z + (1 - \beta)W.$$

In addition to that, we assume that the preorder \succeq is monotonic.

Then a numerical representation $U: \mathcal{Z} \rightarrow \mathbb{R}$ of \preceq exists, which satisfies, for all comonotonic $Z, V \in \mathcal{Z}$ and all $\alpha, \beta \in \mathbb{R}^+$, the equation

$$U(\alpha Z + \beta V) = \alpha U(Z) + \beta U(V).$$

Moreover, $U(\cdot)$ is a certainty equivalent; that is,

$$U(Z) \equiv Z \quad \text{for all } Z \in \mathcal{Z}. \quad (3)$$

In the last equation, the symbol \equiv denotes the sure outcome of 1.

2.2.2. Rank-Dependent Utility Functions. If, additionally, \mathcal{Z} is the space of bounded random variables equipped with the the norm topology of the space $L_1(\Omega, \mathcal{F}, P)$, and the preorder \preceq is continuous, then a bounded, nondecreasing, and continuous function $w: [0, 1] \rightarrow \mathbb{R}_+$ exists, such that

$$U(Z) = \int_0^1 F_Z^{-1}(\beta) dw(\beta), \quad Z \in \mathcal{Z}. \quad (4)$$

In the formula above, $F_Z^{-1}(\cdot)$ is the inverse distribution function of Z; that is,

$$F_Z^{-1}(\alpha) = \inf \{ \eta : F_Z(\eta) \geq \alpha \}, \quad \text{where} \quad F_Z(\eta) = P\{ Z \leq \eta \}, \quad \eta \in \mathbb{R}. \quad (5)$$

is the usual distribution function. The function $w(\cdot)$ in (4) is called the rank-dependent utility function (see Dentcheva and Ruszczyński [18] and the references therein).

2.2.3. Risk Aversion. To discuss risk aversion, we assume again that the space \mathcal{Z} contains only integrable random variables. Then for every $Z \in \mathcal{Z}$ and every σ-subalgebra \mathcal{G} of \mathcal{F}, the conditional expectation $E[Z \mid \mathcal{G}]$: $\Omega \rightarrow \mathbb{R}$ is well defined.

A preference relation \preceq on \mathcal{Z} is called risk averse if $E[Z \mid \mathcal{G}] \preceq Z$, for every $Z \in \mathcal{Z}$ and every σ-subalgebra $\mathcal{G} \subseteq \mathcal{F}$. In this case the integral representation of \preceq is true with a nondecreasing and concave function $w: [0, 1] \rightarrow [0, 1]$ such that $w(0) = 0$ and $w(1) = 1$.

Again, the convexity of $w(\cdot)$ implies the convexity of the numerical representation $U(\cdot)$ in \mathcal{Z}. For every $\alpha \in [0, 1]$ we have

$$U(\alpha Z + (1 - \alpha)V) = \int_0^1 F_{\alpha Z + (1 - \alpha)V}^{-1}(\beta) dw(\beta)$$

$$\leq \alpha \int_0^1 F_Z^{-1}(\beta) dw(\beta) + (1 - \alpha) \int_0^1 F_V^{-1}(\beta) dw(\beta)$$

$$= \alpha U(Z) + (1 - \alpha)U(V). \quad (7)$$

This inequality can be verified by integration by parts, with the use of convexity of $w(\cdot)$.

Finally, an equivalent expression for the functional (4) is the following Choquet integral representation (Schmeidler [68]):

$$U(Z) = - \int_{-\infty}^0 w(F_Z(\eta)) \, d\eta + \int_0^\infty [1 - w(F_Z(\eta))] \, d\eta. \quad (8)$$

Again, it can be derived via integration by parts.
2.3. Measures of Risk

2.3.1. Axioms. In the theory of measures of risk, the preference relation \preceq is specified directly through its numerical representation $\rho: \mathcal{Z} \to \mathbb{R}$. The prospect space \mathcal{Z} is the space of p-integrable random variables $\mathcal{L}_p(\Omega, \mathcal{F}, P)$, with $p \in [1, \infty]$.

A coherent measure of risk is a function $\rho: \mathcal{Z} \to \mathbb{R}$ satisfying the following axioms.

Convexity. $\rho(\alpha Z + (1 - \alpha)V) \leq \alpha \rho(Z) + (1 - \alpha)\rho(V)$, for all $Z, V \in \mathcal{Z}$ and all $\alpha \in [0, 1]$.

Monotonicity. If $V, Z \in \mathcal{Z}$ and $V \leq Z$, then $\rho(V) \leq \rho(Z)$.

Translation Equivariance. If $c \in \mathbb{R}$ and $Z \in \mathcal{Z}$, then $\rho(cI + Z) = c + \rho(Z)$.

Positive Homogeneity. If $\gamma \geq 0$ and $Z \in \mathcal{Z}$, then $\rho(\gamma Z) = \gamma \rho(Z)$.

Inequalities are understood component-wise in all of these conditions. The theory of coherent measures of risk was initiated in Artzner et al. [2]. Interestingly, an earlier work, Kijima and Ohnishi [32], missed the crucial monotonicity axiom. A related theory of deviation measures also puts less stress on monotonicity (Krokhmal et al. [37], Rockafellar et al. [60]).

A functional satisfying the first three conditions is called a convex measure of risk (Föllmer and Schied [25]). The key condition is the axiom of convexity. It is the same as the convexity property derived in (2) and (7) for utility theories under risk aversion. It means that combining risky positions does not increase risk, but may decrease it, due to diversification (hedging). The monotonicity axiom is obvious and the same as in the utility theories. If we interpret $\rho(Z)$ as the certainty equivalent of Z, then the translation axiom is clear: all sure losses contribute directly to the certainty equivalent. The positive homogeneity axiom means that by combining identical risky positions we cannot achieve diversification. Also, change of the system of units (e.g., from dollars to pesos) cannot affect the real value of the certainty equivalent.

The translation and homogeneity axiom indeed imply that $\rho(Z) \parallel \sim Z$: that is, $\rho(Z)$ is a certainty equivalent. Indeed, using homogeneity and translation, we obtain

$$\rho(\rho(Z)\parallel) = \rho(Z)\rho(\parallel) = \rho(Z)\rho(\parallel + 0) = \rho(Z)(\parallel + 0) = \rho(\parallel) = \rho(Z).$$

One can also directly verify that the dual utility functional (4) with a convex rank-dependent utility function is a special case of a coherent measure of risk. However, the von Neumann–Morgenstern utility functionals (1) are not coherent measures of risk, unless the function $u(\cdot)$ is the identity, in which case (1) reduces to the expected value.

2.3.2. Dual Representation. Coherent measures of risk have many remarkable properties. The most fundamental is the dual representation. If $p \in [1, \infty)$ and $\rho(\cdot)$ is finite valued on $\mathcal{Z} = \mathcal{L}_p(\Omega, \mathcal{F}, P)$, then a convex closed set \mathcal{A} of probability measures on (Ω, \mathcal{F}) exists such that

$$\rho(Z) = \max_{\mu \in \mathcal{A}} E_\mu[Z] = \max_{\mu \in \mathcal{A}} \int_\Omega Z(\omega)\mu(d\omega).$$

(9)

Moreover, the measures $\mu \in \mathcal{A}$ have q-integrable densities $d\mu/dP$ with respect to P, where $1/p + 1/q = 1$. The set \mathcal{A} is the subdifferential of $\rho(\cdot)$ at 0. Representation (9) is a special case of conjugate duality in convex analysis (Rockafellar [57]). In the risk measure context, it was initially proved in a finite-dimensional case in Artzner et al. [2] and was later refined in several papers (see, e.g., Fritelli and Rosazza Gianin [27], Ruszczyński and Shapiro [67]). Representation (9) is the foundation of many numerical methods for optimizing measures of risk.
2.3.3. Examples. Let us consider several examples of measures of risk.

1. The mean-semideviation risk measure is defined following Ogryczak and Ruszczyński [46, 47]:

$$\rho(Z) = \mathbb{E}[Z] + \kappa \|Z - \mathbb{E}[Z]\|_p, \quad \kappa \in [0, 1].$$ (10)

We customary write $Z - c$ for $Z - c \mathbb{1}$; it never leads to misunderstanding. It is a coherent measure of risk, and its subdifferential appearing in the dual representation (9) has the following form (Ruszczyński and Shapiro [67]):

$$A = \left\{ \mu : \frac{d\mu}{dP} = 1 + h - \int_{\Omega} h(\omega) dP, \|h\|_q \leq \kappa, h \geq 0 \right\}. $$

2. The average (conditional) value at risk (AVaR) at level $\alpha \in (0, 1)$ is defined as follows (Rockafellar and Uryasev [58, 59]):

$$\text{AVaR}_\alpha(Z) = \min_{t \in \mathbb{R}} \left\{ t + \frac{1}{\alpha} \mathbb{E}[(Z - t)_+] \right\} = \frac{1}{\alpha} \int_{1-\alpha}^{1} F^{-1}_Z(\beta) d\beta. $$ (11)

The equivalence of both formulations can be verified by conjugate duality (Ogryczak and Ruszczyński [47, Theorem 3.1]). The last formula in (11) shows that the average value at risk is also a dual utility functional of form (4), with the following convex rank-dependent utility function:

$$w(\beta) = \begin{cases}
0 & \text{if } 0 \leq \beta \leq 1 - \alpha, \\
\frac{p + \alpha - 1}{\alpha} & \text{if } 1 - \alpha \leq \beta \leq 1.
\end{cases}$$

Average value at risk is a coherent measure of risk, and its subdifferential appearing in the dual representation (9) has the following form (Ruszczyński and Shapiro [67]):

$$A = \left\{ \mu : 0 \leq \frac{d\mu}{dP} \leq \frac{1}{\alpha}, \mu(\Omega) = 1 \right\}. $$

3. Let $\kappa > 0$ and let Z be the space of random variables Z such that $\mathbb{E}[e^{\kappa|Z|}] < \infty$. On the space Z, we define the entropic measure of risk as follows:

$$\rho(Z) = \frac{1}{\kappa} \ln(\mathbb{E}[e^{\kappa Z}]). $$

It is a convex measure of risk (see Föllmer and Schied [26, §§3.2, 4.9]).

4. Suppose $u : \mathbb{R} \rightarrow \mathbb{R}$ is nondecreasing and convex, and $1 \in \partial u(0)$. We assume that $|u(t)| \leq Cp^p$ for all $t \in \mathbb{R}$, with some $C > 0$ and $p \geq 1$, and we consider the prospect space $Z = L_p(\Omega, \mathcal{F}, P)$. The optimized certainty equivalent,

$$\rho(Z) = \inf_{t \in \mathbb{R}} \left\{ t + \mathbb{E}[u(Z - t)] \right\},$$

is a convex measure of risk (Ben-Tal and Teboulle [5]). The functional $\rho(\cdot)$ is not positively homogeneous, unless $u(\cdot)$ is positively homogeneous. We see that the average value at risk (11) is a special case of the optimized certainty equivalent, with $u(z) = (1/\alpha)(z)_+$. Higher-order analogs, with $u(z) = (1/\alpha)p_+(z)_+$, were considered by Krokhmal [36].
2.3.4. Kusuoka Representation. Another important property of coherent measures of risk is the Kusuoka representation of law-invariant measures, first introduced in Kusuoka [39]. A measure of risk $\rho(\cdot)$ is called law-invariant (distribution-based) if $Z \dist V$ implies that $\rho(Z) = \rho(V)$. If the probability space (Ω, \mathcal{F}, P) is nonatomic, then every law-invariant measure of risk on $L_p(\Omega, \mathcal{F}, P), p \in [1, \infty)$, can be expressed as follows:

$$\rho(Z) = \sup_{\lambda \in \Lambda} \int_{[0, 1)} \text{AVaR}_\alpha(Z) \lambda(d\alpha), \quad Z \in \mathcal{Z},$$

(12)

where Λ is a convex set of probability measures on $(0, 1]$. On the space $L_{\infty}(\Omega, \mathcal{F}, P)$, the measures λ may contain an additional atom at 0, with $\text{AVaR}_0(Z) = \text{ess sup}_{\omega \in \Omega} Z(\omega)$.

In the special case, when Λ contains only one element, the measure of risk $\rho(\cdot)$ is called spectral. In fact, spectral risk measures are identical with dual utility functionals (4), which are risk averse, that is, have convex rank-dependent utility functions $w(\cdot)$. This can be verified by using the integral representation of $\text{AVaR}_\alpha(Z)$ provided in (11) and changing the order of integration.

For example, the Kusuoka representation of the first order ($p = 1$) mean–semideviation risk measure (10) has the form

$$\Lambda = \{\lambda \in \mathcal{P}(0, 1]: (\exists \alpha \in (0, 1)) \lambda = \alpha \delta_\alpha + (1 - \alpha) \delta_1\},$$

where δ_c denotes the unit mass at point c (see Ogryczak and Ruszczynski [48, Lemma 3.6]). For other examples, see Dentcheva et al. [19], Pichler and Shapiro [52], and Pflug and Römisch [50].

Kusuoka representation is a convenient tool for constructing new risk measures, reflecting modeling needs.

2.4. Stochastic Orders

Stochastic orders are partial orders on the space of distributions of random variables. Therefore, they are also partial orders on the space \mathcal{Z} of random variables. As partial orders, they do not have numerical representations in form of utility functionals or risk measures, but they do have multiutility representations, with the use of families of utility functions or rank-dependent utility functions.

2.4.1. Direct Forms. To present the stochastic orders in the case when smaller outcomes are preferred, it is convenient to consider the survival function

$$F_Z(\eta) = 1 - F_Z(\eta) = P[Z > \eta].$$

A random variable Z is stochastically smaller than a random variable V in the first order, which we write as $Z \dist(1) V$, if

$$F_Z(\eta) \leq F_V(\eta) \quad \text{for all } \eta \in \mathbb{R}.$$

This relation is also known as the first order stochastic dominance (Lehmann [40], Quirk and Saposnik [54]).

The second order survival function $\bar{F}_Z^{(2)}$ is given by the integrals

$$\bar{F}_Z^{(2)}(\eta) = \int_{\eta}^{\infty} \bar{F}_Z(\xi) d\xi, \quad \eta \in \mathbb{R},$$

and defines the weak relation of the increasing convex order, corresponding to the second-order stochastic dominance (Hadar and Russell [29], Rothschild and Stiglitz [61]); that is,
an integrable random variable Z is \emph{stochastically smaller} than V in the increasing convex order, denoted $Z \preceq_{(icx)} V$, if

$$
\bar{F}_Z^{(2)}(\eta) \leq \bar{F}_V^{(2)}(\eta) \quad \text{for all } \eta \in \mathbb{R}.
$$

We can express the function $\bar{F}_Z^{(2)}(\cdot)$ as the expected excess: for each target value η, we have

$$
\bar{F}_Z^{(2)}(\eta) = \mathbb{E}[(Z - \eta)_+].
$$

The function $\bar{F}_Z^{(2)}(\cdot)$ is convex, nonnegative, and nonincreasing. It is well defined for all random variables Z with finite expected value. Because of this representation, the second order relation $Z \preceq_{(icx)} V$ can be equivalently characterized by the following infinite system of inequalities:

$$
\mathbb{E}[(Z - \eta)_+] \leq \mathbb{E}[(V - \eta)_+] \quad \text{for all } \eta \in \mathbb{R}. \quad (13)
$$

An equivalent characterization of the stochastic order relations using utility functions as in the expected utility theory of von Neumann and Morgenstern (see, e.g., Müller and Stoyan [43]) is also available:

(i) For any two random variables Z, V, the relation $Z \preceq_{(1)} V$ holds if and only if

$$
\mathbb{E}[u(Z)] \leq \mathbb{E}[u(V)] \quad (14)
$$

for all nondecreasing functions $u(\cdot)$ defined on \mathbb{R}.

(ii) For any two random variables Z, V with finite expectations, the relation $Z \preceq_{(icx)} V$ holds if and only if (14) is satisfied for all nondecreasing convex functions $u(\cdot)$.

It follows from (ii) that the second order relation (the increasing convex order) is suitable for modeling risk-averse preferences, because it has multiutility representation with risk-averse utility functionals.

\subsection*{2.4.2. Inverse Forms.}

The inverse stochastic dominance relations compare the inverse distribution functions (quantile functions) of random variables. First order stochastic dominance can be characterized equivalently as follows:

$$
Z \preceq_{(1)} V \iff F_{Z}^{-1}(p) \leq F_{V}^{-1}(p) \quad \text{for all } 0 < p < 1.
$$

The second order relation $\preceq_{(icx)}$ (the increasing convex order) is characterized by relations between integrated quantile functions, which are nothing else but the average value at risk given by formula (11):

$$
Z \preceq_{(icx)} V \iff \text{AVaR}_\alpha(Z) \leq \text{AVaR}_\alpha(V) \quad \text{for all } 0 \leq \alpha < 1. \quad (15)
$$

Following Dentcheva and Ruszczyński [16], we provide an equivalent characterization of stochastic dominance and the increasing convex order using rank-dependent utility functions, which mirrors the expected utility characterization:

(i) For any two random variables Z, V, the relation $Z \preceq_{(1)} V$ holds if and only if

$$
\int_{0}^{1} F_{Z}^{-1}(p) \, dw(p) \leq \int_{0}^{1} F_{V}^{-1}(p) \, dw(p) \quad (16)
$$

for all nondecreasing functions $w(\cdot)$ defined on $[0,1]$.

(ii) For any two random variables Z, V with finite expectations, the relation $Z \preceq_{(icx)} V$ holds if and only if (16) is satisfied for all nondecreasing convex functions $w(\cdot)$.

Again, risk-averse preferences are associated with the increasing convex order, because it has a multiutility representation with risk-averse dual utility functionals of form (4). It is also worth noting that the utility functionals of von Neumann and Morgenstern and the dual utility functionals appear in \emph{equivalent} multiutility representations (14) and (16) of stochastic orders.
2.4.3. Strassen Theorem. Other useful characterizations of the usual stochastic order and the increasing convex order can be obtained by means of rearrangements of random variables and possible changing of the probability space. We can prove the following results:

(i) The random variable Z is stochastically smaller than V ($Z \preceq_{(1)} V$) if random variables $Z' \leq Z$ and $V' \leq V$ exist, such that $Z' \leq V'$ a.s.

(ii) The random variable Z is smaller than V in the increasing convex order ($Z \preceq_{(icx)} V$) if random variables $Z' \leq V'$ a.s.

The first statement follows by setting $Z' = F_{Z}^{-1}(U)$ and $V' = F_{V}^{-1}(U)$ for a uniform random variable U. The second assertion is due to Strassen [72]; for extensions and applications, see Müller and Stoyan [43] and the references therein.

These results can be used in computationally convenient representations of stochastic orders of the first and the second order (Luedtke [41]). Suppose Z has n realizations z_1, \ldots, z_n with probabilities p_1, \ldots, p_n, whereas V has m realizations v_1, \ldots, v_m with probabilities q_1, \ldots, q_m. Then $Z \preceq_{(icx)} V$ if and only if a nonnegative matrix Π of dimension $n \times m$ exists, such that

\[
\sum_{j=1}^{m} \pi_{ij} v_j \geq z_i, \quad i = 1, \ldots, n, \quad (17)
\]

\[
\sum_{j=1}^{m} \pi_{ij} = 1, \quad i = 1, \ldots, n, \quad (18)
\]

\[
\sum_{i=1}^{n} p_i \pi_{ij} = q_j, \quad j = 1, \ldots, m. \quad (19)
\]

To characterize the first order relation, we assume that the realizations of V are ordered; that is, $v_1 < v_2 < \cdots < v_M$. It is sufficient for applications that we have in mind, because V will always be a fixed benchmark random variable. Then $Z \preceq_{(1)} V$ is equivalent to the existence of a binary matrix Π such that Equations (17) and (18) and the following system of inequalities are satisfied:

\[
\sum_{j=k}^{m} \sum_{i=1}^{n} p_i \pi_{ij} \leq \sum_{j=k}^{m} q_j, \quad k = 1, \ldots, m. \quad (20)
\]

For the proof and applications, see Luedtke [41].

2.4.4. Convexification. On a nonatomic probability spaces (Ω, \mathcal{F}, P) or on finite spaces Ω with uniform discrete measures, the following convexification property is true (see Dentcheva and Ruszczyński [15, 13]):

\[
\left\{ Z \in \mathcal{L}_1(\Omega, \mathcal{F}, P) : Z \preceq_{(icx)} V \right\} = \overline{\text{conv}} \left\{ Z \in \mathcal{L}_1(\Omega, \mathcal{F}, P) : Z \preceq_{(1)} V \right\}. \quad (21)
\]

In the case of finite probability space with uniform measure, the closure operation may be omitted. This representation is of importance for optimization models, because it allows us to construct tight convex approximations of sets defined by the first order stochastic dominance relations.

3. Risk-Averse Optimization

Let us now consider static optimization models, in which the “cost” $Z(x, \omega)$ is random and depends on our decision variables x in the space $X = \mathbb{R}^n$, as well as on an elementary event ω in some probability space (Ω, \mathcal{F}, P). In the rest of this section, we shall write $Z(x)$ for the mapping from the decision space X to an appropriate space of random variables \mathcal{Z}.
3.1. Main Models
The problem of “minimizing” \(Z(x) \) with respect to \(x \in X \), where \(X \subseteq \mathcal{X} \) is a feasible set, does not make much sense, because \(Z(x) \) is random; for some elementary event \(\omega \), one decision may be better than another, whereas for a different elementary event \(\omega' \), their relation may be reversed.

Two classes of models deal with this difficulty:
(i) A numerical representation of risk-averse preferences is used as a new objective function.
(ii) The random outcome \(Z(x) \) is related to another random outcome in constraints.

In the first group we have models of optimizing expected utility functionals,
\[
\min_{x \in X} \mathbb{E}[u(Z(x))],
\] (22)
rank-dependent utility functionals,
\[
\min_{x \in X} \int_0^1 F_{Z(x)}^{-1}(\beta) dw(\beta),
\] (23)
or coherent risk measures,
\[
\min_{x \in X} \rho(Z(x)).
\] (24)
Model (22) is a standard problem of optimizing the expected value, with the outcomes transformed in a nonlinear way. Problems of this type are well investigated in stochastic programming (see the monographs Birge and Louveaux [6], Kall and Mayer [31], Shapiro et al. [70], and references therein). The model (23) is a special case of (24); therefore, we shall focus mainly on optimization models using measures of risk.

Models of group (ii) are problems with chance constraints and problems with stochastic orders in constraints. In these models, the objective function may be just the expected value; risk aversion is represented by a properly formulated system of constraints. A typical optimization problem with a stochastic order constraint has the following form:
\[
\min \mathbb{E}[Z(x)]
\] s.t. \(Z(x) \preceq_* Y \),
\(x \in X \),
(25)
with \(\preceq_* \) representing an appropriate stochastic order and \(Y \) being a benchmark random variable. This was first introduced in Dentcheva and Ruszczyński [12] and analyzed and extended in Dentcheva and Ruszczyński [14, 15]. It is a generalization of models with chance constraints and integrated chance constraints, which have been well investigated in stochastic programming (see Klein Haneveld [33], Prékopa [53], Shapiro et al. [70], and references therein).

3.2. Optimization of Risk Measures
Let us consider model (24) with a finite-valued coherent measure of risk \(\rho(\cdot) \) defined on a space \(\mathcal{Z} = L_p(\Omega, \mathcal{F}, P) \), \(p \in [1, \infty) \). If the mapping \(x \mapsto Z(x, \omega) \) is convex for almost all \(\omega \in \Omega \), and \(Z(x) \in \mathcal{Z} \) for all \(x \in \mathcal{X} \), then the composition \(\phi(\cdot) = \rho(Z(\cdot)) \) is a convex function. If, additionally, the feasible set \(X \) is convex, problem (24) is convex optimization problem. Because coherent measures of risk are nondifferentiable, in general, the theory and methods of nonsmooth optimization are germane for risk-averse models.
3.2.1. Optimality and Duality. Suppose a point \(\hat{x} \) is an optimal solution of problem (24). Then a measure \(\hat{\mu} \in \partial \rho(Z(\hat{x})) \) exists such that

\[
0 \in \int_\Omega \partial_x Z(\hat{x}, \omega) \hat{\mu}(d\omega) + N_X(\hat{x}),
\]

with \(N_X(\hat{x}) \) denoting the normal cone to \(X \) at \(\hat{x} \). The integral above is understood as a collection of integrals of measurable selections of the multifunction \(\omega \mapsto \partial_x Z(\hat{x}, \omega) \). Moreover, the pair \((\hat{x}, \hat{\mu}) \) is a saddle point of the function

\[
\langle Z(x), \mu \rangle = \int_\Omega Z(x, \omega) \mu(d\omega)
\]

on the set \(X \times A \); that is,

\[
\langle Z(\hat{x}), \hat{\mu} \rangle \leq \langle Z(x), \mu \rangle \leq \langle Z(\hat{x}), \hat{\mu} \rangle \quad \text{for all } (x, \mu) \in X \times A.
\]

This implies that the following duality relation is satisfied:

\[
\rho(Z(\hat{x})) = \min_{x \in X} \rho(Z(x)) = \min_{x \in X} \max_{\mu \in A} \min_{x \in X} \langle Z(x), \mu \rangle = \min_{x \in X} \max_{\mu \in A} \min_{x \in X} \langle Z(x), \mu \rangle.
\]

This relation is the basis of efficient cutting plane methods for minimizing risk measures.

3.2.2. Risk-Averse Multicut Method. To illustrate the application of duality (26), we consider the problem (24) with a finite probability space \(\Omega = \{\omega_1, \omega_2, \ldots, \omega_S\} \) with \(p_s = P[\omega_s] > 0 \) and \(\sum_{s=1}^S p_s = 1 \). Our presentation follows Miller and Ruszczyński [42], where the method was proposed. We denote

\[
Z_s(x) = Z(x, \omega_s), \quad s = 1, \ldots, S.
\]

Suppose we collected values \(U_s^{(l)} = Z_s(x^{(l)}) \) and subgradients \(g_s^{(l)} \in \partial Z_s(x^{(l)}) \) at some trial points \(x^{(l)} \) in iterations \(l = 1, \ldots, k-1 \). They can be used to construct lower cutting plane approximations of the functions \(Z_s(x) \) as follows:

\[
Z_s(x) \geq Z_s^{(k)}(x) = \max_{1 \leq l \leq k-1} \left\{ U_s^{(l)} + \langle g_s^{(l)}, x - x^{(l)} \rangle \right\}.
\]

The random function \(Z^{(k)}(x) \) with realizations described above is a lower approximation of \(Z(x) \). In particular, the random vector \(W_s^{(l)} \) with realizations

\[
W_s^{(l)} = Z_s^{(l)}(x^{(l)}), \quad s = 1, \ldots, S,
\]

is a lower approximation of the true scenario values (27) at \(x^{(l)} \). We evaluate a subgradient \(\mu^{(l)} \) of the risk measure \(\rho(\cdot) \) at \(W_s^{(l)} \) and write the chain of inequalities:

\[
\rho(Z(x)) \geq \rho(Z^{(k)}(x)) \geq \max_{1 \leq l \leq k-1} \langle Z^{(k)}(x), \mu^{(l)} \rangle.
\]
3.3. Optimization with Stochastic Order Constraints

We now consider the risk-averse model (25) with the usual stochastic order $\preceq_{(1)}$ and with the increasing convex order $\preceq_{(icx)}$. We focus on the latter, because it is most convenient for modeling risk-averse preferences. Models with first order constraints are nonconvex, in general, and frequently involve combinatorial considerations (Dentcheva and Ruszczyński [15], Luedtke [41], Noyan et al. [45], Noyan and Ruszczyński [44]). Also, owing to (21), models with first order constraints can be very well approximated by models with second order constraints.

3.3.1. Increasing Convex Order Constraints.

Consider the problem

$$\min_{x,\eta, w} \eta$$

s.t. $\eta \geq \langle W, \mu^{(l)} \rangle$, $l = 1, \ldots, k - 1$,
$W_s \geq U^{(l)}_s + \langle g^{(l)}_s, x - x^{(l)} \rangle$, $l = 1, \ldots, k - 1$, $s = 1, \ldots, S$,
$x \in X$, $\eta \geq \eta_{\text{min}}$, $W \geq w_{\text{min}}$.

Step 2. For $s = 1, \ldots, S$, calculate $U_s^{(k)} = Z_s(x^{(k)})$ and $g^{(k)}_s \in \partial Z_s(x^{(k)})$.
Step 3. Find $\rho^{(k)} = \max_{x \in A(\mu, W^{(k)})}$ and denote the maximizer by $\mu^{(k)}$.
Step 4. If $\rho^{(k)} = \eta^{(k)}$, then stop. Otherwise, increase k by 1 and go to Step 1.

The function above plays the role of a Lagrangian, with the utility function $\hat{u}(\cdot)$ playing the role of the Lagrange multiplier. Corresponding duality relations can be developed as well (see Dentcheva and Ruszczyński [12, 14]).

In a parallel analysis of Dentcheva and Ruszczyński [16], we also show that \hat{x} is an optimal solution of problem (30), if and only if a convex nondecreasing utility function $\hat{w}(\cdot)$ exists, such that \hat{x} is also a solution of the following rank-dependent utility problem:

$$\min_{x \in X} \int_0^1 F_{Z(x)}^{-1}(\beta) d(1 + \hat{w})(\beta) - \int_0^1 F_{Y}^{-1}(\beta) d\hat{w}(\beta).$$

Again, the function in the problem above plays the role similar to that of a Lagrangian, and the rank-dependent utility function $\hat{w}(\cdot)$ being the analogue of a Lagrange multiplier. Duality theory based on this “Lagrangian” can be developed as well.

Both utility theories, the expected utility theory of von Neumann and Morgenstern and the dual utility theory of Yaari, provide dual objects for stochastic order constraints. For problems with first order constraints, local optimality conditions can be derived, with
the use of the Lagrangian functions (31) and (32), but with utility functions \(u(\cdot) \) and rank-dependent utility functions \(w(\cdot) \), which are not necessarily convex (Dentcheva and Ruszczyński [15, 16]).

3.3.2. Nonlinear Optimization Reformulations.

Suppose \(Z(x) \) has finitely many realizations \(Z_i(x) \) attained with probabilities \(p_i, i = 1, \ldots, n \), and \(Y \) has finitely many realizations \(y_j \) attained with probabilities \(q_j, j = 1, \ldots, m \). Because \(V \) is fixed, we may assume that its realizations are arranged in such a way that \(y_1 < y_2 < \cdots < y_m \). In this case, the relation \(Z \preceq_Y (i.c.) Y \) is equivalent to a finite number of inequalities (Dentcheva and Ruszczyński [12]):

\[
E[(Z(x) - y_j)_+] \leq E[(Y - y_j)_+] = \sum_{\nu=j+1}^m q_\nu(y_\nu - y_j), \quad j = 1, \ldots, m. \tag{33}
\]

This allows us to reformulate problem (30) as follows:

\[
\begin{align*}
\min & \quad \sum_{i=1}^n p_i Z_i(x) \\
\text{s.t.} & \quad \sum_{i=1}^n p_i s_{ij} \leq \sum_{\nu=j+1}^m q_\nu(y_\nu - y_j), \quad j = 1, \ldots, m, \\
& \quad Z_i(x) - s_{ij} \leq y_j, \quad i = 1, \ldots, n, \ j = 1, \ldots, m, \\
& \quad s_{ij} \geq 0, \quad i = 1, \ldots, n, \ j = 1, \ldots, m, \\
& \quad x \in X.
\end{align*} \tag{34}
\]

The difficulty of this formulation is that it requires \(n \times m \) new variables \(s_{ij} \) to represent \((Z_i(x) - y_j)_+ \).

Another reformulation is based on the relations (17)–(19):

\[
\begin{align*}
\min & \quad \sum_{i=1}^n p_i Z_i(x) \\
\text{s.t.} & \quad Z_i(x) \leq \sum_{j=1}^m \pi_{ij} y_j, \quad i = 1, \ldots, n, \\
& \quad \sum_{j=1}^m \pi_{ij} = 1, \quad i = 1, \ldots, n, \\
& \quad \sum_{i=1}^n p_i \pi_{ij} = q_j, \quad j = 1, \ldots, m, \\
& \quad \pi_{ij} \geq 0, \quad i = 1, \ldots, n, \ j = 1, \ldots, m, \\
& \quad x \in X.
\end{align*} \tag{35}
\]

Again, \(n \times m \) variables \(\pi_{ij} \) are introduced in this formulation.

3.3.3. Event Cut Formulations.

A significant improvement can be achieved by representing constraints (33) by the following large system of inequalities (see Klein Haneveld and van der Vlerk [34], Rudolf and Ruszczyński [62]):

\[
\sum_{i \in I} p_i (Z_i(x) - y_j) \leq E[(Y - y_j)_+] = \sum_{\nu=j+1}^m q_\nu(y_\nu - y_j), \quad j = 1, \ldots, m, \forall I \subseteq \{1, \ldots, n\}. \tag{36}
\]
The inequality (36) for a specific set I is called a *direct event cut*. The idea is not to use these cuts all at once, but rather to use a small subset of them. In iteration k of the method, we solve the following approximate problem, involving only a subset of event cuts:

$$
\min \sum_{i=1}^{n} p_i Z_i(x)
$$

s.t. $\sum_{i \in I^{(l)}} p_i (Z_i(x) - y_{j(i)}) \leq \sum_{k=j(i)+1}^{m} q_k (y_k - y_{j(i)}), \quad l = 1, \ldots, k - 1,$

$$
x \in X.
$$

After the solution $x^{(k)}$ is found, we check the inequalities (33) at $x^{(k)}$. If they are all satisfied, the method stops. Otherwise, we choose $y_{j(k)}$ to be the realization y_j of Y for which (33) is violated, set

$$
I^{(k)} = \{i; Z_i(x^{(k)}) > y_{j(k)}\},
$$

add a new event cut for $I^{(k)}$, increase k by 1, and continue.

An alternative and even more efficient approach can be obtained from representation (15). In the case of discrete distributions, the relation $Z \preceq_{(icc)} Y$ is equivalent to the following system (Dentcheva and Ruszczyński [17], Dentcheva and Martinez [11]):

$$
\sum_{i \in I} p_i Z_i(x) \leq \int_{1-\sum_{i \in I} p_i}^{1} F^{-1}_Y(\beta) \, d\beta \quad \forall I \subseteq \{1, \ldots, n\}.
$$

Observe that $F^{-1}_Y(\cdot)$ is piecewise constant, and the right-hand side of (38) can be easily calculated for any set I. We call inequality (36) for a specific set I an *inverse event cut*.

Using this characterization, we may proceed in a way analogous to (37). At iteration k we solve the following relaxed problem:

$$
\min \sum_{i=1}^{n} p_i Z_i(x)
$$

s.t. $\sum_{i \in I^{(l)}} p_i Z_i(x) \leq \int_{1-\sum_{i \in I^{(l)}} p_i}^{1} F^{-1}_Y(\beta) \, d\beta, \quad l = 1, \ldots, k - 1,$

$$
x \in X.
$$

After the solution $x^{(k)}$ is found, we check the inequalities (38) at $x^{(k)}$. If they are all satisfied, the method stops. Otherwise, we choose an event $I^{(k)}$ for which (33) is violated, add a new inverse event cut for $I^{(k)}$, increase k by 1, and continue. Convergence of this method for general distributions is proved in Dentcheva and Ruszczyński [17]. A related approach by Fábián et al. [22], which is based on a similar idea for AVaR constraints of Künnzi-Bay and Mayer [38], requires $m = n$ and equal probabilities $p_i = 1/n$ of the scenarios.

3.4. Multistage Risk-Averse Optimization

3.4.1. Problem Formulation

We start from the formulation of a *linear* multistage stochastic optimization problem; a convex problem may be modeled in a similar way, but with additional complications.

Let (Ω, \mathcal{F}, P) be a probability space with a sigma-algebra \mathcal{F} and probability measure P. Consider a filtration $\{\emptyset, \Omega\} = \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_T = \mathcal{F}$. A random vector $x = (x_1, \ldots, x_T)$, where each x_t has values in \mathbb{R}^{n_t}, $t = 1, \ldots, T$, is called a *policy*. If each x_t is \mathcal{F}_t-measurable,
t = 1, . . . , T, a policy x is called implementable. We denote the set of all implementable policies by I.

A policy x is called feasible, if it satisfies the following conditions:

\[
\begin{align*}
A_1 x_1 + B_2 x_1 + A_2 x_2 + B_3 x_2 + A_3 x_3 &= b_1, \\
B_T x_{T-1} + A_T x_T &= b_T,
\end{align*}
\]

(40)

In these equations, for every t = 1, . . . , T, the matrices \(A_t\) of dimensions \(m_t \times n_t\), the matrices \(B_t\) of dimensions \(m_t \times n_{t-1}\), and the vectors \(b_t\) of dimensions \(m_t\) are \(\mathcal{F}_t\)-measurable data. Each set \(X_t\) is a random convex and closed polyhedron, which is measurable with respect to \(\mathcal{F}_t\) (in the sense of measurability of multifunctions; see Aubin and Frankowska [4]). The set of all feasible policies is denoted by \(F\).

Suppose \(c_t, t = 1, . . . , T\), is an adapted sequence of random cost vectors; that is, each \(c_t\) is \(\mathcal{F}_t\)-measurable. A policy x results in a cost sequence

\[
Z_t = \langle c_t, x_t \rangle, \quad t = 1, . . . , T.
\]

(41)

Each \(Z_t\) is an element of the space \(Z_t\) of \(\mathcal{F}_t\)-measurable random variables. Our intention is to formulate and analyze a risk-averse multistage stochastic optimization problem:

\[
\min_{x \in F} \varrho(\langle Z_1, Z_2, . . . , Z_T \rangle),
\]

(42)

where \(\varrho: Z_1 × Z_2 × \cdots × Z_T \to \mathbb{R}\) is a dynamic measure of risk; for the main concepts and results of the theory of dynamic measures of risk, see Artzner et al. [3], Cheridito et al. [7], Föllmer and Penner [24], Fritelli and Scandolo [28], Pflug and Römisch [50], Riedel [56], Ruszczynski and Shapiro [66], and references therein.

3.4.2. Time Consistency.

As time goes on, we have to consider tail subsequences \(Z_{t_1}, . . . , Z_{t_T}\) of the sequence future costs, where \(1 \leq t_1 \leq T\). They are elements of the spaces \(Z_{t_1} = Z_1 \times \cdots \times Z_{t_1}\). It is therefore necessary to consider the corresponding conditional risk measures \(\varrho_{t_1, T}: Z_{t_1, T} \to \mathbb{R}\), where \(t_1, . . . , T\). The value of the conditional risk measure \(\varrho_{t_1, T}(Z_{t_1}, . . . , Z_T)\) can be interpreted as a fair one-time \(\mathcal{F}_t\)-measurable charge we would be willing to incur at time \(t\), instead of the sequence of random future costs \(Z_{t_1}, . . . , Z_T\).

Because smaller realizations of outcomes \(Z_{t_1}, . . . , Z_T\) are preferred (they are “costs” or “losses”), it is natural to assume the following monotonicity condition: for every \(t = 1, . . . , T\),

\[
\varrho_{t_1, T}(Z) \leq \varrho_{t_1, T}(W) \quad \text{for all } Z, W \in Z_{t_1, T} \text{ such that } Z \leq W.
\]

(43)

Here and elsewhere in this paper, inequalities between random vectors are understood componentwise and in the almost sure sense. A collection of conditional measures of risk, \(\{\varrho_{t_1, T}\}_{t_1=1}^{T}\), is a dynamic measure of risk.

The key issue associated with dynamic preferences is the question of their consistency over time. It has been studied in various contexts in the past (see, e.g., Artzner et al. [3], Cheridito et al. [7]); here, we adapt the perspective of Ruszczynski [65]. A dynamic risk measure \(\{\varrho_{t_1, T}\}_{t_1=1}^{T}\) is called time consistent if for all \(1 \leq \tau < \theta \leq T\) and all sequences \(Z, W \in Z_{\tau, T}\) the conditions

\[
Z_k = W_k, \quad k = \tau, . . . , \theta - 1, \quad \text{and} \quad \varrho_{\theta, T}(Z_{\theta}, . . . , Z_T) \leq \varrho_{\theta, T}(W_{\theta}, . . . , W_T)
\]

(44)

imply that

\[
\varrho_{\tau, T}(Z_{\tau}, . . . , Z_T) \leq \varrho_{\tau, T}(W_{\tau}, . . . , W_T).
\]

(45)
For a dynamic risk measure \(\{ \rho_t \}_{t=1}^T \), we can define one-step conditional risk measures
\(\rho_t: Z_{t+1} \to Z_t \), \(t = 1, \ldots, T - 1 \) as follows:

\[
\rho_t(Z_{t+1}) = \varrho_{t,T}(0, Z_{t+1}, 0, \ldots, 0).
\]

We can derive the following structure of a time-consistent dynamic risk measure. If a dynamic risk measure \(\{ \rho_t \}_{t=1}^T \) satisfies, for all \(Z \in Z \) and all \(t = 1, \ldots, T \), the conditions

\[
\begin{align*}
\varrho_{t,T}(Z_t, Z_{t+1}, \ldots, Z_T) &= Z_t + \varrho_{t,T}(0, Z_{t+1}, \ldots, Z_T), \quad (46) \\
\varrho_{t,T}(0, 0, \ldots, 0) &= 0, \quad (47)
\end{align*}
\]

then it is time consistent if and only if for all \(1 \leq t \leq T \) and all \(Z \in Z_{1,T} \) the following identity is true:

\[
\varrho_{t,T}(Z_t, \ldots, Z_T) = Z_t + \rho_t(Z_{t+1} + \rho_{t+1}(Z_{t+2} + \cdots + \rho_{T-2}(Z_{T-1} + \rho_{T-1}(Z_T))) \ldots)). \quad (48)
\]

Condition (46) is a form of the translation property, discussed in various settings in Artzner et al. [3], Frittelli and Scandolo [28], and Pflug and Römisch [50]. Our version is weaker, because \(Z_t \) is \(F_t \)-measurable.

It follows that a time-consistent dynamic risk measure is completely defined by one-step conditional risk measures \(\rho_t \), \(t = 1, \ldots, T - 1 \). For \(t = 1 \), formula (48) defines a risk measure of the entire sequence \(Z \in Z_{1,T} \) (with a deterministic \(Z_1 \)).

3.4.3. Coherent Conditional Measures of Risk.

Further restrictions are obtained by assuming the property of coherency, which extends to the conditional case the definition of a coherent measure of risk from §2.3. Let \(1 \leq t \leq T - 1 \). A coherent one-step conditional risk measure is a function \(\rho_t: Z_{t+1} \to Z_t \) satisfying the following axioms:

Convexity. \(\rho_t(\alpha Z_{t+1} + (1 - \alpha)V_{t+1}) \leq \alpha \rho_t(Z_{t+1}) + (1 - \alpha) \rho_t(V_{t+1}) \) for all \(Z_{t+1}, V_{t+1} \in Z_{t+1} \) and all \(\alpha \in [0, 1] \).

Monotonicity. If \(V_{t+1}, Z_{t+1} \in Z_{t+1} \) and \(V_{t+1} \leq Z_{t+1} \), then \(\rho_t(V_{t+1}) \leq \rho_t(Z_{t+1}) \).

Translation Equivariance. If \(V_t \in Z_t \) and \(Z_{t+1} \in Z_{t+1} \), then \(\rho_t(V_t + Z_{t+1}) = V_t + \rho_t(Z_{t+1}) \).

Positive Homogeneity. If \(\gamma \geq 0 \) and \(Z_{t+1} \in Z_{t+1} \), then \(\rho(\gamma Z_{t+1}) = \gamma \rho(Z_{t+1}) \).

An example of coherent one-step conditional risk measure is the conditional mean–upper semideviation model defined by

\[
\rho_t(Z) = \mathbb{E}[Z \mid F_t] + \kappa_t \mathbb{E}[(Z - \mathbb{E}[Z \mid F_t])_+ \mid F_t], \quad (49)
\]

with an \(F_t \)-measurable \(\kappa_t \in [0, 1] \). See Shapiro et al. [70, p. 277] for the details showing that formula (49) defines a coherent conditional risk measure and for other examples of conditional risk measures.

Using coherent conditional risk measures in (48) leads to a model with a coherent dynamic measure of risk.

3.4.4. Scenario Trees.

For practical tractability, we assume that all sigma-algebras are finite and all vector spaces are finite-dimensional. Under such assumptions, possible realizations of data form a scenario tree. It has nodes organized in levels that correspond to stages \(1, \ldots, T \). At level \(t = 1 \) we have only one root node \(n = 1 \). Nodes at levels \(t = 2, \ldots, T \) correspond to elementary events in \(F_t \). Each node \(n \) at level \(t = 2, \ldots, T \) is connected to a unique node \(a(n) \) at level \(t - 1 \), called the ancestor node, which corresponds to the elementary event in \(F_{t-1} \) that contains the event associated with \(n \). Thus, every node \(n \) at levels \(t = 1, \ldots, T - 1 \) is connected to a set \(C(n) \) of children nodes at level \(t + 1 \), which correspond
to the elementary events in \mathcal{F}_{t+1} included in the event corresponding to n. We denote by Ω_t the set of all nodes at stage $t = 1, \ldots, T$, and $\mathbb{N} = \bigcup_{t=1}^{T} \Omega_t$. We have the following relations:

$$\Omega_{t+1} = \bigcup_{n \in \Omega_t} C(n), \quad C(n) = \{m \in \Omega_{t+1}: n = a(m)\}.$$

The sets $C(n)$ are disjoint: $C(n) \cap C(n') = \emptyset$ if $n \neq n'$. A scenario is a path s from the root to a node at the last stage T. By construction, there is one-to-one correspondence between the scenarios and the set $\Omega_T = \Omega$. Let $S(n)$ be the set of scenarios passing through node n. These sets satisfy the recursive relation

$$S(n) = \{n\}, \quad n \in \Omega_T,$$

$$S(n) = \bigcup_{m \in C(n)} S(m), \quad n \in \Omega_t, \ t = T-1, \ldots, 1.$$

As the nodes of the tree correspond to events defining nested partitions of Ω, the measure P can be specified by conditional probabilities:

$$p_{nm} = P[m \mid n], \quad n \in \Omega_t, \ m \in C(n), \ t = 1, \ldots, T-1.$$

Every node n at level t has a history: the path $(n_1, \ldots, n_{t-1}, n)$ from the root to n. The probability of the node n is thus the product of the corresponding conditional probabilities

$$p_n = p_{n_1n_2p_{n_2n_3} \cdots p_{n_{t-1}n}}. \quad (50)$$

In particular, when $t = T$, formula (50) describes the probability of a scenario $s \in \Omega_T$.

For every node $n \in \Omega_t$, an \mathcal{F}_t-measurable random variable Z has identical values on all scenarios $s \in S(n)$. It can therefore be equivalently represented as a function of a node at level t. All data of the problem will be now indexed by nodes of the tree, rather than by time.

3.4.4. Risk Evaluation on a Tree

Consider a coherent one-step conditional measure of risk $\rho_t(\cdot)$. Its value is \mathcal{F}_t-measurable, and thus we can consider its representation as a function of a node at level t. It follows from Ruszczyński and Shapiro [66, Theorem 3.2] that the value of $\rho_t(Z_{t+1})$ at elementary events associated with node n depends only on the values of Z_{t+1} at nodes $m \in C(n)$. This feature of a conditional risk measure is called the local property. With a slight abuse of notation, we denote the vector of these values by $Z_{C(n)}$, and we write the conditional risk measure equivalently as $\rho_n(Z_{\mathcal{C}(n)})$.

Let us define the random variables

$$V_t = \rho_t(Z_{t+1} + \rho_{t+1}(Z_{t+2} + \cdots + \rho_{T-1}(Z_T) \cdots)), \quad t = 1, \ldots, T. \quad (51)$$

They are \mathcal{F}_t-measurable, and thus we shall index them by node and write V_n for the value at node n on level t. It follows that the value of a time-consistent coherent measure of risk (48) can be written on the scenario tree in a recursive manner:

$$V_n = Z_n, \quad n \in \Omega_T,$$

$$V_n = Z_n + \rho_n(V_{\mathcal{C}(n)}), \quad n \in \Omega_t, \ t = T-1, \ldots, 1. \quad (52)$$

The recursive character of time-consistent measures of risk can be also used to derive optimality conditions in the form of dynamic programming equations. Let us consider a node $n \in \Omega_t$ and assume that the value of $x_n(n)$ is fixed. Owing to the local property, we can consider the subproblem of minimizing V_n with respect to $x_n, x_{\mathcal{C}(n)}, \ldots, x_{\mathcal{C}T-t}(n)$, subject to the corresponding subset of conditions (40) involving these variables. We call the optimal value of this subproblem the value function and denote it by the symbol $Q_n(x_n(n))$. Except
for the case of $t = 1$, it is a function of $x_{a(n)}$. Similarly to (52), we use the symbol $Q_{C(n)}(x_n)$ to represent a random variable with values $Q_m(x_n)$, $m \in C(n)$, attained with probabilities p_{nm}.

Proceeding exactly as in Shapiro et al. [70, §6.7.3], we conclude that the value functions $Q_n(\cdot)$ satisfy the dynamic programming equations

$$Q_n(x_{a(n)}) = \min_{x_n} \left\{ \langle c_n, x_n \rangle : B_n x_{a(n)} + A_n x_n = b_n, \ x_n \in X_n \right\}, \quad n \in \Omega_T,$$

$$Q_n(x_{a(n)}) = \min_{x_n} \left\{ \langle c_n, x_n \rangle + \rho_n(Q_{C(n)}(x_n)) : B_n x_{a(n)} + A_n x_n = b_n, \ x_n \in X_n \right\}, \quad n \in \Omega_t, \ t = T - 1, \ldots, 1,$$

with the convention that Q_1 has no arguments. The value of Q_1 is the optimal value of the problem, and the optimal decisions in problems (53) constitute the optimal policy. The optimal value functions $Q_n(\cdot)$ are convex, because their arguments appear as parameters in the constraints of convex optimization problems.

Equations (53) is the theoretical foundation of computational methods for solving multistage time-consistent risk-averse problems.

3.4.6. Risk-Averse Nested Decomposition. We now extend the multicut method proposed in Miller and Ruszczyński [42] to multistage problems (see Figure 1). Very similar approaches are associated with the risk-averse extensions of the stochastic dual decomposition method of Pereira and Pinto [49], proposed in Kozmik and Morton [35], Philpott and De Matos [51], and Shapiro [69].

In the nested decomposition method, a subproblem is associated with every node of the scenario tree. The subproblems communicate along the arcs of the tree. A typical subproblem at a node $n \in \Omega_t$ will get the value of $x_{a(n)}$ from the ancestor node $a(n)$ and pass its current solution x_n to its children nodes $m \in C(n)$. The subproblems will also pass the values of Lagrange multipliers associated with the constraints to their ancestor nodes and receive the corresponding multipliers from their children nodes.

Consider a node n at level $1 < t < T$ and suppose a new value $\bar{x}_{a(n)}$ has been received from the ancestor node. For simplicity, we assume that feasibility issues do not occur and that the system

$$B_n \bar{x}_{a(n)} + A_n x_n = b_n, \quad x_n \in X_n$$

has always a solution. At iteration k at node n, we solve the following master problem:

$$\min_{x_n, U, W} \eta$$

s.t. $\eta \geq \langle c_n, x_n \rangle + \langle W, \mu_{n(l)} \rangle$, $l = 1, \ldots, k - 1$,

$W_m \geq U_{m(l)} + \langle g_{m(l)}, x_n - \bar{x}_{n(l)} \rangle$, $l = 1, \ldots, k - 1$, $m \in C(n)$,

$$B_n \bar{x}_{a(n)} + A_n x_n = b_n,$$

$$x_n \in X_n, \quad \eta \geq \eta_{\min}, \quad W \geq W_{\min}.$$

The iterations k are numbered locally, at each node n. The constants η_{\min} and W_{\min} are uniform lower bounds on the value functions in (53).

Denote by $U_{n(k)}$ the optimal value of problem (54), by $\bar{x}_{n(k)}$ the optimal solution, and by π the vector of Lagrange multipliers associated with the equality constraints. The solution $\bar{x}_{n(k)}$, if different from previously reported, is passed to the children nodes $m \in C(n)$. If the value $U_{n(k)}$ is strictly larger than the value previously reported, then it is used together with the multipliers π to construct an objective cut

$$V_n \geq U_{n(k)} + \langle g_n, x_{a(n)} - \bar{x}_{a(n)} \rangle,$$
with the subgradient \(g^n \) defined as follows:

\[
g_n = -(B^n)^T \pi.
\]

(55)

The objective cut is passed to the ancestor problem \(a(n) \). Moreover, at any iteration \(l \) we also calculate the probability measure

\[
\mu_n^{(l)} = \arg \max_{\mu \in A_n} \langle \mu, W \rangle,
\]

(56)

where \(A_n = \partial \rho_n(0) \) is the set featuring in the dual representation (9) of \(\rho_n(\cdot) \). After all these updates, the master problem (54) is resolved, and the resulting information (if essentially new) is transmitted to the ancestor and children nodes.

If \(n = 1 \) (the root node of the tree), there is no ancestor node. Also, the constraint involving \(\bar{x}_a(n) \) in (54) has to be omitted. For \(n \in \Omega_T \) problem (54) simplifies as follows:

\[
\min_{x_n} \{ \langle c_n, x_n \rangle : B_n \bar{x}_a(n) + A_n x_n = b_n, \ x_n \in X_n \}.
\]

(57)

The protocol by which the nodes are processed is not essential for convergence of the method, although it may affect its speed.

The proof of convergence is very similar to proofs of convergence of the nested decomposition of expected-value multistage stochastic linear programming problems (see Birge and Louveaux [6], Ruszczyński [63], and the references therein).

If some of the node problems are infeasible, the method may involve feasibility cuts, similarly to Miller and Ruszczyński [42].

3.4.7. Scenario Decomposition.

The dual representation (9) applied to node \(n \) has the form

\[
\rho_n(W) = \max_{q_n \in A_n} \langle W, q_n \rangle,
\]

(58)

where \(W \) is a vector associated with nodes \(m \in C(n) \). Observe that by selecting a measure \(q_n \in A_n \) we select, in fact, conditional probabilities \(q_{nm} \), \(m \in C(n) \). This results in a probability distribution \(q \) on the scenario set. Indeed, every scenario \(s \) is a path of nodes \(n_1, n_2, \ldots, n_T \), and thus

\[
q_s = q_{n_1} q_{n_2} q_{n_3} \cdots q_{n_{T-1} n_T}.
\]

The set \(A_{1, T} \) of probability distributions constructed in this way is convex and closed, and it can be described by a system of inequalities and equations with the use of the analytical description of the sets \(A_n \). This leads to the following equivalent representation of a coherent dynamic measure of risk:

\[
\varrho(Z_1, \ldots, Z_T) = \max_{q \in A_{1, T}} \langle q, Z_1 + Z_2 + \cdots + Z_T \rangle.
\]

(59)

Owing to this representation, we can rewrite the problem (42) as follows:

\[
\min_{x \in I \cap F} \max_{q \in A_{1, T}} \langle q, \langle c_1, x_1 \rangle + \langle c_2, x_2 \rangle + \cdots + \langle c_T, x_T \rangle \rangle.
\]

(60)

This result is the theoretical foundation of a scenario decomposition method for solving time-consistent risk-averse optimization problems, proposed in Collado et al. [8]. Interchanging the “min” and “max” operations (which we can do owing to the convexity of the feasible set), we obtain an equivalent formulation

\[
\max_{q \in A_{1, T}} \min_{x \in I \cap F} \langle q, \langle c_1, x_1 \rangle + \langle c_2, x_2 \rangle + \cdots + \langle c_T, x_T \rangle \rangle.
\]

(61)
Observe that the inner minimization problems are standard multistage stochastic programming problems, just with a different probability distribution q. They can be decomposed in any of the standard ways, and are well understood for risk-neutral problems (see Ruszczyński [63] and the references therein), for example, the scenario decomposition method. The outer maximization problem can be solved by a nonsmooth optimization algorithm (see, e.g., Ruszczyński [64, Chapter 7]). One possibility is the bundle method, employed in Collado et al. [8].

Acknowledgments
This work was supported by National Science Foundation Award [CMMI-0965689] and Air Force Office of Scientific Research Award [FA-9550-11-1-0164].

References

