Lecture outline

- Basic inventory problems
- The economic order quantity
- An inventory game
- Multiperiod lot sizing
 » Math programming formulation
 » Heuristics
 » Wagner-Whitin algorithm
Basic inventory problems

Examples:

» Products:
 • Customers consume products over time.
 • Store replenishes periodically.

» People with specialized training:
 • People randomly leave the company over time.
 • Company periodically hires new graduates.

» Water (management of dams).
 • Rainfall randomly replenishes reservoirs.
 • Release water from dam to maintain level.

» Oil being stored in storage tanks:
 • Oil is steadily consumed.
 • Periodically is replenished from tankers.
Basic inventory problems

Examples:

» Housing stock
 • Houses are continually being purchased.
 • Developers produce new developments or apartment buildings.

» Financial resources (startup company)
 • Cash is used to build up the company.
 • Periodically fresh capital is raised from venture capitalists.

» Features in a software program:
 • Accumulating features in a software program in response to user requests and the ideas of developers, or due to bug fixes.
 • Periodically ship a new version of the program.

» Purchasing stock:
 • Funds become available for investment.
 • Periodically purchase new shares of stock.
Basic inventory problems

<table>
<thead>
<tr>
<th>Statement Date</th>
<th>Account Number</th>
<th>Account Summary for the Period</th>
<th>Replenishment Amount</th>
<th>Replenishment Method</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tag</th>
<th>Deposit</th>
<th>Beginning Balance</th>
<th>Tolls & Fees</th>
<th>Payments & Credits</th>
<th>Ending Balance</th>
<th>Replenishment Threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>22.07</td>
<td>27.25</td>
<td>25.00</td>
<td>19.82</td>
<td>10.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date/Time</th>
<th>Tag</th>
<th>Transaction</th>
<th>Entry Plaza Lane</th>
<th>Exit Plaza Lane</th>
<th>Class</th>
<th>Amount</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/03 14:20</td>
<td>02200917779</td>
<td>New Jersey Turnpike Toll</td>
<td>9</td>
<td>05E</td>
<td>13A</td>
<td>13X</td>
<td>-1.55</td>
</tr>
<tr>
<td>11/06 22:21</td>
<td>02200917779</td>
<td>New Jersey Turnpike Toll</td>
<td>13A</td>
<td>05E</td>
<td>9</td>
<td>13X</td>
<td>-1.45</td>
</tr>
<tr>
<td>11/11 15:09</td>
<td>02200917779</td>
<td>New York State Thruway Toll</td>
<td>15</td>
<td>05E</td>
<td>24</td>
<td>08S</td>
<td>-3.65</td>
</tr>
<tr>
<td>11/13 14:27</td>
<td>02200917779</td>
<td>New York State Thruway Toll</td>
<td>24</td>
<td>04E</td>
<td>15</td>
<td>08W</td>
<td>-3.65</td>
</tr>
<tr>
<td>11/13 17:35</td>
<td>02200917779</td>
<td>New Jersey Turnpike Toll</td>
<td>10</td>
<td>11E</td>
<td>7A</td>
<td>06X</td>
<td>-0.75</td>
</tr>
<tr>
<td>12/15 16:59</td>
<td>02200917779</td>
<td>New Jersey Turnpike Toll</td>
<td>9</td>
<td>05E</td>
<td>16E</td>
<td>01X</td>
<td>-2.30</td>
</tr>
<tr>
<td>12/15 17:42</td>
<td>02200917779</td>
<td>PANYNJ Toll</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/16 10:53</td>
<td>02200917779</td>
<td>New Jersey Turnpike Toll</td>
<td>14C</td>
<td>08E</td>
<td>9</td>
<td>12X</td>
<td>-2.40</td>
</tr>
<tr>
<td>12/17 16:50</td>
<td>02200917779</td>
<td>New Jersey Turnpike Toll</td>
<td>9</td>
<td>05E</td>
<td>13A</td>
<td>13X</td>
<td>-1.55</td>
</tr>
<tr>
<td>12/18 02:35</td>
<td></td>
<td>Replenishment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/19 20:53</td>
<td>02200917779</td>
<td>New Jersey Turnpike Toll</td>
<td>13A</td>
<td>06E</td>
<td>9</td>
<td>13X</td>
<td>-1.45</td>
</tr>
<tr>
<td>12/26 13:44</td>
<td>02200917779</td>
<td>New York State Thruway Toll</td>
<td>15</td>
<td>02E</td>
<td>23</td>
<td>06E</td>
<td>-3.50</td>
</tr>
</tbody>
</table>
Basic inventory problems

- Mutual fund cash balance

Stock market Cash Investor

How much cash do we keep on hand to strike a balance between the deposits and withdrawals of investors, and the behavior of the market?
Basic inventory problems

There are a number of ways to refer to storing resources for the future:

- Physical resources
 - Inventory
 - Stockpile
 - Stock

- Financial resources
 - Savings
 - Nest egg
 - Reserve
Basic inventory problems

- Reasons for holding inventories:
 » Economies of scale
 • Batches of goods
 • Discounts (purchasing)
 • Transportation economies (e.g. shipping in bulk)
 » Uncertainties
 • Demand
 • Order lead times
 • Supply/price of raw materials (OPEC)
 • Supply/price of components (strikes)
 • Quality control
 » Speculation
 • Commodities prices
 • Currency fluctuations
Basic inventory problems

- Reasons for holding inventories
 - Transportation
 - In-transit or pipeline inventories
 - Smoothing production
 - Respond to seasonal patterns in demand
 - Seasonal production of some items
 - Certain foods
 - Syrup
 - Snow
 - Students
 - Control costs
 - Lower inventories requires more sophisticated control systems
Basic inventory problems

The lot sizing problem

» Often, there are economies of scale when ordering new resources:
 • Raising operating capital
 – There is a fixed cost to going to the capital markets
 – Just as much work to raise $1m as $5m
 • Shipping the latest version of a software program
 – New features are added over time
 – There is a fixed cost of shipping a new version of the code
 – How many new features do you add before you ship the code?
 • Ordering new product for a store shelf
 – Fixed cost for placing and shipping an order
Basic inventory problems

- An aging and replenishment process (negative drift):
 » State is inventory – drift is due to customer demand.
Basic inventory problems

- **Indexing time:**
 - Deterministic indexing – Index based on when something happens.
 - Stochastic indexing – Index based on when something becomes known.
 - Deterministic indexing:

<table>
<thead>
<tr>
<th>Continuous time</th>
<th>D_0</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t = 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t = 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discrete time</th>
<th>R_0, x_0</th>
<th>R_1, x_1</th>
<th>R_2, x_2</th>
<th>R_3, x_3</th>
<th>R_4, x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>R_0, x_0</td>
<td>R_1, x_1</td>
<td>R_2, x_2</td>
<td>R_3, x_3</td>
<td>R_4, x_4</td>
</tr>
</tbody>
</table>
Basic inventory problems

- Basic inventory equation
 » Deterministic indexing

\[R_{t+1} = \max \{ 0, R_t + x_t - D_t \} = [R_t + x_t - D_t]^+ \]

- In deterministic indexing, everything is modeled at the beginning of a time period.
Basic inventory problems

- Stochastic indexing
 - Information arrives continuously over time
 - *A variable indexed by* t *contains exogenous information up through time* t.

Continuous time

<table>
<thead>
<tr>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 1$</td>
<td>$t = 2$</td>
<td>$t = 3$</td>
<td>$t = 4$</td>
</tr>
</tbody>
</table>

Discrete time

<table>
<thead>
<tr>
<th>R_0, x_0</th>
<th>R_1, x_1</th>
<th>R_2, x_2</th>
<th>R_3, x_3</th>
<th>R_4, x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 0$</td>
<td>$t = 1$</td>
<td>$t = 2$</td>
<td>$t = 3$</td>
<td>$t = 4$</td>
</tr>
</tbody>
</table>

- In stochastic indexing, everything is indexed at the end of a period.
Basic inventory problems

- Basic inventory equation
 - Stochastic indexing

\[R_{t+1} = \max \{0, R_t + x_t - D_{t+1}\} = [R_t + x_t - D_{t+1}]^+ \]

Demand (random at time \(t \))

New orders

State (e.g. inventory level)
Basic inventory problems

- Inventory with positive drift
 » Cash is deposited in an account. Periodically the cash is invested in batch amounts to reduce transaction costs.
Basic inventory problems

- Basic inventory with positive drift
 - Blood donations, water reservoirs, ...

\[R_{t+1} = \left[R_t - x_t \right]^+ + D_{t+1} \]

- Exogenous drift
- Endogenously controlled shift
- State (e.g. accumulation)
Outline

- Basic inventory problems
- The economic order quantity
- An inventory game
- Multiperiod lot sizing
 - Math programming formulation
 - Heuristics
 - Wagner-Whitin algorithm
The economic order quantity

- Order costs
 - Fixed cost of placing an order
 - Paperwork, forms, telephone
 - Sending a truck out
 - Setting up a machine
 - Price structure imposed by supplier
 - Variable cost of ordering a certain amount of product
 - Variable cost may be fixed (a linear function).
 - Or there may be economies of placing larger orders.
The economic order quantity

Holding cost

» Storage (heat, electricity, supervision, etc.)
» Taxes and insurance
» Breakage, spoilage, deterioration and obsolescence
 • Careful with these - these “costs” convert to reduction in quantity.
» Opportunity cost (interest)
 • Hurdle rate for a company is generally much higher than bank interest rates.
 • Let $I =$ “interest rate”
 • $c_p =$ purchase cost of item
 • $c^h = Ic_p =$ holding cost (be careful with units; if I is interest rate per year, c^h is holding cost per year).
The economic order quantity

- Stockout cost
 » Cost of lost customers
 » Cost of pushing orders to future time periods

- Notes:
 » Stockout costs are not relevant in our simplest inventory system, because they cannot happen.
 » Stockouts arise when:
 • Demand is random
 • Demand varies over time with production capacities
 • Order costs may vary as a function of time, possibly exceeding the “benefit” of covering demand.
The economic order quantity

- Some assumptions:
 - Demand is deterministic with rate λ per unit time.
 - Rate λ is constant – stationary process.
 - Costs are stationary.
 - Orders arrive immediately.
 - All orders must be filled.
The economic order quantity

The basic inventory equation:

\[
R_{t+1} = [R_t + x_t - D_{t+1}]^+
\]

where:

- \(R_t \) = Inventory at start of time \(t \)
- \(x_t \) = Amount ordered at time \(t \)
- \(D_t \) = Demand during period \(t \)

Notation:

\([x]^+ = \max \{x, 0\}\)
The economic order quantity

The cost function:

\[c(x_t, R_t) = \text{Total costs during period } t \text{ given order quantity } x_t \text{ and initial inventory } R_t \]

\[= c^o(x_t) + c^h(R_t, x_t) \]

where:

- \(c^o(x_t) \) = Order costs
 \[= \begin{cases} K + c^p x_t & x_t > 0 \\ 0 & x_t = 0 \end{cases} \]

- \(c^p \) = Unit purchasing costs

- \(c^h(R_t, x_t) \) = Holding costs
 \[= c^h \int_0^{\Delta t} [R_t + x_t - \lambda z]^+ dz \]

- \(c^h \) = Unit holding costs per time
The economic order quantity

The cost function:

We can transform the nonlinear cost function into a linear one:

\[c^o(x_t) = Ky_t + c^p x_t \]

where:

\[x_t \geq 0 \]
\[x_t \leq My_t \quad \text{M = "big M"} \]
\[y_t \in (0,1) \]

If \(y_t = 0 \) then we force \(x_t = 0 \). Now we have transformed a nonlinear cost function into a linear one, but we have added an integer variable.
The economic order quantity

Infinite horizon problem:

We would like to solve:

$$\min \sum_{x_t, y_t}^{\infty} c(R_t, x_t, y_t)_{t=0}$$

This is a really big number! A more formal way to write it is as an average cost:

$$\lim_{T \to \infty} \frac{1}{T} \left\{ \min_{x_t, y_t} \sum_{t=0}^{T} c(R_t, x_t, y_t) \right\}$$
The economic order quantity

Intuition suggests that we let inventories drop to zero, and then “order up to” an amount Q:

$\tau = \text{reorder interval}$
The economic order quantity

Reformulate the problem in terms of cost per order interval:

\(Q \) = order quantity

\(\lambda \) = Demand rate per unit time (assumed constant and deterministic)

\(c^o (Q) \) = Order cost per order interval

\(= K \) (since we always make one order per interval).

\(\tau \) = Length of order interval

\(= \frac{Q}{\lambda} \)

\(c^p (Q) \) = Purchase costs per order interval

\(= c^p Q \)
The economic order quantity

\[c^h(Q) = \text{Holding cost per order interval} \]
\[= (\text{holding cost}) \cdot (\text{average inventory}) \cdot (\text{length of interval}) \]
\[= c^h \left(\frac{Q}{2} \right) \tau \]
\[= c^h \left(\frac{Q}{2} \right) \left(\frac{Q}{\lambda} \right) = c^h \left(\frac{Q^2}{2\lambda} \right) \]

\[c(Q) = \text{Total cost per order interval} \]
\[= c^o(Q) + c^p(Q) + c^h(Q) \]
\[= K + c^p Q + c^h \left(\frac{Q^2}{2\lambda} \right) \]
The economic order quantity

How do we find the optimum value of Q?

We can try differentiating $C(Q)$ with respect to Q:

$$\frac{dC(Q)}{dQ} = 0 + c^p + 2c^h \frac{Q}{2\lambda} = 0$$

Solving for Q gives us:

$$Q^* = -\frac{c^p \lambda}{c^h}$$

What went wrong?
The economic order quantity

Cost per cycle = K plus quantity proportional to green area
The economic order quantity
The economic order quantity

Q
The economic order quantity

The smaller Q gets, the lower our costs per cycle.
The economic order quantity

Need to minimize cost per unit time, not cost per order interval. So, we want to solve:

\[
\min C^\tau (Q) = \frac{C(Q)}{\tau} = \frac{C(Q)}{Q / \lambda} = \frac{\lambda C(Q)}{Q}
\]

\[
= \frac{\lambda}{Q} \left(K + c^p Q + c^h \left(\frac{Q^2}{2\lambda} \right) \right)
\]

\[
= \frac{\lambda K}{Q} + \frac{\lambda c^p}{Q} + \frac{c^h Q}{2}
\]

Differentiating with respect to \(Q \) and setting to 0:

\[
\frac{dC^\tau (Q)}{dQ} = -\frac{\lambda K}{Q^2} + \frac{c^h}{2} = 0
\]
The economic order quantity

Finally, solving for Q gives us:

$$Q = \sqrt{\frac{2K\lambda}{c^h}} = \text{The Economic Order Quantity (EOQ)}$$

Also called the Economic Lot Size.

Properties of the optimal solution:

1. Purchase costs do not enter the equation (why?)
2. Order costs per unit time = holding costs per unit time:

 \[
 \text{Order costs per unit time} = \frac{\lambda K}{Q} = \frac{\lambda K}{\sqrt{\frac{2K\lambda}{c^h}}} = \sqrt{\frac{c^h K \lambda}{2}}
 \]

 \[
 \text{Holding costs per unit time} = \frac{c^h Q}{2} = \frac{c^h}{2} \sqrt{\frac{2K\lambda}{c^h}} = \sqrt{\frac{c^h K \lambda}{2}}
 \]
The economic order quantity

- The average cost function:

\[
\text{Total cost} = \sqrt{\frac{c^h K \lambda}{2}}
\]

\[
\text{Order costs} = \frac{2K \lambda}{\sqrt{c^h}}
\]

\[
\text{Holding cost} = \sum \sqrt{\frac{c^h K \lambda}{2}}
\]
The economic order quantity

- Sensitivity analysis
Outline

- Basic inventory problems
- The economic order quantity
- An inventory game
- Multiperiod lot sizing
 » Math programming formulation
 » Heuristics
 » Wagner-Whitin algorithm
An inventory game

- The basics:
 - Random demand (uniform between 0 and 10)
 - Demands are not revealed until an order is entered.
 - Cost parameters:

<table>
<thead>
<tr>
<th>Order cost</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase</td>
<td>10</td>
</tr>
<tr>
<td>Holding</td>
<td>1</td>
</tr>
<tr>
<td>Stockout</td>
<td>5</td>
</tr>
</tbody>
</table>
An inventory game

Player: Joe

<table>
<thead>
<tr>
<th>Time</th>
<th>Inventory</th>
<th>Order</th>
<th>Demand</th>
<th>Ending</th>
<th>Sold</th>
<th>Lost</th>
<th>Order</th>
<th>Purchase</th>
<th>Holding</th>
<th>Stock</th>
<th>Total</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>0</td>
<td>2</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>0</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>25</td>
<td>40</td>
<td>2</td>
<td>0</td>
<td>67</td>
<td>121</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>25</td>
<td>60</td>
<td>4</td>
<td>0</td>
<td>89</td>
<td>210</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>25</td>
<td>40</td>
<td>3</td>
<td>0</td>
<td>68</td>
<td>278</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>75</td>
<td>353</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>25</td>
<td>80</td>
<td>2</td>
<td>0</td>
<td>107</td>
<td>460</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>25</td>
<td>60</td>
<td>6</td>
<td>0</td>
<td>91</td>
<td>551</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>25</td>
<td>20</td>
<td>5</td>
<td>0</td>
<td>50</td>
<td>601</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>25</td>
<td>30</td>
<td>3</td>
<td>0</td>
<td>58</td>
<td>659</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>3</td>
<td>0</td>
<td>78</td>
<td>737</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>8</td>
<td>0</td>
<td>83</td>
<td>820</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>826</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>25</td>
<td>20</td>
<td>0</td>
<td>5</td>
<td>50</td>
<td>876</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>25</td>
<td>80</td>
<td>7</td>
<td>0</td>
<td>112</td>
<td>988</td>
</tr>
<tr>
<td>18</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>25</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>37</td>
<td>1025</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>25</td>
<td>50</td>
<td>3</td>
<td>0</td>
<td>78</td>
<td>1103</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>25</td>
<td>40</td>
<td>0</td>
<td>5</td>
<td>70</td>
<td>1173</td>
</tr>
</tbody>
</table>

| | | | | | | | | | | |
| 375 | 680 | 108 | 10 | 1173 |
An inventory game

Player Jimmie:

<table>
<thead>
<tr>
<th>Time</th>
<th>Inventory</th>
<th>Order</th>
<th>Demand</th>
<th>Ending</th>
<th>Sold</th>
<th>Lost</th>
<th>Order</th>
<th>Purchase</th>
<th>Holding</th>
<th>Stock</th>
<th>Total</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>0</td>
<td>2</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>0</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>17</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>44</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>54</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>20</td>
<td>6</td>
<td>18</td>
<td>6</td>
<td>0</td>
<td>25</td>
<td>200</td>
<td>18</td>
<td>0</td>
<td>243</td>
<td>297</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>0</td>
<td>4</td>
<td>14</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>311</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>320</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>321</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>20</td>
<td>6</td>
<td>15</td>
<td>6</td>
<td>0</td>
<td>25</td>
<td>200</td>
<td>15</td>
<td>0</td>
<td>240</td>
<td>561</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>0</td>
<td>2</td>
<td>13</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>574</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>0</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>584</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>589</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>20</td>
<td>5</td>
<td>20</td>
<td>5</td>
<td>0</td>
<td>25</td>
<td>200</td>
<td>20</td>
<td>0</td>
<td>245</td>
<td>834</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>854</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>0</td>
<td>2</td>
<td>18</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>18</td>
<td>872</td>
</tr>
<tr>
<td>16</td>
<td>18</td>
<td>0</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>881</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>889</td>
</tr>
<tr>
<td>18</td>
<td>8</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>891</td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>10</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>25</td>
<td>100</td>
<td>8</td>
<td>0</td>
<td>133</td>
<td>1024</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1024</td>
</tr>
</tbody>
</table>

100 700 224 0 1024
An inventory game

Player:

<table>
<thead>
<tr>
<th>Time</th>
<th>Inventory</th>
<th>Order</th>
<th>Demand</th>
<th>Ending</th>
<th>Sold</th>
<th>Lost</th>
<th>Order</th>
<th>Purchase</th>
<th>Holding</th>
<th>Stocked</th>
<th>Total</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

© 2013 W.B. Powell
An inventory game

<table>
<thead>
<tr>
<th>Time</th>
<th>Quantity</th>
<th>Order</th>
<th>Demand</th>
<th>Ending</th>
<th>Sold</th>
<th>Lost</th>
<th>Order</th>
<th>Purchase</th>
<th>Holding</th>
<th>Stock</th>
<th>Total</th>
<th>Cum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>20</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

© 2013 W.B. Powell
Outline

- Basic inventory problems
- The economic order quantity
- An inventory game
- Multiperiod lot sizing
 - Math programming formulation
 - Heuristics
 - Wagner-Whitin algorithm
Math programming formulation

- What do we do when the demands are nonstationary?
 - \(D_t = \) the forecasted demand for time period \(t, 0 \leq t < T \).
 - We are going to use a point estimate of the demand, which produces a deterministic model.
 - \(T = \) the planning horizon.

- Objective function:

\[
\min_{x_t, y_t} \sum_{t=0}^{T-1} c_t \left(R_t, x_t, y_t \right)
\]
Math programming formulation

- The optimization problem can be visualized as a network:

$$\sum_{t=0}^{T-1} D_t$$

Production arcs

Consumption

Inventory

© 2013 W.B. Powell
Math programming formulation

- Integer programming formulation:

 Notation:
 Activity variables:
 \[R_t = \text{inventory at beginning of period } t \]
 \[D_t = \text{demand during period starting at } t \]

 Parameters:
 \[c^h = \text{Unit holding cost per time period} \]
 \[c^p = \text{Unit purchase cost} \]
 \[K = \text{Fixed order cost} \]

 Decision variables:
 \[x_t = \text{amount ordered in period } t \]
 \[y_t = \begin{cases}
1 & x_t > 0 \\
0 & x_t = 0
\end{cases} \]
Math programming formulation

Objective function:

$$\min_{x,y} \sum_{t=0}^{T-1} K y_t + c^p_t x_t + c^h \left(R_t + x_t - D_t \right)$$

subject to:

$$R_{t+1} = R_t + x_t - D_t$$

$$x_t \leq My_t \quad (M = \text{big number})$$

$$x_t \geq D_t - R_t$$

$$x_t \geq 0$$

$$y_t = (0,1)$$

This is an integer programming problem, which can be solved using commercial solvers such as Cplex and Gurobi.
Math programming formulation

- We implement our math programming formulation as a *rolling horizon procedure*
 - Optimize over 0-4, implement time 0
 - Roll to time 1, see new information, solve updated problem for time periods 1-5:
 - Roll to time 2, see new information, solve updated problem for time periods 2-6:
Math programming formulation

Rolling horizon procedures

> These are deterministic approximations of the problem over a planning horizon H

Objective function:

$$\min \sum_{t'=t}^{t+H} Ky_{tt'} + c^p_{tt'} x_{tt'} + c^h (R_{tt'} + x_{tt'} - D_{tt'})$$

where $x_t = (x_{tt'})_{t'=t,...,t+H}$, $y_t = (y_{tt'})_{t'=t,...,t+H}$

subject to:

$$R_{t,t'+1} = R_{tt'} + x_{tt'} - D_{tt'}$$

$$x_{tt'} \leq My_{tt'} \quad (M = \text{big number})$$

$$x_{tt'} \geq D_{tt'} - R_{tt'}$$

$$x_{tt'} \geq 0$$

$$y_{tt'} = (0,1)$$
Heuristics

Silver-Meal heuristic (Least average cost)

Let $C(s) =$ average cost per unit time if we order over the next s time periods

$$
= \frac{1}{s} \left(K + c^h \sum_{t=0}^{s-1} tD_t \right)
$$

Calculate $C(1), C(2), \ldots, C(s)$. Stop when $C(s + 1) > C(s)$. Set $T = s$. Order enough for the next T time periods.

» One of the best known and most widely used heuristics in supply chain management.
Heuristics

■ Least unit cost

Let $C(s) =$ average cost per unit produced if we order over the next s time periods

$$C(s) = \frac{K + c^h \sum_{t=0}^{s-1} tD_t}{\sum_{t=0}^{s-1} D_t}$$

Calculate $C(1)$, $C(2)$, ..., $C(s)$. Stop when $C(s + 1) > C(s)$.
Set $T = s$.

Least unit cost reflects the way managers are actually measured. No one is measured in terms of $$/$/day (why not??).
Wagner-Whitin algorithm

Example: Seasonal TV demand

» Parameters:

<table>
<thead>
<tr>
<th>Setup cost</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Order cost</td>
<td>1</td>
</tr>
<tr>
<td>Holding cost</td>
<td>1.3</td>
</tr>
</tbody>
</table>

» Demands (in 1000’s):

<table>
<thead>
<tr>
<th>Time</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Wagner-Whitin algorithm

A network representation:

» The set of decisions represents a shortest path problem over a specialized network:

» The cost on each arc is the cost of the decision, including order costs and all holding costs.

» What does the optimal solution look like?
Wagner-Whitin algorithm

Properties of optimal solution

» We only need to make decisions when the inventory is zero.

» This means our decision variable is not the quantity, but the number of time periods into the future that we need to cover.

Order enough just for time periods 0 and 1

Order enough just for time periods 2 and 3

The state that we are at time period 2 with zero inventory.
Wagner-Whitin algorithm

Start with the final node:

\[\begin{align*}
43.7 & \quad 29.7 & \quad 17.6 & \quad 10 & \quad 0 \\
\end{align*} \]
Wagner-Whitin algorithm

Links into time period 3:
Wagner-Whitin algorithm

- Links into time period 2:
Wagner-Whitin algorithm

Links into time period 1:
Wagner-Whitin algorithm

Finally, we walk forward in time:

We use the values computed in the backward pass to walk forward and compute decisions.
Wagner-Whitin algorithm

Strengths:

» Very fast

» Handles very general cost functions
 • You can use virtually any shape order cost function.

» Handles time-dependent data (e.g. seasonal data, day of week effects or hour of day patterns).

» Handles forecasts of the future (which is a form of time-dependency).
Wagner-Whitin algorithm

Limitations of this model:
» Assumes demands are deterministic!!!
 - “Optimal” solution is not really optimal.
 - Drives inventories to zero, which will create stockouts.
 - Have to reoptimize as forecasted demands change.

» Limitations:
 - Computationally demanding when you have to solve 100,000 problems (Wal-Mart!).
 - Solutions are not “obviously” better than good heuristics under realistic conditions.
 - Gets complicated if you have multiple items and joint capacity constraints (need to use integer programming formulation)

» But:
 - Serves as a useful subproblem in the context of larger applications.
 - Highlights behavior of the problem.
Wagner-Whitin algorithm

- Important generalizations:
 - Upper bounds on order quantities
 - What if we cannot order more than \(u_t \) in time period \(t \)?
 - Upper bounds on production and multiple items:
 - This is the problem that actually arises in practice.
 - Called the “capacitated multi-item lot sizing problem.”
 - Limit on total production time, in the presence of setup times.
 - The literature on setup times is very sparse.