
A Unified Framework for Stochastic Optimization

Warren B. Powell

Princeton University

Abstract

Stochastic optimization is a set of over a dozen fragmented communities using several notational sys-
tems, competing algorithmic strategies motivated by a variety of applications. This paper reviews the
canonical models of these communities, and proposes a universal modeling framework that encompasses
all of these competing approaches. At the heart is an objective function that optimizes over policies
which is standard in some approaches, but foreign to others. We then identify four meta-classes of
policies that encompasses all of the approaches that we have identified in the research literature or
industry practice. In the process, we observe that any adaptive learning algorithm, whether it is
derivative-based or derivative-free, is a form of policy that can be tuned to optimize either the cumula-
tive reward (similar to multi-armed bandit problems) or final reward (as is used in ranking and selection
or stochastic search). We argue that the principles of bandit problems, long a niche community, should
become a core dimension of mainstream stochastic optimization.

Keywords: Dynamic programming, stochastic programming, stochastic search, bandit problems,
optimal control, approximate dynamic programming, reinforcement learning, robust optimization,
Markov decision processes, ranking and selection, simulation optimization

Preprint submitted to European J. Operational Research July 25, 2017

Contents

1 Introduction 1

2 The communities of stochastic optimization 1
2.1 Decision trees . 2
2.2 Stochastic search . 2
2.3 Optimal stopping . 3
2.4 Optimal control . 5
2.5 Markov decision processes . 6
2.6 Approximate/adaptive/neuro dynamic programming . 7
2.7 Reinforcement learning . 7
2.8 Online computation . 8
2.9 Model predictive control . 8
2.10 Stochastic programming . 9
2.11 Robust optimization . 10
2.12 Ranking and selection . 11
2.13 Simulation optimization . 12
2.14 Multiarmed bandit problems . 12
2.15 Discussion . 14

3 Solution strategies 14

4 A universal canonical model 15

5 Designing policies 20
5.1 Policy search . 20
5.2 Lookahead approximations . 21
5.3 Notes . 23

6 Modeling uncertainty 23

7 State-independent functions: Learning problems 24
7.1 Derivative-based . 25
7.2 Derivative-free . 26
7.3 Discussion . 30

8 Policies for state-dependent problems 30
8.1 Policy function approximations . 30
8.2 Cost function approximations . 31
8.3 Value function approximations . 32

2

8.4 Direct lookahead approximations . 34
8.5 Hybrid policies . 40
8.6 Learning challenges . 41

9 A classification of problems 42

10 Research challenges 45

References 47

3

1. Introduction

There are many communities that contribute to the problem of making decisions in the presence
of different forms of uncertainty, motivated by a vast range of applications spanning business, science,
engineering, economics and finance, health and transportation. Decisions may be binary, discrete, con-
tinuous or categorical, and may be scalar or vector. Even richer are the different ways that uncertainty
arises. The combination of the two creates a virtually unlimited range of problems.

A byproduct of this diversity has been the evolution of different mathematical modeling styles and
solution approaches. In some cases communities developed a new notational system followed by an
evolution of solution strategies. In other cases, a community might adopt existing notation, and then
adapt a modeling framework to a new problem setting, producing new algorithms and new research
questions.

The goal of this review is to bring these communities together by developing a canonical modeling
framework that covers all of the different perspectives that have evolved over time. From this foun-
dation, we are going to reduce the rich array of solution approaches into a relatively small number
of fundamental strategies. Our framework is not replacing these fields but rather building on them,
somewhat like standing on the shoulders of giants. We will identify and draw on the core strengths
and contributions of each of the subcommunities of stochastic optimization. We believe that the best
approach for a particular problem depends on the structure of the problem as well as specific char-
acteristics of the data. We also believe that hybrid strategies that draw on the strengths of different
approaches can add significant value.

We will also demonstrate that our framework will open up new questions, by taking the perspective
of one problem class into a new problem domain.

2. The communities of stochastic optimization

Deterministic optimization can be organized along two major lines of investigation: math pro-
gramming (linear, nonlinear, integer), and deterministic optimal control. Each of these fields has
well-defined notational systems that are widely used around the world.

Stochastic optimization, on the other hand, covers a much wider class of problems, and as a result
has evolved along much more diverse lines of investigation. Complicating the organization of these
contributions is the observation that over time, research communities which started with an original,
core problem and modeling framework have evolved to address new challenges which require new
algorithmic strategies. This has resulted in different communities doing research on similar problems
with similar strategies, but with different notation, and asking different research questions.

Below we provide a summary of the most important communities, along with a sample of major
references. All of these fields are quite mature, so we try to highlight some of the early papers as well
as recent contributions in addition to some of the major books and review articles that do a better
job of summarizing the literature than we can, given the scope of our treatment. However, since our
focus is integrating across fields, we simply cannot do justice to the depth of the research taking place
within each field.

1

Figure 1: Illustration of a simple decision tree for an asset selling problem.

2.1. Decision trees

Arguably the simplest stochastic optimization problem is a decision tree, illustrated in figure 1,
where squares represent decision nodes, and circles represent outcome nodes. Decision trees are typ-
ically presented without mathematics and therefore are very easy to communicate. However, they
explode in size with the decision horizon, and are not at all useful for vector-valued decisions.

Decision trees have proven useful in a variety of problems complex decision problems in health,
business and policy (Skinner, 1999). There are literally dozens of survey articles addressing the use of
decision trees in different application areas.

2.2. Stochastic search

Derivative-based stochastic optimization began with the seminal paper of Robbins & Monro (1951)
which launched an entire field. The canonical stochastic search problem is written

max
x

EF (x,W), (1)

where W is a random variable, while x is a continuous scalar or vector (in the earliest work). We
assume that we can compute gradients (or subgradients) ∇xF (x,W) for a sample W . The classical
stochastic gradient algorithm of Robbins & Monro (1951) is given by

xn+1 = xn + αn∇xF (xn,Wn+1), (2)

2

where αn is a stepsize that has to satisfy

αn > 0, (3)
∞∑
n=0

αn = ∞, (4)

∞∑
n=0

α2
n < ∞. (5)

Stepsizes may be deterministic, such as αn = 1/n or αn = θ/(θ + n), where θ is a tunable parameter.
Also popular are stochastic stepsizes that adapt to the behavior of the algorithm (see Powell & George
(2006) for a review of stepsize rules). Easily the biggest challenge of these rules is the need to tune
parameters. Important recent developments which address this problem to varying degrees include
AdaGrad (Duchi et al. (2011)), Adam (Kingma & Ba (2015)) and PiSTOL (Orabona (2014)).

Stochastic gradient algorithms are used almost universally in Monte Carlo-based learning algo-
rithms. A small sample of papers includes the early work on unconstrained stochastic search including
Wolfowitz (1952) (using numerical derivatives), Blum (1954) (extending to multidimensional prob-
lems), and Dvoretzky (1956). A separate line of research focused on constrained problems under the
umbrella of “stochastic quasi-gradient” methods, with seminal contributions from Ermoliev (1968),
Shor (1979), Pflug (1988b), Kushner & Clark (1978), Shapiro & Wardi (1996), and Kushner & Yin
(2003). As with other fields, this field broadened over the years. The best recent review of the field
(under this name) is Spall (2003). Bartlett et al. (2007) approaches this topic from the perspective
of online algorithms, which refers to stochastic gradient methods where samples are provided by an
exogenous source. Broadie et al. (2011) revisits the stepsize conditions (3)-(5).

2.3. Optimal stopping

Optimal stopping is a niche problem that has attracted significant attention in part because of its
simple elegance, but largely because of its wide range of applications in the study of financial options
(Karatzas (1988), Longstaff & Schwartz (2001), Tsitsiklis & Van Roy (2001)), equipment replacement
(Sherif & Smith, 1981) and change detection (Poor & Hadjiliadis, 2009).

Let W1,W2, . . . ,Wt, . . . represent a stochastic process that might describe stock prices, the state of
a machine or the blood sugar of a patient. For simplicity, assume that f(Wt) is the reward we receive
if we stop at time t (e.g. selling the asset at price Wt). Let ω refer to a particular sample path of
W1, . . . ,WT (assume we are working with finite horizon problems). Now let

Xt(ω) =

{
1 if we stop at time t,
0 otherwise.

Let τ(ω) be the first time that Xt = 1 on sample path ω. The problem here is that ω specifies the
entire sample path, so writing τ(ω) makes it seem as if we can decide when to stop based on the entire

3

sample path. This notation is hardly unique to the optimal stopping literature as we see below when
we introduce stochastic programming.

We can fix this by constructing the function Xt so that it only depends on the history W1, . . . ,Wt.
When this is done, τ is called a stopping time. In this case, we call Xt an admissible policy, or we would
say that “Xt is Ft-measurable” (these terms are all equivalent). We would then write our optimization
problem as

max
τ

EXτf(Wτ), (6)

where we require τ to be a stopping time, or we would require the function Xτ to be Ft-measurable
or an admissible policy.

There are different ways to construct admissible policies. The simplest is to define a state variable
St which only depends on the history W1, . . . ,Wt. For example, define a physical state Rt = 1 if we
are still holding our asset (that is, we have not stopped). Further assume that the Wt process is a set
of prices p1, . . . , pt, and define a smoothed price process p̄t using

p̄t = (1− α)p̄t−1 + αpt.

At time t, our state variable is St = (Rt, p̄t, pt). A policy for stopping might be written

Xπ(St|θ) =

{
1 if p̄t > θmax or p̄t < θmin and Rt = 1,
0 otherwise.

Finding the best policy means finding the best θ = (θmin, θmax) by solving

max
θ

E
T∑
t=0

ptX
π(St|θ).

So, now our search over admissible stopping times τ becomes a search over the parameters θ of a policy
Xπ(St|θ) that only depend on the state. This transition hints at the style that we are going to use in
this paper.

Optimal stopping is an old and classic topic. An elegant presentation is given in Cinlar (1975)
with a more recent discussion in Cinlar (2011) where it is used to illustrate filtrations. DeGroot (1970)
provides a nice summary of the early literature. One of the earliest books dedicated to the topic is
Shiryaev (1978) (originally in Russian). Moustakides (1986) describes an application to identifying
when a stochastic process has changed, such as the increase of incidence in a disease or a drop in
quality on a production line. Feng & Gallego (1995) uses optimal stopping to determine when to
start end-of-season sales on seasonal items. There are numerous uses of optimal stopping in finance
(Azevedo & Paxson, 2014), energy (Boomsma et al., 2012) and technology adoption (Hagspiel et al.,
2015) (to name just a few).

4

2.4. Optimal control

The canonical control problem is typically written

min
u0,...,uT

T∑
t=0

T∑
t=0

L(xt, ut) + LT (xT), (7)

where L(xt, ut) is a loss function with terminal loss LT (xT), and where the state xt evolves according
to

xt+1 = f(xt, ut),

where f(xt, ut) is variously known as the transition function, system model, plant model (as in chemical
or power plant), plant equation, and transition law.

The stochastic version of (7) is usually written with the randomness entering the transition function
in an additive way:

xt+1 = f(xt, ut) + wt,

where wt is random at time t (a holdover from continuous time models). A more general formulation is
to use xt+1 = f(xt, ut, wt), keeping in mind that wt is random at time t. Now, the state xt is stochastic,
which means that the control ut is also stochastic (which is to say, ut+1 is random when we are at time
t in state xt). The objective function is often written

min
u0,...,uT

E

{
T∑
t=0

T∑
t=0

L(xt, ut) + LT (xT)

}
, (8)

which looks the same as (7), but where we now have an expectation.
Unlike the deterministic formulation where ut is a real-valued vector, here ut(ω) is a function of

ω which introduces the same issues we saw above with optimal stopping, in that this seems to imply
that ut(ω) gets to see the entire sample path ω. As with the optimal stopping problem, we can fix this
by insisting that ut is “Ft-measurable,” or by saying that ut is an “admissible policy.” As we did with
optimal stopping, we can handle this by writing ut = π(xt) where π(xt) is a policy that determines
ut given the state xt, which by construction is a function of information available up to time t. The
challenge then is to find a good policy that only depends on the state xt.

For the control problem in (8), if the loss function is quadratic with the form

Lt(xt, ut) = (xt)
TQtxt + (ut)

TRtut,

it can be shown that the optimal policy has the form

π(xt) = Ktxt,

5

where Kt is a complex matrix that depends on Qt and Rt. This is a rare instance of a problem where
we can actually compute an optimal policy.

There is a long history in the development of optimal control, summarized by many books includ-
ing Kirk (2004), Stengel (1986), Sontag (1998), Sethi & Thompson (2000), and Lewis et al. (2012).
The canonical control problem is continuous, low-dimensional and unconstrained, which leads to an
analytical solution. Of course, applications evolved past this canonical problem, leading to the use of
numerical methods. This field has been dominated by deterministic problems, but this is where the
fundamental recursion represented by Hamilton-Jacobi equations evolved, which are the foundation
for stochastic control problems. Deterministic optimal control is widely used in engineering, whereas
stochastic optimal control has tended to involve much more sophisticated mathematics. Some of the
most prominent books include Astrom (1970), Kushner & Kleinman (1971), Bertsekas & Shreve (1978),
Yong & Zhou (1999), Nisio (2014) (note that some of the books on deterministic controls touch on the
stochastic case).

As a general problem, stochastic control covers any sequential decision problem, so the separation
between stochastic control and other forms of sequential stochastic optimization tends to be more
one of vocabulary and notation (Bertsekas (2011) is a good example of a book that bridges these
vocabularies). Control-theoretic thinking has been widely adopted in inventory theory and supply
chain management (e.g. Ivanov & Sokolov (2013) and Protopappa-Sieke & Seifert (2010)), finance (Yu
et al., 2010), and health services (Ramirez-Nafarrate et al., 2014) (to name a few).

2.5. Markov decision processes

Richard Bellman initiated the study of sequential, stochastic, decision problems in the setting of
discrete states and actions. The most famous equation in this work (known as “Bellman’s optimality
equation”) writes the value of being in a discrete state St = s as

Vt(St) = max
a∈As

(
r(St, a) +

∑
s′∈S

P (s′|St, a)Vt+1(s′)

)
. (9)

where a is a discrete action, and the matrix P (s′|St, a) is

P (s′|s, a) = The probability that state St+1 = s′ given that we are in
state St = s and take action a.

The foundation of this field is known as “Bellman’s optimality equation” which is the discrete analog
of Hamilton-Jacobi equations, leading many authors to refer to these as Hamilton-Jacobi-Bellman
equations (or HJB for short). This work was initially reported in his classic reference (Bellman, 1957)
(see also (Bellman, 1954) and (Bellman et al., 1955)), but this work was continued by a long stream
of books including Howard (1960) (another classic), Nemhauser (1966), Denardo (1982), Heyman &
Sobel (1984), leading up to Puterman (2005) (this first appeared in 1994, with new additions after
2005). Puterman’s book represents the last but best in a long series of books, and now represents the
major reference in the field.

6

2.6. Approximate/adaptive/neuro dynamic programming

Bellman’s equation (9) requires enumerating all states (assumed to be discrete), which is problem-
atic if the state variable is a vector, a condition known widely as the curse of dimensionality. Actually,
there are three curses of dimensionality which all arise when computing the one-step transition matrix
p(s′|s, a): the state variable s, the action a (which can be a vector), and the random information,
which is hidden in the calculation of the probability. Bellman recognized this and began experiment-
ing with approximation methods (see Bellman & Dreyfus (1959) and Bellman et al. (1963)), but the
operations research community then seemed to drop any further research in approximation methods
until the 1980’s. A completely separate line of research in approximations evolved in the control the-
ory community with the work of Paul Werbos (Werbos (1974)) who recognized that the “cost-to-go
function” (the same as the value function in dynamic programming, written as Jt(xt) in equation (7))
could be approximated using various techniques. Werbos helped develop this area through a series of
papers (examples include Werbos (1989), Werbos (1990), Werbos (1992) and Werbos (1994)). Impor-
tant references are the edited volumes White & Sofge (1992) and Si et al. (2004) which summarized
important conferences. This community blended classical problems in control theory (with continuous,
vector-valued but low-dimensional controls) and problems from computer science which had picked up
the notation from the Markov decision process community using discrete states and actions.

Building on work developing in computer science under the umbrella of “reinforcement learning”
(reviewed next), Tsitsiklis (1994) and Jaakkola et al. (1994) were the first to recognize that the ba-
sic algorithms being developed represented generalizations of the early stochastic gradient algorithms
of Robbins & Monro (1951). Bertsekas & Tsitsiklis (1996) laid the foundation for adaptive learning
algorithms in dynamic programming, using the name “neuro-dynamic programming.” Werbos, (e.g.
Werbos (1992)), had been using the term “approximate dynamic programming,” which became the title
of Powell (2007) (with a major update in Powell (2011)), a book that also merged math programming
and value function approximations to solve high-dimensional, convex stochastic optimization problems
(but, see the developments under stochastic programming below). Later, the engineering controls com-
munity reverted to “adaptive dynamic programming” as the operations research community adopted
“approximate dynamic programming.”

2.7. Reinforcement learning

Independently from the work in operations research (with Bellman) or control theory (the work
of Werbos), computer scientists Andy Barto and his student Rich Sutton were working on describing
the behavior of mice moving through a maze in the early 1980’s. They developed a basic algorithmic
strategy called Q-learning, consisting of the updating equations

q̂n(sn, an) = r(sn, an) + γmax
a′

Q̄n−1(sn+1, a′), (10)

Q̄n(sn, an) = (1− αn−1)Q̄n−1(sn, an) + αn−1q̂
n(sn, an). (11)

where αn is a “stepsize” or “learning rate” which has to satisfy (3)-(5). The state sn+1 is a sampled
version of the next state we would visit given that we are in state sn and take action an. This

7

is sometimes written as being sampled from the one-step transition matrix P (s′|sn, an) (if this is
available), although it is more natural to write sn+1 = f(sn, an, wn) where f(sn, an, wn) is the transition
function and wn is a sample of exogenous noise.

These basic equations became widely adopted for solving a number of problems. The field of
reinforcement learning took off with the appearance of their now widely cited book Sutton & Barto
(1998), although by this time the field was quite active (see the review Kaelbling et al. (1996)).
Research under the umbrella of “reinforcement learning” has evolved to include other algorithmic
strategies under names such as policy search and Monte Carlo tree search. Other references from
the reinforcement learning community include Busoniu et al. (2010) and Szepesvári (2010) (a second
edition of Sutton & Barto (1998) is in preparation).

2.8. Online computation

Online computation represents a widely used method for solving problems in a stochastic, dynamic
environment. The field was originally motivated by computationally constrained settings, resulting in
solution approaches that were myopic in nature, ignoring the downstream impact of decisions made
now (see Borodin & El-Yanniv (1998) for a nice review).

Research into online methods is motivated by the simplicity of the policies, and an interest to gain
insights into their performance. Examples include Larsen & Wøhlk (2010) analyzing online inventory
policies, and Zehendner et al. (2017) for the online container repositioning problem.

The field has become popular for analytical investigations to bound the performance of these policies
relative to the best possible (using future information). The comparison of the myopic (online) policy
against a perfect foresight policy is known as competitive analysis. Typically the bounds are not very
tight.

2.9. Model predictive control

This is a subfield of optimal control, but it became so popular that it evolved into a field of its
own, with popular books such as Camacho & Bordons (2003) and hundreds of articles (see Lee (2011)
for a 30-year review). MPC is a method where a decision is made at time t by solving a typically
approximate model over a horizon (t, t+H). The need for a model, even if approximate, is the basis
of the name “model predictive control”; there are many settings in engineering where a model is not
available. MPC is typically used to solve a problem that is modeled as deterministic, but it can be
applied to stochastic settings by using a deterministic approximation of the future to make a decision
now, after which we experience a stochastic outcome. MPC can also use a stochastic model of the
future, although these are typically quite hard to solve.

Model predictive control is better known as a rolling horizon procedure in operations research, or a
receding horizon procedure in computer science. Most often it is associated with deterministic models
of the future, but this is primarily because most of the optimal control literature in engineering is
deterministic. MPC could use a stochastic model of the future which might be a Markov decision
process (often simplified) which is solved (at each time period) using backward dynamic programming.
Alternative, it may use a sampled approximation of the future, which is the standard strategy of

8

stochastic programming which some authors will refer to as model predictive control (Schildbach &
Morari, 2016).

2.10. Stochastic programming

The field of stochastic programming evolved from deterministic linear programming, with the in-
troduction of random variables. The first paper in stochastic programming was Dantzig (1955), which
introduced what came to be called the “two-stage stochastic programming problem” which is written
as

min
x0

(
c0x0 +

∑
ω∈Ω

p(ω) min
x1(ω)∈X1(ω)

c1(ω)x1(ω)

)
. (12)

Here, x0 is the first-stage decision (imagine allocating inventory to warehouses), which is subject to
first stage constraints

A0x0 ≤ b0, (13)

x0 ≥ 0. (14)

Then, the demands D1 are revealed. These are random, with a set of possible realizations D1(ω) for
ω ∈ Ω (these are often referred to as “scenarios”). For each scenario ω, we have to obey the following
constraints in the second stage for all ω ∈ Ω:

A1x1(ω) ≤ x0, (15)

B1x1(ω) ≤ D1(ω). (16)

There are two-stage stochastic programming problems, but in most applications it is used as an ap-
proximation of a fully sequential (“multistage”) problem. In these settings, the first-stage decision x0

is really a decision xt at time t, while the second stage can represent decisions xt+1(ω), . . . , xt+H(ω)
which are solved for a sample realization of all random variables over the horizon (t, t + H). In this
context, two-stage stochastic programming is a stochastic form of model predictive control.

Stochastic programs are often computationally quite difficult, since they are basically deterministic
optimization problems that are |Ω| times larger than the deterministic problem. Rockafellar & Wets
(1991) present a powerful decomposition procedure called progressive hedging that decomposes (12)-
(16) into a series of problems, one per scenario, that are coordinated through Lagrangian relaxation.

Whether it is for a two-stage problem, or an approximation in a rolling horizon environment, two-
stage stochastic programming has evolved into a mature field within the math programming community.
A number of books have been written on stochastic programming (two stage, and its much harder
extension, multistage), including Pflug (1988a), Kall & Wallace (2009), Birge & Louveaux (2011) and
Shapiro et al. (2014).

Since stochastic programs can become quite large, a community has evolved that focuses on how to
generate the set of scenarios Ω. Initial efforts focused on ensuring that scenarios were not too close to

9

each other (Dupacova et al. (2003), Heitsch & Romisch (2009), Löhndorf (2016)); more recent research
focuses on identifying scenarios that actually impact decisions (Bayraksan & Love, 2015).

A parallel literature has evolved for the study of stochastic linear programs that exploits the natural
convexity of the problem. The objective function (12) is often written

min
x0

(c0x0 + EQ(x0,W1)) , (17)

subject to (13)-(14). The Q(x0,W1) is known as the recourse function where W1 captures all sources
of randomness. For example, we might write W1 = (A1, B1, c1, D1), with sample realization W1(ω).
The recourse function is given by

Q(x0,W1(ω)) = min
x1(ω)∈Xt(ω)

c1(ω)x1(ω) (18)

subject to (15)-(16).
There is an extensive literature exploiting the natural convexity of Q(x0,W1) in x0, starting with

Van Slyke & Wets (1969), followed by the seminal papers on stochastic decomposition (Higle & Sen,
1991) and the stochastic dual decomposition procedure (SDDP) (Pereira & Pinto, 1991). A substantial
literature has unfolded around this work, including Shapiro (2011) who provides a careful analysis of
SDDP, and its extension to handle risk measures (Shapiro et al. (2013), Philpott et al. (2013)). A
number of papers have been written on convergence proofs for Benders-based solution methods, but
the best is Girardeau et al. (2014). A modern overview of the field is given by Shapiro et al. (2014).

2.11. Robust optimization

Robust optimization first emerged in engineering problems, where the goal was to find the best
design x that worked for the worst possible outcome of an uncertain parameter w ∈ W (the robust
optimization community uses u ∈ U , but this conflicts with control theory notation). The robust
optimization problem is formulated as

min
x∈X

max
w∈W

F (x,w). (19)

Here, the set W is known as the uncertainty set, which may be a box where each dimension of w is
limited to minimum and maximum values. The problem with using a box is that it might allow, for
example, each dimension wi of w to be equal to its minimum or maximum, which is unlikely to occur
in practice. For this reason, W is sometimes represented as an ellipse, although this is more complex
to create and solve.

Equation (19) is the robust analog of our original stochastic search problem in equation (1). Robust
optimization was originally motivated by the need in engineering to design for a “worst-case” scenario
(defined by the uncertainty set W). It then evolved as a method for doing stochastic optimization
without having to specify the underlying probability distribution. However, this has been replaced by
the need to create an uncertainty set.

10

A thorough review of the field of robust optimization is contained in Ben-Tal et al. (2009) and
Bertsimas et al. (2011), with a more recent review given in Gabrel et al. (2014). Bertsimas & Sim (2004)
studies the price of robustness and describes a number of important properties. Robust optimization
is attracting interest in a variety of application areas including supply chain management (Bertsimas
(2006), Keyvanshokooh et al. (2016)), energy (Zugno & Conejo, 2015). and finance (Fliege & Werner,
2014).

2.12. Ranking and selection

Ranking and selection is a problem that first arose in the statistics community that involves finding
the best in a discrete set X = {x1, . . . , xM}, where the value µx for x ∈ X is unknown. There is
a budget of N experiments, where we need to first determine which x ∈ X to test, after which we
observe Wx = µx+ ε from an unknown distribution describing the true value µ, and use this to get the
best estimates µ̄Nx possible after we have exhausted our experimental budget. At that time, we have
to choose the best x in our set. The problem is to design a policy Xπ(Sn), where Sn is our “state of
knowledge” after we have completed n experiments.

Using a policy Xπ(Sn) that returns xn given our state of knowledge Sn, we then observe Wn+1,
creating the sequence of states, decisions and observations

(S0, x0,W 1, S1, x1,W 2, S2, . . . , xN−1,WN , SN).

When we are done, we choose the best design based on our beliefs using

xπ,N = arg max
x∈X

µ̄Nx .

The final design xπ,N is a random variable, in part because the true µ is random (if we are using a
Bayesian model), and also because of the noise in the observations W 1, . . . ,WN , which applies whether
or not we are using a Bayesian or frequentist model.

Let W represent a sequence of observations W = (W 1, . . . ,WN) given a truth µ. We can express
the value of our policy for a set of observations based on our estimates µ̄Nx suing

F π(W) = µ̄Nxπ,N .

However, we are often simulating policies inside a simulator where we can assume we know the simulated
truth µ, allowing us to evaluate a policy using

F π(W,µ) = µxπ,N

which is a random variable (since we do not know µ). The ranking and selection problem, then, is
written as

max
π

EµEW 1,...,WN |µ µxπ,N . (20)

11

With the possible exception of optimal stopping, this is the first time we have explicitly written our
optimization problem in terms of searching over policies.

Ranking and selection enjoys a long history dating back to the 1950’s, with an excellent treatment
of this early research given by the classic DeGroot (1970), with a more up to date review in Kim
& Nelson (2007). Recent research has focused on parallel computing (Luo et al. (2015), Ni et al.
(2016)) and handling unknown correlation structures (Qu et al., 2012). However, ranking and selection
is just another name for derivative-free stochastic search, and has been widely studied under this
umbrella (Spall, 2003). The field has attracted considerable attention from the simulation-optimization
community, reviewed next.

2.13. Simulation optimization

The field known as “simulation optimization” evolved from within the community that focused on
problems such as simulating the performance of the layout of a manufacturing system. The simulation-
optimization community adopted the modeling framework of ranking and selection, typically using a
frequentist belief model that requires doing an initial test of each design. The problem is then how to
allocate computing resources over the designs given initial estimates.

Perhaps the best known method that evolved specifically for this problem class is known as optimal
computing budget allocation, or OCBA, developed by Chun-Hung Chen in Chen (1995), followed by
a series of articles (Chen (1996), Chen et al. (1997), Chen et al. (1998), Chen et al. (2003), Chen et al.
(2008)), leading up to the book Chen & Lee (2011) that provides a thorough overview of this field. The
field has focused primarily on discrete alternatives (e.g. different designs of a manufacturing system),
but has also included work on continuous alternatives (e.g. Hong & Nelson (2006)). An important
recent result by Ryzhov (2016) shows the asymptotic equivalence of OCBA and expected improvement
policies which maximize the value of information. When the number of alternatives is much larger
(say, 10,000) techniques such as simulated annealing, genetic algorithms and tabu search (adapted for
stochastic environments) have been brought to bear. Swisher et al. (2000) contains a nice review of
this literature. Other reviews include Andradóttir (1998a), Andradóttir (1998b), Azadivar (1999), Fu
(2002), and Kim & Nelson (2007). The recent review Chau et al. (2014) focuses on gradient-based
methods.

The simulation optimization community has steadily broadened into the full range of (primarily
offline) stochastic optimization problems reviewed above, just as occurred with the older stochastic
search community, as summarized in Spall (2003). This evolution became complete with Fu (2014),
an edited volume that covers a very similar range of topics as Spall (2003), including derivative-based
stochastic search, derivative-free stochastic search, and full dynamic programs.

2.14. Multiarmed bandit problems

The multiarmed bandit problem enjoys a rich history, centered on a simple illustration. Imagine
that we have M slot machines, each with expected (but unknown) winnings µx, x ∈ X = {1, . . . ,M}.
Let S0 represent our prior distribution of belief about each µx, where we might assume that our beliefs
are normally distributed with mean µ̄0

x and precision β0
x = 1/σ̄2,0

x for each x. Further let Sn be our

12

beliefs about each x after n plays, and let xn = Xπ(Sn) be the choice of the next arm to play given
Sn, producing winnings Wn+1

xn . The goal is to find the best policy to maximize the total winnings over
our horizon.

For a finite time problem, this problem is almost identical to the ranking and selection problem,
with the only difference that we want to maximize the cumulative rewards, rather than the final reward.
Thus, the objective function would be written (assuming a Bayesian prior) as

max
π

EµEW 1,...,WN |µ

N−1∑
n=0

Wn+1
Xπ(Sn). (21)

Despite the similarities with the ranking and selection problem, the multiarmed bandit problem
has enjoyed a rich history. Research started in the 1950’s with the much easier two-armed problem.
DeGroot (1970) was the first to show that an optimal policy for the multiarmed bandit problem could
be formulated (if not solved) using Bellman’s equation (this is true of any learning problem, regardless
of whether we are maximizing final or cumulative rewards). The first real breakthrough occurred in
Gittins & Jones (1974) (the first and most famous paper), followed by Gittins (1979). This line of
research introduced what became known as “Gittins indices,” or more broadly, “index policies” which
involve computing an index νnx given by

νnx = µ̄nx + Γ(µ̄nx, σ̄
n
x , σW , γ)σW,

where σW is the (assumed known) standard deviation of W , and Γ(µ̄nx, σ̄
n
x , σW , γ) is the Gittins index,

computed by solving a particular dynamic program. The Gittins index policy is then of the form

Xindex(Sn) = arg max
x

νnx . (22)

While computing Gittins indices is possible, it is not easy, sparking the creation of an analytical
approximation reported in Chick & Gans (2009).

The theory of Gittins indices was described thoroughly in his first book (Gittins, 1989), but the
“second edition” (Gittins et al., 2011), which was a complete rewrite of the first edition, represents the
best introduction to the field of Gittins indices, which now features hundreds of papers. However, the
field is mathematically demanding, with index policies that are difficult to compute.

A parallel line of research started in the computer science community with the work of Lai &
Robbins (1985) who showed that a simple policy known as upper confidence bounding possessed the
property that the number of times we test the wrong arm can be bounded (although it continues to
grow with n). The ease of computation, combined with these theoretical properties, made this line
of research extremely attractive, and has produced an explosion of research. While no books on this
topic have appeared as yet, an excellent monograph is Bubeck & Cesa-Bianchi (2012). A sample of a
UCB policy (designed for normally distributed rewards) is

XUCB1(Sn) = arg max
x

(
µ̄nx + 4σW

√
log n

Nn
x

)
, (23)

13

where Nn
x is the number of times we have tried alternative x. The square root term can shrink to zero

if we test x often enough, or it can grow large enough to virtually guarantee that x will be sampled.
UCB policies are typically used in practice with a tunable parameter, with the form

XUCB1(Sn|θUCB) = arg max
x

(
µ̄nx + θUCB

√
log n

Nn
x

)
. (24)

We need to tune θUCB to find the value that works best. We do this by replacing the search over
policies π in equation (21) with a search over values for θUCB. In fact, once we open the door to using
tuned policies, we can use any number of policies such as interval estimation

XIE(Sn|θIE) = arg max
x

(
µ̄nx + θIE σ̄nx

)
, (25)

where σ̄nx is the standard deviation of µ̄nx, which tends toward zero if we observe x often enough. Again,
the policy would have to be tuned using equation (21).

It should be apparent that any policy that can be tuned using equation (21) can be tuned using
equation (20) for terminal rewards.

2.15. Discussion

Each of the topics above represents a distinct community, most with entire books dedicated to the
topic. We note that some of these communities focus on problems (stochastic search, optimal stopping,
optimal control, Markov decision processes, robust optimization, ranking and selection, multiarmed
bandits), while others focus on methods (approximate dynamic programming, reinforcement learning,
model predictive control, stochastic programming), although some of these could be described as
methods for particular problem classes.

In the remainder of our presentation, we are going to present a single modeling framework that
covers all of these problems. We begin by noting that there are problems that can be solved exactly, or
approximately by using a sampled version of the different forms of uncertainty. However, most of the
time we end up using some kind of adaptive search procedure which uses either Monte Carlo sampling
or direct, online observations (an approach that is often called data driven).

We are then going to argue that any adaptive search strategy can be represented as a policy for
solving an appropriately defined dynamic program. Solving any dynamic dynamic program involves
searching over policies, which is the same as searching for the best algorithm. We then show that there
are two fundamental strategies for designing policies, leading to four meta-classes of policies which
cover all of the approaches used by the different communities of stochastic optimization.

3. Solution strategies

There are three core strategies for solving stochastic optimization problems:

14

Deterministic/special structure - These are problems that exhibit special structure that make it
possible to find optimal solutions. Examples include: linear programs where costs are actually
expectations of random variables; the newsvendor problem with known demand where we can
use the structure to find the optimal order quantity; and Markov decision processes with a known
one-step transition matrix, which represents the expectation of the event that we transition to a
downstream state.

Sampled models - There are many problems where the expectation in maxx EF (x,W) cannot be
computed, but where we can replace the original set of outcomes Ω (which may be multidi-
mensional and/or continuous) with a sample Ω̂. We can then replace our original stochastic
optimization problem with

max
x

∑
ω̂∈Ω̂

p̂(ω̂)F (x, ω̂). (26)

This strategy has been pursued under different names in different communities. This is what is
done in statistics when a batch dataset is used to fit a statistical model. It is used in stochastic
programming (see section 2.10) when we use scenarios to approximate the future. It is also known
as the sample average approximation, introduced in Kleywegt et al. (2002) with a nice summary
in Shapiro et al. (2014). There is a growing literature focusing on strategies for creating effective
samples so that the set Ω̂ does not have to be too large (Dupacova et al. (2003), Heitsch &
Romisch (2009), Bayraksan & Morton (2011)). An excellent recent survey is given in Bayraksan
& Love (2015).

Adaptive algorithms - While solving sampled models is a powerful strategy, by far the most widely
used approaches depend on adaptive algorithms which work by sequentially sampling random in-
formation, either using Monte Carlo sampling from a stochastic model, or from field observations,
a process that is often referred to as data driven.

The remainder of this article focuses on adaptive algorithms, which come in derivative-based forms
(e.g. the stochastic gradient algorithm in (2)) and derivative-free (such as policies for multiarmed
bandit problems which include upper confidence bounding in (24) and interval estimation in (25)). We
note that all of these algorithms represent sequential decision problems, which means that they are all
a form of dynamic program.

In the next section, we propose a canonical modeling framework that allows us to model all adaptive
learning problems in a common framework.

4. A universal canonical model

We now provide a modeling framework with which we can create a single canonical model that
describes all of the problems described in section 2. We note that in designing our notation, we had

15

to navigate the various notational systems that have evolved across these communities. For example,
the math programming community uses x for a decision, while the controls community uses xt for
the state and ut for their control. We have chosen St for the state variable (widely used in dynamic
programming and reinforcement learning), and xt for the decision variable (also used by the bandit
community). We have worked to use the most common notational conventions, resolving conflicts as
necessary.

There are five fundamental elements to any sequential decision problem: state variables, decision
variables, exogenous information, the transition function, and the objective function. A brief summary
of each of these elements is as follows:

State variables - The state St of the system at time t is the minimally dimensioned function of
history which, combined with a policy and exogenous information, contains all the information
we need to model our system from time t onward. This means it has to capture the information
needed to compute costs, constraints, and (in model-based formulations) how this information
evolves over time.

We distinguish between the initial state S0 and the dynamic state St for t > 0. The initial
state contains all deterministic parameters, initial values of dynamic parameters, and initial
probabilistic beliefs about unknown parameters. The dynamic state St contains information that
is evolving over time.

There are three types of information in St:

• The physical state, Rt, which in most (but not all) applications is the state variables that
are being controlled. Rt may be a scalar, or a vector with element Rti where i could be a
type of resource (e.g. a blood type) or the amount of inventory at location i.

• Other information, It, which is any information that is known deterministically not included
in Rt. The information state often evolves exogenously, but may be controlled or at least
influenced by decisions (e.g. selling a large number of shares may depress prices).

• The belief state Bt, which contains distributional information about unknown parameters,
where we can use frequentist or Bayesian belief models. These may come in the following
styles:

– Lookup tables - Here we have a belief µ̄nx which is our estimate of µx = EF (x,W) after
n observations for each discrete x. With a Bayesian model, we treat µx as a random
variable that is normally distributed with µx ∼ N(µ̄nx, σ̄

2,n
x).

– Parametric belief models - We might assume that EF (x,W) = f(x|θ) where the function
f(x|θ) is known but where θ is unknown. We would then describe θ by a probability
distribution.

– Nonparametric belief models - These approximate a function at x by smoothing local
information near x.

16

We emphasize that the belief state is a distribution. Typically, Bt carries the parameters
that characterize the distribution (such as the mean and variance of a normal distribution),
while the distribution itself (e.g. the normal distribution) is specified in S0.

The state St is sometimes referred to as the pre-decision state because it is the state just before
we make a decision. We often find it useful to define a post-decision state Sxt which is the state
immediately after we make a decision, before any new information has arrived, which means that
Sxt is a deterministic function of St and xt. For example, in a basic inventory problem where
Rt+1 = max{0, Rt + xt − D̂t+1}, the post-decision state would be Sxt = Rxt = Rt + xt. Post-
decision states are often simpler, because there may be information in St that is only needed to
make the decision xt, but there are situations where xt becomes a part of the state.

Decision variables - Decisions are typically represented as at for discrete actions, ut for continuous
(typically vector-valued) controls, and xt for general continuous or discrete vectors. We use xt
as our default, but find it useful to use at when decisions are categorical.

Decisions may be binary (e.g. for a stopping problem), discrete (e.g. an element of a finite set),
continuous (scalar or vector), integer vectors, and categorical (e.g. the attributes of a patient).
We note that entire fields of research are sometimes distinguished by the nature of the decision
variable.

We assume that decisions are made with a policy, which we might denote Xπ(St) (if we use xt
as our decision), Aπ(St) (if we use at), or Uπ(St) (if we use ut). We assume that a decision
xt = Xπ(St) is feasible at time t. We let “π” carry the information about the type of function
f ∈ F (for example, a linear model with specific explanatory variables, or a particular nonlinear
model), and any tunable parameters θ ∈ Θf . We use xt as our default notation for decisions.

Exogenous information - We let Wt be any new information that first becomes known at time t
(that is, between t − 1 and t). When modeling specific variables, we use “hats” to indicate
exogenous information. Thus, D̂t could be the demand that arose between t − 1 and t, or we
could let p̂t be the change in the price between t− 1 and t.

The exogenous information process may be stationary or nonstationary, purely exogenous or
state (and possibly action) dependent. We let ω represent a sample path W1, . . . ,WT , where
ω ∈ Ω, and where F is the sigma-algebra on Ω. We also let Ft = σ(W1, . . . ,Wt) be the sigma-
algebra generated by W1, . . . ,Wt. We adopt the style throughout that any variable indexed by
t is Ft-measurable, something we guarantee by how decisions are made and information evolves
(in fact, we do not even need this vocabulary).

Transition function - We denote the transition function by

St+1 = SM (St, xt,Wt+1), (27)

where SM (·) is also known by names such as system model, plant model, plant equation and
transfer function. Equation (27) is the classical form of a transition function which gives the

17

equations from the pre-decision state St to pre-decision state St+1. We can also break down
these equations into two steps: pre-decision to post-decision Sxt , and then the post-decision Sxt to
the next pre-decision St+1. The transition function may be a known set of equations, or unknown,
such as when we describe human behavior or the evolution of CO2 in the atmosphere. When the
equations are unknown the problem is often described as “model free” or “data driven.”

Transition functions may be linear, continuous nonlinear or step functions. When the state St
includes a belief state Bt, then the transition function has to include the frequentist or Bayesian
updating equations.

Given a policy Xπ(St), an exogenous process Wt and a transition function, we can write our
sequence of states, decisions, and information as

(S0, x0, S
x
0 ,W1, S1, x1, S

x
1 ,W2, . . . , xT−1, S

x
T−1,WT , ST).

Below we continue to use t as our iteration counter, but we could use n if appropriate, in which
case we would write states, decisions and information as Sn, xn and Wn+1.

Objective functions - We assume that we have a metric that we are maximizing (our default) or
minimizing, which we can write in state-independent or state-dependent forms:

State-independent We write this as F (x,W), where we assume we have to fix xt or xn and
then observe Wt+1 or Wn+1. In an adaptive learning algorithm, the state Sn (or St) captures
what we know about EF (x,W), but the function itself depends only on x and W , and not
on the state S.

State-dependent These can be written in several ways:

• C(St, xt) - This is the most popular form, where C(St, xt) can be a contribution (for
maximization) or cost (for minimization). This is written in many different ways by
different communities, such as r(s, a) (the reward for being in state s and taking action
a), g(x, u) (the gain from being in state x and using control u), or L(x, u) (the loss from
being in state x and using control u).

• C(St, xt,Wt+1) - We might use this form when our contribution depends on the infor-
mation Wt+1 (such as the revenue from serving the demand between t and t+ 1).

• C(St, xt, St+1) - This form is used in model-free settings where we do not have a tran-
sition function or an ability to observe Wt+1, but rather just observe the downstream
state St+1.

Of these, C(St, xt,Wt+1) is the most general, as it can be used to represent F (x,W), C(St, xt),
or (by setting Wt+1 = St+1), C(St, xt, St+1). We can also make the contribution time-dependent,
by writing Ct(St, xt,Wt+1), allowing us to capture problems where the cost function depends on
time. This is useful, for example, when the contribution in the final time period is different from
all the others.

18

Assuming we are trying to maximize the expected sum of contributions, we may write the ob-
jective function as

max
π

E

{
T∑
t=0

Ct(St, X
π
t (St),Wt+1)|S0

}
, (28)

where

St = SM (St, X
π
t (St),Wt+1). (29)

We refer to equation (28) along with the state transition function (29) as the base model.

We urge the reader to be careful when interpreting the expectation operator E in equation (28),
which is typically a set of nested expectations that may be over a Bayesian prior (if appropriate),
the results of an experiment while learning a policy, and the events that may happen while testing
a policy.

We note that the term “base model” is not standard, although the concept is widely used in
many, but not all, communities in stochastic optimization.

There is growing interest in replacing the expectation in our base model in (28) with a risk measure
ρ. The risk measure may act on the total contribution (for example, penalizing contributions that fall
below some target), but the most general version operates on the entire sequence of contributions,
which we can write as

max
π

ρ(C0(S0, X
π(S0),W1), . . . , CT (ST , X

π(ST))). (30)

The policy Xπ(St) might even be a robust policy such as that given in equation (19), where we might
introduce tunable parameters in the uncertainty set Wt. For example, we might let Wt(θ) be the
uncertainty set where θ captures the confidence that the noise (jointly or independently) falls within
the uncertainty set. We can then use (28) as the basis for simulating our robust policy. This is basically
the approach used in Ben-Tal et al. (2005), which compared a robust policy to a deterministic lookahead
(without tuning the robust policy) by averaging the performance over many iterations in a simulator
(in effect, approximating the expectation in equation (28)).

This opens up connections with a growing literature in stochastic optimization that addresses
risk measures (see Shapiro et al. (2014) and Ruszczyński (2014) for nice introductions to dynamic
risk measures in stochastic optimization). This work builds on the seminal work in Ruszczyński &
Shapiro (2006), which in turn builds on what is now an extensive literature on risk measures in finance
(Rockafellar & Uryasev (2000), Rockafellar & Uryasev (2002), Kupper & Schachermayer (2009) for
some key articles), with a general discussion in Rockafellar & Uryasev (2013). There is active ongoing
research addressing risk measures in stochastic optimization (Collado et al. (2011), Shapiro (2012),
Shapiro et al. (2013), Kozmı́k & Morton (2014), Jiang & Powell (2016a)). This work has started to enter

19

engineering practice, especially in the popular area (for stochastic programming) of the management of
hydroelectric reservoirs (Philpott & de Matos (2012), Shapiro et al. (2013)) as well as other applications
in energy (e.g. Jiang & Powell (2016b)).

We refer to the base model in equation (28) (or the risk-based version in (30)), along with the
transition function in equation (29), as our universal formulation, since it spans all the problems
presented in section 2 (but, see the discussion in section 9). With this universal formulation, we
have bridged offline (terminal reward) and online (cumulative reward) stochastic optimization, as well
as state-independent and state-dependent functions. With our general definition of a state, we can
handle pure learning problems (the state variable consists purely of the distribution of belief about
parameters), classical dynamic programs (where the “state” often consists purely of a physical state
such as inventory), problems with simple or complex interperiod dependencies of the information state,
and any mixture of these. In section 9, we are going to revisit this formulation and offer some additional
insights.

Central to this formulation is the idea of optimizing over policies, which is perhaps the single most
significant point of departure from most of the formulations presented in section 2. In fact, our finding
is that many of the fields of stochastic optimization are actually pursuing a particular class of policies.
In the next section, we provide a general methodology for searching over policies.

5. Designing policies

There are two fundamental strategies for creating policies:

Policy search - Here we use an objective function such as (28) to search for a function (policy) that
performs the best.

Lookahead approximations - Alternatively, we can construct policies by approximating the impact
of a decision now on the future.

Either of these approaches can yield optimal policies, although this is rare. Below we show that each of
these approaches are the basis of the two strategies for designing policies, producing four meta-classes
that cover all of the approaches that have ever been used in the literature. These are described in more
detail below.

5.1. Policy search

Policy search involves tuning and comparing policies using the objective function such as (28) or
(30) so that they behave well over time, under whatever sources of uncertainty that we choose to model
in our simulator (which can also be the real world). Imagine that we have a class of functions F , where
for each function f ∈ F , there is a parameter vector θ ∈ Θf that controls its behavior. Let Xf (St|θ)
be a function in class f ∈ F parameterized by θ ∈ Θf . Policy search involves finding the best policy

20

using

max
f∈F ,θ∈Θf

E

{
T∑
t=0

Ct(St, X
f (St|θ),Wt+1)|S0

}
. (31)

If F includes the optimal policy structure, and Θf includes the optimal θ for this function, then solving
equation (31) would produce the optimal policy. There are special cases where this is true (such as
(s, S) inventory policies). We might also envision the ultimate function class that can approximate
any function such as deep neural networks or support vector machines, although these are unlikely to
ever solve high dimensional problems that arise in logistics.

Since we can rarely find optimal policies using (31), we have identified two meta-classes:

Policy function approximations (PFAs) - Policy function approximations can be lookup tables,
parametric or nonparametric functions, but the most common are parametric functions. This
could be a linear function such as

Xπ(St|θ) = θ0 + θ1φ1(St) + θ2φ2(St) + . . . ,

or a nonlinear function such as an order-up-to inventory policy. Typically there is no guarantee
that a PFA is in the optimal class of policies. Instead, we search for the best performance within
a class.

Cost function approximations (CFAs) - A CFA is

Xπ(St|θ) = arg max
x∈Xπt (θ)

C̄πt (St, x|θ),

where C̄πt (St, x|θ) is a parametrically modified cost function, subject to a parametrically modified
set of constraints. CFAs are widely used for solving large scale problems such as scheduling an
airline or planning a supply chain. For example, we might introduce slack into a scheduling
problem, or buffer stocks for an inventory problem. Below we show that popular policies for
learning problems such as multiarmed bandits use CFAs.

Policy search is best suited when the policy has clear structure, such as inserting slack in an airline
schedule, or selling a stock when the price goes over some limit. We may believe policies are smooth,
such as the relationship between the release rate from a reservoir and the level of the reservoir, but
often they are discontinuous such as an order-up-to policy for inventories.

5.2. Lookahead approximations

Just as we can, in theory, find an optimal policy using policy search, we can also find an optimal
policy by modeling the downstream impact of a decision made now on the future. This can be written

21

X∗t (St) = arg max
xt

(
C(St, xt) + E

{
max
π

E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣St+1

}∣∣∣∣∣St, xt
})

. (32)

Equation (32) is daunting, but can be parsed in the context of a decision tree with discrete actions
and discrete random outcomes (see figure 1). The states St′ correspond to nodes in the decision tree.
The state St is the initial node, and the actions xt are the initial actions. The first expectation is over
the first set of random outcomes Wt+1 (out of the outcome nodes resulting from each decision xt).

After this, the policy π represents the action xt′ that would be taken from every downstream node
St′ for t′ > t. Thus, a policy π could be a table specifying which action is taken from each potential
downstream node, over the rest of the horizon. Then, the second expectation is over all the outcomes
Wt′ , t

′ = t+2, . . . , T . Solving the maximization over all policies in (32) simply moves the policy search
problem one time period later.

Not surprisingly, just as we can rarely find the optimal policy by solving the policy search objective
function in (31), we can only rarely solve (32) (a decision tree is one example where we can). For
this reason, a wide range of approximation strategies have evolved for addressing these two problems.
These can be divided (again) into two meta-classes:

Value function approximations (VFAs) - Our first approach is to replace the entire term captur-
ing the future in (32) with an approximation known widely as a value function approximation.
We can do this in two ways. The first is to replace the function starting at St+1 with a value
function Vt+1(St+1) giving us

XV FA
t (St) = arg max

xt
(C(St, xt) + E {Vt+1(St+1)|St}) (33)

where St+1 = SM (St, xt,Wt+1), and where the expectation is over Wt+1 conditioned on St (some
write the conditioning as dependent on St and xt). Since we generally cannot compute Vt+1(St+1),
we can use various strategies to replace it with some sort of approximation V t+1(St+1), known
as a value function approximation.

The second way is to approximate the function around the post-decision state Sxt , which elimi-
nates the expectation (33), giving us

XV FA
t (St) = arg max

xt
(C(St, xt) + V x

t (St)) . (34)

The post-decision formulation is popular for problems where xt is a vector, and V x
t (Sxt) is a

convex function of Sxt .

Direct lookahead (DLAs) There are many problems where it is just not possible to compute suf-
ficiently accurate VFAs (dynamic problems with forecasts is a broad problem class where this
happens). When all else fails, we have to resort to a direct lookahead, where we replace the

22

lookahead expectation and optimization in (32) with an approximate model. The most widely
used strategy is to use a deterministic lookahead, but the field of stochastic programming will
use a sampled future to create a more tractable version.

5.3. Notes

The four meta-classes of policies (PFAs, CFAs, VFAs, and DLAs) cover every policy considered in
all the communities covered in section 2, with the possible exception of problems that can be solved
exactly or using a sampled belief model (these are actually special cases of policies). We note that as
of this writing, the “cost function approximation” has been viewed as more of an industry heuristic
than a formal policy, but we believe that this is an important class of policy that has been overlooked
by the research community (see Perkins & Powell (2017) for an initial paper on this topic).

It is natural to ask, why do we need four approximation strategies when we already have two
approaches for finding optimal policies (equations (31) and (32)), either of which can produce an
optimal policy? The reasons are purely computational. Equations (31) and (32) can rarely be solved
to optimality. PFAs as an approximation strategy are effective when we have an idea of the structure of
a policy, and these are typically for low-dimensional problems. CFAs similarly serve a role of allowing
us to solve simplified optimization problems that can be tuned to provide good results. VFAs only
work when we can design a value function approximation that reasonably approximates the value of
being in a state. DLAs are a brute force approach where we typically resort to solving a simplified
model of the future.

Below, we revisit the four classes of policies by first addressing learning problems, which are prob-
lems where the function being optimized does not depend on the state variable, and then in the
much richer class of state-dependent functions. However, we are first going to touch on the important
challenge of modeling uncertainty.

6. Modeling uncertainty

The community of stochastic optimization has typically focused on making good (or robust) deci-
sions in the presence of some form of uncertainty. However, we tend to put a lot more attention into
making a good decision than in the modeling of uncertainty.

The first step is to identify the sources of randomness. This can include observational errors,
forecasting errors, model uncertainty, control uncertainty and even goal uncertainty (different decision-
makers may have different expectations).

There is a field known as “uncertainty quantification” that emerged from within science and engi-
neering in the 1960’s (Smith (2014) and Sullivan (2015) are two recent books summarizing this area).
This work complements the extensive work that has been done in the Monte Carlo simulation commu-
nity which is summarized in a number of excellent books (good introductions are Banks et al. (1996),
Ross (2002), Rubinstein & Kroese (2017)). Asmussen & Glynn (2007) provides a strong theoretical
treatment.

23

It is important to recognize that if we want to find an optimal policy that solves (28), then we have
to use care in how we model the uncertainties. There are different ways to representing an uncertain
future, including

• Stochastic modeling - By far the most attention has been given to developing an explicit stochastic
model of the future, which requires capturing:

– Properties of probability distributions, which may be described by an exponential fam-
ily (e.g. normal or exponential) and their discrete counterparts (Poisson, geometric), and
heavy-tailed distributions. We can also use compound distributions such as Poisson distri-
butions with random means, or mixtures such as jump diffusion models. It is often necessary
to use nonparametric distributions derived from history.

– Behavior over time - There are many ways to capture temporal behavior, including autocor-
relation, crossing times (the length of time the actual is above or below a benchmark such
as a forecast), regime switching, spikes, bursts and rare events.

– Other relationships, such as spatial patterns, behaviors at different levels of aggregation.

• Distributionally robust modeling - There is growing attention given to the idea of using other
methods to represent the future that do not require specific knowledge of a distribution (see
Bayraksan & Love (2015) and Gabrel et al. (2014) for good reviews). Robust optimization uses
uncertainty sets which is shown in (Xu et al., 2012) to be equivalent to a distributionally robust
optimization problem. We note that while uncertainty sets offers a different way of approaching
uncertainty, it introduces its own computational challenges (Goh & Sim (2010),Wiesemann et al.
(2014)).

• No model - There are many applications where we simply are not able to model the underlying
dynamics. These can be complex systems such as climate change, production plants, or the
behavior of a human. Different communities use terms such as model-free dynamic programming,
data-driven stochastic optimization, or online control.

This is a very brief summary of a rich and complex dimension of stochastic optimization, but we
feel it is important to recognize that modeling uncertainty is fundamental to the process of finding
optimal policies. Stochastic optimization problems can be exceptionally challenging, and as a result
we feel that most of the literature has focused on designing good policies. However, a policy will not
be effective unless it has been designed in the context of a proper model, which means accurately
capturing uncertainty.

7. State-independent functions: Learning problems

An important class of problems are those where the function being maximized, which we will write
as

max
x∈X

EF (x,W), (35)

24

is not a function of any state variables. An example is our newsvendor problem

max
x

EF (x,W) = max
x

E(pmax{x,W} − cx), (36)

where we order a quantity x at a unit cost c, then observe demand W and sell the minimum of these
two at a price p.

Below we describe adaptive algorithms where the state Sn at iteration n captures what we need
to know to make a decision (that is, to calculate our policy), but which does not affect the function
itself. However, we might be solving a time-dependent problem where the price pt is revealed before
we make a decision xt at time t. In this case, pt would enter our state variable, and we would have a
state-dependent function.

We are going to design a sequential search procedure, which we can still model as a stochastic,
dynamic system, but now the state Sn (after n iterations) captures the information we need to make
a decision using some policy Xπ(Sn). We refer to this problem class as learning problems, and make
the distinction between derivative-based and derivative-free problems.

7.1. Derivative-based

Assume we can compute a gradient ∇xF (x,W) at a point x = xn and W = Wn+1, allowing us to
implement a stochastic gradient algorithm of the form

xn+1 = xn + αn∇xF (xn,Wn+1), (37)

where αn is a stepsize that may adapt to conditions as they unfold. There are many choices of stepsize
rules as reviewed in Powell & George (2006), with new and powerful rules given in Duchi et al. (2011)
(AdaGrad), Kingma & Ba (2015) (Adam), and Orabona (2014) (PiSTOL). To illustrate the core idea,
imagine we use Kesten’s stepsize rule given by

αn =
θ

θ +Nn
, (38)

where we might let Nn be the number of times that the simulated objective function F (xn,Wn+1) is
worse than the previous iteration.

We now have a dynamic system (the stochastic gradient algorithm) that is characterized by a
gradient and a “policy” for choosing the stepsize (38). The state of our system is given by Sn =
(xn, Nn), and is parameterized by θ along with the choice of how the gradient is calculated, and the
choice of the stepsize policy (e.g. Kesten’s rule). Our policy, then, is a rule for choosing a stepsize αn.
Given αn (and the stochastic gradient ∇xF (xn,Wn+1)), we sample Wn+1 and then compute xn+1.
Thus, the updating equation (37), along with the updating of Nn, constitutes our transition function.

This simple illustration shows that a derivative-based stochastic gradient algorithm can be viewed
as a stochastic, dynamic system (see Kushner & Yin (2003) for an in-depth treatment of this idea).
Optimizing over policies means optimizing over the choice of stepsize rule (such as Kesten’s rule
(Kesten (1958)), BAKF (Powell & George (2006)), AdaGrad (Duchi et al. (2011)), Adam (Kingma &
Ba (2015)), PiSTOL (Orabona (2014))) and the parameters that characterize the rule (such as θ in
Kesten’s rule above).

25

7.2. Derivative-free

We make the simplifying assumption that the feasible region X in the optimization problem (35) is
a discrete set of choices X = {x1, . . . , xM}, which puts us in the arena of ranking and selection (if we
wish to maximize the terminal reward), or multiarmed bandit problems (if we wish to maximize the
cumulative reward). The discrete set might represent a set of drugs, people, technologies, paths over a
network, or colors, or it could be a discretized representation of a continuous region. Not surprisingly,
this is a tremendously broad problem class. Although it has attracted attention since the 1950’s (and
earlier), the first major reference on the topic is DeGroot (1970), who also characterized the optimal
policy using Bellman’s equation, although this could not be computed. Since this time, numerous
authors have worked to identify effective policies for solving the optimization problem in (20).

Central to derivative-free stochastic search is the design of a belief model. Let F
n
(x) ≈ EF (x,W)

be our approximation of EF (x,W) after n experiments. We can represent F
n
(x) using

Lookup tables Let µx = EF (x,W) be the true value of the function at x ∈ X . A lookup table belief
model would consist of estimates µ̄nx for each x ∈ X . If we are using a Bayesian belief model, we
can represent the beliefs in two ways:

Independent beliefs We assume that µx is a random variable where a common assumption is
µx ∼ N(µ̄nx, σ̄

2,n
x), where σ̄2,n

x is the variance in our belief about µx.

Correlated beliefs Here we assume we have a matrix Σn with element Σn
xx′ = Covn(µx, µx′),

where Covn(µx, µx′) is our estimate of the covariance after n observations.

Parametric models The simplest parametric model is linear with the form

f(x|θ) = θ0 + θ1φ1(x) + θ2φ2(x) + . . .

where φf (x), f ∈ F is a set of features drawn from the decision x (and possibly other exogenous
information). We might let θ̄n be our time n estimate of θ, and we might even have a covariance
matrix Σθ,n that is updated as new information comes in. Parametric models might be nonlinear
in the parameters (such as a logistic regression), or a basic (low dimensional) neural network.

Nonparametric models These include nearest neighborhood and kernel regression (basically smoothed
estimates of observations close to x), support vector machines, and deep (high dimensional) neu-
ral networks.

If we let Sn be our belief state (such as point estimates and covariance matrix for our correlated
belief model), we need a policy Xπ(Sn) to return the choice xn of experiment to run, after which we
make a noisy observation of our unknown function Ef(x,W). We represent this noisy experiment by
Wn+1, which we may view as returning a sampled observation F (xn,Wn+1), or a noisy observation
Wn+1 = f(xn) + εn+1 where f(x) is our true function. This leaves us with the problem of identifying
good policies Xπ(S).

26

A number of policies have been proposed in the literature. We can organize these into our four
classes of policies, although the most popular are cost function approximations (CFAs) and single-
period, direct lookaheads (DLAs). However, we use this setting to illustrate all four classes:

Policy function approximations - For learning problems, assume we have some policy for making
a decision. Imagine that the decision is continuous, such as a price, amount to order, or the forces
applied to a robot or autonomous vehicle. This policy could be a linear rule (that is, an “affine
policy”), or a neural network which we denote by Y π(S). Assume that after making the decision,
we use the resulting performance to update the rule. For this reason, it helps to introduce some
exploration by introducing some randomization which we might do using

Xπ(S) = Y π(S) + ε.

The introduction of the noise ε ∼ N(0, σ2
ε) is referred to in the controls literature as “excitation.”

The variance σ2
ε is a tunable parameter.

Cost function approximations - This is the most popular class of policies, developed primarily
in the setting of online (cumulative reward) problems known as multiarmed bandit problems.
Examples include:

Pure exploitation - These policies simply choose what appears to be best, such as

XExplt(Sn) = arg max
x

µ̄nx. (39)

We might instead have a parametric model f(x|θ) with unknown parameters. A pure
exploitation policy (also known as “simple greedy”) would be

XExplt(Sn) = arg max
x

f(x, θ̄n),

= arg max
x

f(x,E(θ|Sn)).

This policy includes any method that involves optimizing an approximation of the function
such as linear models, often referred to as response surface methods (Ginebra & Clayton
(1995)).

Bayes greedy - This is basically a pure exploitation policy where the expectation is taken
outside the function. For example, assume that our true function is a parametric function
f(x|θ) with an unknown parameter vector θ. The Bayes greedy policy would be

XBG(Sn) = arg max
x

E{f(x, θ)|Sn}. (40)

Interval estimation - This is given by

XIE(Sn|θIE) = arg max
x

(µ̄nx + θIE σ̄nx). (41)

where σ̄nx is the standard deviation of the estimate µ̄nx.

27

Upper confidence bounding - There is a wide range of UCB policies that evolved in the
computer science literature, but they all have the generic form

XUCB(Sn|θUCB) = arg max
x

(
µ̄nx + θUCB

√
log n

Nn
x

)
, (42)

where Nn
x is the number of times we have tried alternative x. We first introduced UCB

policies in equation (24) where we used 4σW instead of the tunable parameter θUCB. UCB
policies are very popular in the research literature (see, for example, Bubeck & Cesa-Bianchi
(2012)) where it is possible to prove bounds for specific forms, but in practice it is quite
common to introduce tunable parameters such as θUCB.

Value functions - It is possible in principle to solve learning problems using value functions, but
these are rare and seem to be very specialized. This would involve a policy of the form

XV FA(Sn) = arg max
x

(
µ̄nx + E{V n+1(Sn+1)|Sn, x}

)
, (43)

where Sn (as before) is our state of knowledge. There are special cases where Sn is discrete, but if
Sn is, for example, a set of point estimates µ̄nx and variances σ̄2,n

x , then Sn = (µ̄nx, σ̄
2,n
x)x∈X which

is high-dimensional and continuous. Value functions are the foundation of Gittins indices, but as
of this writing, VFA-based policies have not attracted much attention in the learning literature.

Direct lookahead policies - It is important to distinguish between single-period lookahead policies
(which are quite popular), and multi-period lookahead policies:

Single period lookahead - Examples include

Knowledge gradient - This estimates the value of information from a single experiment.
Assume we are using a parametric belief model where θ̄n is our current estimate, and
θ̄n+1(x) is our updated estimate if we run experiment xn = x. Keeping in mind that
θ̄n+1(x) is a random variable at time n when we choose to run the experiment, the value
of the experiment, measured in terms of how much better we can find the best decision,
is given by

νKG,n(x) = EθEW |θ{max
x′

f(x′|θ̄n+1(x))|Sn} −max
x′

f(x′|θ̄n).

The knowledge gradient was first studied in depth in Frazier et al. (2008) for indepen-
dent beliefs, and has been extended to correlated beliefs (Frazier et al., 2009), linear
beliefs (Negoescu et al., 2010), nonlinear parametric belief models (Chen et al., 2015),
nonparametric beliefs (Barut & Powell (2014), Cheng et al. (2015)), and hierarchical
beliefs (Mes et al., 2011). These papers all assume that the variance of measurements
is known, an assumption that is relaxed in Chick et al. (2010). The knowledge gradi-
ent seems to be best suited for settings where experiments are expensive, but care has

28

to be taken when experiments are noisy, since the value of information may become
non-concave. This is addressed in Frazier & Powell (2010).

Expected improvement - Known as EI in the literature, expected improvement is a close
relative of the knowledge gradient, given by the formula

νEI,nx = E
[

max

{
0, µx −max

x′
µnx′

}∣∣∣∣Sn, xn = x

]
. (44)

Expected improvement, also studied under the name expected value of information (see
e.g. Chick et al. (2010)) maximizes the degree to which the current belief about the
function at x might exceed the current estimate of the maximum.

Sequential kriging - This is a methodology developed in the geosciences to guide the
investigation of geological conditions, which are inherently continuous where x may
have two or three dimensions (see Cressie (1990) for the history of this approach).
Although the method is popular and relatively simple, for reasons of space, we refer
readers to Stein (1999) and Powell & Ryzhov (2012) for introductions. This work is
related to efficient global optimization (EGO) (Jones et al., 1998), and has been applied
to the area of optimizing simulations (see Ankenman et al. (2010) and the survey in
Kleijnen (2014)).

Thompson sampling - First introduced in Thompson (1933), Thompson sampling works
by sampling from the current belief about µx ∼ N(µnx, σ̄

2,n
x), which can be viewed as

the prior distribution for experiment n + 1. Let µ̂nx be this sample. The Thompson
sampling policy is then

XTS(Sn) = arg max
x

µ̂nx.

Thompson sampling can be viewed as a form of randomized interval estimation, without
the tunable parameter (we could introduce a tunable parameter by sampling from µx ∼
N(µnx, θ

TS σ̄2,n
x)). Thompson sampling has attracted considerable recent interest from

the research community (Agrawal & Goyal, 2012) and has sparked further research in
posterior sampling (Russo & Van Roy, 2014).

Multiperiod lookahead - Examples include

Gittins indices - Perhaps the most widely known form of multiperiod lookahead is Gittins
indices which we discussed in section 2.14. Gittins indices are calculated by decomposing
the problem by alternative (“arm” in the language of multiarmed bandits) and then
solve dynamic programs which yield an index which is then maximized. We classify
this as a multiperiod lookahead (rather than a value function-based policy) because the
dynamic program (which models the problem in the future) is used to create an index,
which then forms the basis of the policy.

29

The KG(*) - policy There are many settings where the value of information is noncon-
cave, such as when experiments are very noisy (experiments with Bernoulli outcomes
fall in this category). For this setting, Frazier & Powell (2010) proposes to act as if
alternative x is going to be tested nx times, and then find nx to maximize the average
value of information.

7.3. Discussion

We note in closing that we did not provide a similar list of policies for derivative-based problems. A
stochastic gradient algorithm would be classified as a policy function approximation. Wu et al. (2017)
appears to be the first to consider using gradient information in a knowledge gradient policy.

8. Policies for state-dependent problems

While state-independent learning problems are an important problem class, they pale in comparison
to the vast range of state-dependent functions, which includes the entire range of problems known
generally as “resource allocation.” Since it helps to illustrate ideas in the context of an example, we
are going to use a relatively simple energy storage problem, where energy is stored in the battery for a
system which can get energy from a wind farm (where the price is free), the grid (which has unlimited
capacity but highly stochastic prices) to serve a predictable, time-varying load.

This example is described in more detail in Powell & Meisel (2015) which shows for this problem
setting that each of the four classes may work best depending on the characteristics of the system.

8.1. Policy function approximations

A basic policy for buying energy from and selling energy to the grid from a storage device is to buy
when the price pt falls below a buy price θbuy, and to sell when it goes above a sell price θsell.

Xπ(St|θ) =

−1 If pt < θbuy,
0 If θbuy ≤ pt ≤ θsell,
1 If pt > θsell.

This is a policy that is nonlinear in θ. A popular PFA is one that is linear in θ, often referred to as an
“affine policy” or a “linear decision rule,” which might be written as

Xπ(St|θ) = θ0φ0(St) + θ1φ1(St) + θ2φ2(St). (45)

Recently, there is growing interest in tapping the power of deep neural networks to represent a
policy. In this context, the policy π would capture the structure of the neural network (the number
of layers and dimensionality of each layer), while θ would represent the weights, which can be tuned
using a gradient search algorithm.

These are examples of stationary policies, which is to say that while the function depends on a
dynamically varying state St, the function itself does not depend on time. While some authors will

30

simply add time to the state variable as a feature, in most applications (such as energy storage), the
policy will not be monotone in time. It is possible to make θ = (θbuy, θsell) time dependent, in which
case we would write it as θt, but now we have dramatically increased the number of tunable parameters
(Moazeni et al. (2017) uses splines to simplify this process).

8.2. Cost function approximations

A cost function approximation is a policy that solves a modified optimization problem, where either
the objective function or the constraints can be modified parametrically. A general way of writing this
is

XCFA(St|θ) = arg max
x∈Xπ(θ)

C̄π(St, x|θ). (46)

A simple CFA uses a linear modification of the objective function which we can write as

XCFA
t (St|θ) = arg max

x∈Xt

C(St, x) +
∑
f∈F

θfφf (St, x)

 , (47)

where the term added to C(St, x) is a “cost function correction term,” which requires designing basis
functions (φf (St, x)), f ∈ F , and tuning the coefficients θ.

A common strategy is to introduce modifications to the constraints. For example, a grid operator
planning energy generation for tomorrow will introduce extra reserve by scaling up the forecast. Air-
lines will optimize the scheduling of aircraft, handling uncertainty in travel times due to weather by
introducing schedule slack. Both of these represent modified constraints, where the extra generation
reserve or schedule slack represent tunable parameters, which may be written

XCFA
t (St|θ) = arg max

x∈Xπt (θ)
C(St, x), (48)

where X πt (θ) might be the modified linear constraints

Atx = bt +Dtθ, (49)

x ≥ 0.

Here, θ is a vector of tunable parameters and D is an appropriate scaling matrix. Using the creative
modeling for which the linear programming community has mastered, equation (49) can be used to
introduce schedule slack into an airline schedule, spinning reserve into the plan for energy generation,
and even buffer stocks for managing a supply chain.

31

8.3. Value function approximations

We begin by recalling the optimal policy based on calculating the impact of a decision now on the
future (originally given in equation (32)),

X∗t (St) = arg max
xt

(
C(St, xt) + E

{
max
π

E

{
T∑

t′=t+1

C(St′ , X
π
t′(St′))

∣∣∣∣∣St+1

}∣∣∣∣∣St, xt
})

. (50)

We let Vt+1(St+1) be the expected optimal value of being in state St+1, allowing us to write equation
(50) as

X∗t (St) = arg max
xt

(C(St, xt) + E {Vt+1(St+1)|St, xt}). (51)

If we could compute the value function, the policy given by equation (51) can be very easy to use. The
problem is that this is rarely the case. A well-known special case is to assume that states (and the
decisions xt) are discrete, and that the expectation can be computed. In fact, it is common to write
the computation of the value functions using the recursive equation

Vt(St) = max
xt

(
C(St, xt) +

∑
s′∈S

p(s′|St, xt)Vt+1(s′)

)
. (52)

Equation (52) is famously known as Bellman’s optimality equation (Bellman (1957), Puterman (2005)),
where the one-step transition matrix is the expectation given by

p(s′|s, x) = E{1{s′=SM (s,x,Wt+1)}|St = s}. (53)

The problem is that one-step transition matrices are rarely computable, since states, decisions and
the exogenous information may be continuous and/or vector valued (known as the three curses of
dimensionality).

There are often three computational challenges when trying to use equation (51) for a policy:
1) calculating the value function Vt+1(St+1), 2) computing the expectation within the arg max operator,
and 3) computing the arg max when the decision xt is a vector.

We can often remove the expectation by replacing the value function of St+1 by the value function
around the next post-decision state, which gives us the policy

X∗t (St) = arg max
xt

(C(St, xt) + V x
t (Sxt)) . (54)

Since we cannot compute V x
t (Sxt) exactly, we replace it with an approximation V

x
t (Sxt), a strategy

that is widely known as approximate dynamic programming (Si et al. (2004), Powell (2011), Bertsekas
(2011)). In computer science, it is known as reinforcement learning (Sutton & Barto (1998), Szepesvári

32

(2010)), while in engineering it is typically referred to as adaptive dynamic programming (Murray et
al. (2002), Wang et al. (2009)).

Value function approximations can be based on lookup table representations, parametric or non-
parametric architectures (see Hastie et al. (2009) and Gareth et al. (2013)), but choosing an approxi-
mation architecture is just the first step. There are several ways to perform updates of value functions.
The most popular is based on approximate value iteration, where we compute an estimate v̂nt of the
value of being in a particular state Snt at time t during the nth iteration through the horizon. The
estimate v̂nt can be computed during a simple forward pass using

v̂nt = C(Snt , x
n
t) + V

n−1
t+1 (St+1), (55)

where xnt = Xπ
t (Snt) is the decision we make while following policy π (given by, for example, equation

(54)), and where St+1 = SM (Snt , x
n
t ,Wt+1(ωn)) is the state at time t+ 1 if we choose decision xt, and

then observe Wt+1(ωn) while following sample path ωn.
Equation (55) is a pure forward pass approach to estimating the value of being in a state. An

alternative approach is to execute a full forward pass, simulating the sample path using realizations
Wt(ω

n) over t = 1, . . . , T , and then compute v̂nt using a backward pass using

v̂nt = C(Snt , x
n
t) + v̂nt+1. (56)

Equation (55) is easier to implement, but can be quite slow due to how information is passed backward
in time. Equation (56) is somewhat harder to program, but can be dramatically faster, although this
can introduce instabilities.

Regardless of the approach used, we can then use v̂nt to update our value function approximation.
This updating depends on the nature of the approximation architecture being used for V t(St). If we
use a lookup table (which requires that St be discrete), we might use

V
n
t (Snt) = (1− αn)V

n−1
t (Snt) + αnv̂

n
t , (57)

where αn is a stepsize which has to follow certain rules. If we wish to use a post-decision state, the
update would look like

V
x,n
t−1(Sx,nt−1) = (1− αn)V

x,n−1
t−1 (Sx,nt−1) + αnv̂

n
t . (58)

We note that equation (58) is using v̂nt , which is an estimate of the value of being in pre-decision state
Snt , to update the value of being in the previous post-decision state Sx,nt−1.

A popular strategy has been to use a linear model for approximating value functions, which we
might write as

V (St) =
∑
f∈F

θfφf (St),

33

where (φf (St)), f ∈ F are referred to as basis functions, or features. If our problem is time dependent,
we would need to write the coefficients as θtf , although these are relatively easy to update using our
estimates v̂nt (in contrast with policy search, where the expanded dimensionality of the parameter
vector can cause serious problems). A strategy that has long been popular in engineering has been to
use neural networks to approximate value functions (see White & Sofge (1992), Bertsekas & Tsitsiklis
(1996), Si et al. (2004)), although it is important to note that the engineering applications where this
is most popular are deterministic.

Another stategy has been to use an approximation V
n
t (St) to create a policy that can be simulated

many times, creating a set of estimates v̂n,mt , m = 1, . . . ,M . This creates a dataset (v̂n,mt , Sn,mt), m =
1, . . . ,M to create a new value function approximation V

n
t (St). This is the approximate form of policy

iteration.
There is an entire literature that focuses on settings where xt is a vector, and the contribution

function C(St, xt) = ctxt, where the constraints Xt are a set of linear equations. These problems are
most often modeled where the only source of randomness is in exogenous supplies and demands. In
this case, the state St consists of just the resource state Rt, and we can also show that the post-decision
value function V

x
t (Rt) is concave (if maximizing). These problems arise often in the management of

resources to meet random demands. Such problems have been solved for many years by representing
the value function as a series of multidimensional cuts based on Benders decomposition. This idea was
first introduced as a way of “solving” the curse of dimensionality by Pereira & Pinto (1991) under the
name stochastic dual decomposition procedure, or SDDP. This strategy has spawned an entire body of
research (Infanger & Morton (1996), Shapiro et al. (2013), Sen & Zhou (2014), Girardeau et al. (2014))
which is reviewed in Shapiro et al. (2014). It is now recognized that SDDP is a form of approximate
dynamic programming in the context of convex, stochastic linear programming problems (see e.g.
Powell (2007)). Related to SDDP is the use of separable, piecewise linear value function approximations
that have proven useful in large scale logistics applications (Powell et al. (2004), Topaloglu & Powell
(2006), Bouzaiene-Ayari et al. (2014), Salas & Powell (2015)).

8.4. Direct lookahead approximations

Each of the policies described above (PFAs, CFAs, and VFAs) require approximating some function,
drawing on the tools of machine learning. These functions may be the policy Xπ(St), an approximation
of EF (x,W), a modified cost function or constraints (for CFAs), or the value of being in a state Vt(St).
These methods work when these functions can be approximated reasonably well.

Not surprisingly, this is not always possible, typically because we lack recognizable structure. When
all else fails (which is quite often), we have to turn to direct lookaheads, where we need to approximate
the lookahead policy in equation (32). Since this function is rarely computable, we approach it by
replacing the model of the future with an approximation which we refer to as the lookahead model. A
lookahead model is generated at a time t when we have to make decision xt. There are five types of
approximations that are typically made when we create a lookahead model:

• Limiting the horizon - We may reduce the horizon from (t, T) to (t, t+H), where H is a horizon
that is just long enough to produce a good decision at time t.

34

• Stage aggregation - A stage is a sequence of seeing new information followed by making a decision.
A popular strategy is to replace the full multistage formulation with a two-stage formulation,
consisting of making a decision xt now, then seeing all the information over the remainder of
the horizon, represented by Wt+1, . . . ,Wt+H , and then making all the decisions over the horizon
xt+1, . . . , xt+H . This means that xt+1 is allowed to “see” the entire future.

• Approximating the stochastic process - We may replace the full probability model with a sampled
set of outcomes, often referred to as scenarios. We may also replace a state-dependent stochastic
process with one that is state-independent.

• Discretization - Time, states, and decisions may all be discretized in a way that makes the
resulting model more computationally tractable. The resulting stochastic model may even be
solvable using backward dynamic programming.

• Dimensionality reduction - It is very common to ignore one or more variables in the lookahead
model. For example, it is virtually always the case that a forecast will be held fixed in a lookahead
model, while it would be expected to evolve over time in a real application (and hence in the base
model). Alternatively, a base model with a belief state, capturing imperfect knowledge about a
parameter, might be replaced with an assumption that the parameter is known perfectly.

As a result of all these approximations, we have to create notation for what is basically an entirely
new model, although there should be close parallels with the base model. For this reason, we use the
same notation as the base model, but all variables are labeled with a tilde, and are indexed by both t
(which labels the time at which the lookahead model is created), and t′, which is the time within the
lookahead model. Thus, a lookahead policy would be written

XLA
t (St|θLA) = arg max

xt

(
C(St, xt) + Ẽ

{
max
π̃∈Π̃

Ẽπ
{

t+H∑
t′=t+1

C(S̃tt′ , X̃
π
tt′(S̃tt′))|S̃t,t+1

}
|St, xt

})
. (59)

Here, the parameter vector θLA is assumed to capture all the choices made when creating the approxi-
mate lookahead model. We note that in lookahead models, the tunable parameters (horizons, number
of stages, samples) are all of the form “bigger is better,” so tuning is primarily a tradeoff between
accuracy and computational complexity.

Below we describe three popular strategies. The first is a deterministic lookahead model, which
can be used for problems with discrete actions (such as a shortest path problem) or continuous vectors
(such as a multiperiod inventory problem). The second is a stochastic lookahead procedure developed
in computer science that can only be used for problems with discrete actions. The third is a strategy
developed by the stochastic programming community for stochastic lookahead models with vector-
valued decisions.

35

The base model

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t 2t 3t

. . . .

The base model

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t 2t 3t

. . . .

Figure 2: Illustration of simulating a direct lookahead policy, using a deterministic model of the future (from Powell et
al. (2012)).

Deterministic lookaheads

Easily the most popular lookahead model uses a deterministic approximation of the future, which
we might write

XLA−Det
t (St|θLA) = arg max

xt

(
C(St, xt) + max

x̃t,t+1,...,x̃t,t+H

t+H∑
t′=t+1

C(S̃tt′ , x̃tt′)

)
, (60)

where the optimization problem is solved subject to any constraints that would have been built into
the policy.

The problem being modeled in (60) could be a shortest path problem, in which case we would likely
solve it as a deterministic dynamic program. If xt is a continuous vector (for example, optimizing cash
flows or a supply chain problem), then (60) would be a multiperiod linear program.

Figure 2 illustrates the process of solving a lookahead model which yields a decision xt which is
implemented in the base model. We then use the base transition function St+1 = SM (St, xt,Wt+1)
where Wt+1 is sampled from the stochastic (base) model, or observed from a physical system. At time
t+ 1, we repeat the process.

We note that the strategy of using a deterministic lookahead is often referred to as model predictive
control (or MPC), which is to say that we use a model of the problem (more precisely an approximate
model) to decide what to do now. The association of MPC with a deterministic lookahead reflects
the history of MPC coming from the engineering controls community that predominantly focuses on
deterministic problems. The term “model predictive control” actually refers to any lookahead model,
whether it is deterministic or stochastic. However, stochastic lookahead models that match the base
model are rarely solvable, so we are usually using most if not all of the five types of approximations
listed above. For good reviews of model predictive control, see Morari et al. (2002), Camacho &
Bordons (2003), Bertsekas (2005), and Lee (2011).

36

Rollout policies

A powerful and popular strategy is to interpret the search over a restricted set of policies in the
future, represented as π̃ ∈ Π̃ in equation (59). The design of these policies is highly problem-dependent
and is best illustrated using examples:

• The time t problem could be the simultaneous assignment of drivers to riders at time t, where
an assignment might take a driver at location i to location j. We might then estimate the value
of the driver at j by myopically assigning this driver to simulated loads in the future (ignoring
all other drivers).

• An energy generation plant has to optimize when it is turned on and off capturing complex
operational constraints, producing a difficult integer program. To capture the value of being
left in a state after, say, 12 hours, we can use a simple inventory ordering policy to simulate
operations in the future using simulated conditions (demands and prices).

The approximate rollout policy may be a parameterized policy X̃ π̃(S̃tt′ |θ̃) is typically fixed in advance
(see (Bertsekas & Castanon, 1999) for a careful early analysis of this idea), but the choice of rollout
policy can (and should) be optimized as part of the search over policies in our base model (28). In
fact, the best choice of the parameter vector θ̃ depends on the starting state post-decision state Sxt ,
which means we could even tune the parameter to find θ̃(Sxt) on the fly. Thus, the search over π̃ in
(59) could be a search for the best θ̃(Sxt).

Monte Carlo tree search for discrete decisions

Imagine that we have discrete actions at ∈ As when we are in state s = St, after which we observe
a realization of Wt+1. Such problems can be modeled in theory as classical decision trees, but these
explode very quickly with the number of time periods.

Monte Carlo tree search is a strategy that evolved within computer science to explore a tree without
enumerating the entire tree. This is done in four steps as illustrated in figure 3. These steps include a)
selecting an action out of a decision node (which represents a state S̃tt′), b) expanding the tree, if the

resulting observation of W̃ t,t′+1 results in a node that was not already in the tree, c) the rollout policy,
which is how we evaluate the value of the node that we just reached out to, and d) backup, where we
run backward through the tree, updating the value of being in at each node (basically equation (56)).

Central to the success of MCTS is having an effective rollout policy to get an initial approximation
of the value of being in a leaf node. Rollout policies were originally introduced and analyzed in
Bertsekas & Castanon (1999). A review of Monte Carlo tree search is given in Browne et al. (2012),
although this is primarily for deterministic problems. Other recent reviews include Auger et al. (2013)
and Munos (2014). Jiang et al. (2017) presents an asymptotic proof of convergence of MCTS if the
lookahead policy uses the principle of information relaxation, which is done by taking a sample of
the future and then solving the resulting deterministic problem assuming we are able to look into the
future.

37

Rollout
policy

Selection Expansion Simulation Backpropagation

Tree policy

Action selection

Sampling

(a) (b) (c) (d)

Figure 3: Sketch of Monte Carlo tree search, illustrating (left to right): selection, expansion, simulation and backpropa-
gation.

Monte Carlo tree search represents a relatively young algorithmic technology which has proven
successful in a few applications. It is basically a brute force solution to the problem of designing
policies, which depends heavily on the ability to design effective, but easy-to-compute, rollout policies.

Two-stage stochastic programming for vector-valued decisions

Monte Carlo tree search requires the ability to enumerate all of the actions out of a decision node.
This limits MCTS to problems with at most a few dozen actions per state, and completely eliminates
considering problems with vector-valued decisions.

A popular strategy (at least in the research literature) for solving sequential, stochastic linear pro-
grams is to simplify the lookahead model into three steps: 1) making the decision xt to be implemented

at time t, 2) sampling all future information W̃ t,t+1(ω), . . . , W̃ t,t+H(ω), where the sample paths ω are

drawn from a sampled set Ω̂t of sample paths of possible values of W̃ t,t+1, . . . , W̃ t,t+H , and 3) making
all remaining decisions x̃t,t+1(ω), . . . , x̃t,t+H(ω). This produces the lookahead policy

X2stage
t (St) = arg max

xt,(x̃tt′ (ω))t+H
t′=t+1

,ω∈Ω̂t

ctxt +
∑
ωt∈Ω̂t

t+H∑
t′=t+1

c̃tt′(ω)x̃tt′(ω), (61)

subject to first stage constraints

Atxt = bt, (62)

xt ≥ 0 , (63)

38

and the second stage constraints for ω ∈ Ω̂t,

Ãt,t+1(ω)x̃t,t+1(ω) + B̃t,t′−1(ω)xt(ω) = b̃t,t+1(ω), (64)

Ãtt′(ω)x̃tt′(ω) + B̃t,t′−1(ω)x̃t,t′−1(ω) = b̃tt′(ω), t′ = t+ 2, . . . , t+H, (65)

x̃tt′(ω) ≥ 0 , t′ = t+ 1, . . . , t+H. (66)

We again emphasize that ω determines the entire sequence W̃ t,t+1, . . . , W̃ t,t+H , which is how each
decision x̃tt′(ω) in the lookahead model is allowed to see the entire future. However, the here-and-now
decision xt is not allowed to see this information, which is viewed as an acceptable approximation in
the research literature, although there has been virtually no analysis of the errors introduced by this
assumption.

Since xt is a vector, even deterministic versions of (61) (that is, where there is only a single ω)
may be reasonably large. As a result, the full problem (61) - (66) when the set Ω̂t contains tens
to potentially hundreds of outcomes may be quite large. This has motivated the development of
decomposition algorithms such as the well-known progressive hedging algorithm of Rockafellar & Wets
(1991), which replaces xt with xt(ω), which means that now even xt is allowed to see the future, and
then introduces the constraint

xt(ω) = x̄t, ∀ω ∈ Ω̂t. (67)

Equation (67) is widely known as a “non-anticipativity constraint” since it requires that xt cannot
be different for different outcomes ω. However, progressive hedging relaxes this constraint, producing
series of much smaller optimization problems, one for each ω ∈ Ω̂t.

The literature on stochastic programming (as this field is known) dates to the 1950’s with the
original work of Dantzig (1955) and Dantzig & Ferguson (1956). This work has been followed by
decades of research which is summarized in a series of books (Birge & Louveaux (2011), King & Wallace
(2012), Shapiro et al. (2014)). As with all of our other policies, our two-stage stochastic programming
policy X2stage(St) should be evaluated using our base model in equation (28), although this is often
overlooked, primarily because computing X2stage(St), which requires solving the optimization problem
(61) - (66), can be quite difficult. As a result, the problem of carefully choosing the set Ω̂t has attracted
considerable attention, beginning with the seminal work of Dupacova et al. (2003) and Heitsch &
Romisch (2009), with more recent work on uncertainty modeling (see the tutorial in Bayraksan & Love
(2015)).

Given the challenges of solving practical two-stage stochastic programming problems, full multistage
lookahead models have attracted relatively little attention (Defourny et al. (2013) is a sample). We
note that Monte Carlo tree search, by contrast, is a full “multistage” stochastic lookahead model, but
this fully exploits the relative simplicity of small action spaces.

Robust optimization

Robust optimization has been extended to multiperiod problems, just as the two-stage stochastic
programming model has been extended to multiperiod problems as an approximate way of solving

39

(robustly) sequential decision problems. Assume we are trying to find xt by optimizing over a horizon
(t, t+H). Formulated as a robust optimization problem means solving

XRO
t (St|θ) = arg min

xt,...,xt+H∈Xt
max

(wt,...,wt+H)∈Wt(θ)

t+H∑
t′=t

ct(wt)xt, (68)

possibly subject to constraints that depend on (wt, . . . , wt+H). This strategy was proposed in Ben-Tal
et al. (2005) to solve a supply chain problem. While not modeled explicitly, the policy was then tested
in an expectation-based simulator (what we call our base model).

8.5. Hybrid policies

There are two reasons to articulate the four meta-classes of policies. First, all four classes have
problems for which they are well suited. If you only learn one class (as many students of stochastic
optimization do), you are going to be limited to working on problems that are suited to that class.
In fact, the best policy, even within the context of a single problem domain, can depend on the
characteristics of the data. This property is illustrated in Powell & Meisel (2015) for an energy storage
problem, where each of the four classes of policies (plus a fifth hybrid) is shown to work best on a
particular version of the problem.

The second reason is that it is often the case that the best policy is a hybrid of two, or even three,
of the four classes. Below are some examples of hybrid policies we have encountered.

• Lookahead and VFA policies - Tree search can be a powerful strategy, but it explodes expo-
nentially with the number of stages. Value functions avoid this, but requires that we develop
accurate approximations of the value of being in a state, which can be hard in many applications.
Consider now a partial tree search over a short horizon, terminating with a value function. Now
the value function does not have to be quite as accurate, and yet we still get an approximation
that extends over a potentially much longer horizon.

• Deterministic lookaheads (DLA) with tunable parameters (CFA) - A common industry practice
is to solve a deterministic lookahead model, but to introduce tunable parameters to handle
uncertainty. For example, airlines might introduce schedule slack to handle the uncertainty of
weather delays, while a grid operator will schedule extra generation capacity to handle unexpected
generator failures. These tunable parameters are optimized in the base model in equation (28),
where the transition function (29) might be a simulator, or the real world.

• Any optimization-based policy (CFA, VFA or DLA) guided by historical patterns (a form of PFA)
- Cost-based optimization models easily handle very high-dimensional data (e.g. optimizing a
fleet of trucks or planes), but it can be hard to capture some issues in a cost function (we like to
put drivers that work in teams on longer loads, but this is not a hard constraint).

The choice of the best policy, or hybrid, always depends on comparisons using the base model (28)-(29).

40

Discussion

There is widespread confusion in the research literature regarding the distinction between stochastic
lookahead policies (primarily), and stochastic base models. While all policies should be tested in a
base model (which can be the real world), tuning in a base model is essential when using PFAs and
CFAs, but not with lookahead policies. As a result, many authors will present a stochastic lookahead
model without making the distinction of whether this is a lookahead model, or a base model.

In some cases it is clear that a stochastic model is a lookahead model, such as a two-stage stochas-
tic programming approximation of a multiperiod (and multistage) stochastic optimization problem.
However, it is possible to solve a stochastic lookahead model as a dynamic program, in which case it
may not be clear. We might look for approximations that are typical in lookahead models, but base
models use approximations too.

8.6. Learning challenges

Of the four classes of policies, only direct lookaheads do not involve any form of statistical learning.
Of the remaining, there are four types of statistical learning problems:

• Learning an approximation F (x) ≈ EWF (x,W). This is the easiest problem because we typically
assume we have access to unbiased observations of F (x,W). The goal is to minimize some
measure of error between F (x) and F (x,W).

• Learning policies Xπ(s). Here we are learning a function that maximizes a contribution or
minimizes a cost, typically in the base model in equation (28).

• Learning a cost function approximation, which means a parametrically modified cost function
or set of constraints. This is similar to learning F (x), except that we are learning a function
embedded within a max or min operator.

• Learning a value function approximation V t(St) ≈ Vt(St).

These learning challenges draw heavily on the fields of statistics and machine learning. Section 7.2
gave a very brief overview of general statistical methodologies and some references. There are several
twists that make statistical learning in stochastic optimization a little different, including

• Recursive learning - Almost all of the statistical challenges listed above (approximate policy
iteration being an exception) involve recursive learning. This means that we need methods that
evolve from low to higher dimensional representations as we acquire more data.

• Active learning - We get to choose x (or the policy), which means we have control over what
experiments to run. This means we usually are balancing the classic exploration-exploitation
tradeoff.

41

• We may be optimizing a physical process or numerical simulation rather than a mathematical
model. In these settings, observations of the function may be quite expensive, which means we
do not have access to the large datasets that have become so familiar in a “big data” world.

• Learning value functions is one of the most difficult challenges from a statistical perspective,
because we typically have to learn V t(St) from observations v̂nt that are generally biased estimates
of Vt(St) (or its derivatives). The bias arises because we learn these values using suboptimal
policies, but then we have to use our approximations.

• Policies are often discontinuous, as with buy low, sell high policies, or order-up-to inventory
policies.

There is an extensive literature on learning. Hastie et al. (2009) is an excellent introduction to the
broad field of statistical learning, but there are many good books. Jones (2001) and Montgomery (2000)
describe provide thorough reviews of response surface methods. Kleijnen (2017) reviews regression and
kriging metamodels for simulation models, which is the foundation of most stochastic optimization.

9. A classification of problems

Having organized policies into four classes, we need to address the problem of evaluating policies.
For this purpose, we have to recognize that there are different problem classes that introduces different
issues for policy evaluation.

We begin by identifying two key dimensions for characterizing any adaptive optimization problem:
First, whether the objective function is offline (terminal reward) or online (cumulative reward), and
second, whether the objective function is state independent (learning problems) or state dependent
(traditional dynamic programs). This produces four problem classes which are depicted in table 1.
Moving clockwise around the table, starting from the upper left-hand corner:

Class 1) State-independent, terminal reward - This is our classic stochastic search problem evaluated
using a finite budget (as it should be), where the problem is to find the best policy (which could
be a stochastic gradient algorithm) for finding the design xπ,N produced by the policy π within
the experimental budget N . This might be called the finite-time version of the newsvendor
problem, where the expectation can be written in nested form as

max
π

E{F (Xπ,N , Ŵ)|S0} = ES0EW 1,...,WN |S0EŴ |S0F (Xπ,N , Ŵ), (69)

where W 1, . . . ,WN are the observations of W while learning the function, and Ŵ is the random
variable used for testing the final design xπ,N . The initial state S0 may be deterministic, but
might include a Bayesian prior of an unknown parameter (such as the response of demand to
price), which means we have to take an expectation over this distribution.

42

Offline

Terminal reward

Online

Cumulative reward

State

independent

problems

maxπ E{F (xπ,N ,W)|S0}
Stochastic search

(1)

maxπ E{
∑N−1
n=0 F (Xπ(Sn),Wn+1)|S0}

Multiarmed bandit problem

(2)

State

dependent

problems

maxπlrn E{C(S,Xπimp

(S|θimp),W)|S0}
Offline dynamic programming

(4)

maxπ E{
∑T
t=0 C(St, X

π(St),Wt+1)|S0}
Online dynamic programming

(3)

Table 1: Comparison of formulations for state-independent (learning) vs. state-dependent problems, and offline (terminal
reward) and online (cumulative reward).

Class 2) State-independent, cumulative reward - Here we want a policy that learns while it optimizes,
where we have to live with the performance of the decisions we make while we are learning the
function. This would be our classic multiarmed bandit problem if the decisions x were discrete and
we did not have access to derivatives (but we are not insisting on these limitations). Expanding
the expectation gives us

max
π

E

{
N−1∑
n=0

F (Xπ(Sn),Wn+1)|S0

}
= ES0EW 1,...,WN |S0

N−1∑
n=0

F (Xπ(Sn),Wn+1). (70)

Class 3) State-dependent, cumulative reward - At first glance this looks like a classical dynamic
program (when expressed in terms of optimizing over policies), yet we see that it closely parallels
the multiarmed bandit problem. This problem may include a belief state, but not necessarily.
When we expand the expectation we obtain

max
π

E

{
T∑
t=0

C(St, X
π(St),Wt+1)|S0

}
= ES0EW1,...,WT |S0

{
T∑
t=0

C(St, X
π(St),Wt+1)|S0

}
.

(71)

In contrast with problem classes (1) and (2), we model the performance of the policy over time
t, rather than iterations n as we did in (70) (which could have been written either way).

Class 4) State-dependent, terminal reward - Here we are looking for the best policy to learn a policy
that will then be implemented. Our implementation policy Xπimp(St|θimp) parallels the imple-

mentation decision xπ,N in (69), where θimp = Θπlrn(S|θlrn) is a parameter that is learned by the

learning policy Θπlrn(S|θlrn). The learning policy could be algorithms for learning value func-
tions such as Q-learning, approximate value iteration or SDDP, or it could be a search algorithm
for learning a PFA or CFA. The parameters θimp are parameters that determine the behavior

43

of the implementation policy such as an approximate Q-factor Q̄(s, a), a Benders’ cut, or the
tunable parameter in a UCB policy.

When we have a state-dependent function, we have to take an additional expectation over the
state variable when evaluating the policy. Keeping in mind that the implementation parameters
θimp are a function of the learning policy πlrn, we can write this as

max
πlrn

E{C(S,Xπimp(S|θimp), Ŵ)|S0} =

ES0Eπ
lrn

W 1,...,WN |S0Eπ
imp

S|S0Eπ
imp

Ŵ |S0C(S,Xπimp(S|θimp), Ŵ). (72)

where W 1, . . . ,WN represents the observations made while using our budget of N experiments
to learn a policy, and Ŵ is the random variable observed when evaluating the policy at the end.

Computing the expectation EπimpS over the states is typically intractable because it depends on
the implementation policy (which of course depends on the learning policy). Instead, we can run
a simulation over a horizon t = 0, . . . , T and then divide by T to get an average contribution per
unit time. We can think of Wn as the set of realizations over a simulation, which we can write
as Wn = (Wn

1 , . . . ,W
n
T). We can then write our learning problem as

max
πlrn

ES0Eπ
imp

(Wn
t)Tt=0,n=1,...,N |S0

(
Eπ

imp

(Ŵt)Tt=0|S0

1

T

T−1∑
t=0

C(St, X
πimp(St|θimp), Ŵt+1)

)
. (73)

Here, we are searching over learning policies, where the simulation over time replaces F (x,W) in
the state-independent formulation. The sequence (Wn

t)Tt=0, n = 1, . . . , N replaces the sequence
W 1, . . . ,WN for the state-independent case, where we start at state S0 = S0. We then do our
final evaluation by taking an expectation over (Ŵt)

T
t=0, where we again assume we start our

simulations at S0 = S0.

This organization brings out relationships that have not been highlighted in the past. For example,
while ranking and selection/stochastic search has been viewed as a fundamentally different problem
class than multiarmed bandits, we see that they are really the same problem with different objectives
(final reward versus cumulative reward). We also see that state-independent problems (learning prob-
lems) are closely related to state-dependent problems, which is the problem class typically associated
with dynamic programming (although all of these problems are dynamic programs).

We have noted that most adaptive learning algorithms for dynamic programming (Q-learning,
approximate dynamic programming, SDDP) fall under the category of state-dependent, final-reward
in table 1, which suggests that the cumulative-reward, state-dependent case is a relatively overlooked
problem class (excluding contextual bandits, which is a special case). Algorithms in this setting have
to balance learning while making good decisions (the classic exploration-exploitation tradeoff). Some
contributions to this problem class include the work of Duff (Duff et al. (1996) and Duff (2002)) which
tried to adapt the theory of Gittins indices to Q-learning algorithms, and Ryzhov (Ryzhov & Powell

44

(2010) and Ryzhov et al. (2017)) who developed both offline (final reward) and online (cumulative
reward) adaptations of the knowledge gradient algorithm for state-dependent problems.

10. Research challenges

The framework presented here brings a variety of perspectives from the different communities of
stochastic optimization, which creates new opportunities for research. These include:

• Given the complexity of solving a stochastic lookahead model, most authors are happy just to
get a solution. As a result, almost no attention has been devoted to analyzing the quality of a
stochastic lookahead model. We need more research to understand the impact of the different
types of errors that are introduced by the approximations discussed in section 5.2 when creating
lookahead models.

• There has been a long tradition of solving problems with belief states as “partially observable
Markov decision processes.” At the same time, theoreticians have known for decades that dy-
namic programs with belief states can be modeled simply as part of the state variable (as we
have done), which means that POMDPs are really just dynamic programs which can be solved
with any of the four classes of policies. In fact, we have described policies designed for problems
where the state variable is purely a belief state. We need to explore the four classes of policies
for problems with mixed state variables (physical, informational, and belief).

• The quality of a policy depends on the quality of a model; the stochastic optimization literature
puts relatively little attention into the model of uncertainty, although some attention has been
given to the identification of suitable scenarios in a sampled model, and the design of distribu-
tionally robust models. There is, of course, an extensive literature on stochastic modeling and
uncertainty quantification; we need considerably more research at the intersection of these fields
and stochastic optimization.

• Design of algorithms for online (cumulative reward) settings. The vast majority of adaptive
search algorithms (stochastic gradient methods, Benders decomposition, Q-learning, approximate
dynamic programming) are implemented in an offline context where the goal is to produce a
solution that “works well.” There are many settings where learning has to be performed online,
which means we have to do well as we are learning, which is the standard framework of multiarmed
bandit problems. We can bring this thinking into classical stochastic search problems.

• All of the communities described in section 2 focus on expectation-based objectives, yet risk
is almost always an issue in stochastic problems. There is a growing literature on the use of
risk measures, but we feel that the current literature is only scratching the surface in terms of
addressing computational and modeling issues in the context of specific applications.

45

• Parametric cost function approximations, particularly in the form of modified deterministic mod-
els, are widely used in engineering practice (think of scheduling an airline with schedule slack to
handle uncertainty). This strategy represents a powerful alternative to stochastic programming
for handling multistage stochastic math programs. We envision that this research will consist of
computational research to develop and test search algorithms for optimizing parametric CFAs,
along with the theoretical analysis of structural results to guide the design of these policies.

• With rare exceptions, authors will pursue one of the four classes of policies we have described
above, but it is not always obvious which is best, and it can depend on the characteristics of
the data. We need a robust methodology that searches across classes of policies, and performs
self-tuning, in an efficient way. Of course, we will always be searching for the ultimate function
that replaces all four classes, but we are not optimistic that this will be possible in practice.

Each of these topics are deep and rich, and could represent entire fields of research.

Acknowledgements

This work was funded in part by AFOSR grant FA9550-12-1-0200, NSF grant CMMI-1537427 and
DARPA grant FA8750-17-2-0027.

46

Agrawal, S. & Goyal, N. (2012), Analysis of Thompson Sampling for the multi-armed bandit problem,
in ‘Conference on Learning Theory (COLT)’, Association for Computational Learning, Edinburgh,
pp. 1–21.

Andradóttir, S. (1998a), ‘A review of simulation optimization techniques’, 1998 Winter Simulation
Conference. Proceedings 1(0), 151–158.

Andradóttir, S. (1998b), Simulation Optimimzation, in J. Banks, ed., ‘Handbook of simulation’, John
Wiley & Sons, Hoboken, NJ, chapter 9, pp. 307–333.

Ankenman, B., Nelson, B. L. & Staum, J. (2010), ‘Stochastic Kriging for Simulation Metamodeling’,
Operations Research 58(2), 371–382.

Asmussen, S. & Glynn, P. W. (2007), Stochastic simulation: algorithms and analysis, Springer Science
& Business Media.

Astrom, K. J. (1970), Introduction to Stochastic Control Theory, Dover Publications, Mineola, NY.

Auger, D., Couëtoux, A. & Teytaud, O. (2013), Continuous upper confidence trees with polynomial
exploration - Consistency, in ‘Joint European Conference on Machine Learning and Knowledge
Discovery in Databases.’, Springer, pp. 194–209.

Azadivar, F. (1999), Simulation Optimization Methodologies, in P. Farrington, H. Nembhard, D. Stur-
rock & G. Evans, eds, ‘Proceedings of the 1999 Winter Simulation Conference’, IEEE, pp. 93–100.

Azevedo, A. & Paxson, D. (2014), ‘Developing real option game models’, European Journal of Opera-
tional Research 237(3), 909–920.

Banks, J., Nelson, B. L. & J. S. Carson, I. I. (1996), Discrete-Event System Simulation, Prentice-Hall,
Inc., Englewood Cliffs, N.J.

Bartlett, P. L., Hazan, E. & Rakhlin, A. (2007), ‘Adaptive Online Gradient Descent’, Advances in
neural information processing systems pp. 1–8.

Barut, E. & Powell, W. B. (2014), ‘Optimal learning for sequential sampling with non-parametric
beliefs’, J. Global Optimization 58, 517–543.

Bayraksan, G. & Love, D. K. (2015), ‘Data-Driven Stochastic Programming Using Phi- Divergences’,
Informs TutORials in Operations Research 2014 pp. 1–19.

Bayraksan, G. & Morton, D. P. (2011), ‘A Sequential Sampling Procedure for Stochastic Programming’,
Operations Research 59(4), 898–913.

Bellman, R. E. (1954), ‘The Theory of Dynamic Programming’, Bull. Amer. Math. Soc. 60, 503–516.

Bellman, R. E. (1957), Dynamic Programming, Princeton University Press, Princeton, N.J.

Bellman, R. E. & Dreyfus, S. E. (1959), ‘Functional approximations and dynamic programming’,
Mathematical Tables and Other Aids to Computation 13, 247–251.

47

Bellman, R. E., Glicksberg, I. & Gross, O. (1955), ‘On the Optimal Inventory Equation’, Management
Science 1, 83–104.

Bellman, R., Kalaba, R. & Kotkin, B. (1963), ‘Polynomial approximation— a new computational
technique in dynamic programming: Allocation processes’, Mathematics of Computation 17, 155–
161.

Ben-Tal, A., El Ghaoui, L. & Nemirovski, A. (2009), ‘Robust Optimization’, Princeton University
Press 53(3), 464–501.

Ben-Tal, A., Golany, B., Nemirovski, A. & Vial, J.-p. (2005), ‘Retailer-Supplier Flexible Commitments
Contracts: A Robust Optimization Approach’, Manufacturing & Service Operations Management
7(3), 248–271.

Bertsekas, D. P. (2005), ‘Dynamic programming and suboptimal control: A survey from ADP to MPC’,
European Journal of Control 11(4-5), 310—-334.

Bertsekas, D. P. (2011), Dynamic Programming and Optimal Control, Vol. II: Approximate Dynamic
Programming, 4 edn, Athena Scientific, Belmont, MA.

Bertsekas, D. P. & Castanon, D. A. (1999), ‘Rollout Algorithms for Stochastic Scheduling Problems’,
J. Heuristics 5, 89–108.

Bertsekas, D. P. & Shreve, S. E. (1978), Stochastic optimal control: the discrete time case, Vol. 0,
Academic Press.

Bertsekas, D. P. & Tsitsiklis, J. N. (1996), Neuro-Dynamic Programming, Athena Scientific, Belmont,
MA.

Bertsimas, D., Brown, D. B. & Caramanis, C. (2011), ‘Theory and applications of robust optimization’,
SIAM Review 53(3), 464–501.

Bertsimas, D. J. (2006), ‘A Robust Optimization Approach to Inventory Theory’, Operations Research
54(1), 150–168.

Bertsimas, D. J. & Sim, M. (2004), ‘The Price of Robustness’, Operations Research 52(1), 35–53.

Birge, J. R. & Louveaux, F. (2011), Introduction to Stochastic Programming, 2nd edn, Springer, New
York.

Blum, J. (1954), ‘Multidimensional stochastic approximation methods’’, Annals of Mathematical Statis-
tics 25, 737–74462.

Boomsma, T. K., Meade, N. & Fleten, S. E. (2012), ‘Renewable energy investments under different
support schemes: A real options approach’, European Journal of Operational Research 220(1), 225–
237.

Borodin, A. & El-Yanniv, R. (1998), Online Computation and Competitive Analysis, Cambridge Univ
Press, London.

Bouzaiene-Ayari, B., Cheng, C., Das, S., Fiorillo, R. & Powell, W. B. (2014), ‘From Single Com-
modity to Multiattribute Models for Locomotive Optimization : A Comparison of Optimal Integer
Programming and Approximate Dynamic Programming’, Transportation Science pp. 1–24.

48

Broadie, M., Cicek, D. & Zeevi, a. (2011), ‘General Bounds and Finite-Time Improvement for the
Kiefer-Wolfowitz Stochastic Approximation Algorithm’, Operations Research 59(5), 1211–1224.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener, S.,
Perez, D., Samothrakis, S. & Colton, S. (2012), ‘A Survey of Monte Carlo Tree Search Methods’,
IEEE Trans. on Computational Intelligence and AI in Games 4(1), 1–43.

Bubeck, S. & Cesa-Bianchi, N. (2012), ‘Regret Analysis of Stochastic and Nonstochastic Multi-armed
Bandit Problems’, Foundations and Trends in Machine Learning 5(1), 1–122.

Busoniu, L., Babuska, R., De Schutter, B. & Ernst, D. (2010), Reinforcement Learning and Dynamic
Programming using Function Approximators, CRC Press, New York.

Camacho, E. & Bordons, C. (2003), Model Predictive Control, Springer, London.

Chau, M., Fu, M. C., Qu, H. & Ryzhov, I. O. (2014), Simulation Optimization: A Tutorial Overview
and Recent Developments in Gradient-Based Methods, in A. Tolk, S. Diallo, I. Ryzhov, L. Yilmaz,
S. Buckley & J. Miller, eds, ‘Winter Simulation Conference’, Informs, pp. 21–35.

Chen, C. H. (1995), An effective approach to smartly allocate computing budget for discrete event
simulation, in ‘34th IEEE Conference on Decision and Control’, Vol. 34, New Orleans, LA, pp. 2598–
2603.

Chen, C. H. (1996), ‘A lower bound for the correct subset-selection probability and its application to
discrete event system simulations. IEEE Transactions on’, Automatic Control 41(8), 1227–1231.

Chen, C.-H. & Lee, L. H. (2011), Stochastic Simulation Optimization, World Scientific Publishing Co.,
Hackensack, N.J.

Chen, C. H., Donohue, K., Yücesan, E. & Lin, J. (2003), ‘Optimal computing budget allocation for
Monte Carlo simulation with application to product design’, Simulation Modelling Practice and
Theory 11, 57–74.

Chen, C. H., He, D., Fu, M. C. & Lee, L. H. (2008), ‘Efficient simulation budget allocation for selecting
an optimal subset’, INFORMS Journal on Computing 20(4), 579–595.

Chen, C. H., Yuan, Y., Chen, H. C., Yücesan, E. & Dai, L. (1998), Computing budget allocation for
simulation experiments with different system structure, in ‘Proceedings of the 30th conference on
Winter simulation’, pp. 735–742.

Chen, H. C., Chen, C. H., Dai, L. & Yucesan, E. (1997), A gradient approach for smartly allocating
computing budget for discrete event simulation, in J. Charnes, D. Morrice, D. Brunner & J. Swain,
eds, ‘Proceedings of the 1996 Winter Simulation Conference’, IEEE Press, Piscataway, NJ, USA,
pp. 398–405.

Chen, S., Reyes, K.-R. G., Gupta, M., Mcalpine, M. C. & Powell, W. B. (2015), ‘Optimal learning
in Experimental Design Using the Knowledge Gradient Policy with Application to Characterizing
Nanoemulsion Stability’, SIAM/ASA J. Uncertainty Quantification 3, 320–345.

Cheng, B., Jamshidi, A. & Powell, W. B. (2015), ‘Optimal Learning with a Local Parametric Belief
Model’, J. Global Optimization pp. 1–37.

49

Chick, S. E. & Gans, N. (2009), ‘Economic Analysis of Simulation Selection Problems’, Management
Science 55(3), 421–437.

Chick, S. E., Branke, J. & Schmidt, C. (2010), ‘Sequential sampling to myopically maximize the
expected value of information’, INFORMS Journal on Computing 22(1), 71–80.

Cinlar, E. (1975), Introduction to Stochastic Processes, Prentice Hall, Upper Saddle River, NJ.

Cinlar, E. (2011), Probability and Stochastics, Springer, New York.

Collado, R. A., Papp, D. & Ruszczyński, A. (2011), ‘Scenario decomposition of risk-averse multistage
stochastic programming problems’, Annals of Operations Research 200(1), 147–170.

Cressie, N. (1990), ‘The origins of kriging’, Mathematical Geology 22(3), 239–252.

Dantzig, G. B. (1955), ‘Linear programming with uncertainty’, Management Science 1, 197–206.

Dantzig, G. B. & Ferguson, A. (1956), ‘The Allocation of Aircrafts to Routes: An Example of Linear
Programming Under Uncertain Demand’, Management Science 3, 45–73.

Defourny, B., Ernst, D. & Wehenkel, L. (2013), ‘Scenario Trees and Policy Selection for Multistage
Stochastic Programming using Machine Learning’, Informs J. on Computing pp. 1–27.

DeGroot, M. H. (1970), Optimal Statistical Decisions, John Wiley and Sons.

Denardo, E. V. (1982), Dynamic Programming, Prentice-Hall, Englewood Cliffs, NJ.

Duchi, J., Hazan, E. & Singer, Y. (2011), ‘Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization’, Journal of Machine Learning Research 12, 2121–2159.

Duff, M. O., Barto, A. G. & Du, M. O. (1996), Local bandit approximation for optimal learning
problems, in M. C. Mozer, M. I. Jordan & T. Petsche, eds, ‘Proceedings of the 9th International
Conference on Neural Information Processing Systems’, Department of Computer Science, University
of Massachusetts, MIT Press, Cambridge, MA, pp. 1019–1025.

Duff, M. O. G. (2002), ‘Optimal Learning Computational Procedures for Bayes-adaptive Markov De-
cision Processes’.

Dupacova, J., Growe-Kuska, N. & Romisch, W. (2003), ‘Scenario reduction in stochastic programming:
An approach using probability metrics’, Math. Program., Ser. A 95, 493511.

Dvoretzky, A. (1956), On Stochastic Approximation, in J. Neyman, ed., ‘Proceedings 3rd Berkeley
Symposium on Mathematical Statistics and Probability’, University of California Press, pp. 39–55.

Ermoliev, Y. (1968), ‘On the stochastic quasi-gradient methods and stochastic quasi-Feyer sequence’,
Kibernetika.

Feng, Y. & Gallego, G. (1995), ‘Optimal Starting Times for End-of-Season Sales and Optimal Stopping
Times for Promotional Fares’, Management Science 41(8), 1371–1391.

Fliege, J. & Werner, R. (2014), ‘Robust multiobjective optimization and applications in portfolio
optimization’, European Journal of Operational Research 234(2), 422–433.

50

Frazier, P. I. & Powell, W. B. (2010), ‘Paradoxes in Learning and the Marginal Value of Information’,
Decision Analysis 7(4), 378–403.

Frazier, P. I., Powell, W. B. & Dayanik, S. (2008), ‘A knowledge gradient policy for sequential infor-
mation collection’, SIAM Journal on Control and Optimization 47(5), 2410–2439.

Frazier, P. I., Powell, W. B. & Dayanik, S. (2009), ‘The Knowledge-Gradient Policy for Correlated
Normal Beliefs’, INFORMS Journal on Computing 21(4), 599–613.

Fu, M. C. (2002), ‘Optimization for Simulation : Theory vs. Practice’, INFORMS J. on Computing
14(3), 192–215.

Fu, M. C. (2014), Handbook of Simulation Optimization, Springer, New York.

Gabrel, V., Murat, C. & Thiele, A. (2014), ‘Recent advances in robust optimization: An overview’,
European Journal of Operational Research 235(3), 471–483.

Gareth, J., Witten, D., Hastie, T. & Tibshirani, R. (2013), ‘An Introduction to Statistical Learning
with Applications in R’, Springer.

Ginebra, J. & Clayton, M. K. (1995), ‘Response Surface Bandits’, Journal of the Royal Statistical
Society. Series B (Methodological) 57, 771–784.

Girardeau, P., Leclere, V. & Philpott, A. B. (2014), ‘On the Convergence of Decomposition Methods
for Multistage Stochastic Convex Programs’, Mathematics of Operations Research 40(1), 130–145.

Gittins, J. (1979), ‘Bandit processes and dynamic allocation indices’, Journal of the Royal Statistical
Society. Series B (Methodological) 41(2), 148–177.

Gittins, J. (1989), ‘Multi-armed Bandit Allocation Indices’, Wiley and Sons: New York.

Gittins, J. & Jones, D. (1974), A dynamic allocation index for the sequential design of experiments,
in J. Gani, ed., ‘Progress in statistics’, North Holland, Amsterdam, pp. 241—-266.

Gittins, J., Glazebrook, K. D. & Weber, R. R. (2011), Multi-Armed Bandit Allocation Indices, John
Wiley & Sons, New York.

Goh, J. & Sim, M. (2010), ‘Distributionally robust optimization and its tractable approximations’,
Operations Research 58(4, Part 1 of 2), 902–917.

Hagspiel, V., Huisman, K. J. & Nunes, C. (2015), ‘Optimal technology adoption when the arrival rate
of new technologies changes’, European Journal of Operational Research 243(3), 897–911.

Hastie, T. J., Tibshirani, R. J. & Friedman, J. H. (2009), The elements of statistical learning : data
mining, inference, and prediction, Springer, New York.

Heitsch, H. & Romisch, W. (2009), ‘Scenario tree modeling for multistage stochastic programs’, Math-
ematical Programming 118, 371–406.

Heyman, D. P. & Sobel, M. (1984), Stochastic Models in Operations Research, Volume II: Stochastic
Optimization, McGraw Hill, New York.

51

Higle, J. L. & Sen, S. (1991), ‘Stochastic decomposition: An algorithm for two-stage linear programs
with recourse’, Mathematics of Operations Research 16(3), 650–669.

Hong, J. & Nelson, B. L. (2006), ‘Discrete Optimization via Simulation Using COMPASS’, Operations
Research 54(1), 115–129.

Howard, R. A. (1960), Dynamic programming and Markov processes, MIT Press, Cambridge, MA.

Infanger, G. & Morton, D. P. (1996), ‘Cut Sharing for Multistage Stochastic Linear Programs with
Interstage Dependency’, Mathematical Programming 75, 241–256.

Ivanov, D. & Sokolov, B. (2013), ‘Control and system-theoretic identification of the supply chain
dynamics domain for planning, analysis and adaptation of performance under uncertainty’, European
Journal of Operational Research 224(2), 313–323.

Jaakkola, T., Jordan, M. I. & Singh, S. P. (1994), ‘On the Convergence of Stochastic Iterative Dynamic
Programming Algorithms’, Neural Computation 6, 1185—-1201.

Jiang, D. R. & Powell, W. B. (2016a), Optimal Policies for Risk-Averse Electric Vehicle Charging with
Spot Purchases.

Jiang, D. R. & Powell, W. B. (2016b), Risk-averse approximate dynamic programming with quantile-
based risk measures, Technical report.

Jiang, D. R., Al-Kanj, L. & Powell, W. B. (2017), Monte Carlo Tree Search with Sampled Information
Relaxation Dual Bounds, Technical report, University of Pittsburgh, Pittsburgh, PA.

Jones, D. R. (2001), ‘A Taxonomy of Global Optimization Methods Based on Response Surfaces’,
Journal of Global Optimization pp. 345–383.

Jones, D., Schonlau, M. & Welch, W. (1998), ‘Efficient global optimization of expensive black-box
functions’, Journal of Global Optimization 13(4), 455—-492.

Kaelbling, L. P., Littman, M. & Moore, A. W. (1996), ‘Reinforcement Learning: A Survey’, Journal
of Artificial Intelligence Research 4, 237–285.

Kall, P. & Wallace, S. (2009), Stochastic Programming, Vol. 10, John Wiley & Sons, Hoboken, NJ.

Karatzas, I. (1988), ‘On the pricing of American options’, Applied Mathematics and Optimization
17(1), 37–60.

Kesten, H. (1958), ‘Accelerated Stochastic Approximation’, The Annals of Mathematical Statistics
29, 41–59.

Keyvanshokooh, E., Ryan, S. M. & Kabir, E. (2016), ‘Hybrid robust and stochastic optimization for
closed-loop supply chain network design using accelerated Benders decomposition’, European Journal
of Operational Research 249(1), 76–92.

Kim, S.-H. & Nelson, B. L. (2007), Recent advances in ranking and selection, IEEE Press, Piscataway,
NJ, USA, pp. 162–172.

52

King, A. J. & Wallace, S. W. (2012), Modeling with Stochastic Programming, Springer Verlag, New
York.

Kingma, D. P. & Ba, J. L. (2015), Adam: a Method for Stochastic Optimization, in ‘International
Conference on Learning Representations 2015’, pp. 1–15.

Kirk, D. E. (2004), Optimal Control Theory: An introduction, Dover, New York.

Kleijnen, J. P. (2014), ‘Simulation-optimization via Kriging and bootstrapping: a survey’, Journal of
Simulation 8(4), 241–250.

Kleijnen, J. P. (2017), ‘Regression and Kriging metamodels with their experimental designs in simula-
tion: A review’, European Journal of Operational Research 256(1), 1–16.

Kleywegt, A. J., Shapiro, A. & Homem-de Mello, T. (2002), ‘The Sample Average Approximation
Method for Stochastic Discrete Optimization’, SIAM Journal on Optimization 12(2), 479–502.

Kozmı́k, V. & Morton, D. P. (2014), ‘Evaluating policies in risk-averse multi-stage stochastic program-
ming’, Mathematical Programming 152(1-2), 275–300.

Kupper, M. & Schachermayer, W. (2009), ‘Representation results for law invariant time consistent
functions’, Mathematics and Financial Economics 2(3), 189–210.

Kushner, H. J. & Clark, S. (1978), Stochastic Approximation Methods for Constrained and Uncon-
strained Systems, Springer-Verlag, New York.

Kushner, H. J. & Kleinman, A. J. (1971), ‘Accelerated Procedures for the Solution of Discrete Markov
Control Problems’, IEEE Transactions on Automatic Control 16, –2147–152.

Kushner, H. J. & Yin, G. G. (2003), Stochastic Approximation and Recursive Algorithms and Appli-
cations, Springer, New York.

Lai, T. L. & Robbins, H. (1985), ‘Asymptotically efficient adaptive allocation rules’, Advances in
Applied Mathematics 6(1), 4–22.

Larsen, K. S. & Wøhlk, S. (2010), ‘Competitive analysis of the online inventory problem’, European
Journal of Operational Research 207(2), 685–696.

Lee, J. H. (2011), ‘Model predictive control: Review of the three decades of development’, International
Journal of Control, Automation and Systems 9(3), 415–424.

Lewis, F. L., Vrabie, D. & Syrmos, V. L. (2012), Optimal Control, 3rd edn, John Wiley & Sons,
Hoboken, NJ.

Löhndorf, N. (2016), ‘An empirical analysis of scenario generation methods for stochastic optimization’,
European Journal of Operational Research 255(1), 121–132.

Longstaff, F. A. & Schwartz, E. S. (2001), ‘Valuing American options by simulation: A simple least
squares approach’, The Review of Financial Studies 14(1), 113–147.

53

Luo, J., Hong, L. J., Nelson, B. L. & Wu, Y. (2015), ‘Fully Sequential Procedures for Large-
Scale Ranking-and-Selection Problems in Parallel Computing Environments’, Operations Research
63(5), 1177–1194.

Mes, M. R. K., Powell, W. B. & Frazier, P. I. (2011), ‘Hierarchical Knowledge Gradient for Sequential
Sampling’, Journal of Machine Learning Research 12, 2931–2974.

Moazeni, S., Powell, W. B., Defourny, B. & Bouzaiene-ayari, B. (2017), ‘Parallel Nonstationary Direct
Policy Search for Risk-Averse Stochastic Optimization’, Informs J. on Computing 29(2), 332–349.

Montgomery, D. (2000), Design and Analysis of Experiments, John Wiley & Sons Inc.

Morari, M., Lee, J. H. & Garc, C. E. (2002), Model Predictive Control, Springer-Verlag, New York.

Moustakides, G. V. . (1986), ‘Optimal Stopping Times for Detecting Changes in Distributions’, Annals
of Statistics 14(4), 1379–1387.

Munos, R. (2014), From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to
Optimization and Planning, Vol. 7.

Murray, J. J., Member, S., Cox, C. J., Lendaris, G. G., Fellow, L. & Saeks, R. (2002), ‘Adaptive Dy-
namic Programming’, IEEE Transactions on Systems, Man, and Cybernetics - Part C Applications
and Reviews 32(2), 140–153.

Negoescu, D. M., Frazier, P. I. & Powell, W. B. (2010), ‘The Knowledge-Gradient Algorithm for
Sequencing Experiments in Drug Discovery’, INFORMS Journal on Computing pp. 1–18.

Nemhauser, G. L. (1966), Introduction to dynamic programming, John Wiley & Sons, New York.

Ni, E. C., Henderson, S. G. & Hunter, S. R. (2016), ‘Efficient Ranking and Selection in Parallel
Computing Environments’, Operations Research 65(3), 821–836.

Nisio, M. (2014), Stochastic Control Theory: Dynamic Programming Principle, Springer, New York.

Orabona, F. (2014), Simultaneous model selection and optimization through parameter-free stochastic
learning, in ‘Advances in Neural Information Processing Systems’, pp. 1–9.

Pereira, M. F. & Pinto, L. M. V. G. (1991), ‘Multi-stage stochastic optimization applied to energy
planning’, Mathematical Programming 52, 359–375.

Perkins, R. T. & Powell, W. B. (2017), Stochastic Optimization with Parametric Cost Function
Approximations.

Pflug, G. (1988a), Numerical Methods in Stochastic Programming, Springer-Verlag.

Pflug, G. (1988b), Stepsize rules, stopping times and their implementation in stochastic quasi-gradient
algorithms, in ‘Numerical Techniques for Stochastic Optimization’, Springer-Verlag, New York,
pp. 353–372.

Philpott, A. B. & de Matos, V. (2012), ‘Dynamic sampling algorithms for multi-stage stochastic
programs with risk aversion’, European Journal of Operational Research 218(2), 470–483.

54

Philpott, A. B., De Matos, V. & Finardi, E. (2013), ‘On Solving Multistage Stochastic Programs with
Coherent Risk Measures’, Operations Research 51(4), 957–970.

Poor, H. V. & Hadjiliadis, O. (2009), Quickest Detection, Cambridge University Press, Cambridge,
U.K.

Powell, W. B. (2007), ‘Approximate Dynamic Programming: Solving the Curses of Dimensionality’,
John Wiley and Sons.

Powell, W. B. (2011), Approximate Dynamic Programming: Solving the curses of dimensionality, 2
edn, John Wiley & Sons, Hoboken, NJ.

Powell, W. B. & George, A. P. (2006), ‘Adaptive stepsizes for recursive estimation with applications
in approximate dynamic programming’, Journal of Machine Learning 65(1), 167–198.

Powell, W. B. & Meisel, S. (2015), ‘Tutorial on Stochastic Optimization in Energy II : An energy
storage illustration’, IEEE Transactions on Power Systems PP(99), 1459–1467.

Powell, W. B. & Ryzhov, I. O. (2012), Optimal Learning, John Wiley & Sons, Hoboken, NJ.

Powell, W. B., Ruszczyński, A. & Topaloglu, H. (2004), ‘Learning algorithms for separable approxima-
tions of discrete stochastic optimization problems’, Math. Oper. Res. 29(4), 814–836.

Powell, W. B., Simao, H. P. & Bouzaiene-Ayari, B. (2012), ‘Approximate dynamic programming in
transportation and logistics: a unified framework’, EURO Journal on Transportation and Logistics
1(3), 237–284.

Protopappa-Sieke, M. & Seifert, R. W. (2010), ‘Interrelating operational and financial performance
measurements in inventory control’, European Journal of Operational Research 204(3), 439–448.

Puterman, M. (2005), Markov Decision Processes, 2nd edn, John Wiley & Sons Inc, Hoboken, NJ.

Qu, H., Ryzhov, I. O. & Fu, M. C. (2012), Ranking and selection with unknown correlation structures,
in A. U. C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, ed., ‘Proceedings - Winter Simulation
Conference’, number 1995.

Ramirez-Nafarrate, A., Baykal Hafizoglu, A., Gel, E. S. & Fowler, J. W. (2014), ‘Optimal control
policies for ambulance diversion’, European Journal of Operational Research 236(1), 298–312.

Robbins, H. & Monro, S. (1951), ‘A stochastic approximation method’, The Annals of Mathematical
Statistics 22(3), 400–407.

Rockafellar, R. T. & Uryasev, S. (2000), ‘Optimization of conditional value-at-risk’, Journal of Risk
2, 21–41.

Rockafellar, R. T. & Uryasev, S. (2002), ‘Conditional value-at-risk for general loss distributions’,
Journal of Banking & Finance 26, 1443–1471.

Rockafellar, R. T. & Uryasev, S. (2013), ‘The fundamental risk quadrangle in risk management, op-
timization, and statistical estimation’, Surveys in Operations Research and Management Science
18(1), 33–53.

55

Rockafellar, R. T. & Wets, R. J.-B. (1991), ‘Scenarios and policy aggregation in optimization under
uncertainty’, Mathematics of Operations Research 16(1), 119–147.

Ross, S. M. (2002), Simulation, Academic Press, New York.

Rubinstein, R. Y. & Kroese, D. P. (2017), Simulation and the Monte Carlo Method, 3rd edn, John
Wiley & Sons, Hoboken, NJ.

Russo, D. & Van Roy, B. (2014), ‘Learning to Optimize via Posterior Sampling’, Mathematics of
Operations Research 39(4), 1221–1243.

Ruszczyński, A. (2014), Advances in Risk-Averse Optimization, in ‘INFORMS Tutorials in Operations
Research’, INFORMS, Baltimore, MD, pp. 168–190.

Ruszczyński, A. & Shapiro, A. (2006), ‘Optimization of Convex Risk Functions’, Mathematics of
Operations Research 31(3), 433–452.

Ryzhov, I. O. (2016), ‘On the Convergence Rates of Expected Improvement Methods’, Operations
Research 64(6), 1515–1528.

Ryzhov, I. O. & Powell, W. B. (2010), Approximate dynamic programming with correlated Bayesian
beliefs, in ‘2010 48th Annual Allerton Conference on Communication, Control, and Computing,
Allerton 2010’, Monticello, IL, pp. 1360–1367.

Ryzhov, I. O., Mes, M. R. K., Powell, W. B. & van den Berg, G. A. (2017), Bayesian exploration
strategies for approximate dynamic programming, Technical report, University of Maryland, College
Park.

Salas, D. & Powell, W. B. (2015), ‘Benchmarking a Scalable Approximate Dynamic Programming
Algorithm for Stochastic Control of Multidimensional Energy Storage Problems’, Informs J. on
Computing pp. 1–41.

Schildbach, G. & Morari, M. (2016), ‘Scenario-based model predictive control for multi-echelon supply
chain management’, European Journal of Operational Research 252(2), 540–549.

Sen, S. & Zhou, Z. (2014), ‘Multistage stochastic decomposition: A bridge between stochastic pro-
gramming and approximate dynamic programming’, SIAM J. Optimization 24(1), 127–153.

Sethi, S. P. & Thompson, G. L. (2000), Optimal Control Theory, 2 edn, Kluwer Academic Publishers,
Boston.

Shapiro, A. (2011), ‘Analysis of stochastic dual dynamic programming method’, European Journal of
Operational Research 209(1), 63–72.

Shapiro, A. (2012), ‘Minimax and risk averse multistage stochastic programming’, European Journal
of Operational Research 219(3), 719–726.

Shapiro, A. & Wardi, Y. (1996), ‘Convergence Analysis of Stochastic Algorithms’, Mathematics of
Operations Research 21, 615–628.

56

Shapiro, A., Dentcheva, D. & Ruszczyński, A. (2014), Lectures on Stochastic Programming: Modeling
and theory, 2 edn, SIAM, Philadelphia.

Shapiro, A., Tekaya, W., Da Costa, J. P. & Soares, M. P. (2013), ‘Risk neutral and risk averse Stochastic
Dual Dynamic Programming method’, European Journal of Operational Research 224(2), 375–391.

Sherif, Y. S. & Smith, M. L. (1981), ‘Optimal maintenance models for systems subject to failureA
Review’, Naval Reseach Logistics Quarterly 28(1), 47–74.

Shiryaev, A. N. (1978), Optimal Stopping Rules, Springer, Moscow.

Shor, N. K. (1979), The Methods of Nondifferentiable Op[timization and their Applications, Naukova
Dumka, Kiev.

Si, J., Barto, A. G., Powell, W. B. & Wunsch, D. (2004), ‘Handbook of learning and approximate
dynamic programming’, Wiley-IEEE Press.

Skinner, D. C. (1999), Introduction to Decision Analysis, Probabilistic Publishing, Gainesville, Fl.

Smith, R. C. (2014), Uncertainty Quantification: Theory, Implementation, and Applications, SIAM,
Philadelphia.

Sontag, E. (1998), ‘Mathematical Control Theory, 2nd ed.’, Springer pp. 1–544.

Spall, J. C. (2003), Introduction to Stochastic Search and Optimization: Estimation, simulation and
control, John Wiley & Sons, Hoboken, NJ.

Stein, M. L. (1999), Interpolation of spatial data: Some theory for kriging, Springer Verlag, New York.

Stengel, R. F. (1986), Stochastic optimal control: theory and application, John Wiley & Sons, Hoboken,
NJ.

Sullivan, T. (2015), Introduction to Uncertainty Quantification, Springer, New York.

Sutton, R. S. & Barto, A. (1998), Reinforcement Learning, Vol. 35, MIT Press, Cambridge, MA.

Swisher, J. R., Hyden, P. D. & Schruben, L. W. (2000), ‘A survey of simulation optimization techniques
and procedures - Simulation Conference Proceedings, 2000. Winter’, pp. 119–128.

Szepesvári, C. (2010), Algorithms for Reinforcement Learning, Morgan and Claypool.

Thompson, W. R. (1933), ‘On the Likelihood that One Unknown Probability Exceeds Another in View
of the Evidence of Two Samples’, Biometrika 25(3/4), 285–294.

Topaloglu, H. & Powell, W. B. (2006), ‘Dynamic Programming Approximations for Stochastic, Time-
Staged Integer Multicommodity Flow Problems’, Informs Journal on Computing 18(1), 31–42.

Tsitsiklis, J. N. (1994), ‘Asynchronous stochastic approximation and Q-learning’, Machine Learning
16, 185–202.

Tsitsiklis, J. N. & Van Roy, B. (2001), ‘Regression methods for pricing complex American-style op-
tions’, IEEE Transactions on Neural Networks 12(4), 694–703.

57

Van Slyke, R. M. & Wets, R. J.-B. (1969), ‘L-shaped linear programs with applications to optimal
control and stochastic programming’, SIAM Journal of Applied Mathematics 17, 638–663.

Wang, F.-Y., Zhang, H. & Liu, D. (2009), ‘Adaptive Dynamic Programming: An Introduction’, IEEE
Computational Intelligence Magazine 4(May), 39–47.

Werbos, P. J. (1974), Beyond regression: new tools for prediction and analysis in the behavioral
sciences, PhD thesis, Harvard University.

Werbos, P. J. (1989), ‘Backpropagation and neurocontrol: A review and prospectus’, Neural Networks
pp. 209—-216.

Werbos, P. J. (1990), ‘Backpropagation Through Time: What It Does and How to Do It’, Proceedings
of the IEEE 78(10), 1550–1560.

Werbos, P. J. (1992), Approximate Dynamic Programming for Real-Time Control and Neural Mod-
elling, in D. J. White & D. A. Sofge, eds, ‘Handbook of Intelligent Control: Neural, Fuzzy, and
Adaptive Approaches’.

Werbos, P. J. (1994), The Roots of Backpropagation: From Ordered Derivatives to Neural Networks
and Political Forecasting, John Wiley & Sons, New York.

White, D. & Sofge, D. (1992), Handbook of intelligent control: Neural, fuzzy, and adaptive approaches,
Van Nostrand Reinhold Company, New York.

Wiesemann, W., Kuhn, D. & Sim, M. (2014), ‘Distributionally Robust Convex Optimization’, Opera-
tions Research 62(6), 1358–1376.

Wolfowitz, J. (1952), ‘On the stochastic approximation method of Robbins and Monro’, Annals Math.
Stat. 23, 457–461.

Wu, J., Poloczek, M., Wilson, A. G. & Frazier, P. I. (2017), Bayesian Optimization with Gradients,
Technical report, Cornell University, Ithaca.

Xu, H., Caramanis, C., Mannor, S. & Caramanis, C. (2012), ‘A Distributional Interpretation of Robust
Optimization’, Mathematics of Operations Research 37(1), 95–110.

Yong, J. & Zhou, X. Y. (1999), Stochastic Controls: Hamiltonian Systems and HJB Equations,
Springer, New York.

Yu, M., Takahashi, S., Inoue, H. & Wang, S. (2010), ‘Dynamic portfolio optimization with risk control
for absolute deviation model’, European Journal of Operational Research 201(2), 349–364.

Zehendner, E., Feillet, D. & Jaillet, P. (2017), ‘An algorithm with performance guarantee for the Online
Container Relocation Problem’, European Journal of Operational Research 259(1), 48–62.

Zugno, M. & Conejo, A. J. (2015), ‘A robust optimization approach to energy and reserve dispatch in
electricity markets’, European Journal of Operational Research 247(2), 659–671.

58

