
On-line supplement to: SMART: A Stochastic Multi-

scale Model for the Analysis of Energy Resources, Tech-

nology and Policy

This online supplement provides a more detailed version of the model, followed by derivations
of the derivatives needed to fit the value function approximations.

A.1 The full energy model

We describe the various elements of the model using a notational style developed specifically
for stochastic, dynamic resource allocation problems. We then model two types of decisions in
our model: the dispatch decisions to supply energy to the various sources of demand which
will be performed on an hourly basis, and the capacity acquisition decisions to add new
capacity to the conversion plants (or to build new plants for a newly discovered technology)
which will be done every year. We note that dispatch decisions include decisions of how
much to use, how much to store, and how much to withdraw from storage. We let T denote
the set of once-a-year time-periods where we add capacity and H the set of hourly periods
within a year, where |H| = H and |T | = T .

In this section, we provide the notation needed to model all the elements of a dynamic
system, which is organized along five fundamental dimensions: 1) system state variables, 2)
decision variables, 3) exogenous information (random variables), 4) transition function and
5) objective function. In section 5 of the paper, we use this modeling framework to formulate
a deterministic linear programming model, and a stochastic optimization problem.

System state variables

We divide the state variable into the resource state (energy investments), storage (the amount
of energy held in storage), and information about a range of system parameters.
Energy investments and storage
We let a represent a generic attribute vector. For example, the attribute vector of a conver-
sion plant could be represented using

a =

 a1

a2

a3

 =

 Type
Location

Age

 .

The attribute “Type” denotes the type of generation technology such as nuclear, gas turbine,
photovoltaic or hydro-power. Age is typically in units of years. Location can be expressed at
different levels of detail. For example, we may specify the location as a high-level region such
as the central valley in California or at the more detailed level of a zip code. We conduct our
numerical experiments only for a spatially aggregate model, but our mathematical model
is much more general than this, and the algorithmic strategy scales fairly easily to more
complex problems.
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It is useful to define the following attribute vector spaces:

A = The set of all attribute vectors describing all possible investments in energy
resources.

ARes = The set of all attribute vectors describing resource nodes, where raw energy
resources enter the network (coal, oil, wind, etc.).

AConv = The set of all attribute vectors describing conversion nodes, where raw re-
sources are converted to electricity or other usable forms of energy.

AStor = The set of all attribute vectors describing storage nodes.

ADem = The set of all attribute vectors describing demand nodes.

A′ = The set of all attribute vectors describing all other types of nodes, which
include collection and distribution nodes used to simplify the linear program,

= A \ (ARes ∪ AConv ∪ AStor ∪ ADem).

We define the connectivity of the energy network using

−→
A(a) = The set of attribute vectors of nodes downstream in the dispatch network that

are directly connected to a node with attribute vector a.
←−
A(a) = The set of attribute vectors of nodes upstream in the dispatch network that

are directly connected to a node with attribute vector a.

Using these attributes, the resource state variables can be described using

Rtha = The total capacity in megawatts (MW) with attribute vector a ∈ A available
in hour h of year t.

Rth = The resource state vector in hour h of year t

= (Rtha)a∈A.

ytha = The amount of energy in storage for a node with attribute vector a ∈ AStor in
hour h of year t.

yth = (ytha)a∈AStor .

Exogenously varying quantities
In our model, energy demand is treated as exogenous, although we recognize that an impor-
tant dimension of the energy problem involves demand management. We model demands
similarly to how we model energy resources. We let a ∈ ADem be the attributes of demand,
which will include the type of energy demand (electricity, natural gas, oil for heating, gaso-
line for transportation) and could also include location (in a model which captures where
demand is occurring). This allows us to model demand as

Dtha = Demand with attribute a ∈ ADem at hour h in year t.

Dth = (Dtha)a∈A.
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Other exogenously varying parameters include

pth = The amount of precipitation occurring in hour h, year t.

ρth = The information state in hour h of time t, which can include the state of tech-
nology (ρTechth ), climate (ρClimth ), market (ρMkt

th ) and exogenous energy supply
(ρexoth ).

= (ρTechth , ρClimth , ρMkt
th , ρexoth ).

The vector ρexoth = (ρexotha)a∈AConv is used to model intermittent energy at conversion facilities.
If the resource a is nonintermittent (coal, nuclear, natural gas), then ρexotha = 1. If it is an
intermittent supply such as wind or solar, we would have ρexotha < 1 whenever the exogenous
supply of energy does not allow us to use the technology (such as a wind turbine) to its
fullest capacity.

We finally define the system state variable using

Sth = The state of the system in hour h of year t

= (Rth, yth, Dth, pth, ρth).

The system state could include additional variables. For example, if there is a constraint
imposed on the total CO2 emitted since the beginning of the time horizon, then the state
could have the added dimension of the current level of CO2 emissions.

Decision variables

Here we describe the different types of decisions and the constraints they have to observe at
a point in time.

xcaptha = The total capacity with attribute vector a ∈ AConv added to the system in
hour h of year t.

xcapth = (xcaptha)a∈AConv .

xdispth,aa′ = The flow from a node with attribute vector a to a node with attribute vector
a′ during hour h of year t.

xdispth = (xdispth,aa′)a∈A,a′∈A.

The vector of decisions is given compactly by

xth = The vector of decisions in hour h of year t

= (xcapth , x
disp
th ).

The presentation of deterministic and stochastic optimization models which will determine
how the decisions are made are given in section 5 of the main paper.

We note here that, although we have modeled all decisions at the hourly level, real-life
capacity addition decisions are seldom made more than once a year. This does not require
us to change any of the notation that has already been presented, but we assume that for
all intermediate hours 0 < h ≤ H, xcapth = 0. On the other hand, the dispatch decisions for
distributing power to the various sources of demand have to be made every hour h ∈ H.
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These decisions are governed by a series of constraints that apply to decisions made at a
point in time. For all conversion nodes, the output is constrained by the installed capacity
at that node, given by ∑

a′∈
−→
A(a)

xdispth,aa′ ≤ ρexothaRtha, a ∈ AConv. (14)

Here, Rtha gives the installed capacity, while ρexotha captures the effect of intermittent sources
such as wind or solar.

Conversion nodes are the primary source of constraint in the supply of energy. In our
numerical work, we assume that supplies at the resource nodes (which captures the inputs
of coal, natural gas, and so on) are unbounded, but otherwise we can write∑

a′∈
−→
A(a)

xdispth,aa′ ≤ Rtha, a ∈ ARes. (15)

Here, the units of Rtha can be in barrels of oil, cubic feet of natural gas or tons of biomass.
Unit conversions are handled in the flow conservation constraints, which are given by∑

a′∈
←−
A(a)

θa′ax
disp
th,a′a −

∑
a′′∈
−→
A(a)

xdispth,aa′′ = 0, a ∈ A \ AStor, (16)

ytha +
∑

a′∈
←−
A(a)

θa′ax
disp
th,a′a −

∑
a′′∈
−→
A(a)

xdispth,aa′′ ≥ 0. a ∈ AStor. (17)

Equation (17) captures our ability to draw down from the amount that we have stored. θa′a
captures changes in units (barrels of oil, cubic feet of gas and gallons of water to megawatts)

as well as losses due to transmission and storage. We note that the sum over a′′ ∈
−→
A(a)

includes flows from storage, and the sum over a′ ∈
←−
A(a) includes flows that remain in

storage. θaa, for a ∈ Astor, would capture losses of energy held in storage. We note that
equations (16)-(17) represent constraints at a point in time. Later we present the equations
that govern how storage levels evolve over time.

For all demand nodes, the total input should match the total demand,∑
a′∈
←−
A(a)

xdispth,a′a = D̂tha, where a ∈ ADem, (18)

where we assume that there is some expensive, exogenous source (such as imported electric-
ity) to handle situations when all other sources are not sufficient to meet demand. Finally,
we require

xdispth ≥ 0. (19)

Note that xcapth is unconstrained in sign, as negative capacity implies retirement. Let X disp
th

be the feasible region defined by equations (14) - (19).

Exogenous information
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Exogenous information is expressed in the form of random variables governed by proba-
bility distributions or an exogenously provided file of scenarios. All random variables are
denoted by “hats” (as in D̂).

R̂th = Exogenous changes in the resource state in hour h of year t (due, for example,
to equipment failures or weather damage).

D̂tha = Change in demand with attribute vector a ∈ ADem in hour h of year t.

ρ̂th = Exogenous changes in any parameters governing technology, markets, climate
and exogenous energy sources,

= (ρ̂Techth , ρ̂Mkt
th , ρ̂Climth , ρ̂exoth ).

p̂th = The change in precipitation in hour h of year t.

We summarize all random variables in a single variable Wt (without a hat), as follows:

Wth = A vector of all exogenous information regarding parameters appearing in hour
h of year t which can include data on weather, demands, technological param-
eters and market information,

=
(
R̂th, D̂th, ρ̂th, p̂th

)
.

The availability of technologies of each type would be an element of ρ̂Techth . Examples of
components of ρ̂Climth might be the level of allowable emissions out to year T , and the total
quantities and hourly patterns of wind (which is a specific example of the exogenous produc-
tion factor data, ρexotha). Interest rates, exogenous resource prices, and resource availability,
would be included in ρ̂Mkt

th . Although all of these have been indexed at the hourly level, we
note that each of these could be arriving on different time-scales. For example, informa-
tion regarding climate data might be available to be used by the system at anywhere from
an hourly to monthly frequency. Prices might change on a daily basis, while technological
developments could take as long as a year to multiple years to impact the system.

Later, we need a more formal vocabulary to describe the stochastic process driving
our system. Let Ω be the set of all possible realizations of the sequence (W11, . . . ,W1H ,
W21, . . . ,W2H , . . . ,WTH) where T is the number of years and H is the number of time peri-
ods in a year. We let Wth(ω) be a sample realization of the random variables in Wth when
we are following sample path ω. To complete our formalism, let F be the sigma-algebra on
Ω, with filtrations Fth ⊂ Ft,h+1 and FtH ⊂ Ft+1,0, where Fth is the sigma-algebra generated
by the information up through year t, hour h. We use this notation below to describe our
algorithm and establish properties of the decision function.

Transition function

The state of the system evolves as a result of the decisions taken as well as random events,
which is written as,

St,h+1 = SM (Sth, xth,Wt,h+1) , h = 0, 1, . . . , H − 1,

St+1,0 = SM (StH , xtH ,Wt+1,0) .
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Elements of the system state may transition in different ways. For example, new capacity
may be added to the system and old ones may be retired, giving us

Rt,h+1,a = Rtha + xcaptha + R̂t,h+1,a, a ∈ AConv, (20)

where xcaptha is positive for capacity additions and negative when capacities are retired. R̂t,h+1,a

involves changes in the resource state as a result of unforeseen events such as Hurricane
Katrina.

Changes in demand, precipitation and the parameter vector ρt are all handled similarly
using

D̂t,h+1 = Dth + D̂t,h+1, (21)

p̂t,h+1 = pth + p̂t,h+1, (22)

ρt,h+1 = ρth + ρ̂t,h+1. (23)

Let ytha be energy stored in hour h of year t associated for storage location a ∈ AStor. In our
numerical work, we model the water reservoir as the only form of storage, but our model is
much more general. We can represent the transition equation for storage facilities using

yt,h+1,a = ytha +
∑

a′∈
←−
A(a)

θa′ax
disp
th,a′a −

∑
a′′∈
−→
A(a)

xdispth,aa′′ + p̂t,h+1,a, a ∈ AStor (24)

where p̂t,h+1,a captures exogenous precipitation into the reservoir with attribute a. A slightly
modified equation is used when h = H. We note that the only flow between time periods
occurs through storage nodes. All other flows of energy occur within a time period.

Cost functions

The costs consist of the costs for adding new capacity, the costs related to energy dispatch
which cover the physical movement of energy resources and transmission of electrical energy,
and costs for purchasing fuel from the various energy sources.

ccaptha = The capital cost for adding a unit of capacity with attribute vector a ∈ AConv
in hour h of year t.

cdispth,aa′ = The cost of unit flow from node with attribute vector a ∈ A to node with
attribute vector a′ ∈ A in hour h of year t (for example, the transportation
cost of moving biomass).

cftha = Unit cost of fuel corresponding to resource node with attribute vector a ∈ ARes
in hour h of year t.

cptha = Unit operating cost of a conversion plant with attribute vector a ∈ AConv in
hour h of year t (assumed to be proportional to the flow).
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Total capacity and dispatch costs are given by

Ccap
th (Sth, x

cap
th ) = The total capital costs in hour h of year t,

=
∑
a∈A

ccapthax
cap
tha.

Cdisp
th (Sth, x

disp
th ) = The total costs resulting from the dispatch of energy in hour h

of year t,

=
∑
a∈A

∑
a′∈A

cdispth,aa′x
disp
th,aa′ +

∑
a∈ARes

∑
a′∈A

cfthax
disp
th,aa′ +

∑
a∈AConv

∑
a′∈A

cpthax
disp
th,aa′ .

We note that xcaptha = 0 for hours other than h = 0. ccaptha is the total purchase cost of the
capacity being invested when h = 0. We may express the total cost function in hour h of
year t using,

Cth(Sth, xth) = Ccap
th (Sth, x

cap
th ) + Cdisp

th (Sth, x
disp
th ).

A.2 Calculating the derivative v̂hydro

We begin by computing the marginal value of additional energy in a single, scalar storage
which, for our numerical experiments, was represented as a water reservoir. We do this by
computing the marginal impact of having an additional unit of water in storage at a point in
time. This calculation is then used in the derivation of the derivative for additional capacity,
which impacts an entire year.

The objective function at hour h is given by

F π
th(Sth) = −Cth(Sth, Xπ

th)−
∑
h′>h

Cth′(Sth′ , X
π
th′)−

∑
t′>t

∑
h∈H

Ct′h(St′h, X
π
t′h) (25)

= −Cth(Sth, Xπ
th) + V x

th(S
x
th),

≈ −Cdisp
th (Sth, X

π
th)− C

cap
th (Sth, X

π
th) + V̄ hydro

th (yxth) + V̄ cap
th (Rx

th). (26)

Note that Ccap
th (Sth, X

π
th) = 0 for all h > 0 since we assume that capacity addition decisions

are made only at the beginning of each year.

To update
{
V̄ hydro
th (yxth)

}
h∈H,t∈T

, we need to differentiate F π
th(Sth) with respect to yth

which is given by

v̂hydroth =
∂F π

th(Sth)

∂yth
.

We note that we differentiate around the pre-decision state yth, but then use this to update
V̄ x
t,h−1(yxt,h−1) around the previous post-decision state yxt,h−1. We may reasonably claim that

∂Rx
th

∂yth
≈ 0 (27)

which captures the belief that an incremental change in the amount of energy in storage
will have virtually no impact on our investments in energy resources. For example, an

37



incremental increase in the amount stored in a reservoir will not have a measurable impact
on the number of wind turbines we would purchase next year. This approximation gives us

v̂hydroth =
∂F π

th(Sth)

∂yth
(28)

≈ ∂

∂yth

(
−Cdisp

th (Sth, X
π
th) + V̄ hydro

th (yxth) + V̄ cap
th (Rx

th)
)

=
∂

∂yth

(
−Cdisp

th (Sth, X
π
th) + V̄ hydro

th (yxth)
)

+
∂V̄ cap

th (Rx
th)

∂Rx
th

∂Rx
th

∂yth

≈ ∂

∂yth

(
−Cdisp

th (Sth, X
π
th) + V̄ hydro

th (yxth)
)

(29)

where we use the approximation, ∂Rx
th/∂yth ≈ 0. The derivative (29) is approximated using

a finite difference. Let S+
th be the resource state where yth is incremented by 1.

We then approximate the derivative using

v̂hydroth ≈ F disp,π
th (S+

th)− F
disp,π
th (Sth),

where F disp,π
th (Sth) = −Cdisp

th (Sth, X
π
th) + V̄ hydro

th (yxth), denotes the dispatch optimization com-
ponent of the objective function. This numerical derivative is exceptionally fast to compute
since it involves a trivial reoptimization of a small linear program.

It is important to emphasize that the calculation of v̂hydroth captures not only the hourly
variability of wind, but also the uncertainty, since the value of additional stored energy does
not require knowing the future about wind. The marginal value is also computed in the
context of a storage facility.

A.3 Calculating the derivative v̂cap

The procedure for updating
{
V̄ cap
th (Rx

th)
}
h∈H,t∈T is somewhat more involved. We assume that

investment decisions are made once each year, taking effect in a future year. Our goal is
to calculate the marginal value of an additional unit of energy conversion capacity from a
decision made in a previous year.

Changing the resource vector at the beginning of the year changes the resource vector
for the entire year through equation (14). Also, since we only make capacity decisions once
each year, we do not compute V̄ cap

th (Rx
th) for all h, but rather only for h = 0. For this reason,

we have to capture the marginal value of additional capacity on both the yearly investment
problem (equation (11) of the main paper) as well as all the hourly dispatch problems.

We start with F π
t0 given by equation (25), although we will use the approximation in (26).

Our goal is to compute

v̂capt0a =
∂F π

t0(St0)

∂Rt0a

. (30)

F π
t0 can be written as a function of Rt0, . . . , Rth, . . . , Rt,H−1, recognizing that Rth = Rt0 for

0 ≤ h < H. Rth impacts the dispatch decision at hour h, as well as the post-decision storage
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level yxth which impacts future problems. In addition, changing Rt0 has an impact on Rt+1,0,
which impacts decisions in future years. To capture these interactions, we write

dF π
t0(St0)

dRt0a

=

(
−∂C

cap
t0 (St0, X

π
t0)

∂Rt0a

+
∂F π

t+1,0

∂Rt+1,0

∂Rt+1,0

∂Rt0

)
−
∑

0≤h<H

∂F π
t0

∂Rth

∂Rth

∂Rt0

. (31)

We can compute the marginal value of additional resources for the capacity subproblem at
hour h = 0, given by equation (11) of the main paper, by using either the dual variable for
equation (12) in the main paper, or a finite difference. We redefine S+

t0 here to be St0 with
Rt0 incremented by 1. The finite difference is then given by

v̂+
t0a = F cap,π

t0 (S+
t0)− F cap,π

t0 (St0).

This approximates the two terms in the set of parentheses on the right hand side of (31).
We next observe that

∂F π
t0

∂Rth

=
∂F π

th

∂Rth

since changing Rth has no impact on the problem for earlier hours, and

∂Rth

∂Rt0

= 1.

The derivative ∂F π
th/∂Rth involves finding the derivative of F π

th(Sth) approximated by (26),
which we compute using the dual variable for equation (14). Let νdisptha be the dual variable
for (14). Since the right hand side of (14) is ρexothaRtha, the marginal impact of increasing Rtha

on the dispatch optimization component of the objective function is given by

∂F π
th(Sth)

∂Rtha

=
νdisptha

ρexotha

.

We finally pull these calculations together to find the marginal value of an additional
unit of energy resource at the beginning of the year using

v̂capt0a ≈
∑
h∈H

νdisptha

ρexotha

+ v̂+
t0a. (32)

We use v̂capt0a to update the value function approximation V̄ cap
t−1,0a.

A.4 The complete ADP algorithm

We close our presentation with a complete summary of the ADP algorithm, given in figure
7.
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Step 0: Set the iteration counter, n = 1. Initialize the value function approximations {V̄ cap,0
t0 (Rx

t0) = 0}t∈T
and {V̄ hydro,0

th (yxth)}h∈H,t∈T . Initialize the state S0
0a. Set t = 0.

Step 1: Solve the annual problem of capacity addition:

F cap
t0 (Sn

t0) = max
xcap
t0 ≥0

(
− Ccap (Sn

t0, x
cap
t0 ) + V̄ cap,n−1

t0 (Rx
t0)
)

(33)

We let xcap,nt0 denote the argument that solves equation (33) and v̂+,n
t0 = (v̂+,n

t0a )a∈A, the vector
of numerical derivatives where v̂+,n

t0a = [F cap
t0 (Sn

t0, R
n
t0a + 1)− F cap

t0 (Sn
t0, R

n
t0a] ∀ a ∈ A.

Step 2: Set the hour, h = 0.

Step 2a: Observe Wt(ω
n) = (R̂t, D̂t, ρ̂t, p̂t).

Step 2b: Solve the hourly optimization model (equation (10)) to obtain F disp
th (Sn

th). Let

νdisp,nth (= (νdisp,ntha )a∈A) be the vector of dual values corresponding to the flow conserva-

tion constraints represented by equation (3) and let v̂hydro,nth be the numerical derivative[
F disp
th (Sn

th, y
n
th + 1)− F disp

th (Sn
th, y

n
th)
]
.

Step 2c: Sample the incoming precipitation data, p̂t,h+1 in order to compute the new reservoir
level using equation (11).

Step 2d: Set h = h+ 1. If h < H, go to step 2. Otherwise, continue.

Step 2e: Update the value function approximations for hydro-storage,

V̄ hydro,n
t,h−1 (yxt,h−1) ← UV

(
V̄ hydro,n−1
t,h−1 , yxt,h−1, v̂

hydro,n
th

)
∀ h.

Step 2f: Compute the hourly state transitions:

Sn
t,h+1 = SM

(
Sn
th, x

n
th,W

n
t,h+1

)
Step 3: Compute the combined dual values (see (32) in the online supplement).

v̂cap,nta = v̂+,n
t0a +

∑
h∈H

νdisp,ntha

ρ̂exotha

∀ a ∈ A.

Step 4: Update the value function approximations for the capacity acquisitions,

V̄ cap,n
t−1,0 (Rx

t−1,0) ← UV
(
V̄ cap,n−1
t−1,0 , Rx,n

t−1,0, v̂
cap,n
t

)
.

Step 5: Compute the state transitions:

Sn
t,h+1 = SM

(
Sn
th, x

n
th,W

n
t,h+1

)
Sn
t+1,0 = SM

(
Sn
tH , x

n
tH ,W

n
t+1,0

)
.

Step 6: Set t = t+ 1. If t < T , go to step 1. Otherwise, continue.

Step 7: Set n = n + 1. If n < N , set t = 0 and go to step 1. Otherwise, return the value functions{
V̄ cap,n
t0 (Rx

t0)
}
t∈T and

{
V̄ hydro,n
th (yxth)

}
h∈H,t∈T

, which define the policy for adding capacity over the

years t ∈ T .

Figure 7: The ADP algorithm to solve the energy resource management problem.
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