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The wealth of applications has given rise to contributions from different communities,
often evolving their own vocabularies and notational systems. The result has been a cor-
nucopia of algorithms with names such as Markov decision processes, stochastic programs,
reinforcement learning, Q-learning, stochastic search, simulation optimization, heuristic dy-
namic programming, adaptive dynamic programming and stochastic control (to name just a
few). Over time, the determined reader can learn to distinguish the different notational sys-
tems, but it is easy to become lost in the plethora of algorithms that have emerged from these
very active research communities. Given the amount of time required to test and validate an
algorithm, newcomers to the field of dynamic programming can quickly become frustrated
by the difficulty in understanding the computational dimension of an algorithm, which is
needed to decide if a particular method might work for his or her problem.

With a few exceptions, the vast majority of interesting applications involve problems with
complex state variables, and most have complex (and sometimes unobservable) exogenous
information processes. It is possible, however, to divide the communities into three major
groups in terms of the types of decision variables being considered. These include

(1) Discrete action spaces—The computer science community, and some groups in opera-
tions research, focus on problems where we have to choose an action a ∈ A where the
set A may have as few as two options (e.g., continue or stop), or as many as 10 to 100
(but rarely more). Algorithms are designed which require enumerating all actions, but
make no assumptions about continuity or convexity.

(2) Low-dimensional, continuous decisions—The engineering controls community is often
faced with the problem of controlling machinery, where the number of dimensions in
a control may range from one to 10, but rarely more. These problems are typically
continuous, but are generally nonconvex.

(3) High-dimensional decisions—The operations research community often works on prob-
lems with thousands to tens of thousands of variables (or more). These problems are
either convex, or exploit the structure of problems such as those with integer variables
where specialized algorithms have been designed to search over high-dimensional fea-
sible regions.

All three classes of problems can be very hard. Note that as the dimensionality increases,
we exploit structure such as continuity and convexity. Thus, a problem with only 10 actions
can just as hard (if not harder) than a problem where the decision vector has 1,000 dimen-
sions but where we can exploit convexity. The dramatic differences in dimensionality can
complicate the challenge of understanding the complexity of different algorithms. A matrix
inverse for 10 dimensions is fairly easy, while the same inverse with 10,000 dimensions
might be intractable. On paper, they look the same.

Different communities are defined to a large extent by the nature of the problems that
they work on. Differences in notation are largely cosmetic, but often hide deep and impor-
tant differences in the computational characteristics of their problems. Researchers within
a community learn to translate the mathematics of an algorithm to problems that they are
familiar with. This can complicate the transfer of ideas between communities, both from the
perspective of adapting ideas developed in one setting to a new problem class, as well as
recognizing when seemingly different algorithms are actually the same.

This paper has several goals. The first is to provide an introduction to approximate dy-
namic programming from the perspective of different communities. Second, we provide a
sense of the evolution of the field and the computational challenges offered by different
problem classes. Third and most important, we synthesize the broad array of algorithmic
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strategies by identifying four fundamental classes of policies. Finally, we provide an intro-
duction to policies based on value function approximations, which are most widely associ-
ated with the term “approximate dynamic programming.”

The paper is organized as follows. Section 1 introduces the computational challenges
of dynamic programming that sets up the rest of the paper. Section 2 provides a historical
perspective of the evolution of dynamic programming to provide a sense of how different
communities developed to meet these challenges. Section 3 provides a brief summary of how
to model a dynamic program, an often unappreciated dimension (unheard of in the determin-
istic optimization community, which has a well-developed culture of rigorous modeling).

The paper then makes the transition to the challenge of solving dynamic programs. In
what has been described as the jungle of algorithms that have been proposed for this rich
class of problems, we claim that virtually every algorithm can be reduced to one of four
fundamental classes (or hybrids of these four classes). This organization is given in Sect. 4,
and we offer that this compact structure should help to synthesize the complex array of com-
peting strategies. Section 5 then describes the concept of the post-decision state, a widely
overlooked idea that can dramatically simplify many applications.

The remainder of the paper focuses on the class of policies that depends on value function
approximations. Section 6 introduces the basic idea of estimating a statistical approximation
of the value of being in a state. This literature has evolved along two lines. First, Sect. 7
addresses the relatively easier problem of estimating the value of being in a state while
following a fixed policy. Then, Sect. 8 covers the much more difficult problem of learning
the value of being in a state while simultaneously searching for the best policy. Section 9
offers some concluding remarks.

1 The challenge of dynamic programming

In 1957, Richard Bellman published his seminal volume that laid out a simple and elegant
model and algorithmic strategy for solving sequential stochastic optimization problems. This
problem can be stated as one of finding a policy π : S → A that maps a discrete state s ∈ S
to an action a ∈ A, generating a contribution C(s, a). The system then evolves to a new state
s ′ with probability p(s ′|s, a). If V (s) is the value of being in state s, then Bellman showed
that

V (s) = max
a∈A

(
C(s, a) + γ

∑
s′∈S

p
(
s ′|s, a)

V
(
s ′)), (1)

where γ is a discount factor. This has become widely known as Bellman’s optimality equa-
tion, which expresses Bellman’s “principle of optimality” that characterizes an optimal pol-
icy. It provides a compact and elegant solution to a wide class of problems that would oth-
erwise be computationally intractable, which is true even for problems with relatively small
numbers of states and actions. To understand the significance of this breakthrough, imagine
solving sequential optimal control problems with even a small number of states, actions and
random outcomes as a decision tree. A problem with as little as 10 actions and 10 possible
random outcomes grows by a factor of 100 with every stage (consisting of a decision fol-
lowed by a random outcome). First imagine solving such a problem over a planning horizon
of just 10 time periods, which would produce a decision tree with 1020 nodes. Now imagine
solving the problem over an infinite horizon.

The problem with decision trees is that they do not exploit the property that multiple
trajectories can lead back to a single state. Bellman’s breakthrough was recognizing that we
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could compute the value of being in a state, thereby collapsing all the nodes of the tree that
represent the same state. Once we know the value of being in a state, then we have only
to evaluate the value of a decision by computing its reward plus the value of the next state
produced by a decision. For a finite-horizon problem, the result is the equation

Vt(St ) = max
a∈A

(
C(St , a) + γ

∑
s′∈S

p
(
s ′|St , a

)
Vt+1

(
s ′)), (2)

where S is the set of all states. Equation (2) is executed by starting with some terminal
condition such as VT (ST ) = 0 for all ending states T , and then stepping backward in time.
Equation (2) has to be calculated for every state St . For infinite horizon problems, Howard
(1960) introduced value iteration, which requires iteratively computing

V n(s) = max
a∈A

(
C(s, a) + γ

∑
s′∈S

p
(
s ′|s, a)

V n−1
(
s ′)). (3)

This algorithm converges in the limit with provable bounds to provide rigorous stopping
rules (Puterman 2005). Both (1) and (2) require at least three nested loops: the first over all
states St , the second over all actions a, and the third over all future states St+1. Of course,
both algorithms require that the one-step transition matrix p(s ′|s, a) be known, which in-
volves a summation (or integral) over the random variables implicit in the one-step transi-
tion.

The alternative to value iteration is policy iteration. In an ideal world of infinitely pow-
erful computers, assume we can create an S × S matrix P π with element P π(s, s ′) =
p(s ′|s,π(s)) where the action a = π(s) is determined by policy π (this is best envisioned
as a lookup table policy that specifies a discrete action for each state). Let cπ be an S -
dimensional vector of contributions, with one element per state given by C(s,π(s)).

Finally let vπ be an S -dimensional vector where element s corresponds to the steady
state value of starting in state s and then following policy π from now to infinity (all of this
theory assumes an infinite horizon). We can (in theory) compute the steady state value of
starting in each state using

vπ = (
I − γP π

)−1
cπ , (4)

where I is the identity matrix. Not surprisingly, we often cannot compute the matrix inverse,
so as an alternative we can iteratively compute

vm = cπ + γP πvm−1. (5)

For some m = M , we would stop and let vπ = vN . Once we have evaluated the value of
a policy, we can update the policy by computing, for each state s, the optimal action a(s)

using

a(s) = arg max
a

(
C(s, a) + γ

∑
s′∈S

p
(
s ′|s, a)

vπ
(
s ′)). (6)

The vector a(s) constitutes a policy that we designate by π . Equation (6) (along with (4) or
(5)) is known as policy iteration.

The study of discrete Markov decision problems quickly evolved in the operations re-
search community into a very elegant theory. Beginning with the seminal volumes by
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Richard Bellman (1957) and Ron Howard (1960), there have been numerous, significant
textbooks on the subject, including Nemhauser (1966), White (1969), Derman (1970), Bell-
man (1971), Dreyfus and Law (1977), Dynkin and Yushkevich (1979), Denardo (1982),
Ross (1983) and Heyman and Sobel (1984). The capstone for this line of research was the
landmark volume Puterman (1994) (a second edition appeared in 2005). When we take ad-
vantage of the compact structure of a dynamic program, finite horizon problems become
trivial since the size of our tree is limited by the number of states. For infinite horizon prob-
lems, algorithmic strategies such as value iteration and policy iteration proved to be powerful
tools.

The problem with this theory is that it quickly became “widely known” that Bellman’s
equation “does not work” because of the “curse of dimensionality.” These issues were recog-
nized by Bellman himself, who published one of the very earliest papers on approximations
of dynamic programs (Bellman and Dreyfus 1959). Applications with a hundred thousand
states were considered ultra-large scale, while the number of discrete actions rarely exceeded
a few hundred (and these were considered quite large). However, seemingly small problems
produced state spaces that were far larger than this. Imagine a retailer optimizing the inven-
tories of 1000 products within limited shelf space. Assume that the retailer might have up to
50 items of each product type. The size of the joint state space of all the products would be
501000. And this barely describes the inventory of a small corner store. The study of Markov
decision processes in operations research quickly became a mathematician’s playground
characterized by elegant (but difficult) mathematics but few practical applications.

Now advance the clock to a recent project optimizing a fleet of 5,000 drivers for Schnei-
der National, one of the largest truckload carriers in the U.S. Each driver is described by
a 15-dimensional vector of attributes. The state variable is a vector with about 1020 dimen-
sions. The action is a vector with 50,000 dimensions. The random information is a vector
with 10,000 dimensions. If the problem were deterministic, it could be engineered to produce
an integer program with 1023 variables. Yet a practical solution was developed, implemented
and accepted by the company, which documented over 30 million dollars in annual savings.
The problem was solved using dynamic programming, with an algorithm that approximated
value iteration (Simao et al. 2009, 2010).

How did this happen? It is helpful to understand the history of how the field evolved,
because different communities have contributed important ideas to this field. While the es-
sential ideas started in operations research, the OR community tended to focus on the ana-
lytical elegance, leaving the development of practical ideas to the control theory community
in engineering, and the artificial intelligence community in computer science. Somewhat
later, the operations research community became re-engaged, tackling problems with high-
dimensional decision vectors.

The more important question is: Do we now have tools that can solve large-scale dynamic
programs? Not exactly. To be sure, some of the breakthroughs are quite real. The field that
is emerging under names like approximate (or adaptive) dynamic programming, reinforce-
ment learning, neuro-dynamic programming and heuristic dynamic programming offers a
powerful toolbox of algorithms. At the same time, the design of successful algorithms for
specific problem classes remains an art form.

This paper represents a tour of approximate dynamic programming, providing an
overview of the communities that have contributed to this field along with the problems
that each community has contributed. The diversity of problems has produced what can
sometimes seem like a jungle of algorithmic strategies. We provide a compact representa-
tion of the different classes of algorithms that have been proposed for the many problems
that fall in this broad problem class. In the process, we highlight parallels between disparate
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communities such as stochastic programming, stochastic search, simulation optimization,
optimal control and reinforcement learning. We cover strategies for discrete actions a and
vector actions x, and review a powerful idea, largely overlooked by both the operations re-
search and reinforcement learning communities, of the post-decision state. The remainder of
the paper reviews strategies for approximating value functions and the challenges that arise
when trying to find good policies using value function approximations.

2 The evolution of dynamic programming

Dynamic programming, and approximate dynamic programming, has evolved from within
different communities, reflecting the breadth and importance of dynamic optimization prob-
lems. The roots of dynamic programming can be traced to the control theory community,
motivated by problems of controlling rockets, aircraft and other physical processes, and op-
erations research, where the seminal work of Richard Bellman in the 1950’s laid many of
the foundations of the field. Control theory focused primarily on problems in continuous
time, with continuous states and actions. In operations research, the focus was on modeling
problems in discrete time, with discrete states and actions. The fundamental equation (1)
is known in control theory as the Hamilton-Jacobi equation, while in operations research it
is known as Bellman’s equation of optimality (or simply Bellman’s equation). Many refer
to (1) as the Hamilton-Jacobi-Bellman equations (or HJB for short).

After recognizing the “curse of dimensionality,” Bellman made what appears to be the
first contribution to the development of approximations of dynamic programs in Bellman
and Dreyfus (1959). However, subsequent to this important piece of research, the operations
research community focused primarily on the mathematics of discrete Markov decision pro-
cesses, including important contributions by Cy Derman (1962, 1966, 1970), leading to a
deep understanding of a very elegant theory, but limited in practical applications. The first
sustained efforts at developing practical computational methods for dynamic programs ap-
pear to have started in the field of control theory with the Ph.D. dissertation of Paul Werbos
(1974), with numerous contributions to the research literature (Werbos 1974, 1989, 1990,
1992a, 1992b). Major references in control theory include Lewis and Syrmos (1995) and
Lewis et al. (1999). The edited volumes Werbos et al. (1990) and Si et al. (2004) summa-
rize many contributions that were made in control theory which originally used the name
“heuristic dynamic programming” to describe the emerging field.

A second line of research started in computer science around 1980 with the early re-
search of Andy Barto and his Ph.D. student, Richard Sutton, where they introduced the term
“reinforcement learning.” This work is summarized in numerous publications (for a small
sample, see Barto et al. 1981, 1983; Sutton and Barto 1981; Sutton 1988) leading up to their
landmark volume, Reinforcement Learning (Sutton and Barto 1998). In contrast with the
mathematical sophistication of the theory of Markov decision processes, and the analytical
complexity of research in control theory, the work in reinforcement learning was character-
ized by relatively simple modeling and an emphasis on a wide range of applications. Most
of the work in reinforcement learning focuses on small, discrete action spaces; one of the
first attempts to use a computer to solve a problem was the work by Samuel to play checkers
in Samuel (1959). However, there is a substantial subcommunity in reinforcement learning
that focuses on the types of continuous problems that arise in engineering applications. One
of the most famous is the use of reinforcement learning to solve the problem of balancing
an inverted pendulum on a cart that can only be moved to the right and left (Barto et al.
1983). However, these problems are almost always solved by discretizing both the states
and actions.
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One of the major algorithmic advances in reinforcement learning was the introduction of
an algorithm known as Q-learning. The steps are extremely simple. Assume we are in some
state sn at iteration n, and we use some rule (policy) for choosing an action an. We next find
a downstream state sn+1, which we can compute in one of two ways. One is that we simply
observe it from a physical system, given the pair (sn, an). The other is that we assume we
have a transition function SM(·) and we compute sn+1 = SM(sn, an,Wn+1) where Wn+1 is
a sample realization of some random variable which is not known when we choose an (in
the reinforcement learning community, a common assumption is that sn+1 is observed from
some exogenous process). We then compute

q̂n = C
(
sn, an

) + γ max
a′ Q̄n−1

(
sn+1, a′), (7)

Q̄n
(
sn, an

) = (1 − αn−1)Q̄
n−1

(
sn, an

) + αn−1q̂
n. (8)

The quantities Q̄n(s, a) are known as Q-factors, and they represent estimates of the value
of being in a state s and taking action a. We let Q(s, a) be the true values. Q-factors are
related to value functions through

V (s) = max
a

Q(s, a).

Q-learning was first introduced in Watkins (1989), and published formally in Watkins and
Dayan (1992). Given assumptions on the stepsize αn, and the way in which the state s

and action a is selected, this algorithm has been shown to converge to the true value in
Tsitsiklis (1994) and Jaakkola et al. (1994). These papers were the first to bring together
the early field of reinforcement learning with the field of stochastic approximation theory
from Robbins and Monro (1951) (see Kushner and Yin 2003 for an in-depth treatment).
The research-caliber book Bertsekas and Tsitsiklis (1996) develops the convergence theory
for reinforcement learning (under the name “neuro-dynamic programming”) in considerable
depth, and remains a fundamental reference for the research community.

Problems in reinforcement learning are almost entirely characterized by relatively small,
discrete action spaces, where 100 actions is considered fairly large. Problems in control
theory are typically characterized by low-dimensional but continuous decisions (such as
velocity, acceleration, position, temperature, density). Five or ten dimensions is considered
large, but the techniques generally do not require that these be discretized. By contrast,
there are many people in operations research who work on vector-valued problems, where
the number of dimensions may be as small as 100, but easily range into the thousands or
more. A linear program with 1,000 variables (which means 1,000 dimensions to the decision
variable) is considered suitable for classroom exercises. These problems appeared to be
hopelessly beyond the ability of the methods being proposed for Markov decision processes,
reinforcement learning or approximate dynamic programming as it was evolving within the
control theory community.

There are, of course, many applications of high-dimensional optimization problems that
involve uncertainty. One of the very earliest research papers was by none other than the
inventor of linear programming, George Dantzig (see Dantzig 1955; Dantzig and Fergu-
son 1956). This research has evolved almost entirely independently of the developments
in computational methods for dynamic programming, and lives primarily as a subcommu-
nity within the larger community focusing on deterministic math programming. The links
between dynamic programming and stochastic programming are sparse, and this can be de-
scribed (as of this writing) as a work in progress. There is by now a substantial community
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working in stochastic programming (see Kall and Wallace 1994; Higle and Sen 1996; Birge
and Louveaux 1997; Sen and Higle 1999) which has enjoyed considerable success in certain
problem classes. However, while this field can properly claim credit to solving stochastic
problems with high-dimensional decision vectors and complex state vectors, the price it has
paid is that it is limited to very few time periods (or “stages,” which refer to points in time
when new information becomes available). The difficulty is that the method depends on a
concept known as a “scenario tree” where random outcomes are represented as a tree which
enumerates all possible sample paths. Problems with more than two or three stages (and
sometimes with even as few as two stages) require the use of Monte Carlo methods to limit
the explosion, and yet even Monte Carlo methods quickly produce explosively large trees.

In the 1990’s, this author undertook the task of merging math programming and dynamic
programming, motivated by large scale problems in freight transportation. These problems
were very high-dimensional, stochastic and often required explicitly modeling perhaps 50
time periods, although some applications were much larger. This work had its roots in mod-
els for dynamic fleet management (Powell 1987), and evolved through the 1990’s under the
umbrella of “adaptive dynamic programming” (see Powell and Frantzeskakis 1990; Cheung
and Powell 1996; Powell and Godfrey 2002) before maturing under the name “approximate
dynamic programming” (Powell and Van Roy 2004; Topaloglu and Powell 2006; Powell
2007, 2010; Simao et al. 2009).

Each subcommunity has enjoyed dramatic successes in specific problem classes, as algo-
rithms have been developed that address the challenges of individual domains. Researchers
in reinforcement learning have taught computers how to play chess and, most recently, mas-
ter the complex Chinese game of Go. Researchers in robotics have taught robots to climb
stairs, balance on a moving platform and play soccer. In operations research, we have used
approximate dynamic programming to manage the inventory of high value spare parts for
an aircraft manufacturer (Powell and Simão 2009), plan the movements of military airlift
for the air force (Wu et al. 2009), and solve an energy resource allocation problem with over
175,000 time periods (Powell et al. 2011).

Despite theses successes, it is frustratingly easy to create algorithms that simply do not
work, even for very simple problems. Below we provide an overview of the most popular
algorithms, and then illustrate how easily we can create problems where the algorithms do
not work.

3 Modeling a dynamic program

There is a diversity of modeling styles spanning reinforcement learning, stochastic program-
ming and control theory. We propose modeling a dynamic program in terms of five core
elements: states, actions, exogenous information, the transition function and the objective
function. The community that studies Markov decision processes denote states by S, actions
are a, rewards are r(s, a) (we use a contribution C(s, a)) with transition matrix p(s ′|s, a).
In control theory, states are x, controls are u, and rewards are g(x,u). Instead of a transition
matrix, in control theory they use a transition function x ′ = f (x,u,w). In math program-
ming (and stochastic programming), a decision vector is x; they do not use a state variable,
but instead define scenario trees, where a node n in a scenario tree captures the history of
the process up to that node (typically a point in time).

We adopt the notational style of Markov decision processes and reinforcement learn-
ing, with two exceptions. We use the convention in control theory of using a transition
function, also known as a system model or state model, which we depict using St+1 =
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SM(St , at ,Wt+1). We assume that any variable indexed by time t is known deterministi-
cally at time t . By contrast, control theorists, who conventionally work in continuous time,
would write xt+1 = f (xt , ut ,wt ), where wt is random at time t . We use two notational styles
for actions. We use at for discrete actions, and xt for vector-valued decisions, which will be
familiar to the math programming community.

Some communities maximize rewards while others minimize costs. To conserve letters,
we use C(S,a) for contribution if we are maximizing, or cost if we are minimizing, which
creates a minor notational conflict with reinforcement learning.

The goal in math programming is to find optimal decisions. In stochastic optimization,
the goal is to find optimal policies (or more realistically, the best policy within a well defined
class), where a policy is a function that determines a decision given a state. Conventional
notation is to write a policy as π(s), but we prefer to use Aπ(S) to represent the function
that returns an action a, or Xπ(S) for the function that returns a feasible vector x. Here, π

specifies both the class of function, and any parameters that determine the particular function
within a class �.

Our optimization problem can then be written

max
π∈�

E
π

T∑
t=0

γ tC
(
St ,A

π(St )
)
. (9)

We index the expectation by π because the exogenous process (random variables) can de-
pend on the decisions that were made. The field of stochastic programming assumes that
this is never the case. The Markov decision process community, on the other hand, likes to
work with an induced stochastic process (Puterman 2005), where a sample path consists of
a set of states and actions, which of course depends on the policy.

It is not unusual to see authors equating “dynamic programming” with Bellman’s equa-
tion (1). In fact, (9) is the dynamic program, while as we show below, Bellman’s equation is
only one of several algorithmic strategies for solving our dynamic program.

4 Four classes of policies

Scanning the literature in stochastic optimization can produce what seems to be a daunt-
ing array of algorithmic strategies, which are then compounded by differences in notation
and mathematical styles. Cosmetic differences in presentation can disguise similarities of
algorithms, hindering the cross-fertilization of ideas.

For newcomers to the field, perhaps one of the most subtle concepts is the meaning of the
widely used term “policy,” which is a mapping from a state to an action. The problem is that
from a computational perspective, policies come in different forms. For many, an example
of a policy might be “if the number of filled hospital beds is greater than θ , do not admit any
low priority patients.” In another setting, a policy might involve solving a linear program,
which can look bizarre to people who think of policies as simple rules.

There are many variations of policies, but our reading of the literature across different
communities has identified four fundamental classes of policies: (1) myopic cost function
approximations, (2) lookahead policies, (3) policy function approximations and (4) policies
based on value function approximations. In addition, it is very common to mix two or even
three of these fundamental policies together to create a hybrid policy.

We describe these briefly below. Recognizing that there are entire communities focusing
on the last three classes (the first is a bit of a special case), we then focus our attention for
the remainder of the paper on value function approximations.
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4.1 Myopic cost function approximations

A myopic policy maximizes contributions (or minimizes costs) for one time period, ignoring
the effect of a decision now on the future. If we have a discrete action a, we would write
this policy as

Aπ(St ) = arg max
a∈A

C(St , a).

Myopic policies scale nicely to handle vector-valued decisions. In the truckload trucking in-
dustry, the most widely used commercial driver dispatch software optimizes the assignment
of drivers to loads without regard to the downstream impact. If ctd� is the contribution from
assigning driver d to load � at time t . Our myopic policy might be written

Xπ(St ) = arg max
x∈Xt

∑
d

∑
�

ctd�xtd�.

The feasible region Xt captures flow conservation for drivers and loads (we cannot assign a
driver to more than one load, and we cannot assign more than one driver to a load). Com-
mercial linear programming solvers easily handle problems where the decision vector xt has
tens of thousands of dimensions.

Often, tunable parameters can be added to a myopic model to help overcome some of the
more serious limitations. For example, in truckload trucking there may be loads that cannot
be moved right away. There is an obvious desire to put a higher priority on moving loads
that have been delayed, so we can add a bonus proportional to how long a load has been
held. Let θ be the bonus per unit time that rewards moving a load that has been held. In this
case, we would write the contribution cπ

td�(θ) = ctd� − θτ� where τ� is how long load � has
been delayed. Our policy would then be written

Xπ(St |θ) = arg max
x∈Xt

∑
d

∑
�

cπ
td�(θ)xtd�. (10)

We refer to this as a cost function approximation, since we modify the cost function so that
our myopic policy achieves better behavior over time. [We note in passing that many au-
thors use the term “cost function approximation” to refer to a value function approximation
(in particular, an approximation of the “cost-to-go” function); see, for example, Bertsekas
(2011b). We believe that this paper may be the first to use the term cost function approxi-
mation to refer specifically to the idea of creating policies by modifying the one-period cost
function.] We would then write our objective as

F(θ) = E

T∑
t=0

γ tctX
π(St |θ).

We evaluate the policy using the original costs ct (not the modified costs), but we are testing
the policy Xπ(St |θ) that depends on the cost function approximation in (10). The problem
of optimizing over policies π in our objective function in (9) now consists of searching for
the best value of θ .

Myopic cost functions approximations are widely used in practice in operational schedul-
ing models. They do not receive much attention in the literature, because they are a fairly ad
hoc heuristic. They are effective, however, for problems where a pure myopic policy works
fairly well, but where minor adjustments (such as our bonus for covering delayed loads)
helps to overcome obvious weaknesses.
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4.2 Lookahead policies

There is a substantial and growing literature which designs policies by optimizing decisions
over a finite horizon to determine the best decision to make now. The simplest illustration
of this strategy is the use of tree search in an algorithm to find the best chess move (a
setting designed for discrete action spaces). If we have to evaluate 10 possible moves each
time, looking five steps into the future requires evaluating 105 moves. Now introduce the
uncertainty of what your opponent might do. If she might also make 10 possible moves
(but you are unsure which she will make), then for each move you might make, you have to
consider the 10 moves your opponent might make, producing 100 possibilities for each step.
Looking five moves into the future now requires evaluating 1010 possibilities. The problem
explodes dramatically when the decisions and random information are vectors.

The most common lookahead strategy uses a deterministic approximation of the future,
which makes it possible to handle vector-valued decisions. Let xtt ′ be a vector of decisions
that we determine now (at time t ) to be implemented at time t ′ in the future. Let ct ′ be a
deterministic vector of costs. We would solve the deterministic optimization problem

Xπ(St |θ) = arg max
t

t+T∑
t ′=t

ct ′xtt ′ ,

where θ in this context might represent the planning horizon T . The optimization problem
has to be solved over some feasible region, but this is easily accommodated by math pro-
gramming packages. Here, arg maxt returns only xtt . We optimize over a horizon T , but
implement only the decision that we wish to make now.

This strategy is widely known in operations research as a rolling horizon procedure, in
computer science as a receding horizon procedure, and in engineering control as model
predictive control. However, these ideas are not restricted to deterministic approximations
of the future. We can also pose the original stochastic optimization problem over a restricted
horizon, giving us

Xπ(Stθ) = arg max
π ′ E

(
t+T∑
t ′=t

C
(
St ′ , Y

π ′
(St ′)

))
, (11)

where Y π ′
(St ′) represents an approximation of the decision rule that we use within our

planning horizon, but where the only purpose is to determine the decision we make at time t .
Normally, we choose T small enough that we might be able to solve this problem (perhaps as
a decision tree). Since these problems can explode even for small values of T , the stochastic
programming community has adopted the strategy of breaking multiperiod problems into
stages representing points in time where new information is revealed. The most common
strategy is to use two stages. The first stage is “here and now” where all information is
known. The second stage, which can cover many time periods, assumes that there has been
a single point where new information has been revealed. Let t = 0 represent the first stage,
and then let t = 1, . . . , T represent the second stage (this means that decisions at time t = 1
get to “see” the future, but we are only interested in the decisions to be implemented now).
Let ω be a sample realization of what might be revealed in the second stage, and let 
 be a
sample. Our stochastic programming policy would be written

Xπ(S0|θ) = arg max
x0,(x1(ω),...,xT (ω))

(
c0x0 +

∑
ω∈


p(ω)

T∑
t=1

ct (ω)xt (ω)

)
. (12)
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Here, the parameter vector θ would capture both the horizon T as well as parameters gov-
erning the creation of the sample set 
. This problem has to be solved subject to constraints
that link x0 with the decisions that would be implemented in the future xt (ω) for each out-
come ω. In the stochastic programming community, an outcome ω is typically referred to as
a scenario.

For problems with small action spaces, the deterministic rolling horizon procedure in (11)
is trivial. However, for vector-valued problems, even this deterministic problem can be com-
putationally daunting. At the same time, even when this deterministic problem is not too
hard, the expanded problem in (12) can be quite demanding, because it is like solving |
|
versions of (11) all at the same time. Not surprisingly, then, stochastic programming has
attracted considerable interest from specialists in large-scale computing.

A number of papers will break a problem into multiple stages. This means that for every
outcome ω1 in the first stage, we have a decision problem leading to a new sampling of
outcomes ω2 for the second stage. It is common to see authors sampling perhaps 100 sam-
ples in 
1 for the first stage, but then limit the number of samples 
2 in the second stage
(remember that the total number of samples is |
1| × |
2|) to a very small number (under
10).

Because of the dramatic growth of problem size as 
 grows, the stochastic program-
ming community has been devoting considerable effort to the science of sampling scenarios
very efficiently. A sample of this research is given in Dupaçová et al. (2000), Kaut and
Wallace (2003), Growe-Kuska et al. (2003), and Romisch and Heitsch (2009). This area of
research has recently become visible in the reinforcement learning community. Silver (2009)
describes a method for optimizing the generation of Monte Carlo samples in a lookahead
policy used to solve the Chinese game of Go.

A different strategy is to evaluate an action a by drawing on the knowledge of a “good”
policy, and then simply simulating a single sample path starting with the ending state from
action a. This is a noisy and certainly imperfect estimate of the value of taking action a, but it
is extremely fast to compute, making it attractive for problems with relatively large numbers
of actions. Such policies are known as roll-out policies (see Bertsekas and Castanon 1999).

Lookahead policies represent a relatively brute-force strategy that takes little or no ad-
vantage of any problem structure. They are well suited to problems with complex state
variables. However, explicitly capturing uncertainty in lookahead policies remains an active
area of research, both in computer science and operations research. Below, we consider two
more classes of policies that exploit problem structure, one in the policy itself and the second
in the value of being in a state. These policies can be very effective, but only when problem
structure is available to be exploited. Lookahead policies avoid the need to identify problem
structure, but incur a significant computational penalty for this generality.

4.3 Policy function approximations

There are numerous applications where the structure of a policy is fairly obvious. Sell the
stock when the price goes over some limit θ ; dispatch the shuttle bus when it has at least θ

passengers (this could vary by time of day, implying that θ is a vector); if the inventory goes
below some point q , order up to Q. We might write our inventory policy as

Aπ(St |θ) =
{

0 if St ≥ q,

Q − St if St < q.

Finding the best policy means searching for the best values of θ = (q,Q).



Ann Oper Res

Fig. 1 Illustration of a neural network with a single hidden layer

In other cases, we might feel that there is a well-defined relationship between a state and
an action. For example, we may feel that the release rate at of water from a reservoir is
related to the level of water in the reservoir St that is described by the quadratic formula

Aπ(St |θ) = θ0 + θ1St + θ2(St )
2.

Here, the index π captures that the policy function is a quadratic. The search for the best
policy in this class means finding the best vector (θ0, θ1, θ2).

A very popular strategy in the engineering literature is to represent a policy as a neural
network, depicted in Fig. 1. The neural network takes as input each dimension of the state
variable. This is then filtered by a series of multiplicative weights (which we represent by θ

for consistency) and signum functions to produce an estimate of what the action should be
(see Haykin 1999 for a thorough introduction to the field of neural networks).

If we represent a policy using a statistical approximation such as a regression equation
or neural network, we need some way to train our policy. These are often described as
“actor-critic” methods, where some method is used to suggest an action, and then classical
statistical methods are used to fit our policy to “predict” this action. We might use a looka-
head policy to suggest an action, but the most common strategy is to use a policy based
on a value function approximation (discussed below). The value function approximation is
known as the critic, while the policy is known as the actor. The policy function approxima-
tion is desirable because it is typically very fast to compute (once it has been fitted), which
is an important feature for some applications. Actor-critic methods are basically a form of
policy iteration, familiar to the Markov decision process community since the 1950’s (see in
particular Howard 1960).

A policy that is widely used in the reinforcement learning community for discrete actions
is based on the Boltzmann distribution (also known as Gibbs sampling), where, given we
are in state s, we choose an action a with probability p(s, a|θ) using

p(s, a|θ) = e−θC(s,a)∑
a′∈A e−θC(s,a′) . (13)
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Here, θ is a tunable parameter that controls the likelihood that we choose the lowest cost.
If θ = 0, we are choosing actions at random. As θ grows, we would choose the action
that appears to be best (based, for example, on the one-period contribution C(s, a)). In
dynamic programming, we would use the one-period contribution plus an approximation of
the downstream value function (discussed below). This policy is popular because it provides
for a level of exploration of actions that do not appear to be the best, but may be the best.
The parameter θ is used to control the tradeoff between exploration and exploitation. Not
surprisingly, this policy is often described as a “soft-max” policy. See Silver (2009) for a
nice illustration of the use of a Boltzmann policy.

The term “policy function approximation” is not common (but there is a small literature
using this term). We use it because it nicely parallels “value function approximation,” which
is widely used. The key feature of a policy function approximation is that once it has been
computed, finding an action given a state does not involve solving an optimization problem
(although we may have solved many optimization problems while fitting the policy).

Policy function approximations are particularly useful when we can identify obvious
structure in the policy and exploit it. However, this strategy is limited to problems where
such a structure is apparent (the Boltzmann policy is an exception, but this is limited to
discrete action spaces).

4.4 Policies based on value function approximations

The fourth class of policy starts with Bellman’s equation which we first stated in (1) in the
familiar form which uses a one-step transition matrix. For our purposes, it is useful to start
with the expectation form of Bellman’s equation, given by

V (St ) = max
a∈A

(
C(St , a) + γ E

{
V (St+1)|St

})
, (14)

where St+1 = SM(St , a,Wt+1). For the purposes of our presentation, we can assume that the
expectation operator is with respect to the random variable Wt+1, which may depend on the
fact that we are in state St , and may also depend on the action a. There is a subtle distinction
in the interpretation of the conditional expectation, which may be conditionally dependent
on St (and possibly a), or a function of St and a.

The most widely cited problem with Bellman’s equation (whether we are using (1)
or (14)) is the “curse of dimensionality.” These equations assume that are given Vt+1(s),
from which we can compute Vt(s) for each state s. This algorithmic strategy assumes as a
starting point that s is discrete. If s is a scalar, then looping over all states is generally not too
difficult. However, if s is a vector, the number of potential states grows dramatically with
the number of dimensions. The original insight (first tested in Bellman and Dreyfus 1959)
was to replace the value function with a statistical approximation. This strategy received
relatively little attention until the 1970’s, when the control theory community started using
neural networks to fit approximations of value functions.

This idea gathered considerable momentum when the idea of replacing the value function
with a linear statistical model. In the language of approximate dynamic programming, let
φf (St ) be a basis function, which captures some feature of the underlying system. A feature
might be, for example, the number of X’s that a tic-tac-toe player has in corner positions,
or the square of the amount of energy stored in a battery. Let (φf (St )), f ∈ F be the set of
features. We might then write our value function approximation as

V̄ (St |θ) =
∑
f ∈F

θf φf (St ). (15)
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We have now reduced the problem of estimating the value V (St ) for each state St with the
reduced problem of estimating the vector (θf )f ∈F .

We next have to develop a method for estimating this approximation. The original idea
was that we could replace the backward dynamic programming equations such as (2) and (3)
with equations that avoided the need to loop over all the states. Rather than stepping back-
ward in time, the idea was to step forward in time, using an approximation of the value
function to guide decisions.

Assume we are solving a finite horizon problem to make the indexing of time explicit.
Let

V̄ n−1
t (St ) =

∑
f ∈F

θn−1
tf φtf (St ) (16)

be an approximation of the value function at time t after n − 1 observations. Now assume
that we are in a single state Sn

t . We can compute an estimate of the value of being in state
Sn

t using

v̂n
t = max

a

(
C

(
Sn

t , a
) + γ

∑
s′

p
(
s ′|Sn, a

)
V̄ n−1

t+1 (St+1)

)
. (17)

Further let an
t be the action that solves (17). In (2) and (3), we used the right hand side

of (17) to update our estimate of the value of being in state. Now we propose to use v̂n
t as

a sample observation to update our approximate of the value function. If we were using a
discrete, lookup table representation, we could update the estimate V̄

n1
t (Sn

t ) of the value of
being in state Sn

t using

V̄ n
t

(
Sn

t

) = (1 − αn−1)V̄
n−1
t

(
Sn

t

) + αn−1v̂
n
t , (18)

where αn−1 is a stepsize (also known as a smoothing factor or learning rate) that is less
than 1. If we are using a linear regression model (also known as a linear architecture) as
given in (16), we would use recursive least squares to update θn−1

t . The attraction of linear
regression is that we do not need to visit every state since all we are doing is estimating the
regression coefficients θt . This algorithmic strategy closely mirrors value iteration, so it is
known as approximate value iteration.

Using this idea, we step forward in time, where the next state that we would visit might
be given by

Sn
t+1 = SM

(
Sn

t , an
t ,Wt+1

(
ωn

))
,

where ωn is a sample path, and Wt+1(ω
n) is the information that becomes available between

t and t + 1. We now have an algorithm where we avoid the need to loop over states, and
where we use linear regression to approximate the entire value function. It would seem that
we have fixed the curse of dimensionality!

Unfortunately, while this strategy sometimes works spectacularly, there are no guarantees
and it can fail miserably. The simplicity of the idea is behind its tremendous appeal, but
getting it to work reliably has proved to be a difficult (if exciting) area of research. Some of
the challenges include

• While it is tempting to make up a group of basis functions (φf ), f ∈ F , it is quite im-
portant that they be chosen so that the right choice of θ in (16) produces an accurate
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approximation of the value function. This is the art of designing value function approxi-
mations, but it has to be done well, and requires a good understanding of how to capture
the important qualities of the value function.

• The transition matrix is almost never available (if we can compute a matrix for every pair
of states and every action, we do not need approximate dynamic programming). Often it is
much easier to compute the expectation form of Bellman’s equation in (14), but for most
problems, the expectation cannot be computed. As a result, even if we could approximate
the value function, we still cannot compute (17).

• Some communities focus exclusively on discrete action spaces, but there are many prob-
lems where the decision is a vector x. In such cases, we can no longer simply search
over all possible actions to find the best one. We will have to solve some sort of high-
dimensional optimization problem. Keep in mind that we still have the complication of
computing an expectation within the optimization problem.

• While forward dynamic programming does not require that you loop over all states, it
does require that you be able to approximate the value of every state that you might
visit. Obtaining a good approximation of a state often requires either visiting the state,
or visiting nearby states. Often we may have to visit states just to approximate the value
function in the vicinity of these states.

This algorithmic strategy has produced some tremendous successes. The engineering
controls community has enjoyed significant breakthroughs designing controllers for aircraft,
helicopters and robots using neural networks to approximate value functions. The computer
science community has taught computers to play backgammon at an advanced level, and
has recently developed a system that can play the Chinese game of Go at an expert level.
In operations research, we have developed a system to optimize a fleet of 5,000 trucks with
a very high level of detail to model drivers and loads, producing a state variable that is
effectively infinite-dimensional and a decision vector with 50,000 dimensions (see Simao et
al. 2009 for a technical description, and Simao et al. 2010 for a nontechnical description).

At the same time, it is frustratingly easy to create an algorithm that works poorly. For
example:

• Consider a “dynamic program” with a single state and action. Each transition incurs a
random reward R̂n. We would like to compute the value of being in our single state. We
quickly recognize that this (scalar) value is given by

V = E

∞∑
n=0

γ nR̂n

= 1

1 − γ
ER̂.

If we know the expected value of R̂, we are done. But let’s try to estimate this value using
our approximate value iteration algorithm. Let v̂n be given by

v̂n = R̂n + γ v̄n−1.

Because v̂n is a noisy observation, we smooth it to obtain an updated estimate

v̄n = (1 − αn−1)v̄
n−1 + αn−1v̂

n.

We know that this algorithm is provably convergent if we use a stepsize αn−1 = 1/n.
However, through upper and lower bounds on the solution we can prove that this algorithm
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Fig. 2 Learning a nonlinear function using a linear function with two different state sampling strategies

requires 1020 iterations to converge within one percent of optimal if γ = .95 (see Ryzhov
et al. 2012). This is a trivial algorithm to code in a spreadsheet, so we encourage the
reader to try it out.

• Now consider a simple but popular algorithm known as Q-learning, where we try to
learn the value of a state-action pair. Let Q(s, a) be the true value of being in state s

and taking action a. If we had these Q-factors, the value of being in state s would be
V (s) = maxa Q(s, a). The basic Q-learning algorithm is given by

q̂n
(
sn, an

) = Ĉ
(
sn, an

) + γ max
a′ Q̄n−1

(
sn+1, a′),

where sn+1 = SM(sn, an,Wn+1), and where we have randomly sampled Wn+1 from some
distribution. Given the state sn, the action an is sampled according to some policy that
ensures that all actions are sampled infinitely often. Because q̂n is a noisy observation,
we smooth it to obtain an updated estimate

Q̄n
(
sn, an

) = (1 − αn−1)Q̄
n−1

(
sn, an

) + αn−1q̂
n
(
sn, an

)
.

This algorithm has been shown to converge to the optimal Q-factors, from which we can
infer an optimal policy by choosing the best action (given a state) from these factors.
However, if the observations R̂n are noisy, and if the discount factor γ is close enough
to 1, Q-learning will appear to diverge for what can be tens of millions of iterations,
growing endlessly past the optimal solution.

• If we use linear basis functions, it is well known that approximate value iteration can
diverge, even if we start with the true, optimal solution! The biggest problem with linear
basis functions is that we rarely have any guarantees that we have chosen a good set
of basis functions. Figure 2 demonstrates that if we try to learn the shape of a nonlinear
function using a linear approximation when the state sampling distribution is shifted to the
left, then we may learn an upward sloping function that encourages larger actions (which
may lead to larger states). This may shift our sampling distribution to the right, which
changes the slope of the approximation, which may then encourage smaller actions.

4.5 Approximating functions

We have introduced three classes of policies that depend on approximating functions,
whether they be the cost function, the policy function or the value function. There are three
fundamental ways of approximating functions: lookup tables, parametric models, and non-
parametric models.

Lookup tables require estimating a table that maps a discrete state to an action (for policy
function approximations) or to a value of being in a state (for value function approxima-
tions). In classical textbook treatments of discrete Markov decision processes, a “policy” is
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almost always intended to mean a lookup table that specifies an action for every state (see
Puterman 2005). Lookup tables offer the feature that if we visit each state infinitely often,
we will eventually learn the right value of being in a state (or the best action). However, this
means estimating a parameter (a value or action) for each state, which does not scale past
very small problems.

Parametric models have attracted the most attention because they are the simplest way to
approximate an entire function using a small number of parameters (a lookup table requires
estimating a parameter for each state). We might approximate a value function using

V̄ (S|θ) =
∑
f ∈F

θf φf (S), (19)

where φf (S) is known generally as a feature (because it extracts a specific piece of informa-
tion from the state variable S) or a basis function (in the hopes that the set (φf (S)), f ∈ F
span the space of value functions). Generally the number of features |F | will be dramatically
smaller than the size of the state space, making it much easier to work in terms of estimating
the vector (θf )f ∈F . We might also have a parametric representation of the policy. If S is a
scalar such as the amount of energy in a battery and a is the amount of energy to store or
withdraw, we might feel that we can express this relationship using

Aπ(S|θ) = θ0 + θ1S + θ2S
2.

The challenge of parametric models is that it is necessary to design the functional form
(such as in (19)), which not only introduces the need for human input, it also introduces
the risk that we do a poor job of choosing basis functions. For this reason, there has been
growing interest in the use of nonparametric models. Most forms of nonparametric modeling
estimate a function as some sort of weighting of observations in the region of the function
that we are interested in evaluating. For example, let Sn be an observed state, and let v̂n be
the corresponding noisy observation of the value of being in that state. Let (v̂m, Sm)n

m=1 be
all the observations we have made up through iteration n of our algorithm. Now assume that
we would like an estimate of the value of some query state s. We might write this using

V̄ (s) =
n∑

m=1

v̂mk(s, Sm)∑n

m′=1 k(s, Sm′
)
.

Here, k(s, Sm) is known as a kernel function which determines the weight that we will put
on v̂m based on the distance between the observed state Sm and our query state s.

4.6 Direct policy search

Each of the four major classes of policies (combined with the three ways of approximating
policy functions or value functions) offers a particular algorithmic strategy for solving a
dynamic programming problem. However, cutting across all of these strategies is the ability
to tune parameters using stochastic search methods. We refer to this general approach as
direct policy search.

To illustrate this idea, we start by noting that any policy can be modified by tunable
parameters, as indicated by the following examples:

Myopic cost function approximations In Sect. 4.1, we introduced a modified myopic pol-
icy in trucking with a bonus for moving loads that had been delayed. This policy is repre-
sented by Xπ(St |θ) in (10). We can now simulate this policy and search for the best value
of the bonus θ .
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Lookahead policies Lookahead policies have to be designed given decisions on the plan-
ning horizon T , and the number of scenarios S that are used to approximate random out-
comes. Let θ = (T ,S), and let Aπ(St |θ) (or Xπ(St , θ) for vector-valued decisions) be the
first-period decision produced by solving the lookahead problem.

Policy function approximations These are the easiest to illustrate. Imagine that we have
an inventory problem where we order inventory if it falls below a level q , in which case
we order enough to bring it up to Q. Aπ(St |θ) captures this rule, with θ = (q,Q). Another
example arises if we feel that the decision of how much energy to storage in a battery, at ,
is related to the amount of energy in the battery, St , according to the function

Aπ(St |θ) = θ0 + θ1St + θ2S
2
t .

Policies based on value function approximations A popular approximation strategy is to
write a value function using basis functions as we illustrate in (15). This gives us a policy
of the form

Aπ(St |θ) = arg max
a

(
C(St , a) + γ E

∑
f

θf φf (St+1)

)
.

These examples show how each of our four classes of policies can be influenced by a pa-
rameter vector θ . If we use policy function approximations, we would normally find θ so
that our value function approximation fits observations of the value of being in a state (this
is a strategy we cover in more depth later in this paper). However, we may approach the
problem of finding θ as a stochastic search problem, where we search for θ to solve

max
θ

F π (θ) = E

T∑
t=0

γ tC
(
St ,A

π(St |θ)
)
, (20)

where C(St , at ) is the contribution we earn at time t when we are in state St and use action
at = Aπ(St |θ). We assume that the states evolve according to St+1 = SM(St , at ,Wt+1(ω))

where ω represents a sample path.
Typically, we cannot compute the expectation in (20), so we resort to stochastic search

techniques. For example, assume that we can compute a gradient ∇θF (θ,ω) for a particular
sample path ω. We might use a stochastic gradient algorithm such as

θn = θn−1 + αn−1∇θF
(
θn−1,ωn

)
.

Of course, there are many problems where the stochastic gradient is not easy to compute,
in which case we have to resort to other classes of stochastic search policies. An excellent
overview of stochastic search methods can be found in Spall (2003). More recently, these
problems have been addressed under the umbrella of “optimal learning,” which includes
results from multi-armed bandits, ranking and selection, simulation optimization and the
recent emergence of techniques based on the value of information such as the knowledge
gradient, efficient global optimization and linear loss (see Powell and Ryzhov 2012 for an
overview of these areas). An overview of policy search methods in the context of dynamic
programming can be found in Chap. 7 of Powell (2011).

4.7 Comments

All of these four types of policies, along with the three types of approximation strategies,
have attracted attention in the context of different applications. Furthermore, there are many
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opportunities to create hybrids. A myopic policy to assign taxicabs to the closest customer
might be improved by adding a penalty for holding taxis that have been waiting a long time.
Lookahead policies, which optimize over a horizon, might be improved by adding a value
function approximation at the end of the horizon. Policy function approximations, which
directly recommend a specific action, can be added to any of the other policies as a penalty
term for deviating from what appears to be a recommended action.

This said, policy function approximations tend to be most attractive for relatively simpler
problems where we have a clear idea of what the nature of the policy function might look like
(exceptions to this include the literature where the policy is a neural network). Lookahead
policies have been attractive because they do not require coming up with a policy function
or value function approximation, but they can be computationally demanding.

For the remainder of this paper, we focus on strategies based on value function approxi-
mations, partly because they seem to be applicable to a wide range of problems, and partly
because they have proven frustratingly difficult to develop as a general purpose strategy.

5 The three curses of dimensionality and the post-decision state variable

There has been considerable attention given to “the” curse of dimensionality in dynamic
programming, which always refers to the explosion in the number of states as the number
of dimensions in the state variable grows. Of course, this growth in the size of the state
space with the dimensions refers to discrete states, and ignores the wide range of problems
in fields such as engineering, economics and operations research where the state variable is
continuous.

At the same time, the discussion of the curse of dimensionality ignores the fact that for
many applications in operations research, there are three curses of dimensionality. These
are

1. The state space—Let St = (St1, St2, . . . , Std ). If Sti has N possible values, our state space
has Nd states. Of course, if states are continuous, even a scalar problem has an infinite
number of states, but there are powerful techniques for approximating problems with a
very small number of dimensions (see Judd 1998).

2. The outcome space—Assume that our random variable Wt is a vector. It might be a vector
of prices, or demands for different products, or a vector of different components such as
the price of electricity, energy from wind, behavior of drivers, temperature and other pa-
rameters that affect the behavior of an energy system. Computing the expectation (which
is implicit in the one-step transition matrix) will generally involve nested summations
over each dimension. Spatial resource allocation problems that arise in transportation
can have random variables with hundreds or thousands of dimensions.

3. The action space—The dynamic programming community almost exclusively thinks of
an action at as discrete, or perhaps a continuous variable with a very small number of
dimensions which can be discretized. In operations research, we typically let xt be a
vector of decisions, which may have thousands or tens of thousands of dimensions. In
this paper, we use a to represent discrete actions, while x refers to vectors of actions that
may be discrete or continuous (either way, the set of potential values of x will always be
too large to enumerate).

One of the most problematic elements of a dynamic program is the expectation. Of course
there are problems where this is easy to compute. For example, we may have a problem of
controlling the arrival of customers to a hospital queue, where the only random variable is
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binary, indicating whether a customer has arrived. But there are many applications where
the expectation is difficult or impossible to compute. The problem may be computational,
because we cannot handle the dimensionality of a vector of random variables. Or it may be
because we simply do not know the probability law of the random variables.

The reinforcement learning community often works on problems where the dynamic
system involves humans or animals making decisions. The engineering controls community
might work on a problem to optimize the behavior of a chemical plant, where the dynamics
are so complex that they cannot be modeled. These communities have pioneered research on
a branch of optimization known as model-free dynamic programming. This work assumes
that given a state St and action at , we can only observe the next state St+1. The reinforcement
learning community uses the concept of Q-learning (see (7)–(8)) to learn the value of a state-
action pair. An action is then determined using

at = arg max
a

Q̄n(St , a)

to determine the best action to be taken now. This calculation does not require knowing
a transition function, or computing an expectation. However, it does require approximating
the Q-factors, which depends on both a state and an action. Imagine if the action is a vector!

An alternative strategy that works on many applications (sometimes dramatically well)
is to use the idea of the post-decision state variable. If St is the state just before we make
a decision (the “pre-decision state”), then the post-decision state Sa

t is the state at time t ,
immediately after we have made a decision. The idea of post-decision states has been around
for some time, often under different names such as the “after-state” variable (Sutton and
Barto 1998), or the “end of period” state (Judd 1998). We prefer the term post-decision state
which was first introduced by Van Roy et al. (1997). Unrealized at the time, the post-decision
state opens the door to solving problems with very high-dimensional decision vectors.

This concept of post-decision states is discussed in much greater depth in Chap. 4 of
Powell (2011), but a few examples include:

• Let Rt be the resources on hand (water in a reservoir, energy in a storage device, or retail
inventory), and let D̂t+1 be the demand that needs to be satisfied with this inventory. The
inventory equation might evolve according to

Rt+1 = max{0,Rt + at − D̂t+1}.
The post-decision state would be Ra

t = Rt +at while the next pre-decision state is Rt+1 =
Ra

t + at .
• Let St be the state of a robot, giving its location, velocity (with speed and direction) and

acceleration. Let at be a force applied to the robot. The post-decision state Sa
t is the state

that we intend the robot to be in at some time t + 1 in the future. However, the robot may
not be able to achieve this precisely due to exogenous influences (wind, temperature and
external interference). It is often the case that we might write St+1 = Sa

t + εt+1, where
εt+1 captures the external noise, but it may also be the case that this noise depends on the
current state and action.

• A driver is trying to find the best path through a network with random arc costs. When she
arrives at a node i, she is allowed to see the actual cost ĉij on each link out of node i. For
other links in the network (such as those out of node j ), she only knows the distribution.
If she is at node i, her state variable would be St = (i, (ĉij )j ), which is fairly complex to
deal with. If she makes the decision to go to node j (but before she has actually arrived
to node j ), her post-decision state is Sa

i = (j).
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• A cement manufacturer allocates its inventory of cement among dozens of construction
jobs in the region. At the beginning of a day, he knows his inventory Rt and the vector
of demands Dt = (Dti)i that he has to serve that day. He then has to manage delivery
vehicles and production processes to cover these demands. Any demands that cannot be
covered are handled by a competitor. Let xt be the vector of decisions that determine
which customers are satisfied, and how much new cement is made. The pre-decision
state is St = (Rt , (Dti)i), while the post-decision state is the scalar Sx = (Rx

t ), giving
the amount of cement in inventory at the end of the day.

The concept of a post-decision state can also be envisioned using a decision tree, which
consists of decision nodes (points where decisions are made), and outcome nodes, from
which random outcomes occur, taking us to a new decision node. The decision node is
a pre-decision state, while the outcome node is a post-decision state. However, the set of
post-decision nodes is, for some problems, very compact (the amount of cement left over in
inventory, or the set of nodes in the network). At the same time, there are problems where a
compact post-decision state does not exist. In the worst case, the post-decision state consists
of Sa

t = (St , at ), which is to say the state-action pair. This is just what is done in Q-learning.
If we use the idea of the post-decision state, Bellman’s equation can be broken into two

steps:

Vt(St ) = max
a

(
C(St , a) + γV a

t

(
Sa

t

))
, (21)

V a
t

(
Sa

t

) = E
{
Vt+1(St+1)|Sa

t

}
. (22)

Here, we assume there is a function Sa
t = SM,a(St , a) that accompanies our standard tran-

sition function St+1 = SM(St , at ,Wt+1). It is very important to recognize that (21) is deter-
ministic, which eliminates the second curse of dimensionality. For most applications, we
will never be able to compute V a

t (Sa
t ) exactly, so we would replace it with an approxima-

tion V̄t (S
a
t ). If this approximation is chosen carefully, we can replace small actions at with

large vectors xt . Indeed, we have done this for problems where xt has tens of thousands of
dimensions (see Simao et al. 2009 and Powell et al. 2011).

It is easiest to illustrate the updating of a value function around the post-decision state
if we assume a lookup table representation. Assume that we are in a discrete, pre-decision
state Sn

t at time t while following sample path ωn. Further assume that we transitioned there
from the previous post-decision state S

a,n
t−1. Now assume that we obtain an observation of the

value of being in state Sn
t using

v̂n
t = max

a

(
C

(
Sn

t , a
) + γ V̄ n−1

t

(
Sa

t

))
.

We would update our value function approximation using

V̄ n
(
S

a,n
t−1

) = (1 − αn−1)V̄
n−1

(
S

a,n
t−1

) + αn−1v̂
n
t .

So, we are using an observation v̂n
t of the value of being in a pre-decision state Sn

t to update
the value function approximation around the previous, post-decision state.

The post-decision state allows us to solve problems with vector-valued decision vari-
ables and expectations that cannot be calculated (or even directly approximated). We have
also described four major classes of policies that might be used to make decisions. For the
remainder of the paper, we are going to focus on the fourth class, which means we return to
the problem of approximating value functions.
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Designing policies by approximating value functions has, without question, attracted the
most attention as a strategy for solving complex dynamic programming problems, although
the other three policies are widely used in practice. Lookahead policies and policy function
approximations also continue to be active areas of research for specific problem classes. But
the strategy of designing policies based on value function approximations carries tremen-
dous appeal. However, the early promise of this strategy has been replaced with the realiza-
tion that it is much harder than people originally thought.

There are three steps to the process of designing policies based on value function ap-
proximations. These include: (1) designing a value function approximation, (2) updating the
value function approximation for a fixed policy, and (3) learning value function approxima-
tions while simultaneously searching for a good policy. The next three sections deal with
each of these steps.

6 Value function approximations

The first step in approximating a value function is to choose an architecture. In principle we
can draw on the entire field of statistics, and for this reason we refer the reader to references
such as Hastie et al. (2009) for an excellent overview of the vast range of parametric and
nonparametric learning methods. Below, we describe three powerful methods. The first is a
nonparametric method that uses hierarchical aggregation, while the second is recursive least
squares using a linear model, which is the method that has received the most attention in
the ADP/RL communities. The third describes the use of concave value function approxi-
mations that are useful in the setting of resource allocation.

6.1 Hierarchical aggregation

Aggregation involves mapping sets of states into a single state whose value is then used as
an approximation of all the states in the set. Not surprisingly, this introduces aggregation
errors, and requires that a tradeoff be made in choosing the level of aggregation. A more
powerful strategy is to use a family of aggregation functions which, for the purposes of our
discussion, we will assume is hierarchical. We are going to estimate the value of states at
different levels of aggregation, and then use a weighted sum to estimate the value function.

Let Gg(s) be a mapping from a state s to an aggregated state s(g). We assume we have a
family of these aggregation functions g ∈ G , where g = 0 corresponds to the most disaggre-
gate level (and this may be arbitrarily fine). We propose to estimate the value of being in a
state s using

V̄ n(s) =
∑
g∈G

w(g)(s)v̄(g,n)(s),

where v̄(g,n)(s) is an estimate of the value of being in aggregated state Gg(s) after n obser-
vations have been made. This estimate is weighted by w(g)(s), which depends on both the
level of aggregation and the state being observed. This is important, because as we obtain
more observations of an aggregated state, we want to give it a higher weight. We compute
the weights using

w(g,n)(s) ∝ ((
σ̄ 2(s)

)(g,n) + (
μ̄(g,n)(s)

)2)
, (23)



Ann Oper Res

where (σ̄ 2(s))(g,n) is an estimate of the variance of v̄(g,n)(s), and μ̄(g,n)(s) is an estimate of
the bias due to aggregation error. These quantities are quite easy to estimate, but we refer
the reader to George et al. (2008) for the full derivation (see also Chap. 8 in Powell 2011).

Hierarchical aggregation offers the advantage that as the number of observations grows,
the approximation steadily improves. It also provides rough approximations of the value
function after just a few observations, since most of the weight at that point will be on the
highest levels of aggregation.

A popular form of aggregation in the reinforcement learning community is known as
tilings, which uses overlapping aggregations to create a good approximation. When we use
hierarchical aggregation, we assume that the function Gg(s) represents states more coarsely
than Gg−1(s), and at the same time we assume that if two states are aggregated together at
aggregation level g, then they will also be aggregated together at level g + 1. With tilings,
there is a family of aggregations, but they are all at the same level of coarseness. However,
if one aggregation can be viewed as a series of squares (“tiles”) that cover an area, then the
next aggregation might be squares of the same size that are shifted or tilted in some way so
that the surface is being approximated in a different way.

6.2 Basis functions

The approximation strategy that has received the most attention is the use of linear paramet-
ric models of the form given in (19), where we assume that we have designed a set of basis
functions φf (s). For ease of reference, we repeat the approximation strategy which is given
by

V̄ (St |θ) =
∑
f ∈F

θf φf (St ). (24)

We note that the functions φf (St ) are known in the ADP/RL communities as basis functions,
but elsewhere in statistics they would be referred to as independent variables or covariates.
The biggest challenge is designing the set of basis functions φf (s), but for the moment we
are going to take these as given. In this section, we tackle the problem of estimating the
parameter vector θ using classical methods from linear regression.

Assume we have an observation v̂m of the value of being in an observed state Sm. At
iteration n, we have the vector (v̂m, Sm)n

m=1. Let φm be the vector of basis functions evaluated
at Sm. Now let �n be a matrix with n rows (one corresponding to each observed state Sm),
and |F | columns (one for each feature). Let V̂ n be a column vector with element v̂m. If we
used batch linear regression, we could compute the regression vector using

θn = ((
�n

)T
�n

)−1(
�n

)T
V̂ n. (25)

Later we describe how this can be done recursively without performing the matrix inverse.

6.3 Piecewise linear, separable functions

There is a broad class of problems that can be best described as “resource allocation prob-
lems” where there is a quantity of a resource (blood, money, water, energy, people) that
need to be managed in some way. Let Rti be the amount of the resource in a state i at time
t , where i might refer to a blood type, an asset type, a water reservoir, an energy storage
device, or people with a particular type of skill. Let xtij be the amount of resource in state
i that is moved to state j at time t . We may receive a reward from having a resource in
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state i at time t , and we may incur a cost from moving resources between states. Either way,
we can let C(Rt , xt ) be the total contribution earned from being in a resource state Rt and
implementing action xt .

Assume that our system evolves according to the equation

Rt+1,j =
∑

i

xtij + R̂t+1,j ,

where R̂t+1,j is exogenous changes to the resource level in state j (blood donations, rain
fall, financial deposits or withdrawals). We note that the post-decision state is given by
Rx

tj = ∑
i xtij . Using a value function approximation, we would make decisions by solving

Xπ(Rt) = arg max
x

(
C(Rt , xt ) + γ V̄t

(
Rx

t

))
, (26)

subject to the constraints

∑
j

xtij = Rti, (27)

xtij ≥ 0. (28)

For this problem, it is straightforward to show that the value function is concave in Rt .
A convenient way to approximate the value function is to use a separable approximation,
which we can write as

V̄t

(
Rx

t

) =
∑

i

V̄ti

(
Rx

ti

)
,

where V̄ti (R
x
ti) is piecewise linear and concave.

We estimate V̄ti (R
x
ti) by using estimates of the slopes. If we solve (26)–(28), we would

obtain dual variables for the resource constraint (27), which gives the marginal value of
the resource vector Rti . Thus, rather than observing the value of being in a state which
we have denoted by v̂n

t , we would find the dual variable ν̂n
ti for constraint (27). The use of

gradient information to approximate value functions has a long history in the control theory
community where it is known as “dual heuristic dynamic programming” (see, for example,
Bertsekas and Tsitsiklis 1996; Si and Wang 2001; Venayagamoorthy and Harley 2002; Wang
et al. 2009; Lewis and Vrabie 2009).

Chapter 13 of Powell (2011) describes several methods for approximating piecewise lin-
ear, concave value function approximations for resource allocation problems. The key idea
is that we are using derivative information (dual variables) to update the slopes of the func-
tion. This strategy scales to very high-dimensional problems, and has been used in produc-
tion systems to optimize freight cars and locomotives at Norfolk Southern Railroad (Powell
and Topaloglu 2005), spare parts for Embraer (Powell and Simão 2009), and truck drivers
for Schneider National (Simao et al. 2009), as well as planning systems for transformers
(Enders et al. 2010) and energy resource planning (Powell et al. 2011).

7 Updating the value function for a fixed policy

Updating the value function requires computing an observation v̂n of the value of being in
a state Sn, and then using this observation to update the value function approximation itself.
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We deal with each of these aspects of the updating process below. Throughout this section,
we assume that we have fixed the policy, and are simply trying to update an estimate of the
value function for this policy.

7.1 Policy simulation

The most direct way of observing the value of a state Sn is simply to simulate a policy into
the future. This is easiest to envision for a finite horizon problem. Assume that we are at
time t while following sample path ωn. If Aπ(St ) is our policy, we would compute

v̂π,n
t =

T∑
t ′=t

γ t ′−tC
(
St ′ ,A

π(St ′)
)
,

where St+1 = SM(Sn
t ,Aπ(Sn

t ),Wt+1(ω
n)). This is generally calculated by performing a for-

ward pass through time and then calculating v̂n
t using a backward pass through the same set

of states. This can be written

v̂π,n
t = C

(
Sn

t ,Aπ
(
Sn

t

)) + γ v̂
π,n
t+1.

This method works, of course, only for finite horizon problems, but it can be used to approx-
imate infinite horizon problems.

7.2 Stochastic gradient updates

Assume that we are trying to estimate a value v which is the true value of being in state s,
and further assume that we can observe a random variable v̂ that is an unbiased estimate of
the value of being in state s. We would like to find v by solving

min
v

EF(v, v̂), (29)

where

F(v, v̂) = 1

2
(v − v̂)2.

A simple algorithm for solving this problem uses a stochastic gradient where we find an
estimate of v using

vn = vn−1 − αn−1∇F
(
vn−1, v̂n

)
= vn−1 − αn−1

(
vn−1 − v̂n

)
. (30)

Assume that we are updating a lookup table approximation V̄ n(s). If we observe s = Sn
t , we

would use the updating equation

V̄ n
t

(
Sn

t

) = V̄ n−1
t

(
Sn

t

) − αn−1

(
V̄ n−1

t

(
Sn

t

) − v̂n
)
. (31)

Next replace our lookup table representation with a linear model V̄ (s|θ) = θT φ =∑
f ∈F θf φf (s). We can search for the best value of θ using a stochastic gradient algorithm

applied to the problem

min
θ

E
1

2

(
V̄ (s|θ) − v̂

)2
.
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The stochastic gradient updating equation is

θn = θn−1 − αn−1

(
V̄

(
s|θn−1

) − v̂n
)∇θ V̄

(
s|θn

)
. (32)

Since V̄ (s|θn) = ∑
f ∈F θn

f φf (s) = (θn)T φ(s), the gradient with respect to θ is given by

∇θ V̄
(
s|θn

) =

⎛
⎜⎜⎜⎜⎜⎝

∂V̄ (s|θn)

∂θ1
∂V̄ (s|θn)

∂θ2

...
∂V̄ (s|θn)

∂θF

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

φ1(s
n)

φ2(s
n)

...

φF (sn)

⎞
⎟⎟⎟⎠ = φ

(
sn

)
.

Equation (32) can now be written as

θn = θn−1 − αn−1

(
V̄

(
s|θn−1

) − v̂n
)
φ
(
sn

)

= θn−1 − αn−1
(
V̄

(
s|θn−1

) − v̂n
)
⎛
⎜⎜⎜⎝

φ1(s
n)

φ2(s
n)

...

φF (sn)

⎞
⎟⎟⎟⎠ . (33)

Stochastic gradient algorithms underlie many algorithms used in approximate dynamic
programming, as we see below. A key issue is the choice of stepsize rule, a topic that is
important for certain algorithmic strategies. For an in-depth discussion of stepsize rules, see
Chap. 11 of Powell (2011).

7.3 Temporal difference learning

Perhaps the most popular approach for approximating the value of being in a state is by
observing the one-step contribution from an action, and then adding an approximation of
the downstream value of being in the next state we visit. This is an approximate form of
value iteration, where we would use

v̂π,n
t = C

(
Sn

t ,Aπ
(
Sn

t

)) + γ V̄
π,n−1
t+1 (St+1),

where St+1 = SM(Sn
t ,Aπ(Sn

t ),Wt+1(ω
n)) is a simulation of the next state that we might

visit. This is known as bootstrapping, because our estimate of the value of being in state Sn
t

depends on our current approximation of the value of being in state St+1. If we use v̂n
t to

update the value function around the pre-decision state (we do this to keep the presentation
as simple as possible), we would perform the following calculation:

V̄ π,n
(
Sa,n

t

) = (1 − αn−1)V̄
π,n−1

(
Sa,n

t

) + αn−1v̂
π,n
t

= (1 − αn−1)V̄
π,n−1

(
Sa,n

t

) + αn−1

(
C

(
Sn

t ,Aπ
(
Sn

t

)) + γ V̄
π,n−1
t+1 (St+1)

)
= V̄ π,n−1

(
Sa,n

t

) + αn−1

(
C

(
Sn

t ,Aπ
(
Sn

t

)) + γ V̄
π,n−1
t+1 (St+1) − V̄ π,n−1

(
Sa,n

t

))
. (34)

Let

δπ,n
t = C

(
Sn

t ,Aπ
(
Sn

t

)) + γ V̄
π,n
t+1 (St+1) − V̄ π,n−1

(
Sa,n

t

)
.
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The quantity δ
π,n
t is widely known in the reinforcement learning community as the temporal

difference. The name derives from the interpretation of the iteration counter n as representing
time. v̄π,n−1(s) can be thought of as the current estimate of the value of being in state s, while
C(s, a) + γ v̄π,n−1(s) can be viewed as an updated estimate. The difference is the change in
the estimate of the value of being in a state over “time.” We can now write our updating
formula (34) as

V̄ π,n
(
Sa,n

t

) = V̄ π,n−1
(
Sa,n

t

) + αn−1δ
π,n
t .

In the reinforcement learning literature, temporal difference learning is generally viewed in
the context of learning a fixed policy (as we have done). It is the same updating we would
do if we were using approximate value iteration, which is often associated with algorithms
where we are simultaneously optimizing a policy. However, the basic updating step is the
same.

7.4 Recursive least squares

The use of basis functions (linear regression) is one of the most popular approaches for
avoiding the problems of large state spaces. In Sect. 6.2 we provided the basic equa-
tions for estimating the regression vector θ using batch methods, which requires finding
((�n)T �n)−1. It would be computationally cumbersome both to store �n as well as to com-
pute the inverse. Fortunately, we can use recursive least squares. This is done using

θn+1 = θn − 1

γ n
Bnφn

(
V̄

(
Sn|θn

) − v̂n+1
)
, (35)

where φn is an |F |-dimensional column-vector of basis functions φf (Sn) evaluated at state
Sn. Bn is an |F | by |F | matrix which is equivalent to ((�n)T �n)−1. We do not have to
perform the inverse explicitly. Instead, it is well known that this can be updated recursively
using

Bn = Bn−1 − 1

γ n

(
Bn−1φn

(
φn

)T
Bn−1

)
. (36)

γ n is a scalar computed using

γ n = 1 + (
φn

)T
Bn−1φn. (37)

This method is well known. We refer the reader to Chap. 9 of Powell (2011) for a more
detailed description, and a full derivation of the updating equations.

Recursive least squares is particularly attractive because it has very low storage require-
ments. We only need to carry the |F |-dimensional vector θn, and the |F | by |F | matrix Bn.

7.5 Least squares temporal differencing

Least squares temporal differencing (LSTD) is a different strategy for estimating the re-
gression vector θ when using basis functions while holding the policy fixed. Designed for
infinite-horizon applications, LSTD was first introduced by Bradtke and Barto (1996), but
our presentation is based on Chap. 6 of Bertsekas (2011a). Recall that φ(Si) is a column
vector of basis functions (one element for each feature f ∈ F ) if we are in state Si . Assume
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that at iteration i, we also observe a contribution C(Si, ai,W i+1) (the RL community may
think of this as observations of C(Si, ai, Si+1)). We first compute a matrix An using

An = 1

n

n−1∑
i=0

φ
(
Si

)(
φ
(
Si

) − γφ
(
Si+1

))T
. (38)

Next compute a column vector bn using

bn = 1

n

n−1∑
i=0

φ
(
Si

)
C

(
Si, ai,W i+1

)
. (39)

The LSTD strategy estimates the regression vector θn using

θn = (
An

)−1
bn. (40)

Of course, this assumes that An is invertible, which is not guaranteed, but steps can be taken
to overcome this.

LSTD is a method for solving the projected Bellman equations, which requires optimiz-
ing

min
θ

(
�θ − (

cπ + γP π�θn
))T

Dπ
(
�θ − (

cπ + γP π�θn
))

(41)

where Dπ is a |S|×|S| diagonal matrix with elements dπ
s which is the steady state probabil-

ity of visiting (discrete) state s while following policy π , and P π is the one-step transition
matrix under policy π . Differentiating (41) with respect to θ gives the optimality condition

�T Dπ
(
�θn+1 − (

cπ + γP π�θn
)) = 0. (42)

This can be stated as solving the equations

Aθ∗ = b, (43)

where A = �T Dπ(I −γP π)� and b = �T Dπcπ . This allows us, in theory at least, to solve
for θ∗ using

θ∗ = A−1b. (44)

The LSTD algorithm is a simulation-based version of this equation, recognizing that we
cannot actually compute A and b. The simulation-based version scales because it never
actually requires that we generate any large matrices.

The use of basis functions disguises the underlying calculations. Imagine we have one ba-
sis function per state, where φf (s) = 1 if feature f corresponds to state s. This is equivalent
to a lookup table representation. In this case, θ is equivalent to a vector v with one element
per state, which means that θf is the value of being in the state s for which φf (s) = 1. For
this problem, A = Dπ(I − γP π), and b = Dπcπ , where an element of cπ is C(s,Aπ(s)).
The scaling by the state probabilities in Dπ makes it possible to calculate quantities via
simulation, because we naturally capture the probability of being in each state through the
simulation.
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7.6 Least squares policy evaluation

LSTD is effectively a batch algorithm which limits its computational efficiency for applica-
tions with a large number of iterations. At each step we execute

θn = θn−1 − α

n
Gn

n−1∑
i=0

φ
(
Si

)
δi(n), (45)

where Gn is a scaling matrix. Gn can be calculated in different ways, but the easiest to
implement is a simulation-based estimate of (�T Dπ�)−1 given by

Gn =
(

1

n + 1

n∑
i=0

φ
(
Si

)
φ
(
Si

)T

)−1

.

If we return to our model where there is a basis function φf (s) for each state s, where
φf (s) = 1 if feature f corresponds to state s, then φ(Si)φ(Si)T is an |S| by |S| matrix with
a 1 on the diagonal for row Si and column Si . As n approaches infinity, the matrix

(
1

n + 1

n∑
i=0

φ
(
Si

)
φ
(
Si

)T

)

approaches the matrix Dπ of the probability of visiting each state, stored in elements along
the diagonal.

8 Learning while optimizing

By now we have provided a brief tutorial on methods for approximating value functions,
and we have seen some of the more popular algorithms for updating value functions while
following a single policy. In this section, we review some of the algorithms that have been
used to find good (ideally optimal) policies, while simultaneously trying to approximate the
value of being in a state. We emphasize that throughout our discussion, we assume that our
policies are based on value function approximations (our fourth class of policy).

There are two broad algorithmic strategies that have been proposed for optimizing poli-
cies based on value function approximations: approximate value iteration and approximate
policy iteration, mirroring the classical value iteration and policy iteration algorithms pro-
posed for Markov decision processes where the one-step probability transition matrix is
known (and can be computed). Within these strategies, we have to decide how we are going
to approximate the value function (the “approximation architecture”), and how we are going
to update the approximation.

We begin our discussion by presenting approximate value iteration, since this is the sim-
plest and, we suspect, most widely used. However, approximate value iteration can also be
extremely difficult to work with, especially when using parametric approximation architec-
tures. We then present approximate policy iteration.

8.1 Approximate value iteration

The essence of approximate value iteration is the use of an updating mechanism based on

v̂n
t = max

a

(
C

(
Sn

t , a
) + γ V̄ n−1

t

(
Sa

t

))
.
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Step 0. Initialization:

Step 0a. Initialize an approximation for the value function V̄ 0
t (Sa

t ) for all post-decision states Sa
t ,

t = {0,1, . . . , T }.
Step 0b. Set n = 1.

Step 0c. Initialize S
a,1
0 .

Step 1. Choose a sample path ωn.
Step 2. Do for t = 0,1, . . . , T :

Step 2a. Determine the action using ε-greedy. With probability ε, choose an action an at random
from A. With probability 1 − ε, choose an using

v̂n
t = max

at∈At

(
C

(
Sn
t , at

) + γ V̄ n−1
t

(
SM,a

(
Sn
t , at

)))
.

Let an
t be the action that solves the maximization problem.

Step 2b. Update V̄ n−1
t−1 using:

V̄ n
t−1

(
S

a,n
t−1

) = (1 − αn−1)V̄ n−1
t−1

(
S

a,n
t−1

) + αn−1v̂n
t

Step 2c. Sample Wn
t+1 = Wt+1(ωn) and compute the next state Sn

t+1 = SM(Sn
t , an

t ,Wn
t+1).

Step 3. Increment n. If n ≤ N go to Step 1.
Step 4. Return the value functions (V̄ n

t )T
t=1.

Fig. 3 Approximate value iteration for finite horizon problems using the post-decision state variable

That is, we depend on a value function approximation for the downstream state. Note that
this is closely related to Q-learning (see (7)–(8)). If states and actions are discrete and we
use a lookup table representation, Q-learning has been proven to converge to the optimal
Q-factors, which gives us an optimal policy by choosing a = arg maxQ(s, a) for any given
state s (see Tsitsiklis 1994). The algorithm requires that we use a policy that samples states
and actions infinitely often. In essence, this is an exploration policy to learn the Q-factors,
which then yields an optimal policy.

Figure 3 depicts a basic implementation of an approximate value iteration algorithm
which assumes that we are using a lookup table representation for the value of being in a
state. The algorithm is presented for a finite horizon problem so that the indexing of variables
over time and iterations is clear. For an infinite horizon implementation, you can just drop
the time index t everywhere.

A problem with the algorithm in Fig. 3 is that there are no guarantees that it will converge,
and in fact often will not work in practice. The problem is that we use the optimal action
an

t in Step 2a to determine the next state that we visit in step 2c. Consider the two-stage
dynamic program in Fig. 4, where we have currently estimated the value of being in each of
the two states as v̄1 = v̄2 = 0. Now imagine that we are in state 1, and we are trying to decide
whether to stay in state 1 or move to state 2. Using the current value function approximation,
staying in state 1 earns 0, while moving to 2 would earn −1 + v̄2 = −1, so it appears that
we should stay in state 1. Doing what appears to be best is known as exploitation, since we
are using (exploiting) what we know. But if we did move to state 2, we would see that we
would earn $10 by moving from state 2 back to state 1, allowing us to update v̄2. The only
way we are going to learn that this is the case is by making the decision while in state 1 to
make the decision to explore state 2.
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Fig. 4 Two-state dynamic
program with contributions and
state value function estimates

Striking a balance between exploring and exploiting is one of the major challenges of
approximate dynamic programming (see Bertsekas 2011b for a nice discussion). This is an
issue that arises in other areas of stochastic optimization, which can be roughly divided be-
tween offline learning problems (we have a fixed budget to learn and then have to live with
the result), which goes under names such as stochastic search (Spall 2003) and the ranking
and selection problem (Law and Kelton 1991; Boesel et al. 2003), and online learning (where
we incur costs and rewards while we are learning), which is known widely as the multiarmed
bandit problem (see Gittins et al. 2011 for a thorough review). A major breakthrough in the
multiarmed bandit problem was the discovery of an optimal policy which avoided solving a
multidimensional, continuous dynamic program using an idea that became known as Gittins
indices. Gittins indices, however, are hard to compute, and this resulted in a separate litera-
ture devoted to finding easier ways to compute them (such as Katehakis and Veinott 1987;
Katehakis and Derman 1986; Katehakis and Robbins 1995), or to approximate them (Chick
and Gans 2009). This general problem class is becoming known as optimal learning; see
Powell and Ryzhov (2012) for an overview of different strategies that have been proposed
for this broad problem class.

The literature adapting this idea to dynamic programs with a physical state is limited.
Burnetas and Katehakis (1997) offers an elegant but sophisticated strategy for solving dy-
namic programs while learning the transition matrix. Dupacova (1995) adapted the funda-
mental idea of Gittins indices to discrete dynamic programs using the idea of a local bandit
approximation.

Recently, Frazier et al. (2008) introduced the concept of the knowledge gradient (build-
ing on Gupta and Miescke 1996), which was then extended to the case of correlated be-
liefs (measuring one alternative teaches us something about other alternatives), presented
in Frazier et al. (2009). Ryzhov et al. (n.d.) showed how the knowledge gradient for offline
problems could be quickly used to compute the knowledge gradient for online applications.
These papers all assume a lookup-table belief model (an estimate for each alternative). Ne-
goescu et al. (2011) adapts the knowledge gradient policy to problems where the belief
model is described using linear regression. Ryzhov and Powell (2011) describes an adapta-
tion of the knowledge gradient to dynamic programs (with a physical state) (see Powell and
Ryzhov 2012 (Chap. 17) for a summary).

To address the exploration vs. exploitation problem, we need to identify two policies.
The first is the policy we are trying to learn, given by

an
t = arg max

at ∈At

(
C

(
Sn

t , at

) + γ V̄ n−1
t

(
SM,a

(
Sn

t , at

)))
. (46)

The learning policy (known as the target policy in the reinforcement learning community)
is the policy we are trying to optimize. It is determined by the value function approximation,
so the premise is that if we can do a better job of approximating the value of being in a state,
we should obtain a better policy.
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The second policy is called the sampling policy (known as the behavior policy in the
reinforcement learning community), which determines which states are sampled next. Most
of the time, after computing an

t using (46), we would then choose a different action aSP =
ASP(St ) which is our sampling policy, and we would then determine the next state using
St+1 = SM(St , a

SP,Wt+1(ω
n)).

If the sampling policy is the same as the learning policy (that is, if we use an
t from (46)

to determine the next state to visit), then we are using what is known as on-policy learn-
ing. If the sampling policy is different than the learning policy, then we are using off-policy
learning. The distinction is important. If we are using lookup table representations, the only
way to obtain an algorithm that will converge to the optimal policy is one where we use a
sampling policy that ensures that every action (and therefore every reachable state) is sam-
pled infinitely often, which means the sampling policy has to be different than the learning
policy.

The situation changes completely if we are using a linear architecture (basis functions)
to approximate the value of being in a state. As shown by Tsitsiklis and Van Roy (1997),
temporal-difference learning using basis functions and a fixed policy with on-policy learning
is known to converge to the best possible value function approximation in terms of a mean-
square metric over the states, weighted by the probability of being in each state. At the same
time, the same authors showed that off-policy learning may diverge if using a weighted
Bellman error minimization as the objective.

If we were to modify our approximate value iteration in Fig. 3 to use basis functions,
the result would be an algorithm with no convergence guarantees at all. The problem is that
evaluation errors in v̂n result in changes to the regression vector θn that can completely
change the policy. Even if we use on-policy learning, the resulting interaction between ap-
proximating the value of a policy and using the approximate value function to determine the
policy creates a fundamentally unstable system without the presence of structural properties
such as convexity.

Recently, Sutton et al. (2009a, 2009b) propose an off-policy learning algorithm (that is,
for a fixed policy) based on the principle of minimizing the projected Bellman error. Maei et
al. (2010) extend this general idea to an off-policy algorithm that learns an optimal policy.
This work overcomes the well known divergence of prior off-policy algorithms using para-
metric function approximations, but the work is quite new and time is needed to understand
the limitations of the assumptions required in the proof and the empirical performance on
actual problems. Just the same, these papers represent a potentially significant breakthrough
for general, discrete action problems which lack properties such as convexity. Off-policy
learning makes it possible to introduce exploration policies that give the algorithm designer
more control over the states that are visited. We note, however, that these ideas do not extend
to high-dimensional action spaces, where off-policy learning is much harder to implement.

The situation changes again if we make the transition to nonparametric value function
approximations. Here, an observation of a state-value pair (Sn, v̂n) does not affect the entire
value function approximation as occurs with a parametric model. Now, updates are more
localized, which makes the behavior more similar to lookup table representations. The liter-
ature on learning issues for nonparametric approximation architectures remains quite young.
For a review of some of this literature, see Powell and Ma (2011).

8.2 Approximate policy iteration

Perhaps the biggest challenge of approximate value iteration when using functional approx-
imations is that a single observation can change the entire value function approximation,
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Step 0. Initialization:

Step 0a. Initialize V̄ π,0.
Step 0b. Set a look-ahead parameter T and inner iteration counter M .
Step 0c. Set n = 1.

Step 1. Sample a state Sn
0 and then do:

Step 2. Do for m = 1,2, . . . ,M :
Step 3. Choose a sample path ωm (a sample realization over the lookahead horizon T ).
Step 4. Do for t = 0,1, . . . , T :

Step 4a. Compute

a
n,m
t = arg max

at∈An,m
t

(
C

(
S

n,m
t , at

) + γ V̄ π,n−1(
SM,a

(
S

n,m
t , at

)))
.

Step 4b. Compute

S
n,m
t+1 = SM

(
S

n,m
t , a

n,m
t ,Wt+1

(
ωm

))
.

Step 5. Initialize v̂
n,m
T +1 = 0.

Step 6. Do for t = T ,T − 1, . . . ,0:

Step 6a. Accumulate v̂n,m:

v̂
n,m
t = C

(
S

n,m
t , a

n,m
t

) + γ v̂
n,m
t+1 .

Step 6b. Update the approximate value of the policy:

v̄n,m =
(

m − 1

m

)
v̄n,m−1 + 1

m
v̂
n,m
0 .

Step 8. Update the value function at Sn:

V̄ π,n = (1 − αn−1)v̄n−1 + αn−1v̂
n,M
0 .

Step 9. Set n = n + 1. If n < N , go to Step 1.
Step 10. Return the value functions (V̄ π,N ).

Fig. 5 A policy iteration algorithm for infinite horizon problems

thereby changing the policy which then distorts future observations. One way to overcome
this limitation is through approximate policy iteration which is illustrated in Fig. 5 using a
lookup table representation. The major difference between this and approximate value itera-
tion is the introduction of an inner loop (step 2) which iteratively simulates over the planning
horizon to develop a good approximation of the value function for a fixed policy.

Approximate policy iteration is generally more stable than approximate value iteration,
but the price is the need to execute the inner loop repeatedly. Even with this step, we gen-
erally do not have guarantees that we will converge to an optimal policy without satisfying
some strong assumptions. However, we can get stronger convergence results with approxi-
mate policy iteration than we can get with approximate value iteration (see Bertsekas 2011b
and Powell and Ma 2011 for more complete discussions of approximate policy iteration).

9 Conclusions

This paper provides a broad overview of approximate dynamic programming. In the oper-
ations research community, ADP has been equated with the use of value function approx-
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imations which has separated it from the stochastic programming community (a form of
lookahead policy) or simulation optimization (which typically involves policy search). By
contrast, the reinforcement learning literature has embraced value function approximations,
“policy gradient algorithms” (policy search using a parametric representation for a policy
function approximation), and a variety of methods under names such as roll-out heuristics
and Monte Carlo tree search (lookahead policies).

Dynamic programming is widely associated, both in computer science and operations
research, with small action spaces. We review the concept of the post-decision state variable,
and illustrate how this can be used, with a properly designed value function approximation,
to handle sequential optimization problem where the decision vector xt has thousands (even
tens of thousands) of dimensions.

Our presentation closes with a discussion of algorithmic issues, including the exploration-
exploitation problem, that arise when using value function approximations. We divide
the steps involved using value function approximations between choosing an architecture
(lookup table, parametric or nonparametric), estimating the value of being in a state and
then updating the value function approximation. We close with a brief discussion of the two
major algorithmic strategies, approximate value iteration and approximate policy iteration,
and the convergence issues that arise with these algorithms.
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