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The most common approach for modeling and solving routing and scheduling problems in a
dynamic setting is to solve, as close to optimal as possible, a series of deterministic, myopic
models. The argument is most often made that, if the data changes, then we should simply
reoptimize. We use the setting of the load matching problem that arises in truckload trucking
to compare the value of optimal myopic solutions versus varying degrees of greedy, suboptimal
myopic solutions in the presence of three forms of uncertainty: customer demands, travel times,
and, of particular interest, user noncompliance. A simulation environment is used to test
different dispatching strategies under varying levels of system dynamism. An important issue
we consider is that of user noncompliance, which is the effect of optimizing when users do not
adopt all of the recommendations of the model. Our results show that (myopic) optimal
solutions only slightly outperform greedy solutions under relatively high levels of uncertainty,
and that a particular suboptimal solution actually outperforms optimal solutions under a wide
range of conditions.

The challenge of optimizing routing and schedul-
ing problems in a real-time setting has been receiv-
ing increased attention (see, for example, PSARAFTIS,
1988). The most common approach to solving these
problems is to solve a model using the data as they
are known at a certain point in time, and then re-
optimize as new data become available. Researchers
in logistics typically work to find the best possible
solution for a problem instance. In some cases, this
may involve solving little more than an assignment
problem or network problem (e.g., POWELL, 1996) or
a more complex integer programming problem (such
as those described in DESROSIERS, SOLOMON, and
SOUMIS, 1995). In harder problems, such as classical
vehicle routing, optimal solutions are very hard to
find, raising the question of whether the additional
effort is worth it. In related areas, such as machine
scheduling, it is common to solve these problems
using greedy heuristics (see GRAHAM, 1966; ALBERS,
1997; and the general book PINEDO, 1995, and the
references cited there). This field has received con-
siderable recent attention from the computer science

community in the form of the study of on-line algo-
rithms (SLEATOR and TARJAN, 1985).

Routing and scheduling in a dynamic environ-
ment has been studied by a number of authors. One
line of research has sought to analyze the properties
of greedy heuristics for stochastic, dynamic prob-
lems (BERTSIMAS and VAN RYZIN, 1991; BERTSIMAS
and RYZIN, 1991; BERTSIMAS and SIMCHI-LEVI, 1996;
BERTSIMAS, CHERVI, and PETERSON, 1995). Others
have sought to develop explicit stochastic, dynamic
models that incorporate both here-and-now informa-
tion and some forecasts of future activities (see, for
example, DROR, LAPORTE, and TRUDEAU, 1989; LA-
PORTE and LOUVEAUX, 1990; STEWART and GOLDEN,
1983; TRUDEAU and DROR, 1992; POWELL, 1996).

One of the challenges of classical vehicle routing
problems is that it is looking to solve a stochastic
version of a problem where the deterministic version
remains computationally intractable and, for most
problems, impossible to solve to optimality. Related
research has focussed on problems where the deter-
ministic versions are relatively easy to solve, mak-
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ing the stochastic version somewhat easier to ana-
lyze. One problem in this class looks at managing
fleets of vehicles over time, and the closely related
problem of assigning drivers to full-load movements.
One of the first deterministic models of a fleet man-
agement problem was posed by WHITE (1972), which
was followed by a series of papers suggesting and
solving different approximations of a multistage,
stochastic dynamic program (JORDAN and TURN-
QUIST, 1983; POWELL, 1986, 1987, 1988; and
FRANTZESKAKIS and POWELL, 1990). Recently,
CHEUNG and POWELL (1996) showed that, for this
problem class, explicit stochastic models can signif-
icantly outperform deterministic models in rolling
horizon experiments. Despite this research, most
models in practice are basically deterministic and
myopic. All of these papers were oriented toward the
management of large fleets of vehicles.

Recent research (SCHRIJVER, 1993; Powell, 1996)
has focussed on the problem of matching individual
drivers to full-truckload movements, a problem
called the load matching problem in truckload truck-
ing. This problem class is much closer to vehicle
routing problems in its basic characteristics, with
the important exception that there is no in-vehicle
consolidation. In addition, the loads are typically
very long in duration, often requiring one or more
days to complete. The advantage of this problem
structure is that a single instance of the problem is
a network assignment problem, considering the
matching of drivers to loads. This problem is easy to
solve to optimality, and easy to update with real-
time information. Schrijver (1993) used a greedy
heuristic for matching drivers to loads in a study of
the value of real-time communications. The research
in Powell (1996) compared a myopic model to an
approximation of the stochastic, dynamic problem,
and showed that the stochastic, dynamic model out-
performed the myopic model in rolling horizon ex-
periments.

In this paper, we consider only myopic models of
the load matching problem for truckload trucking.
Following common engineering practice, our plan is
to solve a given instance of the problem to optimal-
ity, and then reoptimize as new information be-
comes known. This is the approach that is widely
used in commercial applications. Our interest is in
comparing optimal solutions of sequences of deter-
ministic, myopic models, obtained by solving the
network assignment problem, to various approxima-
tions including greedy solutions that simply assign
drivers to the best load. We study these algorithms
under three forms of system stochasticity. First, we
consider the random process of shippers calling in
loads. Second, we investigate the effects of network

performance by modeling randomness in travel
times, which creates uncertainties around the ar-
rival time of a driver at the destination. And third,
we introduce and investigate the general issue of
user noncompliance. Because no model is perfect,
users routinely override the solutions of driver as-
signment models. As a result, an additional level of
randomness arises in the actual use of the recom-
mendations of these models. In practice, several
companies report that average usage of these mod-
els is typically below 60%, and good performance is
considered around 70%.

We believe that the issue of user noncompliance is
fundamental to all models, static and dynamic, and
that it raises the question of whether so-called opti-
mal algorithms are indeed optimal. For example, if
real-world schedules do not use 100% of the solution
produced by a crew scheduling model (in a static,
planning environment), was the original solution
even optimal? In this paper, we show that, in the
presence of user noncompliance, optimal solutions
will be outperformed, over time, by algorithms that
are more local in nature. We feel this has broad
implications for the design of algorithms in other
settings (vehicle routing, crew scheduling), which
seek to find optimal solutions to sequences of deter-
ministic, myopic problems.

To address these issues in a systematic fashion,
we have developed a simulation architecture to sim-
ulate truckload dispatching operations. This archi-
tecture consists of three modules: a network optimi-
zation model for assigning drivers to loads, a fleet
simulator/dispatcher module, and a demand gener-
ation module. The network optimization model is a
production system that is in use at a major motor
carrier. The modules communicate with each other
through files, closely simulating the actual flow of
data at a carrier (where the optimization model typ-
ically runs on a separate workstation, communicat-
ing with the carrier’s primary management informa-
tion system through a database). Our experiments
used the actual data from a large motor carrier,
scaled down to simulate a smaller fleet (of 400
trucks), a step that accelerated the running of each
simulation (which need to run much faster than real
time).

The primary contributions of this paper are as
follows.

● We show that different forms of system stochas-
ticity have the effect of reducing the value of
optimality when solving sequences of subprob-
lems in dynamic settings, and we show that a
solution that is suboptimal for a particular prob-
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lem instance actually provides higher solution
quality over an extended simulation.

● We introduce and study for the first time the
issue of user noncompliance, and show that this
form of uncertainty can, in particular, reduce
the value of optimal solutions. Noncompliance is
an easy to measure barometer of the quality of
an optimization model as perceived by the user.
Even relatively low levels of user noncompliance
(say, 30% modification of model recommenda-
tions) indicate that partially greedy solutions
can outperform optimal solutions. At the same
time, similar levels of user noncompliance sig-
nificantly reduced the gap between an optimal
solution and a greedy solution.

● We experimentally quantify the effects of differ-
ent forms of system uncertainty, providing a
measure of the value of reducing these forms of
uncertainty on actual system performance.

The paper is organized as follows. Section 1 de-
scribes different perspectives of optimality in the
context of dynamic routing and scheduling. Section
2 presents an overview of dispatching operations in
the truckload motor carrier industry, which we use
as our problem setting. Section 3 presents the opti-
mization model that is used to solve the problem.
Next, Section 4 discusses some of the issues that
arise in global versus local optimization. These is-
sues are central to any optimization problem where
the results will be implemented over time, during
which the status of the system may change. Then,
Section 5 gives an overview of our simulation archi-
tecture, which takes advantage of a production load
matching system that is in use at a major motor
carrier. This is followed in Section 6 by a description
of the specific modules. Section 7 describes the ex-
perimental design, and the results are reported in
Section 8. Section 9 summarizes the major conclu-
sions of the paper.

1. PERSPECTIVES ON OPTIMALITY

TO PLACE THIS PAPER in the proper context within
the research community, it is important to briefly
discuss the meaning of the word “optimal.” It is
common engineering practice to formulate a mathe-
matical model, typically with numerous simplifica-
tions to ensure tractability, and then to seek an
optimal solution to this model. We all accept that the
word optimal is used in the narrow sense of solving
a specific mathematical representation, without
making any claims regarding the impact on the real
problem, because these impacts fall outside of what
can be measured experimentally using scientifically

rigorous standards. In the context of dynamic prob-
lems, it is necessary to solve a sequence of problems
over time as new information arises, thereby simu-
lating the real process.

In this setting, we must explicitly acknowledge
three models: the sequences of subproblems that are
solved over time (each of which is a model with its
own objective function), the larger simulation (with
its own cost stream), and the even larger problem in
the real world, which must reflect data errors and
other biases.

Let � � {�0, �1, . . . , �t, . . . , �T} be a sequence
of random outcomes over a horizon � � {0, 1, . . .,
T}, where � � �. We would then define a probabil-
ity space (�, �, �) where � is the �-algebra on �,
and � is a probability measure defined over �. Let
�t represent the sequence of sub-�-algebras contain-
ing the information known up to time t, where �t �
�t�1. Let ft

�(xt��t) be the objective function at time
t given an information set �t at time t. The super-
script � captures both the structure of the function ft
and any parameters used to create the function (in-
cluding, for example, planning horizons, discount
factors, and any cost factors introduced so that solv-
ing ft at time t will produce a solution with good
long-run behaviors). We can think of ft

�, � � � as
the set of all possible functions (or policies, if you
wish) that we could use at time t. Now let xt

�(�t) �
arg minxt�X ft

�(xt��t) be a sequence of �t-adapted
decisions (meaning that the function x� can only use
information in �t). (Note: The concept of �t-adapted
decisions is similar, but not identical, to the concept
of nonanticipativity used in the stochastic program-
ming community, which is expressed as a constraint
requiring that one decision be chosen in time period
0 for all possible outcomes in the future. Instead of
saying that a decision is �t-adapted, some authors
prefer to say that the decision is �t-measurable.)

The decision function xt
�(�t) returns a set of deci-

sions that are to be implemented at time t given the
events �t. We write x�(�) to represent the decision
made for a particular realization �, with the implicit
understanding that the function x� is �t-measur-
able. In determining this vector, we need to consider
both here-and-now costs at time t, and possibly ap-
proximate estimates of costs that may be incurred in
the future, but which are subject to solving xt�

� for t�
� t. For example, we may decide that a vehicle
should go from customer i1 to customer i2 right now;
this is because we have formed a tour that consists
of (i1, i2, i3, i4). The objective function ft

� would be
formulated to capture these future decisions, and
may also include approximations of what would hap-
pen even farther in the future (as was done in Pow-
ell, 1996). However, only the vector xt

� is actually
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implemented. Let ct represent the cost of these de-
cisions. Then, the costs incurred at time t would be
ctxt

�, and the total costs over the entire simulation
would be F(x, �) � �t�� ctxt

�(�), where x �
(x0

�, x1
�, . . . , xT

�).
We are now ready to talk about different types of

optimality. Our goal as modelers is to solve

max
x�X

F� x	 � E� �
t��

ctxt
���	� ,

where X is the space of all feasible �-adapted con-
trols xt

�, � is the planning horizon, and the expec-
tation operator is over all outcomes in �. In our
hierarchy of optimization problems, this is our
larger problem. In practice, we solve F(x) using a
series of subproblems ft

�(xt) in an effort to find a
solution that maximizes F(x). F(x), in turn, is noth-
ing more than a proxy for the even larger problem in
the real world, which must also capture issues that
we are unable to put into our model.

In the arena of routing and scheduling, it is very
common to use myopic solutions that are then up-
dated as new information arrives. Although this is
the simplest possible option for most classes of rout-
ing and scheduling problems, it remains a combina-
torically difficult problem. Thus, even finding the
optimal solution to this relatively simple problem is
a nontrivial task. Because ft

�(xt) represents a single
instance of a classical optimization problem, it is
understandable that a considerable amount of effort
will be devoted toward optimizing this problem, re-
alizing that it is simply a single snapshot of a larger
problem. Of course, even the larger problem, repre-
sented by F(x), is little but an approximation of an
even larger problem that encompasses information
that is not captured within the model. Because dy-
namic routing models must run in production, this
even larger problem, which must reflect the insights
and biases of real users, must begin to be addressed
within the context of our research.

In this paper, we model the effect of the even
larger problem through a process we call user com-
pliance. In this process, we present a recommenda-
tion to the user, at which point the recommendation
is accepted or rejected. We make the assumption
that the cause for rejecting a recommendation re-
flects information outside the domain of the model,
and, hence, we model it as an exogenous random
variable. Specifically, for a particular decision, say
xij, we introduce a random upper bound uij(�) � 1
with probability pd, and 0 with probability (1 
 pd).
Only when we choose xij � 1 do we then learn the
value of uij(�) where uij(�) � 1 represents the user
accepting the recommendation, whereas uij(�) � 0

represents a rejection. In the event of a rejection, it
would be possibly to exclude a solution and reopti-
mize. In our work, we followed industry practice in
this setting and used the dual variables from the
optimal solution to suggest alternatives.

Because the physical process representing a user
accepting a decision is extremely complex, it is cus-
tomary to model a process such as this as a random
variable. This modeling approach is comparable to
adding a noise term at the end of a function to
capture all the nonmeasurable effects. We feel that
this representation of the user compliance issue rea-
sonably captures the effects of the model adoption
process, and offers the benefit of being simple and
experimentally analyzable. Given that we cannot
observe the real process of why users reject model
rejections (and we have tried very hard to do just
this), the next best alternative, and far superior
than ignoring the issue entirely, is to model the
acceptance process as a random variable.

In the presence of user noncompliance, as well as
other forms of uncertainty, it is reasonable to ask
the question: what is the value of an optimal solu-
tion of the function ft

�(xt)? Our work focuses on a
problem where finding the optimal solution, given
conventional modeling practice, is actually quite
easy, allowing us to compare solutions that solve
ft

�(xt) optimally to those that solve it only approxi-
mately. We consider only myopic models, in part
because these are the models that are most widely
used in practice, and more importantly, because we
do not want to get into the tremendously rich and
complex arena of developing approximations of fu-
ture activities. Given the emerging research into the
application of vehicle routing models in dynamic
settings, which focuses primarily on the heuristic
solution of myopic models, we feel that our choice of
research methodology is appropriate and produces
interesting results. Most significantly, we feel that
the issue should be considered when testing differ-
ent search algorithms in the context of harder prob-
lems such as dynamic vehicle routing. For example,
in the presence of user noncompliance, time-con-
suming search heuristics may prove to add little or
no value in a dynamic environment.

We do not claim that our simple model of user
compliance precisely captures the complex physics
of human thought. In support of our approach, we
draw on the long history of mathematical models
that use random variables to capture highly complex
processes. We do claim, however, that the estimates
that we obtain of the value of optimal solutions in a
dynamic environment are more accurate using our
model of user compliance than they would be if we
ignored the issue altogether. We further claim that
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an algorithm that provides a better solution to our
model of user compliance is likely to be a more
robust algorithm that will provide better results in
practice.

2. THE DYNAMIC ASSIGNMENT PROBLEM IN
TRUCKLOAD OPERATIONS

WE FIRST PRESENT an introduction to the dynamic
assignment problem and its relationship to truck-
load motor fleet management (see Schrijver, 1993
and Powell, 1996 for a much more complete discus-
sion). The dynamic assignment problem involves the
allocation of resources to perform tasks over a dis-
crete-time dynamic network. Only some fraction of
the relevant tasks in the network is known initially,
with additional tasks becoming known in real time
as time progresses. This means that the optimal
solution for the problem is constantly changing as
new information becomes known. The result may be
that the viability of a previously optimal solution is
reduced significantly in light of new information.

In truckload applications, drivers and loads are
spread almost continuously over space. At a point in
time, the challenge is to match drivers to loads, as
illustrated in Figure 1. The problem is complicated
by the fact that there is much more to the problem
than simply finding the closest driver to a load.
When finding a driver, a planner has to balance
deadhead (empty) miles, the availability of the
driver (some of the drivers may only be available
late in the day), the pickup and delivery windows of
the load, where the driver lives and whether the load
will get him home on time, the skill and experience
of the driver (some shippers require top-rated driv-
ers), whether the driver is a single driver (which can
only drive 10 hours at a stretch) or a team (which
can drive almost continuously), and other character-
istics. In addition, the planner needs to consider the

possibility of loads that will be called in later in the
day.

The operations of a truckload carrier are rela-
tively simple in concept. A shipper calls the dis-
patching office to request the pickup of a load at a
specific location within a specific time window. This
time window may begin on the day of the call-in or it
may begin some time in the future. The load must be
delivered to a specified location within a specific
time window. Other relevant information, such as
special driver and trailer requirements, is also sup-
plied by the shipper.

The dispatching situation for a major truckload
carrier generally involves multiple human dispatch-
ers each working within a specified geographic re-
gion. In the absence of decision support systems,
assignment decisions are made more or less inde-
pendently of the actions of other dispatchers. Such a
pattern of multiple dispatchers acting this way in
relative isolation from one another tends to produce
a geographic patchwork of locally greedy optimiza-
tions. These local optimizations mostly neglect the
effects downstream in space and time of assign-
ments. The result is a solution that is suboptimal
from a mathematical standpoint as compared to a
solution derived from an optimization decision sup-
port system.

3. THE LOAD MATCHING OPTIMIZATION MODEL

THE LOAD MATCHING problem assumes that at a
given point in time t, we have a set of loads �t and
a set of drivers �t, and we need to match drivers to
loads. Some of the loads may not be available for
pickup until some time in the future (possibly a day
or more) and some of the drivers are currently pull-
ing loads, and also will not be available until some
point in the future (the driver estimated time of
arrival (ETA)).

For each potential assignment of a driver d � �t
to a load l � �t we can assign a cost cdlt

a (this cost
will change with time). In addition, we must con-
sider the cost of refusing to service a load, and the
cost of holding a driver idle. The problem here is to
decide which drivers to assign to which loads to
minimize the total costs (maximize total profits)
throughout the network. An example of the driver
assignment problem (using only assignment costs) is
shown in Figure 2.

Loads are characterized by a) an origin and des-
tination, b) a pickup time window and a delivery
time window, and c) a vector of attributes, which
might include such items as type of driver required
and load priority. Drivers are characterized by a) a
location at time of availability, b) a time of availabil-

Fig. 1. A simplified spatial assignment network.
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ity, which may be in the future (if the driver is
currently assigned to a load) or the past (if the driver
is waiting for assignment), and c) a vector of at-
tributes including special information like time
spent on duty, experience level, and home domicile.

We can formulate this assignment problem as a
simple static assignment model as follows.

�t �the set of all loads known to the system at
time t

�t �the set of all drivers in the network at time t
cdlt

a �the cost of assigning driver d to load l at
time t

clt
r �the cost of not assigning any drivers to load l at

time t (the refusal cost)
cdt

h �the cost of not assigning driver d to any load at
time t (the holding cost).

Our decision variables are

xdlt
a � � 1 if driver d is assigned to cover

load l at time t
0 otherwise,

ylt � � 1 if load l is refused at time t
0 otherwise,

xdt
h � � 1 if driver d is not assigned to any load

0 otherwise.

The objective function is then given by, for a given
point in time t,

min
xa, xh, y

ft�xt	 � � �
d��t

�
l��t

cdlt
a xdlt

a � �
d��t

cdt
h xdt

h � �
l��

clt
r ylt�

(1)

subject to

�
d��t

xdlt
a � ylt � 1 l � � t (2)

�
l��t

xdlt
a � xdt

h � 1 d � � t (3)

xdlt
a , ylt , xdt

h � 0 l � �, d � � t .

We let �l be the dual variable for Eq. 2 and �d be the
dual variable for Eq. 3. Note that ft(xt) represents
the costs that would be incurred at time t if xt were
chosen. This function is purely greedy and makes no
effort to incorporate factors that might improve the
selection of xt to find solutions that would produce
higher values for the multistage problem. In Section
1, the notation ft

�(xt) refers to a function that incor-
porates not only the immediate effect of a solution
(represented by ft(xt) above) but any other adjust-
ments that might be included to produce better long-
run solutions. In the remainder of this paper, we use
only ft(xt) because we are considering only solutions
of myopic models.

The optimal solution of Eq. 1 can be found by
solving a simple assignment problem as depicted in
Figure 2. In more complex problems, such as those
that involve routing a driver through a sequence of
points (for example, if the loads are short, or if there
is in-vehicle consolidation), we may have to resort to
heuristic solutions. In a dynamic setting, it is rea-
sonable to consider the use of suboptimal or even
greedy solutions. For this reason, we let � be the
class of algorithmic strategies (or policies), and let
xt

�, � � � be the solution obtained using policy �.
The cost function cdlt

a for a truckload motor carrier
has to capture a number of performance measures.
A successful carrier must minimize empty miles,
maximize on-time service for loads, maintain a high
level of driver satisfaction, and maximize equipment
productivity. In the truckload arena, where drivers
often spend several weeks away from home, driver
satisfaction is measured by our ability to get drivers
back to their home by a certain time. Other issues
include whether a driver has the right training to
handle the needs of a particular load; whether his
truck is too heavy to handle a particular load; and
whether he is considered sufficiently reliable to
meet the needs of an account.

We denote all these factors using a multidimen-
sional cost function that is then collapsed into a
single utility function. Suppressing the time param-

Fig. 2. A simple driver assignment problem. The cdlt on se-
lected arcs represent the arc cost for the assignment of driver d to
load l at time t.
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eter t, we may define

� �set of cost factors to be considered in
the assignment of a driver (such as
empty miles, on-time service, and so
on)

ad �vector of attributes of driver d
bl �vector of attributes of load l
rl �revenue, or reward from picking up a

load
� �vector of parameters that are used to

translate a performance measure
(such as arriving late to pick up a
load) into a cost.

cmt
a (ad, bl, �)�cost of factor m � � of assigning a

driver with attribute vector. ad to a
load with attributes bl at time t,
given utility parameter vector �

The net total contribution of assigning driver d to
load l at time t can now be expressed as

cdlt
a ��	 � rl 	 �

m��

cmt
a �ad , bl , �	. (4)

In this paper, we are using the cost function that is
in production at a major motor carrier. The param-
eters have been carefully chosen to reflect what the
carrier believes is an accurate measure of the factors
that impact the performance of the behavior. Thus,
when we translate a late pickup into a $50 cost, we
treat this as a real cost, comparable to incurring $50
in transportation costs.

4. GLOBAL VERSUS LOCAL OPTIMIZATION OF THE
SUBPROBLEM

THE EASE WITH WHICH the driver assignment model
can be solved has spawned a cottage industry of
software vendors who supply models of this sort to
the truckload industry. A major selling point was
the ability to perform global optimization in an in-
dustry where the driver assignment problem was
solved manually, using methods that tended to pro-
duce locally good solutions. Researchers are actively
developing similar globally optimal solutions for
other problem classes in vehicle routing and sched-
uling (see Desrosiers et al., 1995 and FISHER, 1995
for recent surveys of the field). Of course, the value
of a globally optimal solution depends, as always, on
the quality of the data. These references all refer to
global optimization in the context of providing a
mathematically optimal solution to an individual
subproblem ft(xt). For the remainder of this paper,
all references to global optimization refer to our
ability to find the optimal solution to ft(xt) as op-

posed to a heuristic or suboptimal solution (as might
be used in harder problems such as vehicle routing).

Real-time problems offer a special challenge to the
optimization community because it is difficult to get
quality data in a timely way. For example, humans
possess a certain amount of “head knowledge,”
which is information that they have acquired by
telephone, conversations, visual inspection, and ex-
perience that is not in the computer. In addition,
there is information that no one knows. The most
significant form of uncertain information is the de-
mands of the customers, but we would also include
weather delays, breakdowns, and failure of drivers
to perform a given task.

We believe these factors are fundamental to any
application. The result is that the recommendations
made by a model are not always implemented. We
refer to this effect as user noncompliance, which
measures the degree to which users actually imple-
ment the recommendations of a model. User non-
compliance often reflects information the user has
that the system does not. The presence of user non-
compliance implies that globally optimal solutions
are, in fact, not optimal at all. Humans reflect this
property intuitively by making decisions that are
good in a local sense (both spatial and temporal) but
which may not, in theory, properly take into account
their impact on other parts of the system (in space or
time). For this reason, software developers have ar-
gued that global optimization models can outper-
form humans, overcoming the limitations humans
have in dealing with large problems.

We can quickly illustrate the impact of uncertain
data on solution quality using a simple illustration
shown in Figure 3. Here, we show driver A covering
load 1, driver B covering load 2, and driver C cover-
ing load 3. Driver C would prefer to cover load 1, but
if this were done, driver A would not have very
attractive options. A few minutes later, a new load is
called in that is better for driver A, allowing driver C
to switch to load 1 after all. At this point, we learn
that driver B would rather cover load 3 instead of
load 2.

Given the same example, it would not be uncom-
mon for a human to assign driver C to load 1 and
driver B to load 3, leaving both driver A and load 2
unassigned. Because we assumed that driver A did
not really have any attractive assignments, the
planner might keep driver A unassigned while hop-
ing for something better. This would be an instance
of using a greedy solution now to achieve an overall
better solution later.

In practice, humans making decisions on an oper-
ational basis spend relatively little time trying to
find the best solution for a given situation. Instead,
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they spend most of their time simply verifying that
the data they are looking at is, in fact, correct. Given
the inherent uncertainty in the data (which may
have nothing to do with forecasts of future customer
activities), it is perhaps not surprising that they
limit their searches for good solutions to small, ver-
ifiable subsets of data. Below, we show that such a
strategy can actually outperform a globally optimal
solution.

5. SIMULATOR ARCHITECTURE AND DEVELOPMENT

WE HAVE DEVELOPED a specialized simulator archi-
tecture to test hypotheses regarding the behavior of
different dispatching strategies in a dynamic envi-
ronment. A primary goal of our architecture was to
take advantage of a production load-matching sys-
tem that has been developed and implemented for a
large truckload motor carrier. For this reason, we
adopted a modular architecture consisting of three
components: a network optimization module, a fleet
simulator/dispatcher module, and a demand-gener-
ator module. The interaction between these three
modules is represented graphically in Figure 4.
Each of the three modules runs independently, co-
ordinated through the use of a common clock object
(just as a real system would operate). Of course, the
simulation runs at a rate faster than real time.

The simulator architecture allows a wide variety
of dispatching situations to be simulated. When the

dispatcher determines that a driver or load needs to
be matched, it sends a query to the optimizer asking
for information about possible assignments. The op-
timizer, in simulated real time, sends over a small
file containing a number of possible loads that a
driver may be assigned to, along with the full set of
costs and duals. Depending on parameter settings,
the dispatcher may implement exactly what the op-
timizer recommends, or we may allow it to make
other choices.

As the simulation progresses, two types of events
can occur: drivers become available for assignment
to available loads, and new loads come into the net-
work for assignment. A schematic of the driver as-
signment-availability process is shown in Figure 5.
The letter labels in the diagram refer to the various
modules used at each step in this process. As a
driver becomes available (in simulation time) for
assignment, the simulator module (A) requests from
the optimization module (B) driver–load arc-costing
information for all loads with which the driver can
be feasibly paired. This costing information is of the
type required for the costing functions described in
Section 3 and includes travel distances, availability
times, and load characteristics. In addition, the most
recent set of dual variables from the network algo-
rithm is supplied from which the arc reduced costs
may be calculated. The optimizer also supplies the
flow on each arc, because more than one arc may
have zero reduced cost (in such an event, the simu-
lator will always choose the arc to which the opti-
mizer assigned flow). From this information, a dis-
patching function inside the simulator module (C)
makes a driver–load assignment decision (which
may include no assignment at all), and updates all

Fig. 3. Revised optimal assignment in light of new service
demand information.

Fig. 4. The multimodular fleet simulation system. The diagram
shows the main modules and communication pathways between
them.
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relevant driver, equipment, and load information,
such as future driver time of availability, and load
availability status. The assignment selection, infor-
mation regarding any currently uncovered (rejected)
loads, and any other desired information is then
written to a log file for later analysis by the user (D).
Driver and load status update information are writ-
ten to flat files for input by the optimizer module (E),
which then supplies a reoptimization of the network.

This driver assignment process is completely gen-
eral in that it can be used with any optimization
algorithm, or even with no algorithm at all, so long

as the appropriate cost and assignment information
is given to the simulator module. The assignment
decision-making logic is also quite flexible in that
the user can specify exactly how and what costing
information is to be used. This, for example, allows
the user to specify that the simulated dispatcher
exactly implement the solution of the optimization
algorithm being used and then compare the result-
ing solution to that obtained by using some arbi-
trarily defined costing function. Such a function
might be used to represent a human dispatcher’s
internal utility function.

Fig. 5. Sequence of multimodular simulator actions occurring when a driver becomes available for assignment.
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6. SIMULATOR MODULES AND PROCEDURES

IN THIS SECTION, we describe some relevant details
specific to the three modules that comprise the fleet
simulation architecture: the optimizer, the simula-
tor module (or interchangeably, the fleet simulator/
dispatcher module), and the demand generator. We
also discuss the use of the dispatcher selection prob-
ability parameter, pd, and the implementation of
random travel times in the simulation architecture.

6.1 Optimizer

The driver assignment optimizer consists of a net-
work generator and a network simplex code for solv-
ing the matching problem. The code is a production
dispatch system that is in use at several carriers.
The cost functions that determine the penalties for
violated delivery windows or for not returning a
driver to his home on time are the same costs that
are used in production. For this reason, we have
treated these costs as real costs, because they have
been chosen to accurately capture the tradeoff be-
tween meeting these goals and running additional
empty miles (which is a hard, well-defined cost).

6.2 Demand Generator

The demand generator uses an actual historical
demand file, from which it draws a random sample.
As the simulation progresses, each load is read in,
and a random number is drawn to determine
whether it is to be included in this run. If it is, then
the generator waits until it is the right time, com-
paring the actual call-in time of the load to the
simulated wall-clock time. When it is the right time,
the generator sends the load over to the dispatch
simulator.

The use of a real dataset means that we have an
accurate picture of actual call-in processes, and real
data for the attributes of the loads, including pickup
and delivery windows. By using only a sample of
these loads, we were able to run repeated simula-
tions using different random number seeds, allow-
ing us to obtain repeated observations of a particu-
lar optimization process. In our work, we used a 30%
sample of the load, reflecting the fact that our fleet
size was approximately 30% of the size of the actual
fleet used by the carrier. When we run repeated
simulations with the same set of parameters, then
we are simply choosing different samples of loads.

6.3 Fleet Simulator/Dispatcher

The simulator module performs two main func-
tions. The first is the actual simulation of a truck-
load fleet, and the second is the simulation of a
human dispatching operation. The main steps in

these functions are presented in Figure 6. The fol-
lowing notation is used in this figure.

tst �the simulated start time (in seconds) of the
simulation run

tend�the simulated end time (in seconds) of the sim-
ulation run

tcur �the simulated current time (in seconds) of the
simulation run

d �a given driver
�t �the set of all drivers in the network at time t
�t

a �the set of all drivers available for assignment
at time t, (�t

a � �t).

The costing of potential assignments described in
this figure is done using a modified reduced cost
formula. This formula uses a dual variable discount-
ing factor to vary the degree of dual variable utili-
zation in assignment decisions. The formula used is
as follows:

c� dlt�
	 � cdlt � 
�� lt 	 �dt	, (5)

where

c�dlt(
)�the adjusted reduced cost for assigning
driver d to load l at time t

cdlt �the arc cost for assigning driver d to load l
at time t

�dt �the dual variable for the node for driver d at
time t

�lt �the dual variable for the node for load l at
time t


 �the dual variable discount factor.

Potential assignments for a given driver are ranked
for selection purposes from lowest to highest cost
using c�dlt(
). For full global optimization, we set 
 �
1.0, which gives us the equivalent network simplex
reduced cost. For full greedy optimization, we set

 � 0.0, which gives a ranking according to arc costs.
Values of 
 in the interval (0, 1) are used to repre-
sent intermediate strategies.

6.4 The Dispatch Function

As discussed above, the presence of user noncom-
pliance with the optimization system’s recommen-
dations is a major factor in the implementation of
optimization decision-support systems. To simulate
this process, we define

udlt�w	

� �1 if the user accepts the recommendation
xdlt � 1 at time t

0 otherwise
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pd � the probability that a dispatcher will

accept a potential driver to load assignment

� P�udl�w	 � 1�.

For a given realization w, we can determine which
load a driver will be assigned to, allowing us to
define the dispatch function for a driver d � �t by

xdlt
� �
, w	 � �1 if l � argmin

l���t


c� dl��
	 �udl��w	 � 1�

0 otherwise.
(6)

Equation 6, then, defines a class of dispatch func-
tions parameterized by 
. If 
 � 1, then we obtain
the optimal solution of ft; if 
 � 0, then we obtain a

Fig. 6. Main fleet simulator/dispatcher module procedure.
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greedy solution. 0 � 
 � 1 produces a range of
intermediate solutions. Of course, many other types
of decision functions are also possible. For example,
we could use a stable marriage algorithm (see, for
example, GUSFIELD and IRVING, 1989) or a local
search heuristic. Our function provides an elegant
knob that takes us smoothly from greedy local solu-
tions to optimal solutions.

For example, the first assignment will be selected
by the simulated dispatcher function with probabil-
ity pd and rejected with probability (1 
 pd). If it is
rejected, the second-best assignment will then be
selected with probability pd and rejected with prob-
ability (1 
 pd). This process continues until either
an assignment selection is made, or the number of
possible assignments rejected equals a specified
user parameter n. Should n potential loads be re-
jected (with probability (1 
 pd)n), the given driver
is assigned to remain idle for a specified time period,
tidle. For our experiments, we set n � 5 and tidle � 60
minutes of simulation time.

A problem that exists when using this logic is the
potential for the selection of excessively expensive
assignment arcs that would never actually be se-
lected by a real human dispatcher. For example,
when using a value of pd � 0.4, the chance of
selecting the fourth-best cost-wise assignment is
about 9%, and the fifth-best is about 5%. Because, in
reality, there are often not five realistic assignment
arcs for a given driver, these low-ranked arcs may
have very large arc costs and should be considered
infeasible from a common-sense standpoint. The in-
clusion of even a small number of such arcs in the
simulated dispatcher’s solution can skew objective
function values in an unrealistic fashion. To prevent
selection of such arcs, a cost cap of $500 was placed
on arcs considered feasible for assignment.

6.5 Objective Function

We may now define the total net contribution (or
profit) incurred from running a simulation as

F�
, pd, �	 � Epd� �
t�tst

tend �
d��t

a

�
l��t


cdlt��	 xdlt
� �
, w	� ,

(7)

where we choose now to maximize profits over a
simulation (instead of minimizing costs at a given
point in time). The expectation is over all random
events, including the likelihood of user acceptance,
given by the parameter pd (hence the explicit repre-
sentation of pd in the expectation). We approximate
the expectation by running several simulations us-
ing different random number seeds. Each run of the

simulation is a function of 
 and pd. In addition, our
simulations considered variations of other problem
characteristics, notably the presence of randomness
in travel times and the dynamics of the process by
which customer demands become known to the sys-
tem.

6.6 Random Travel Times

In transportation applications, one of the most
important sources of noise arises in travel times. In
the load matching problem, travel times are impor-
tant because they impact our ability to estimate
when a driver will become available in the future,
and whether this driver could be assigned to a load
with a pickup window. To analyze the impact of
errors in travel times, we first define

dod�the distance in miles from load origin to desti-
nation

teta�the expected travel time in hours
�60dod/r

r �the average rate of speed (typically 40 mph).

We calculate a realization of an actual travel using

tactual � U�tmin , tmax	

� the real travel time in hours,

where U(a, b) is a random variable uniformly dis-
tributed over the interval [a, b]. The bounds of our
distribution are determined using

tmin � the minimum possible travel time,

� teta 	 �ws�teta

tmax � the maximum possible travel time,

� teta � �we�teta ,

where

ws �the number of standard errors (�teta) prior to
the expected time to include in the random
variable window,

we �the number of standard errors (�teta) after the
expected time to include in the random variable
window,

� �noise intensity parameter ranging from 0.0 to
1.0. If � � 0, then there is no noise and we have
deterministic travel times.

During the simulated dispatcher’s costing of driver–
load pairs, real travel times for transit between load
origin and destination are obtained by the above
formulation and stored in the simulator module’s
data structures. When the simulator module selects
a pairing for assignment, it sends an updated ETA
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for the driver to the optimizer using teta. Thus, the
optimizer is planning future assignments using teta,
whereas the simulator maintains the actual arrival
time tactual.

In the event that tactual � teta, the driver will
arrive at the load destination and become available
for a new assignment earlier than expected. At this
time, the simulated dispatcher queries the optimizer
module to obtain costing information for feasible
loads for the given driver. This costing information
will be based on teta. The simulated dispatcher then
recosts potential assignment arcs from the optimizer
based on the early arrival, and makes an assign-
ment selection using the procedure described in Sec-
tion 6.3.

Alternatively, if tactual � teta, the driver will arrive
at the load destination and be available for a new
assignment later than expected. When the simula-
tion clock reaches and then passes time teta, the
optimizer continually resets teta to be the current
time.

Randomness in travel times can have the effect of
encouraging greedy solutions. Consider the situa-
tion where drivers 1 and 2 are available now, and
driver 3 will become available later in the afternoon.
Driver 1 is 40 miles away from a load, driver 2 is 90
miles away, and driver 3, when he arrives, would
only be 20 miles away. Assume that driver 3’s esti-
mated time of arrival is 3 P.M., and the load must be
picked up before 5 P.M. A network model would
choose driver 3 to cover the load based on cost and
service considerations. In this case, we might assign
driver 1 to another load. Later, we might discover
that the ETA for driver 3 is inaccurate, and that he
will be delayed several hours. In this case, we have
no choice but to assign driver 2 to the load, at a much
higher cost.

7. EXPERIMENTAL DESIGN

OUR PRIMARY INTEREST is in determining the value
of optimal (myopic) solutions over local solutions
under different sources and degrees of uncertainty.
We measure the degree to which a decision is global
versus local through the dual discount parameter 
.
We consider three sources of randomness: a) ran-
domness in the dynamic arrival of loads to the sys-
tem; b) randomness in the travel times, captured as
errors in our estimates of driver ETA’s; and c) ran-
domness in the implementation of recommendations
by the user, which we refer to as the user noncom-
pliance problem. With each source of randomness,
we focus on finding the value of 
 that minimizes the
simulation cost function. In the process, we also

obtain estimates of the cost of each source of uncer-
tainty.

We measure the value of global over local solu-
tions through the dual utilization factor 
. Thus, our
experiments will focus on determining the optimal
value of 
 under different degrees and sources of
randomness.

The experimental data used for our runs was ob-
tained from a major truckload motor carrier. A sim-
ulated fleet consisting of 400 drivers was con-
structed by randomly picking from a data set
consisting of the carrier’s full staff of about 1500
drivers. An initial set of 100 loads was constructed
for input into the system. Subsequent to these initial
100 loads, the demand generator was set to provide
approximately 225 loads per day of simulation time.
Both the initial and subsequently generated load
sets were constructed by sampling from a set of
actual historical service demands called into the
carrier over a one-week period. Both the driver and
load sets were distributed throughout the continen-
tal U.S. Each run simulated seven days of actual
dispatching, run at a speed of 60 times real time,
resulting in a run time of 2.8 hours per run. For each
combination of parameter values simulated, with
the exception of the advance demand booking exper-
iment discussed in Section 8.1, we conducted five
simulation runs. For the advance demand booking
experiment, 10 runs were conducted for each param-
eter value studied. This was done to clearly delin-
eate solution behavior for this special case.

For each run, we statistically estimated a second-
order polynomial relating total simulation profits
(given by Eq. 7) to the dual discount factor 
. We
retained this second-order specification throughout
the analysis.

Our experimental design is based on running sim-
ulations with different values of 
 and pd, along
with other sources of randomness, and drawing con-
clusions regarding the appropriate decision function
(as specified by the parameter 
 in Eq. 6). Thus, we
need to think about what it means to compare val-
ues of F(
, pd, �) in Eq. 7 for different values of pd

and 
. Three issues need to be discussed. First is the
role of the utility parameter vector �, and what it
means to optimize over a mixture of soft and hard
costs. Second is the issue of comparing model runs
for different values of the user acceptance parame-
ter pd. Finally, we discuss the important issue of
comparing model runs for different values of 
.

The utility vector � controls the relative impor-
tance of different dimensions of the cost function. As
we discussed above, our costs include both quantifi-
able transportation costs, and other soft costs re-
lated to customer service and driver management.
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Our research addresses the challenge of finding a
decision function x� that maximizes F(
, pd, �)
within the class of decision functions defined by Eq.
6, parameterized by 
. At this point, we take as
given the utility function parameterized by the vec-
tor �. Thus, a dollar of lateness counts the same as a
dollar from traveling empty. In the context of our
research, this is the correct way to run the simula-
tion. The choice of the vector � is set by management
(in our case, this is the vector running in production
at a major motor carrier). It is not our job to question
whether we have the correct value of �, which has
been chosen to balance the importance of issues such
as on-time service and routing drivers through their
home with operating costs. Our simulations cover a
week of dispatching; tradeoffs of empty miles and
service, in contrast, are learned over years of watch-
ing customers switch to competitors because of poor
service. Our challenge, then, is to maximize
F(
, pd, �) for a given choice of �. For this reason,
we have made no effort to run simulations with
different values of �.

The second issue concerns comparing model runs

using different values of the user acceptance proba-
bility, pd. This question raises a very subtle issue
with regard to interpreting the objective function
F(
, pd, �). Although we have a well-defined objec-
tive function, the issue of user compliance brings
into focus the difference between the objective func-
tion we are maximizing, and the one the users are
maximizing. Assume that we wanted to compare
F(
, p1

d, �) to F(
, p2
d, �) where p1

d � p2
d. We might

wish to estimate the increase in profits if the user
acceptance level increased. In fact, this comparison
is not meaningful, and we cannot use our results to
estimate the value of higher user compliance. To see
this, consider a run with p1

d � 1 versus p2
d � 0.7. At

p1
d � 1, we are accepting all the recommendations of

the model. In general, these recommendations are
the highest profit options and will produce the high-
est profits over a simulation. If p2

d � 0.7, then we
are, in effect, saying that 30% of the time, a top-
ranked recommendation is not acceptable. Thus, the
supposedly high profit loads that appear at the top
of the list for a driver are, in fact, low profit (mea-
sured in terms of our utility function) for reasons

Fig. 7. Objective function versus dispatcher dual discount factor with advance demand booking and perfect user compliance
(pd � 1.0).
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that are not captured by the model. It would be
tempting to use our simulations to estimate the
value of always using the model versus only some-
times using the model. We feel that our simulations
do not allow us to draw any conclusions along these
lines.

Finally, we address the third and most important
issue of comparing values of F(
, pd, �) for different
values of 
. Here, we are using the same user accep-
tance probability pd. For a fixed value of pd we will,
for any given value of 
, be searching, on average,
the same distance down any list of loads offered to a
driver. As long as pd is held fixed, we are capturing
the same degree of dissatisfaction with the higher
ranked options for a driver. When we change 
 while
holding pd fixed, we are, in effect, solving the same
problem with different algorithms.

The parameters � and pd, then, represent charac-
teristics of the problem. 
, in contrast, is a charac-
teristic of the algorithm. We may compare
F(
, pd, �) directly for different values of 
, and we
may also compare the optimal value of 
 for different
values of pd and �, but we may not compare
F(
, pd, �) directly for different values of pd or �.
Because a major focus of our research is the impact
of user noncompliance, it is interesting to estimate
the best value of 
 for different values of pd. We did
not feel that it would be very interesting to ask the
same question for different parameter vectors �.

8. EXPERIMENTAL RESULTS

WE NOW PRESENT the results of our simulations.
First, Section 8.1 describes the results of our exper-
iments that focus on the effects of randomness in the
booking process. It is in these runs that we produce
results that show that, if the demands are known in
advance, and travel times are deterministic, and
user compliance is 100%, then the optimal myopic
solution (
 � 1) produces the best results. This is an
important piece of validation.

Next, Section 8.2 considers the impact of uncer-
tain travel times. Finally, Section 8.3 presents the
experiments that summarize most carefully the
value of greedy, optimal, and intermediate solutions
in the presence of varying levels of user compliance.

8.1 Effect of Dynamic Service Demand
Booking

Our first set of experiments included a set of runs
with the lowest level of uncertainty among all our
experiments. In this run, we assumed all loads to be
called in during the day were known at 7 A.M. on
that day (but we do not know about tomorrow’s
loads). We assumed deterministic travel times and
perfect user compliance. We then ran simulations
with different values of 
, expecting to find that the
best value of 
 was very close to 1.0. For this set of

Fig. 8. Objective function versus dispatcher dual discount factor, deterministic and stochastic travel times (pd � 1.0).
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experiments, we performed 10 samples for each
value of 
 that was tested.

The results are shown in Figure 7, which com-
pares total profits versus 
 for two sets of data: the
first assumes all the daily bookings are known at the
beginning of the day, and the second retains the
original booking profile of loads. It is not surprising
that we get higher profits when all the demands are
known at the beginning of the day. Most significant
is that, when demands are known in advance, the
curve steadily increases with 
, leveling off for val-
ues of 
 over approximately 0.60. For this run, we
could not reject the hypothesis that the optimum
dual discount factor was equal to 1.0, as we would
expect. When we simulate dynamic booking (the
lower curve), performance noticeably dropped for
values of 
 over 0.80, with an apparent optimum
close to 0.75. This is our first evidence that, in the
presence of random customer booking, the global
optimum solution does not give the best overall re-
sults.

8.2 Effect of Network Stochasticity

The second set of experiments we performed ex-
amined the effect of stochasticity in fleet operations

in the form of random travel times between load
origin and destination locations. The random travel
times were implemented as described in Section 6.6.
The objective function values for these runs were
compared to those obtained using only expected
travel times.

For these experimental runs, we set pd � 1.0. The
noise intensity parameter, �, was set to 1.0. The
time window start and end parameters, ws and we,
respectively, were both set to 1.5. This means that a
600-mile move that takes an average of 16 hours
might require anything from 10 to as much as 22
hours. While drivers in a real-world situation tend
to run late more often than early, we wanted the
expectation of the random travel time to equal the
expected travel time. This was done to avoid influ-
encing the objective function value by changing the
relative number of driver–load assignments made
during a simulation. Had the window been set to
always make travel times at least as long as the
expected time, for example, the fact that drivers
would always be at best on-time and usually late
would mean that fewer assignments could be made
in the course of a simulation.

The results are shown in Figure 8. These show

Fig. 9. Objective function versus dispatcher dual discount factor, various probabilities of selection.
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that randomness in travel times has a relatively
modest (but significant to a motor carrier) impact on
overall profits. We note that the impact of 
 is di-
minished in the presence of random travel times.
More importantly for our research, the shape of the
curve as a function of 
 appears not to have an
impact on the optimum dual discount factor. Of
course, both runs were done in the process of dy-
namic booking, so we are, in effect, observing that
the randomness in customer bookings is more im-
portant than randomness in travel times. The opti-
mum value of 
 still appears to be around 0.75.

8.3 Effect of User Noncompliance

Our last set of experiments looked at the effect of
user noncompliance on system performance. We re-
port these results in two ways. First, Figure 9 sum-
marizes system profits as a function of 
 for different
values of pd. Our first conclusion from these runs is
that the optimum value of 
 is close to 0.75 for all
three values of pd. Our second and more significant
conclusion is that, for the lowest levels of user com-
pliance, pd � 0.4, the dual discount has relatively
little effect on overall profits. Said differently, the
value in listing loads sorted in the order from best to
worst (measured with respect to cdlt(
)) is signifi-
cantly reduced. As user compliance rises, the value
of a proper listing of loads increases, although the

globally optimal solutions appear to slightly under-
perform solutions using 
 � 0.75.

A different perspective on the results was ob-
tained by plotting total profits as a function of dif-
ferent values of pd, using 
 � 0, 0.75, and 1.0, shown
in Figure 10. The results show that, as the level of
user compliance drops, the value of a globally opti-
mal solution over a greedy solution drops dramati-
cally. In the truckload motor carrier industry, it is
not unusual to see values of pd � 0.6 or even lower.
A value of pd � 0.7 is considered very high. These
results show that, for these levels of user compli-
ance, greedy solutions work almost as well as glo-
bally optimal solutions. Furthermore, using 
 � 0.75
gives the best results over all levels of user compli-
ance, although, for the lowest levels, it really does
not matter what you do. Reassuringly, if user com-
pliance is high (over 90%) then the value of global
network information (either with 
 � 1.0 or 0.75) is
quite high, and demonstrates the usefulness of op-
timization models.

9. CONCLUSIONS

THE EXPERIMENTS in this paper investigate the im-
pact of different forms of uncertainty on the value of
optimal (myopic) solutions in a particular class of
routing and scheduling problems. The results show

Fig. 10. Objective function versus dispatcher selection probability, various dual discounts.
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that uncertainty does reduce the value of globally
optimal solutions, bringing into question whether
rigorously optimal solutions are useful in a dynamic
setting.

Our research did not compare myopic and dy-
namic models, but rather looked only at models that
consider only information that is known (or reason-
ably well known, in the case of random travel times)
at a given point in time. This said, even a myopic
model plans for decisions in the future, as long as it
is based on known information. In our case, we
would consider the global optimization of all drivers
to all loads, including drivers that would not arrive
until later in the day or the next day. Our dual
discount, then, implicitly was putting a weight of 1.0
on the decision we were about to make, and a re-
duced weight on decisions that we might make at a
later point in time (although it might only be a few
seconds later).

We are unaware of any other research that has
raised the issue of user compliance, and measured
its impact on the choice of algorithm. Even static
models are subject to user editing and modification
prior to implementation. Given such postoptimality
tampering, it is clear that the original solution is no
longer optimal, because it assumes that all the de-
cisions in the solution will be implemented. We
would argue that such considerations should be
built into the design and analysis of algorithms for
all classes of routing and scheduling problems. The
result may be problems that are actually easy to
solve, producing both faster run times and more
robust solutions.
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