
Capturing Incomplete Information in Resource
Allocation Problems through Numerical

Patterns

Arun Marar
Warren B. Powell

Department of Operations Research and Financial Engineering,
Princeton University, Princeton, NJ 08544

October 17, 2006



Abstract

We look at the problem of optimizing complex operations with incomplete information where

the missing information is revealed indirectly and imperfectly through historical decisions.

Incomplete information is characterized by missing data elements governing operational be-

havior and unknown cost parameters. We assume some of this information may be indirectly

captured in historical databases through flows characterizing resource movements. We can

use these flows or other quantities derived from these flows as “numerical patterns” in our

optimization model to reflect some of the incomplete information. Since regression trees rep-

resent probabilistic distributions of a numerical value specific to a vector of data elements

known as a “state”, they drive our methodology for representing information in resource

allocation models. We use a popular goodness-of-fit measure known as the Cramer-Von

Mises metric based on the empirical distribution function (EDF) as the foundation of our

approach. We then use a hybrid approach of solving a cost model with a term known as the

“pattern metric” that minimizes the deviations of model decisions from observed quantities

in a historical database. We see that when using this methodology, our problem of repre-

senting information pertaining to numerical patterns is combinatorial in the order statistics

of the decision variables in the optimization model. We present a novel iterative method to

solve this problem to get a stationary solution. Results with real-world data from a large

freight railroad are presented.



Introduction

A challenge in modeling a real-world system such as a complex freight logistics operation is

the problem of optimizing the system under incomplete information. Normally we solve a

cost function to reflect actual behavior. For complex problems such a methodology is inad-

equate because of elements of data not observable to the modeler. In some cases, however,

this incomplete information is revealed, although imperfectly, through past decisions made

by humans since typically in actual operations humans make decisions with more information

than is available to the modeler. As most freight logistics operations are modeled as resource

allocation problems, information regarding actual decisions are represented in a historical

database as flows characterizing resource movements. Based on a desired observation statis-

tic, these flows may be aggregated or used to derive certain quantities that capture some of

the missing information. Such quantities are known as “numerical patterns” implying there

is a natural ordering among them.

The following examples illustrate some real-world situations where the modeler does not

have complete information:

• In a trucking operation the average length of haul for sleepers is high, but that does

not mean sleepers are not assigned to short loads. We can observe from history the

actual distribution of the length of the load assigned to a particular sleeper. In this

case, an observation statistic is a particular sleeper and the numerical pattern is the

length of its load.

• Consider flowing shipments through a less-than-truckload (LTL) network. The capacity

of a truck is a function of the weights of the individual shipments and the densities of

these shipments. Very often the density of a shipment is not available to the modeler.

The modeler can observe from a historical database the distribution of the weights of

all the trucks traversing the link represented by a particular origin-destination pair. In

this case the observation statistic is a truck and the numerical pattern is the weight of

the truck.

• The capacity of a transfer terminal is a function of operating conditions such as the
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manpower available and weather and the modeler does not have this information in

his database. However, distributions of terminal capacities at these transfer nodes

on a specific day of the week for a particular month can be observed in a historical

database and these distributions capture some of the missing information underlying

the operating conditions. In this case the observation statistic is a specific day of the

week for a particular month and the numerical pattern is the capacity of the transfer

terminal.

• In a locomotive scheduling model every train requires a certain amount of locomotive

power based on the tonnage of the train and the terrain over which the track is laid.

There may be a steep grade on the train route that warrants the use of more locomotive

power than that calculated based on tonnage considerations. The modeler does not

have this information in his database, but can observe in a historical database a pattern

of over-powered trains (labeled so relative to the power calculated by the modeler) over

certain segments of the train route through a statistic known as the “horsepower per

trailing ton” which reflects the ratio of the amount of locomotive power (expressed

in horsepower) to the tonnage of the train. Here the observation statistic is a train

and the numerical pattern is the “horsepower per trailing ton” assigned to the train in

history.

A method that takes into account missing elements of data is to solve the optimiza-

tion model under uncertainty using stochastic programming techniques (see Sen & Higle

(1999),Birge (1997)). These techniques are useful when we know what the missing elements

of data are and can observe them after the fact. For example while solving a real-time model

we may have to forecast the tonnage on a train before making a decision. In this case we are

able to observe the actual tonnage on the train after the train has departed and thus we are

able to build a posterior distribution of the train tonnage. In our problem we are dealing

with data elements that are not directly observable, even after the fact.

There has been past research in the realm of inverse optimization that uses observable

decisions from a real-world system in an optimization model. Inverse optimization algo-

rithms aim to perturb the cost parameters of a model while minimizing this perturbation,
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such that the observed decisions are optimal with respect to the perturbed cost parameters.

Inverse optimization has been applied to a variety of situations such as shortest path prob-

lems (Burton et al. (1997),Burton & Toint (1994)), capacitated facility location problem

(Bitran et al. (1981)) and general linear programming and network problems (Zhang & Liu

(1999),Sokkalingam et al. (1999)). Inverse optimization techniques cannot be used to solve

our problem since these methods assume the observed solutions from history to be opti-

mal whereas in applications such as ours even if they are made with complete information,

decisions may be suboptimal, due to the humans’ inability to process large amounts of data.

To capture incomplete information in an optimization model we look at pattern recogni-

tion systems to represent observed decisions from a database in a model since a pattern is

simply a set of data elements and the decision pertaining to this set of data elements. The

focus of this paper is to present a modeling framework that combines the use of cost functions

(bottom-up representation of operations that can be quantified as costs) with a representa-

tion of historical decisions (top-down representation of operations that are captured through

patterns). The main contribution of this paper is that we introduce and study for the first

time integrating an engineering cost model with historical patterns that represent quantities

or flows as a way of capturing incomplete information.

The paper is organized as follows. In section 1 we present the principles of pattern

recognition and the basis of our approach. In section 2 we introduce the literature on a type

of pattern recognition system known as a regression tree that is particularly suited to our

problem. In section 3 we introduce the literature on empirical distribution function (EDF)

and its relation to some goodness-of-fit metrics for continuous distributions. We show how

we can apply this methodology to our problem of representing information from regression

trees. In section 4 we present the model formulation for representing information from

regression trees using a function known as the “pattern metric” that penalizes deviations

of model decisions from observed quantities in a historical database. The functional form

for the pattern metric is derived using the Cramer-Von Mises test statistic. In section 5

we present our hybrid approach of solving a cost function along with a pattern metric. We

see that our methodology involves solving a combinatorial problem arising due to the order
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statistics of the quantities we represent in the pattern metric. We avoid the combinatorial

optimization directly by an iterative methodology that does not require the need to specify

additional constraints to account for the order statistics. Given an initial starting solution,

we prove convergence of this method to a stationary point in a finite number of iterations.

In section 6 we present the experimental design and the measures of model performance that

can be used to evaluate our methodology. We present results of our research using real-world

data from a large freight railroad. In section 7 we present our conclusions.

1 Basic Approach

The historical database for a typical logistics operation consists of a sequence of decisions

or actions in time and elements of data governing these decisions. It is natural to look at

pattern recognition systems to mimic human behavior since they aim to identify a decision

with a particular set of data elements. Pattern recognition is a mature area and extensive

treatment of these techniques are found in (Fayyad et al. (1996),Devroye et al. (1996),Nilsson

(1990)). In the event where the pattern is a number such as a flow or a quantity such as

the horsepower per trailing ton, the term “pattern regression” is used instead of pattern

recognition. For example a simple pattern representing the decision to assign locomotive

power to a train might include the following data elements as shown:

{Train Tonnage, Train Origin, Train Destination, Train Type}

In complex operations such as the one our problem represents, a historical database does not

reflect all the data elements that defines actual decisions. This is due to missing elements

of data that are not retained in the database, but govern actual decisions. The traditional

method of optimization using cost functions has the ability to handle vectors of large dimen-

sionality since optimization models are useful in capturing the global effects of a decision.

However, we are limited in our ability to observe data elements with the same level of detail

from a historical database. For this reason we cannot adopt a pure pattern recognition ap-

proach to solve our problem, but need to retain the cost function approach and complement

it with pattern recognition techniques.
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Figure 1: (a) & (b): Observed horsepower in history and model, (c):Using the historical
mean as information in the optimization model

Pattern regression is simply a technique to identify a number such as a quantity or flow

that pertains to a set of data elements, also known as a state, based on observed patterns from

a historical database. A particular class of pattern regression methods known as regression

trees (Breiman et al. (1984),Quinlan (1993)) are of interest because of their ability to handle

data elements in a state that are numerical (these data elements are real numbers) and

categorical (these data elements take values in a finite set not having any natural ordering).

For example the tonnage of a train is a numerical attribute whereas the locomotive type is

a categorical attribute taking a value in the finite set consisting of the different locomotive

types. Thus the methodology we propose in this paper for incorporating historical decisions

in an optimization model is based on a typical regression tree.

Consider the case of observing the locomotive power assigned to a particular train from

history as depicted in figure 1(a). Such a distribution is very common in history since we

work with simple states that do not convey all the information underlying the decision. For

instance in figure 1(a) we may not have all the information regarding why a particular train

was assigned a horsepower-per-trailing ton of 4.0 on a certain day instead of the more likely

value of 2.0. It is possible that a typical optimization model might produce the distribution

shown in figure 1(b). This distribution not only does not have the same mean, it does not
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match any of the higher moments. We could try to force the optimization model to match

the mean, but the result might be the distribution shown in figure 1(c). The problem with

just matching the mean is that we are trying to force every observation to match the mean.

Since the actual distribution is much wider, clearly it is acceptable to deviate from the

mean, but we want the overall average to match the historical average. In the next section

we introduce the literature review on regression trees and develop the notation to represent

numerical patterns in a resource allocation model.

2 Regression Trees for Resource Allocation Models

Regression trees are rule-based systems that identify a state which generally consists of both

categorical and numerical attributes by a real number, which in our problem is a flow or a

quantity. The concept of a regression tree has its origin in the Automatic Interaction De-

tection (AID) program (Morgan & Sonquist (1963)). A popular regression tree system used

widely is Classification and Regression Tree (CART) (Breiman et al. (1984)). A regression

tree in general has a binary tree structure due to hierarchical bipartitioning of the attribute

set into sets with finer detail.

We present the general methodology underlying a regression tree and show how we can

extend this to the class of resource allocation problems. We use the superscript ‘h’ to indicate

whenever we are working with a historical database or data pertaining to past events in

general. Thus we have:

a = Vector of attributes for a resource.

Ah = Attribute space of a in history.

Da = Set of decisions d that can be applied to a resource with attribute vector a.

xh
ad = Number of times decision d is applied to a resource with attribute vector a

where a ∈ Ah and d ∈ Da.
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For instance, in a locomotive scheduling model a locomotive state could be as shown below:

a = {Location, Time, Locomotive ID, Locomotive Type, Horsepower}

If the decision d is to assign this locomotive to a train then xh
ad takes a value 1, otherwise

its value is 0.

As we noted previously, we typically do not observe in history all the information un-

derlying a particular decision and any pattern regression function that predicts a unique

quantity ignores these missing elements of data. For these reasons the model has to work

with a simple vector of data elements such as a resource attribute vector a using a proba-

bility based pattern regression that accounts for missing information. From now on our use

of a state will unambiguously refer to a resource attribute vector unless explicitly defined

otherwise.

In general not all the components of the resource attribute vector are used for building

a regression tree. For instance in a locomotive scheduling model a simple state could be as

shown below:

a = {Location, Time, Locomotive ID, Locomotive Type, Delay(in minutes)}

The possible instances of the attribute “Location” could be the list of nodes in the rail

network. An aggregated resource attribute vector â would look like:

â = {Region, Time, Locomotive ID, Locomotive Type, Delay(in minutes)}

Although the new state vector â preserves the same cardinality as the original state a, the

possible space of the attribute vector â is reduced due to the aggregation on the component

“Location”.

Analogous to aggregation on the resource attribute vector we can define aggregation on

the decision. For example consider the set of decisions pertaining to a locomotive state a as

shown below:

Da = {Move to San Francisco, Move to Seattle, Move to Boston, Move to New York}
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We could map San Francisco and Seattle to the “North-West” region and map Boston and

New York to the “North-East” region. In this case an aggregated decision d̂ is an element

of the following set:

D̂a = {Move to North-West, Move to North-East}

We define a family of observation statistics denoted by the set S. An example of an

observation statistic is a train departing Los Angeles for Kansas City. Some of the quantities

we can observe for each instance of this observation statistic from a historical database are

total flow of locomotives, horsepower per trailing ton, total horsepower assigned to the

train, horsepower of a specific locomotive type assigned to the train and so forth. For each

instance of the observation statistic there are, in general, multiple pairs of (a, d) that are

associated with this instance. If we are concerned with the total flow of locomotives any

locomotive assigned to the train from Los Angeles to Kansas will pertain to that instance of

the observation statistic. We also define:

Nh
s = Number of observations of the observation statistic s ∈ S in a historical

database.

Lh
sk = Set of all pairs (a, d) in a historical database pertaining to the k-th ob-

servation of the observation statistic s ∈ S, k ∈ {1, 2, . . . , Nh
s }, d ∈ Da,

a ∈ Ah.

We assume that for each observation statistic s ∈ S and for each observation k of the

statistic s we generate a quantity q̂h
sk based on a desired objective. We use the notation “q̂”

to indicate that sometimes the quantities may be derived from aggregations of state-decision

pairs. For example, for a particular train leaving Los Angeles for Kansas a quantity derived

could be the total horsepower assigned to the train. In our problem the quantities that

we are typically interested in are derived from observed flows of resources derived from a

historical database in a manner as shown:

q̂h
sk =

∑
∀(a,d)∈Lh

sk

qsadx
h
ad, ∀k ∈ {1, 2, . . . , Nh

s }, ∀s ∈ S (1)
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qsad is the contribution of the state-action pair (a, d) in the quantity for the observation

statistic s ∈ S. To illustrate, consider a locomotive state as shown below:

a = {Location, Locomotive ID, Locomotive Type, Horsepower(HP)}

A typical decision d can be characterized by a train as shown below:

d = {Origin, Destination, Train ID, Train Type, Tonnage}

The decision variable xh
ad takes a value 1 in equation (1) if we assign this locomotive to the

train, otherwise its value is 0.

If we wish to derive the distribution of the horsepower per trailing ton for trains between

a specific origin and destination which is the observation statistic, then qsad = aHP

dTonnage
in

(1) where aHP denotes the rated horsepower attribute of a locomotive attribute state a and

dTonnage represents the tonnage on the particular train implied by the decision d. If the

quantity we are interested in is simply the number of locomotives assigned to the train we

set qsad = 1 for all state-action pairs (a, d) in the set {(a, d) ∈ Lh
sk}.

For each observation statistic s ∈ S, the cumulative probability function underlying the

vector of quantities derived using equation(1) for all k ∈ {1, 2, . . . , Nh
s } characterizes the

pattern regression denoted by ψs for the observation statistic s ∈ S.

The goal of this research is to incorporate the pattern regression ψs in an optimization

framework since this reveals some of the missing information not captured in a cost function.

In this section we showed how to derive the attribute-based pattern regression ψs for an

observation statistic s ∈ S. In the next section we show how we can define a distance metric

for our probability regression ψs based on popular goodness-of-fit metrics in statistics.

3 The Empirical Distribution Function

In this section we look at how we can use the attribute-based pattern regression function for

a quantity as derived in (1) to develop a framework for representing information pertaining
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to distribution of a quantity. To develop this methodology we need to introduce the concept

of an empirical distribution function (EDF) (Read & Cressie (1988)) and see how it relates

to the decision variables in the optimization model. We define:

Ns = Number of times the observation statistic s ∈ S is observed in the model.

q̂sk(x) = The quantity corresponding to the k-th instance of the observation statistic

s ∈ S , k ∈ {1, 2, . . . , Ns}, in the optimization model as a function of the

model decision variable x.

It should be noted that the number of times the observation statistic s ∈ S is observed in the

model is in general different from the number of times the observation statistic is observed

in history. For example, we may observe a train leaving Los Angeles for Kansas 20 times

in our historical database, but we may see the same train only five times in the model and

even this number could change depending on the time horizon in the model.

We can generate the order statistics of the quantities evaluated over all the observations

as shown below:

q̂s(1)(x) ≤ q̂s(2)(x) ≤ . . . ≤ q̂s(N)(x) where N = Ns

The notation q̂s(k) which is standard in statistics literature is interpreted as the kth largest

quantity observed among all the instances of the observation statistic s ∈ S in the optimiza-

tion model. For example, a particular train may be available for assignment in the model

five times. The quantity we may be interested in for this observation statistic could be the

amount of horsepower assigned to each instance of this train in the model. In this case the

order statistics is applied to the five values of horsepower assigned in the model to all the

instances of this train. The empirical distribution function (EDF) for the order statistics

q̂s(k) in the optimization model is given by:

Fs(q̂s(k)(x)) =
k

Ns

, ∀k{1, 2, . . . , Ns}, ∀s ∈ S (2)

Thus the empirical distribution function Fs is a step function that increases by 1
Ns

at each

numerical value in the vector of ordered statistics.
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An important application of the EDF in statistics is in testing the hypothesis that a

sample of data is derived from a fully specified continuous distribution (for instance, a

normal or an exponential distribution) also known as the null hypothesis. This procedure is

commonly known as a goodness-of-fit test for a continuous distribution. Each instance of data

is assumed to be an independent and identically distributed random variable. The goodness-

of-fit test statistic evaluates the sample of data using a metric and the null hypothesis is

rejected if this measure exceeds a certain threshold.

In our case the null hypothesis is the pattern regression ψs and the sample of data are the

values of horsepower assigned to each instance of a particular train in the model. It should

be noted that the attribute-based pattern regression ψs is derived from a finite history of

data and hence the obtained cumulative probability function is not a continuous function,

but a step function just as the EDF in equation (2).

Two popular goodness-of-fit measures based on the EDF are the Kolmogorov-Smirnov

(K-S) and the Cramer-Von-Mises (C-V) test statistics (Chakravarthi et al. (1967)). The

Kolmogorov-Smirnov test statistic for our problem is as shown below:

DKS
s (x) = max

1≤k≤Ns

|ψs(q̂s(k)(x))− Fs(q̂s(k)(x))|, ∀s ∈ S (3)

Substituting for Fs(q̂s(k)) in equation (3) using the expression in (2) we get:

DKS
s (x) = max

1≤k≤Ns

∣∣∣∣ψs(q̂s(k)(x))−
k

Ns

∣∣∣∣ , ∀s ∈ S

The Cramer-Von Mises test statistic is given by:

DCV
s (x) =

[
Ns∑
k=1

(
ψs(q̂s(k)(x))−

2k − 1

2Ns

)2
]

+
1

12Ns

, ∀s ∈ S (4)

We are interested in a function that represents the pattern regression ψs exactly in an

optimization framework. Clearly this function is closely related to a goodness-of-fit statistic

on the model decision variables that attempts to infer if the sample of data (here the quan-

tities assigned in the model to all instances of the observation statistic s ∈ S) is derived
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from a historical distribution (here the pattern regression ψs). Alternately we can look at

optimizing a function similar to a goodness-of-fit statistic to capture information from a

historical distribution. In the next section we propose a modification of the Cramer-Von

Mises test statistic as the functional form for representing information characterized by ψs

in resource allocation problems.

4 The Pattern Metric

A method to induce an optimization model to make decisions that closely mimic a historical

distribution of quantities is to include a term in the objective function that penalizes devia-

tions of the corresponding quantities in the model from the observed historical distribution.

We consider capturing this behavior by solving a cost function with a function that penalizes

deviations of quantities evaluated in the optimization model from observed quantities from

a historical database. This penalty function is referred to as the pattern metric. We develop

the pattern metric using the functional forms of goodness-of-fit metrics introduced in the

previous section.

Large-scale resource allocation problems representing operations in freight logistics are

often solved as dynamic models where the dynamic problem is represented as an iterative

time-staged network where each stage is solved separately (Powell & Carvalho (1997)). Thus

it is convenient to use a goodness-of-fit measure that is separable in the data instances

pertaining to the observation statistic s ∈ S since instances of this observation statistic

may be realized at different stages in the dynamic model. Thus we propose developing our

functional form of the pattern metric using the C-V test statistic because this statistic is

separable in each instance of the observation statistic. The C-V statistic introduced in the

previous section (note that the second term in equation (4) is omitted since it is a constant)

is given by:

DCV
s (x) =

Ns∑
k=1

(
ψs(q̂s(k)(x))−

2k − 1

2Ns

)2

, ∀s ∈ S (5)

The C-V goodness-of-fit measure in (5) is a function of the decision variables in the opti-
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mization model. The discontinuous nature of the attribute-based pattern regression ψs in

the decision variables poses problems if the exact form of the test statistic is used in an

optimization model. Even if we approximate ψs by a continuous distribution and fix the or-

der statistics a priori we have to deal with nonconvexity issues since cumulative probability

functions are in general nonconvex.

We note that ψs is a cumulative probability function and hence is a monotonically in-

creasing function in the order statistics of the decision variables, that is, we have:

ψs(q̂s(1)(x)) ≤ ψs(q̂s(2)(x)) ≤ . . . ≤ ψs(q̂s(N)(x)) where N = Ns, ∀s ∈ S

Instead of using a function that measures the difference between the cumulative distribution

function and the empirical distribution function we propose to work with the following

function:

D̃CV
s (x) =

Ns∑
k=1

(
q̂s(k)(x)− ψ−1

s

(
2k − 1

2Ns

))2

, ∀s ∈ S (6)

where we use ψ−1
s to denote the inverse cumulative function. We note that since the order

statistics themselves have a monotone property we can use a distance metric that measures

deviations of the order statistics of the quantities in the model from the corresponding order

statistics derived from a historical database given by:

q̂h∗
s(k) = ψ−1

s

(
2k − 1

2Ns

)
, ∀k ∈ {1, 2, . . . , Ns}, ∀s ∈ S (7)

If we have a large sample of historical data it may be possible to approximate ψs by a

strictly increasing continuous function. In this case we can see that if for a particular pattern

D̃CV
s = 0 it implies that the C-V test statistic DCV

s = 0. This is because if q̂s(k) = ψ−1
s (2k−1

2Ns
)

for strictly increasing probability functions then we have:

ψs(q̂s(k)(x)) =
2k − 1

2Ns

Thus the functional form presented in (6) is closely related to the C-V test statistic and also

offers us a distribution-free representation of historical patterns. If we fix the order statistics
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a priori, the function indicated in equation (6) is convex. We define the pattern metric to

be:

H(x) =
∑
∀s∈S

Ns∑
k=1

(q̂s(k)(x)− q̂h∗
s(k))

2

We assume that the modeler solves a functional approximation of the real-world objective

by an engineering cost function C(x) that is convex in x. We present the optimization model

in a pattern metric as shown below:

x∗(θ) = arg minC(x) + θ
∑
s∈S

Ns∑
k=1

(q̂s(k)(x)− q̂h∗
s(k))

2
(8)

subject to:

Ax = b

x ≥ 0

where θ is a positive scaling factor. We use x to denote the complete vector of decision

variables {xad}a∈A,d∈Da
. Using equation (1) we can derive the quantities q̂ in the model as a

function of the model decision variables x similar to the quantities derived from history.

The concept behind the optimization in equation (8) is that it combines engineering costs

with prior decisions which capture information that is not available to the modeler. In the

next section we show how the problem in (8) is a combinatorial problem the order statistics

are not known a priori.

5 Optimizing the Model with a Pattern Metric

In this section we present our methodology to solve the model with a pattern metric indicated

in equation (8). We introduce the notation defining the order statistics of the quantities and

then present two algorithms that we can use to solve the optimization model with a pattern

metric. We also present some theoretical properties regarding the algorithms.
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5.1 The Order Statistics

The order statistics of the quantities cannot be fixed in the model in (8) since we do not know

the value of the decision variables a priori. This implies that our problem of representing

information pertaining to the numerical patterns is a combinatorial problem. For each

observation statistic s ∈ S we define:

Φs = The set of permutations of the index vector {1, 2, . . . , Ns}.

φs = A generic permutation of the index vector {1, 2, . . . , Ns}, φs ∈ Φs.

φsk = The k-th element of the generic permutation φs, k ∈ {1, 2, . . . , Ns}.

For example, if we observe a train from Los Angeles to Kansas City five times the cardinality

of the index set corresponding to this observation statistic is five and a particular permutation

of this index vector could be {2, 5, 4, 1, 3}. In this case the third element of this permutation is

the fourth instance of the train observed in the optimization model. We denote φ = {φs}s∈S

as a generic permutation vector over the set of observation statistics S. We define the set:

Φ = ×s∈SΦs

with element φ ∈ Φ. We then define the quantities under the permutation vector φ as shown

below:

q̂sφ(k)(x) = The quantity corresponding to the φsk-th instance of the observation statis-

tic s ∈ S in the model, k ∈ {1, 2, . . . , Ns}, φ ∈ Φ.

We can represent the optimization model in a pattern framework indicated in (8) as a

combinatorial problem as shown below:

φ∗(θ) = arg min
φ∈Φ

C(x) + θ
∑
s∈S

Ns∑
k=1

(q̂sφ(k)(x)− q̂h∗
s(k))

2
(9)
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subject to:

q̂sφ(k)(x) ≤ q̂sφ(k+1)(x), ∀k ∈ {1, 2, . . . , (Ns − 1)}, ∀s ∈ S (10)

Ax = b

x ≥ 0

The optimal decision variables x∗(θ) for the optimization model in equation (9) are

calculated as shown below:

x∗(θ) = arg min
φ=φ∗

C(x) + θ
∑
s∈S

Ns∑
k=1

(q̂sφ(k)(x)− q̂h∗
s(k))

2

subject to the same set of constraints as the model in equation (9).

Constraint (10) ensures that for each permutation φ the order statistics conditions are

satisfied. The model in (9) is an extremely difficult problem to solve for two reasons. The

first reason is the size of the set Φ (for an observation statistic s ∈ S, |Φs| = (Ns)!) which

can explode for large-scale resource allocation problems. The second reason is that for each

index φ ∈ Φ we require solving a constrained optimization problem further complicated by

the order statistics constraints in (10).

A recent research interest in combinatorial optimization is the application of heuristic

methods such as tabu search (Glover (1990)), simulated annealing (Kirkpatrick et al. (1983))

and genetic algorithms (Holland (1975)) to solve some large-scale combinatorial problems

such as the traveling salesman and quadratic assignment problems. The success of these

methods in solving combinatorial problems is due to the ease with which a potential solution

can be evaluated in these problems. In our problem as indicated by the formulation in (9),

evaluating a new point is relatively expensive and hence we are limited in our ability to use

these techniques easily.

There is another technique that is suited for highly nonconvex problems introduced in

Pardalos (1989). In this method a number of “starting points” are evaluated separately using

a modified version of the Frank-Wolfe method (Bazaraa et al. (1993),Frank & Wolfe (1956))
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that ensures convergence to a local optimum. By evaluating a number of starting points the

algorithm attempts to arrive at a local optimum that is close to the global optimum. In

our problem the formulation in (9) the objective function does not provide any guidance on

generating a set of starting points other than the most obvious one which is given by the

solution to the model: minC(x) subject to: Ax = b, x ≥ 0. In the next section we present

an iterative method that, given this initial feasible solution, our algorithm converges to a

stationary solution in a finite number of iterations.

5.2 Algorithms

We present the method to solve the optimization model in (9). We fix the order statistics

a priori depending on the solution x0 obtained from solving the model: minC(x) subject

to: Ax = b, x ≥ 0. Let q̂0 = {q̂0
sk}s∈S,k∈{1,2,...,Ns} be the the initial vector of quantities

corresponding to this solution. Let φ0 ∈ Φ be the permutation that defines the order

statistics of the solution vector q̂0, that is:

q̂0
sφ(k) ≤ q̂0

sφ(k+1), φ = φ0 ∈ Φ, ∀k ∈ {1, 2, . . . , (Ns − 1)}, ∀s ∈ S

We solve the following problem:

x∗(θ) = arg minC(x) + θ
∑
s∈S

Ns∑
k=1

(q̂sφ(k)(x)− q̂h∗
s(k))

2
(11)

subject to:

φ = φ0 ∈ Φ

q̂sφ(k)(x) ≤ q̂sφ(k+1)(x), ∀k ∈ {1, 2, . . . , (Ns − 1)}, ∀s ∈ S (12)

Ax = b

x ≥ 0

This model is a convex programming problem since we know a priori the permutation vector

φ0 and this model yields a feasible solution to the original problem in (9). Since the order
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statistics are fixed before solving (11) we refer to this algorithm as the fixed ordering (FO)

method.

We propose an alternate method that simplifies the model formulation in (11). Instead of

solving the model stated in (11) we can replace this model by a sequence of simpler models

that do not require the constraints defining the order statistics stated in (12). Thus at an

iteration m of this sequence we solve the following model as shown below:

xm(θ) = arg minC(x) + θ
∑
s∈S

Ns∑
k=1

(q̂sφ(k)(x)− q̂h∗
s(k))

2
(13)

subject to:

φ = φm−1 ∈ Φ

Ax = b

x ≥ 0

The permutation φm−1 defines the order statistics of the following vector of quantities:

q̂m−1 = {q̂m−1
sk }s∈S,k∈{1,2,...,Ns}

which is derived from the solution vector xm−1. As our method involves a reordering (that

is the permutation is iteration-specific) of the order statistics after every iteration of the

sequence we call our methodology the sequential ordering (SO) method.

We show in the next section that solving a sequence of the model indicated in (13)

converges to a stationary point in a finite number of iterations. We propose this method

because it has two major advantages:

• We are guaranteed a solution that is as good as (in many cases better than) the solution

obtained by the FO method, that is at every index m in the sequence of models solved

in (13) we have:

C(xm) + θ
∑
s∈S

Ns∑
k=1

(q̂m
sφ(k) − q̂h∗

s(k))
2 ≤ C(x∗) + θ

∑
s∈S

Ns∑
k=1

(q̂∗sφ0(k) − q̂h∗
s(k))

2
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where φ = φm, φ, φ0 ∈ Φ and

q̂∗ = {q̂∗sk}s∈S,k∈{1,2,...,Ns}

is the vector of quantities derived from the solution vector x∗, the solution to the model

in (11).

• We do not have to deal with constraints specifying the order statistics. Note that the

number of additional constraints needed to specify the order statistics in (12) is given

by
∑

s∈S(Ns − 1).

5.3 Properties

The superiority of the SO method over the FO method is established in the following theo-

rem which states that even though the order statistics are not specified as constraints, the

pattern metric evaluated over the new order statistics (since the ordering may change if the

constraints are not specified in the SO methodology) is guaranteed to be less than the pat-

tern metric evaluated for the order statistics of the current solution. We prove the following

theorem:

Theorem 5.1 Given a vector of strictly positive solutions {q̂sk}k∈{1,2,...,Ns} we have:

min
φ
′∈Φs

Ns∑
k=1

(q̂sφ′ (k) − q̂h∗
s(k))

2
=

Ns∑
k=1

(q̂s(k) − q̂h∗
s(k))

2

Proof. We first note that:

Ns∑
k=1

(q̂sφ′ (k))
2 =

Ns∑
k=1

(q̂s(k))
2, ∀φ′ ∈ Φs
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since the vectors {q̂s(k)}k∈{1,2,...,Ns} and {q̂sφ′ (k)}k∈{1,2,...,Ns}
are permutations of each other for

all φ
′ ∈ Φs. Thus we have:

Ns∑
k=1

(q̂sφ′ (k) − q̂h∗
s(k))

2 −
Ns∑
k=1

(q̂s(k) − q̂h∗
s(k))

2
=

−2
Ns∑
k=1

q̂h∗
s(k)

(
q̂sφ′ (k) − q̂s(k)

)
, ∀φ′ ∈ Φs (14)

Using lemma 7.1 where we set y = q̂h∗
s , x = q̂s,n = Ns and Φn = Φs in the lemma we see

that the right hand side of equation (14) is nonnegative. Thus it follows that:

Ns∑
k=1

(q̂sφ′ (k) − q̂h∗
s(k))

2 ≥
Ns∑
k=1

(q̂s(k) − q̂h∗
s(k))

2
) ∀φ′ ∈ Φs

Since {q̂s(k)}k∈{1,2,...,Ns} is a valid permutation on the decision variables {q̂sk}k∈{1,2,...,Ns} we

have the following relation:

min
φ′∈Φs

Ns∑
k=1

(q̂sφ′ (k) − q̂h∗
s(k))

2
=

Ns∑
k=1

(q̂s(k) − q̂h∗
s(k))

2

which is the statement required to be proved.

Q.E.D.

In the next section we state and prove convergence of the SO method to a stationary point.

Proposition 5.2 If the feasible region of the model indicated in (13) is compact, the sequence

of optimal solutions obtained from solving the sequence of models solved in equation (13)

converges to a stationary point in a finite number of iterations.

Proof. The feasible region of the model indicated in (13) is denoted by X . Since X is

compact there exists a minimum for any convex function minimized over X . At any iteration

m of the SO methodology we solve the following problem:

xm = arg min
x∈X ,φ=φm−1

C(x) + θ
∑
s∈S

Ns∑
k=1

(q̂sφ(k) − q̂h∗
s(k))

2
(15)
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We have using theorem 5.1 the following inequality:

C(xm) + θ
∑
s∈S

Ns∑
k=1

(q̂m
sφm(k) − q̂h∗

s(k))
2 ≤

C(xm) + θ
∑
s∈S

Ns∑
k=1

(q̂m
sφm−1(k) − q̂h∗

s(k))
2

(16)

The left hand side of equation (16) gives the objective for the model whose solution is xm

since the pattern metric reflects the order statistics with respect to the quantities derived

from this solution. Now consider the model solved at iteration m+ 1. We have:

xm+1 = arg minC(x) + θ
∑
s∈S

Ns∑
k=1

(q̂sφ(k) − q̂h∗
s(k))

2

where φ = φm. Since xm is a feasible solution to the above problem we have:

C(xm+1) + θ
∑
s∈S

Ns∑
k=1

(q̂sφm(k) − q̂h∗
s(k))

2 ≤

C(xm) + θ
∑
s∈S

Ns∑
k=1

(q̂sφm(k) − q̂h∗
s(k))

2
(17)

Again using theorem 5.1 for the order statistics pertaining to the quantities derived from

solution vector xm+1 we have:

C(xm+1) + θ
∑
s∈S

Ns∑
k=1

(q̂sφm+1(k) − q̂h∗
s(k))

2 ≤

C(xm+1) + θ
∑
s∈S

Ns∑
k=1

(q̂sφm(k) − q̂h∗
s(k))

2

From equation (17) we see that:

C(xm+1) + θ
∑
s∈S

Ns∑
k=1

(q̂sφm+1(k) − q̂h∗
s(k))

2 ≤

C(xm) + θ
∑
s∈S

Ns∑
k=1

(q̂sφm(k) − q̂h∗
s(k))

2
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From this equation we see that the objective function corresponding to the solution xm+1

cannot exceed the objective function corresponding to the solution xm. Since this is true for

any iteration m > 1 we see that the objective function corresponding to xm monotonically

decreases with iteration m, m ≥ 1. Since we are minimizing a convex objective function over

the compact set X we are guaranteed convergence of the sequence of objective functions

from solving the sequence of models in (15) to a stationary point in our original problem in

(9).

Note that from equation (15) the only difference between solving the model at two dif-

ferent iterations is that the permutation vector defining the order statistics of the quantities

may differ. The possible number of permutations is clearly finite and this implies that the

sequence of permutation vectors generated from solving the sequence of models in (15) con-

verges to a stationary point in a finite number of iterations. Thus ∃m̃ < ∞ such that

φm̃ = φm̃+1. From equation (15) this implies that xm̃ = xm̃+1 and we have the statement in

our proof.

Q.E.D.

We presented a simple method in (13) that yields a stationary solution for the combina-

torial problem in (9), given an initial solution. In the next section we study an experiment

that tests this methodology.

6 Experimental Design and Results

Three questions arise in our research that need to be tested experimentally:

• What is the improvement gained by using historical patterns?

• What is the effect of aggregation of historical patterns on the benefit from using his-

torical patterns?

• How effectively does the SO methodology in (13) use information derived from histor-

ical patterns?
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The experiment we present utilizes real-world data representing the locomotive management

problem of a large freight railroad. To measure the value of using historical patterns, we

set up an experiment where we create a random sample of “unobservable” data. We then

simulate human decision making by solving this problem optimally. The optimal solution

is then aggregated to simulate the loss of information that occurs when polling information

from a historical database. Thus in our laboratory experiment, we create our “history” by

solving a function C̃(x) optimally as a deterministic, flow-balancing network model with

complete information as shown below:

xh∗ = arg min
x∈X

C̃(x)

where the feasible region X is assumed to be compact. We do have access to an actual

database of historical decisions but due to the complexity of actual operations we are unable

to measure the quality of these solutions and hence we have to create our “history” artificially.

It should be noted that in actual operations decisions are made suboptimally and our attempt

to construct a “historical” database of decisions represented by xh∗ obtained from solving C̃

is only an idealized characterization of the real-world.

Since the feasible region is identical when solving C̃ and C we have Nh
s = Ns for each

observation statistic s ∈ S. We construct our pattern regression distribution ψs for each

s ∈ S from the historical quantities generated by applying equation (1) to the optimal

solution xh∗. We then use equation (7) to obtain the desired vector of quantities q̂h∗ =

{q̂h∗
sk}s∈S,k∈{1,2,...,Ns} that represents our incomplete information in the pattern metric.

The set of observation statistics is chosen such that the numerical patterns are represented

at a higher level of aggregation of the state and decision than is represented in either C or C̃.

This makes our experiment realistic since we are unable to observe patterns from a historical

database at the same level of detail that is captured in a cost function. The optimization

model with the pattern metric is given by:

x∗(θ) = arg min
x∈X

C(x) + θ
∑
s∈S

Ns∑
k=1

(q̂s(k)(x)− q̂h∗
s(k))

2 (18)
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Solving the model in (18) using the traditional approach (that is θ = 0) yields a subop-

timal solution to the model C̃ since the objective C̃ consists of cost parameters that are not

considered in C. We are interested in evaluating the improvement over this solution when

the model is solved with a pattern metric (that is θ > 0 in (18)).

Using the traditional method with just the cost function (that is setting θ = 0 in equation

(18)) we have:

x∗(0) = arg min
x∈X

C(x)

We solve a sequence of deterministic, flow-balancing models where at each index m of

the sequence we solve:

xm(θ) = arg min
x∈X ,φ=φm−1

C(x) + θ
∑
s∈S

Ns∑
k=1

(q̂sφ(k)(x)− q̂h∗
s(k))

2
, m ∈ {1, 2, . . .} (19)

We set φ0 to the permutation pertaining to the order statistics of the solution x∗(0). As we

showed in proposition 5.2 the above sequence of optimal solutions converges to a stationary

point. We denote the convergent solution to the sequence in (19) by xSO,∗(θ). We define our

measure of model performance by the improvement ratio which is given by:

ηIMP (θ) =
C̃(x∗(0))− C̃(xSO,∗(θ))

C̃(x∗(0))− C̃(xh∗)

An improvement ratio equal to 1 means that for a particular value of θ we have obtained

the optimal solution using the SO methodology of (19) . We claim that by solving the

optimization model with a pattern metric as indicated in (19) we are able to get a positive

improvement for a particular θ, that is we have ηIMP (θ) > 0.

In the following sections we present the experimental setup detailing the generation of

the vector xh∗ and consequently the quantities that are represented in a pattern metric and

the results of our research.
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6.1 Experimental Setup

Our experimental setting is a locomotive management problem for a large railroad. The

resource attribute state at for the train is as shown:

at = {Train ID, Origin, Destination, Tonnage, Train Type}, at ∈ At

At is the space of possible attribute vectors for a train resource. The resource attribute state

of the locomotive denoted by al is as shown below:

al = {Locomotive Type, Location, Horsepower (HP)}, al ∈ Al

where we use Al to denote the attribute space of the locomotive attribute vector al. The set

of decisions pertaining to a train resource with attribute vector a ∈ At is as shown below:

Dt
a = ∪{al∈Al:al

Location=aOrigin}{Assign train to locomotive with attribute vector al}

where al
Location denotes the “Location” component of the attribute vector al. aOrigin denotes

the attribute “Origin” of the train. Thus the decision set Dt
a consists of decisions where each

decision means assigning to the train a locomotive with a specific attribute vector al ∈ Al

such that the location of the locomotive is same as the origin of the train. The set of decisions

pertaining to a locomotive resource attribute vector a ∈ Al is as shown below:

Dl
a = ∪{at∈At:aLocation=at

Origin}{Assign the locomotive to train with attribute vector at}

The experimental data is obtained from a major railroad and typically represents the data

for a week. The data consisted of 10557 train segments (each segment is a unique “Train

ID”) connecting 178 locations in the network, 12 train types and 8 locomotive types.

We consider two types of engineering costs, a positive cost denoted by the vector ca

(the cost of assigning locomotives to trains) and a negative cost denoted by the vector cr

(the reward of assigning power to a train). The objective function characterizing C has a
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quadratic form as shown below:

C(x) =
∑
a∈Al

∑
d∈Dl

a

caadxad −

∑
a∈At

2

∑
d∈Dt

a

dHPxad

 crad −

∑
d∈Dt

a

dHPxad

2

crad

aTonnage ∗ β

 (20)

Please note that the decision set Dt
a is simply a set of locomotive states and hence we use dHP

to denote the horsepower of the locomotive. {caad}a∈Al,d∈Dl
a

and {crad}a∈At,d∈Dt
a

characterize

the vectors ca and cr respectively. β is a positive parameter characterizing the “horsepower

per trailing ton” ratio.

The corresponding cost vectors c̃a and c̃r for the objective function C̃ characterizing the

real-world are derived by perturbing the vectors ca and cr by random perturbations δa and

δr in a biased sense, that is, the expectations of these random perturbations are not equal

to 0. We also assume that the random vectors δa and δr are not observable to the modeler

even after the fact.

Based on actual experience we believe that assigning power to a train just based on

the tonnage of a train is inadequate because we do not consider the effect of the terrain

over which the track is laid. This information is usually unobservable by the modeler.

In our laboratory setting we attempt to capture this behavior by applying a uniformly

distributed biased random multiplier on the parameter β for each train. We assume this

random multiplier is completely unknown to the modeler and is denoted by δβ
a . The objective

function characterizing the real-world in our laboratory setting is as shown below:

C̃(x) =
∑
a∈Al

∑
d∈Dl

a

c̃aadxad −

∑
a∈At

2

∑
d∈Dt

a

dHPxad

 c̃rad +

∑
d∈Dt

a

dHPxad

2

c̃rad

aTonnage ∗ β ∗ δβ
a

 (21)

We solve C̃ to generate our history xh∗. In our experiment the positive cost parameters

characterizing C̃ are allowed to deviate uniformly between -100% and 200% of their respective
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values in C. The negative costs are allowed to deviate uniformly between -75% and 150% of

their corresponding values in C. The random multiplier δβ
a is uniform in the range [0.7, 1.6].

The difference between the parameters characterizing C̃ and the parameters characterizing

C is assumed to be completely unknown to the modeler. In the next section we present how

we capture the loss of information in representing numerical patterns through aggregation.

6.2 Aggregation

We consider aggregated train attribute states in our experiment to capture loss of information

when representing the numerical patterns in our experiment. The level with the most detail

represented by a train state at ∈ At is denoted by O-D-T-ID and consists of the attributes

“Origin”(O), “Destination”(D), “Train Type”(T) and “Train ID”(ID). The aggregated states

that we consider in our experiment are the O-D-T and O-D levels.

The modeler’s estimate of the “horsepower per trailing ton” (HPT) for each train is given

by β. However in the real-world the actual HPT may be different from β and this difference

may be a function of a level of aggregation. If the HPT is specific to an individual train then

δβ
a is a function of the O-D-T-ID level. If the HPT is a function of the terrain and the train

type then we capture this by letting δβ
a be a function of the O-D-T level. If we assume the

HPT is a function of only the terrain then the differences in HPT are reflected at the O-D

level.

Thus when we generate our “history” if we generate patterns where the HPT information

is a function of all the attributes at the O-D-T level the numerical patterns of interest are

represented only at the O-D-T (complete information) and O-D level (loss of information).

In the former each observation statistic refers to an O-D-T level and in the latter each

observation statistic is at the O-D level. Thus in our methodology of capturing incomplete

information contained in the real-world using numerical patterns we represent the numerical

patterns at the same level or a higher level of aggregation than the level at which we generated

the HPT data. This approach is encapsulated in the table 1. The quantity that we observe

from our history and represented as numerical patterns is the total horsepower assigned to a

train given by
∑

d∈Dt
a
dHPx

h∗
ad. We derive the order statistics for these quantities based on the
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Data Numerical Patterns
behavior O-D-T-ID O-D-T O-D
O-D-T-ID Yes Yes Yes

O-D-T - Yes Yes
O-D - - Yes

Table 1: Experimental Scenarios

SO methodology for different data scenarios
for different levels of aggregation

Data (Improvement ratio,Scaling factor,Iterations)
behavior O-D-T-ID O-D-T O-D
O-D-T-ID (0.957,5000,1) (0.178,50,2) (0.131,50,11)

O-D-T - (0.940,5000,1) (0.713,500,5)
O-D - - (0.876,5000,1)

Table 2: Imperfect Engineering Costs

set of observation statistics which are generated at the same or higher level of aggregation

with respect to level at which the HPT data is generated.

6.3 Summary of Results

All the models solved are quadratic programming problems and are solved on a SunOS5.8

platform using LOQO which utilizes interior-point methods to solve linear and quadratic

programming problems (Vanderbei (1999)). We apply the SO methodology in (13), given an

initial solution, in our experiment. Each model solved involved 95,109 variables and 12,077

constraints. In our experiment testing the SO methodology, convergence is achieved if the

iteration-specific pattern metric given by:

Hm =
∑
s∈S

Ns∑
k=1

(q̂m
sφ(k) − q̂h∗

s(k))
2
, m ∈ {1, 2, . . .}

where φ ∈ Φ is the permutation vector that defines the order statistics of the solution vector

{q̂m
sk}s∈S,k∈{1,2,...,Ns}, converges to within two significant digits.

We present the results of our experimental scenarios in table 2. We also performed an

experiment where we assume the model is able to capture the engineering costs reflected in

C̃ perfectly, that is, ca = c̃a and cr = c̃r and the only difference between C and C̃ is the
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SO methodology for different data scenarios
for different levels of aggregation

Data (Improvement ratio,Scaling factor,Iterations)
behavior O-D-T-ID O-D-T O-D
O-D-T-ID (1.00,10000,1) (0.144,50,1) (0.126,50,12)

O-D-T - (1.00,10000,1) (0.808,1000,6)
O-D - - (0.981,5000,2)

Table 3: Perfect Engineering Costs

unknown vector of beta multipliers δβ = {δβ
t }a∈At . These results are shown in table 3. We

show in the tables the best improvement ratio and the scaling factor corresponding to this

ratio and number of iterations to convergence of the SO algorithm for this scaling factor.

As is indicated by the improvement ratio of 1 in the case where we use perfect engineering

costs the SO methodology is able to capture all the incomplete information completely when

θ is allowed to increase indefinitely and there is no aggregation and numerical patterns are

generated at states O-D-T-ID and O-D-T as is indicated by the improvement ratio of 1.

In the case where numerical patterns are generated at O-D level and represented with no

aggregation along with perfect engineering costs the maximum improvement ratio is 0.981.

It should be noted that since the SO methodology is not guaranteed to converge to the

global optimum, these results speak well of the quality of the initial starting solution. These

results show that the SO methodology as applied with our choice of initial feasible solution

is successful in its ability to capture the combinatorial effects of the order statistics.

In figure 2 we represent the improvement ratio as a function of different data scenarios and

the numerical patterns are represented at the O-D level. In the case of perfect engineering

costs we plot this in figure 3. We see that the improvement ratio is not a monotone in the

scaling factor as is indicated by its maximum at θ = 50 when the numerical patterns are

generated at the O-D-T-ID level. As is expected the improvement ratio at a particular value

of θ is greater if the loss of information in pattern representation is less.

We plot the pattern metric as a function of the scaling factor in figure 4. We see that

as θ →∞ the pattern metric converges to 0 indicating that by increasing the scaling factor

indefinitely we are able to put more emphasis on the historical patterns. In our experiment
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Figure 2: Improvement ratio where numerical patterns are represented at O-D level: Imper-
fect engineering costs
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Figure 3: Improvement ratio where numerical patterns are represented at O-D level: Perfect
engineering costs

we found that at a value of θ = 500 the reduction in the pattern metric with respect to its

value at θ = 1 is around 99.9%.
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7 Conclusion

We present a new methodology for representing information from regression trees in resource

allocation models. Regression trees capture information from a historical database pertain-

ing to flows or numerical quantities. Such problems arise in a freight logistics operation,

for instance, representing information regarding locomotive power assigned to a train in a

locomotive management operation.

We see that the problem of representing information pertaining to observed flows or

quantities in a historical database is closely related to the empirical distribution function

(EDF) of the decision variables. We adopt the Cramer-Von Mises goodness-of-fit test statis-

tic for continuous distribution to develop our methodology of representing information in

resource allocation models because of its separable nature in the number of instances of the

observation statistic. The functional form known as the pattern metric that we use to rep-

resent information is combinatorial in nature due to the influence of the order statistics of

the quantities. We solve this global optimization problem using the sequential ordering (SO)

method that solves a sequence of models without any explicit use of constraints specifying

the order statistics. We prove convergence of this algorithm to a stationary point in a finite
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number of iterations.

We tested our methodology on a real-world data set representing the operations of a

large freight railroad. Preliminary results show that the SO algorithm has potential in

representing information pertaining to numerical patterns as is validated by the positive

improvement ratios for different levels of aggregation at which the numerical patterns are

represented in the pattern metric. We also see that the performance of our methodology

improves if we represent the numerical patterns with more detail in the pattern metric. A

suggestion for future work is the application of our research in a real-world optimization

model such as a locomotive scheduling model for a large freight railroad.
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Appendix

The section relates to the content in section 5 of this paper. We state and prove the following

lemma:

Lemma 7.1 Given a vector {xk}k∈{1,2,...,n} whose elements are all strictly positive and a set

Φn of all possible permutations of the vector {1, 2, . . . , n}, if we have a new vector of order

statistics {y(k)}k∈{1,2,...,n} whose elements are also strictly positive, then:

max
φ∈Φn

n∑
k=1

y(k)xφ(k) =
n∑

k=1

y(k)x(k)

where φ(k) is the kth element of the permutation vector φ ∈ Φn and {x(k)}k∈{1,2,...,n} repre-

sents the vector of ordered statistics for {xk}k∈{1,2,...,n}.
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Proof. Let φ ∈ Φn be a generic permutation vector of {1, 2, . . . , n}. We show our proof

by induction. For the case where m = 1 the statement in the lemma is trivial. Consider

the case where the number of instances is 2. In this case there are only two permutations

possible for the vector x, {x1, x2} and {x2, x1}. Without loss of generality we can set the

vector of order statistics {x(1), x(2)} to {x1, x2}. We have:

(y(1)x(1) + y(2)x(2))− (y(1)x2 + y(2)x1) = y(1)x1 + y(2)x2 − y(1)x2 − y(2)x1

= y(1)(x1 − x2)− y(2)(x1 − x2)

= (y(1) − y(2))(x1 − x2)

≥ 0

since (y(1) − y(2)) ≤ 0 by definition of order statistics and (x1 − x2) ≤ 0 by our assumption.

Thus the lemma is true for the case m = 2, that is, we have:

max
φ∈Φ2

2∑
k=1

y(k)xφ(k) =
2∑

k=1

y(k)x(k)

Thus we have shown that lemma is true for m = 1, 2. Using the induction hypothesis we

assume that the lemma is true for m = n, that is,

max
φ∈Φn

n∑
k=1

y(k)xφ(k) =
n∑

k=1

y(k)x(k)

Consider the case m = n + 1. Without loss of generality we assume yn+1 ≥ yj,∀j ∈

{1, 2, . . . , n} and xn+1 ≥ xj,∀j ∈ {1, 2, . . . , n} so that x(n+1) = xn+1 and y(n+1) = yn+1.

Consider the following quantity:

Zn+1(φ) =
n+1∑
k=1

y(k)xφ(k), ∀φ ∈ Φn+1

We define the following function:

Zn+1,1(φ) =
n∑

k=1

y(k)xφ(k) + y(n+1)x(n+1), ∀φ ∈ Φn (22)
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Consider swapping xn+1 with any xj, j ∈ {1, 2, . . . , n} in equation (22). This procedure can

be expressed using a function as shown below:

Zn+1,2(φ, j) = (
n∑

k=1

y(k)xφ(k)) + y(n+1)xφ(j) − y(j)xφ(j) + y(j)x(n+1), ∀j ∈ {1, 2, . . . , n}, ∀φ ∈ Φn

Zn+1,2(φ, j) evaluates Zn+1 for all possible permutations of the set Φn+1 such that Zn+1 does

not contain the term y(n+1)x(n+1). Zn+1,1(φ) evaluates Zn+1 for all possible permutations of

the set Φn+1 such that Zn+1 consists of the term y(n+1)x(n+1). We have:

Zn+1,1(φ)− Zn+1,2(φ, j) = y(n+1)(x(n+1) − xφ(j))− y(j)(x(n+1) − xφ(j))

= (y(n+1) − y(j))(x(n+1) − xφ(j))

≥ 0, ∀j ∈ {1, 2, . . . , n}, ∀φ ∈ Φn

by definition of the order statistics. From the above equation we have:

max
φ∈Φn+1

Zn+1(φ) = max
φ∈Φn

{Zn+1,1(φ), max
j={1,2,...,n}

Zn+1,2(φ, j)}

= max
φ∈Φn

Zn+1,1(φ)

= max
φ∈Φn

(
n∑

k=1

y(k)xφ(k)) + y(n+1)x(n+1)

=
n+1∑
k=1

y(n+1)x(n+1)

Thus the lemma is true for m = n + 1 and by the induction hypothesis it is true for all

m = n where n ∈ {1, 2, . . .}.

Q.E.D.
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