
J Control Theory Appl 2011 9 (3) 336–352
DOI 10.1007/s11768-011-0313-y

A review of stochastic algorithms with continuous
value function approximation and some new
approximate policy iteration algorithms for
multidimensional continuous applications
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Abstract: We review the literature on approximate dynamic programming, with the goal of better understanding the
theory behind practical algorithms for solving dynamic programs with continuous and vector-valued states and actions and
complex information processes. We build on the literature that has addressed the well-known problem of multidimensional
(and possibly continuous) states, and the extensive literature on model-free dynamic programming, which also assumes
that the expectation in Bellman’s equation cannot be computed. However, we point out complications that arise when
the actions/controls are vector-valued and possibly continuous. We then describe some recent research by the authors on
approximate policy iteration algorithms that offer convergence guarantees (with technical assumptions) for both parametric
and nonparametric architectures for the value function.
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1 Introduction

Dynamic programming has a rich history, with roots that
span disciplines such as engineering and economics, com-
puter science, and operations research, centered around the
solution to a set of optimality equations that go under names
like Bellman’s equations, Hamilton-Jacobi equations, or
the general purpose Hamilton-Jacobi-Bellman (HJB) equa-
tions. Perhaps the two most dominant lines of investigation
assume either a) discrete states, discrete actions, and dis-
crete time (most commonly found in operations research
and computer science) or b) continuous states and actions,
often in continuous time (most commonly found in engi-
neering and economics). Discrete models are typically de-
scribed using a discrete state S and action a, while continu-
ous models are typically described using state x and control
u.

If we use the language of discrete states and actions, Bell-
man’s equation (as it is most commonly referred to in this
community) would be written as

V (S) = max
a∈A

(
C(S, a) + γ

∑
s′∈S

p(s′|s, a)V (s′)
)
, (1)

where C(S, a) is the expected reward if we are in state S
and take action a, and p(s′|s, a) is the one-step transition
matrix. Equation (1) can be written equivalently in its ex-
pectation form as

V (S) = max
a∈A

(
C(S, a) + γEV (S′)

)
. (2)

A rich literature has grown around the solution to (1), start-
ing with the work of Bellman [1], progressing through a se-
ries of notable contributions, particularly [2], and [3], which
serve as a capstone summary of an extensive history of con-

tributions to this field. In this problem class, solution algo-
rithms depend on our ability to compute V (s) for each dis-
crete state s ∈ S.

For many practical problems, the state variable is a vec-
tor. For discrete states, the size of the state space S grows
exponentially with the number of dimensions, producing
what is widely referred to as the ‘curse of dimensionality’
in dynamic programming. In fact, there are potentially three
curses of dimensionality: the state space, the outcome space
(hidden in the expectation in (2)), and the action space (the
action a may also be a vector, complicating the search for
the best action). The curse (or curses) of dimensionality is
a direct byproduct of a desire to work with discrete repre-
sentations, which are particularly easy to deal with on the
computer.

In the engineering literature, the Hamilton-Jacobi equa-
tion is more typically written as

J(x) = max
u∈U

(
g(x, u) + γ

�
x′ P (x′|x, u)J(x′)

)
, (3)

where P (x′|x, u) is called the transition kernel, which gives
the density of state x′ given we are in state x and apply con-
trol u. The control theory community often starts with the
transition function

x′ = SM(x, u, w), (4)

where w is a ‘noise term’ and SM( · ) is the system model
or transition function. For example, there are many prob-
lems in engineering where the transition function is linear
and can be written as

x′ = Ax + Bu + w
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with a quadratic reward function that might be written as
g(x, u) = uTQu.

Such problems are referred to as linear, quadratic control,
and lend themselves to analytic solutions or simple alge-
braic models (see [4, 5]).

Our presentation uses a merger of the two notational sys-
tems. We use x for the state and u for the decision, but V (x)
for the value of being in state x, a decision we made because
this paper is appearing in a control theory journal. We use
C(x, u) as the reward (cost if we are minimizing) when we
are in state x and apply decision u.

There are, of course, many problems where states and ac-
tions/controls are continuous, but where we lose the nice
property of additive noise in the transition function or
quadratic rewards. For example, if we are allocating re-
sources such as energy, water, or money, the control u is a
vector of flows of resources between supplies and demands
(possibly through a network), subject to constraints on the
availability of resources (such as water in the reservoir) and
demands (such as the need for electricity). In this setting,
randomness can appear in the constraint set and in the pa-
rameters in the objective function.

At the same time, we do not enjoy the discrete struc-
ture assumed in (1), which otherwise does not make any
assumption about problem structure but which is severely
limited in its ability to handle vector-valued states, actions,
or random information. For this reason, these two commu-
nities are seeing an unusual convergence toward approxi-
mation strategies that fall under names such as reinforce-
ment learning (used in computer science), or approximate
dynamic programming, used in operations research and in-
creasingly in engineering (see, for example, Chapter 6 in
[6]). Other names are adaptive dynamic programming and
neurodynamic programming. Often, cosmetic differences in
names and notation hide more substantive differences in the
characteristics of the problems being solved. In computer
science, the vast majority of applications assume a rela-
tively small number of discrete (or discretized) actions. In
engineering, a control vector is generally continuous with
a ‘small’ number of dimensions (e.g., less than 20). In op-
erations research, decisions may be discrete or continuous
but often have hundreds or thousands of dimensions (see
http://www.castlelab.princeton.edu/wagner.htm for an illus-
tration).

These efforts are focused on two complementary paths:
approximating the value function or approximating the pol-
icy. If we are approximating the value function, we might
write the policy π(x) as

π(x) = arg max
u∈U

(
C(x, u) + γEV̄ (f(x, u, w))

)
, (5)

where V̄ (x′) is some sort of statistical approximation of the
value of being in state x′. For example, we might write the
approximation in the form

V̄ (x) =
∑

f∈F
θfφf (x),

where φf (x), f ∈ F is a set of user-specified basis func-
tions, and θ is a vector of regression parameters to be de-
termined. There is a rich and growing literature where the
value function is approximated using neural networks [7, 8]

or a host of other statistical methods [9].
Alternatively, we might specify some functional form for

π(x|θ) governed by a vector θ of tunable parameters. This
problem is often written as

max
θ

E
∞∑

t=0
C(xt, π(xt)). (6)

In theory, the policy can be the same as (5), although more
often it is given a specific functional form that captures the
behavior of the problem. However, it is possible to approx-
imate the policy using the same family of statistical tech-
niques that are being used to approximate value functions
(see [10∼12]).

This paper represents a modern survey of approximate
dynamic programming and reinforcement learning, where
we make an effort (albeit an imperfect one) of covering con-
tributions from different communities. Our primary interest
is in developing an understanding of the convergence the-
ory of algorithms that are specifically designed for problems
with multidimensional states and actions, and where the ex-
pectation cannot be computed exactly. The bulk of our sur-
vey is provided in Section 2. Then, we provide a summary of
some recent algorithmic work aimed at this problem class.
Section 3 provides some mathematical foundations for con-
tinuous Markov decision processes (MDPs). Section 4 then
presents some recent work on algorithms specifically tai-
lored to the challenges of multidimensional and continuous
states, actions, and information.

2 Literature review

In this section, we survey stochastic algorithms with con-
tinuous function approximations from different communi-
ties including dynamic programming, reinforcement learn-
ing, and control. Each community has its unique perspective
to solve stochastic optimization problems, generally mo-
tivated by specific problem classes. Some are designed to
apply continuous function approximations to discrete prob-
lems, while others work for problems with continuous states
and actions.

There are a number of dimensions to the general problem
of finding optimal or near-optimal policies for sequential
decision problems. Some of these include:

� The choice of policies for choosing states, which can be
divided between:

1) on-policy algorithms where the choice of the next
state is determined by the estimation policy, which is being
optimized,

2) off-policy algorithms that evaluate the estimation
policy by using a sampling policy (or behavior policy) to
determine the next state to visit.

This issue is often referred to as the exploration vs. ex-
ploitation problem in approximate dynamic programming,
and it remains an active area of research.

� Computing the expectation. Some algorithms assume
known distribution (transition matrix) or computable expec-
tation, while others use online Monte Carlo simulation to
estimate the expectation.

� Problem structure. Some algorithms assume special
problem structures such as linear control and transition,
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quadratic rewards, and linear additive noise (sometimes
Gaussian).

� Approximation architecture. We can approximate the
value function using lookup tables (discrete representation),
parametric beliefs (e.g., basis functions), and various forms
of nonparametric representations (neural networks, kernel
regression, support vector machines, and hierarchical aggre-
gation).

� Performance guarantees. Some algorithms have conver-
gence guarantees that are almost sure/with probability 1, in
probability, in expectation, or provide performance bounds,
while others provide good empirical performance without
rigorous convergence support.

Given space constraints and the current level of maturity
in the field, our review is necessarily incomplete. For a good
introduction to the field from the perspective of computer
science, we recommend reference [13]. Reference [7] and
Chapter 6 in [4] provide a rigorous theoretical foundation.
Reference [14] provides an introduction to ADP for an en-
gineering audience with an emphasis on modeling and algo-
rithms, with a presentation oriented toward complex prob-
lems. Reference [15] is a recent research monograph with
numerous algorithms. References [16∼18] are excellent re-
search monographs that are more oriented toward the op-
timization of simulation models, which is a closely related
problem class.

Below we provide a summary of some of the research in
this growing field, with the goal of touching on the major
issues and algorithmic strategies that arise in the design of
effective algorithms.
2.1 Early heuristic approximations for discrete prob-

lems

We start with algorithms that are designed to solve dis-
crete problems with continuous value function approxima-
tion (VFA). The use of compact representations in VFA can
be traced to the origins of the field. Reference [19] first
uses polynomial representations as a method for breaking
the curse of dimensionality in the state space. Both [20]
and [21] consider other compact representation methods
such as replacement of state and action spaces with subsets.
Reference [22] proposes using linear combinations of fixed
sets of basis functions to approximate value functions. Both
temporal difference (TD) learning in [23] and Q-learning
in [24] consider various compact representations such as
linear function approximation and artificial neural networks
for dynamic programming. However, all these approaches
are proposed as heuristics without rigorous convergence
analysis, even though there were extraordinarily successful
applications like the world-class backgammon player given
in [25] and robot navigation given in [26].
2.2 Feature-based function approximation

The first step to set up a rigorous framework combin-
ing dynamic programming and compact representations of
value functions is given in [27]. Two types of feature-based
value iteration algorithms are proposed. One is a variant of
the value iteration algorithm that uses a lookup table at an
aggregated level (a form of feature) rather than in the origi-
nal state space. The other value iteration algorithm employs

feature extraction and linear approximations with a fixed set
of basis functions. Under rather strict technical assumptions
on the feature mapping, reference [27] proves the conver-
gence of the value iteration algorithm (not necessarily to
the optimal value function unless it is spanned by the ba-
sis functions) and provides a bound on the quality of the
resulting approximations compared with the optimal value
function.
2.3 TD learning algorithms

Reference [27] develops a counter-example to illustrate
that a simple combination of value iteration and linear ap-
proximation fitted using least squares might lead to di-
vergence of the algorithm. As pointed out by Sutton, the
counter-example fails to hold when an online state sampling
scheme is employed. As a result, reference [28] considers
an online TD learning TD(λ) algorithm using a linear-in-
the-parameters model and continuous basis functions. The
algorithm assumes a fixed policy, in which case the prob-
lem is reduced to a Markov chain. The convergence analysis
is established on the assumption of a discrete state Markov
chain, even though it is claimed that the proofs can be easily
carried over to the continuous case.
2.3.1 Least-squares TD learning

Reference [29] combines a TD learning algorithm with
linear function approximation and least-squares updating to
build the least-squares TD (LSTD) algorithm for a fixed pol-
icy and proves almost sure convergence of the algorithm. It
is argued that LSTD is superior to the conventional TD al-
gorithm in terms of convergence properties for the follow-
ing three reasons: 1) Tuning of step size parameters is not
needed in LSTD, overcoming the well-known problem of
slow convergence with a poor choice of step sizes; 2) LSTD
produces faster convergence because samples are used more
efficiently; and 3) LSTD is robust to the initial value of the
parameter estimates and choice of basis functions, but TD
using a stochastic gradient updating algorithm is not. Ref-
erence [30] generalizes the LSTD(λ) algorithm to arbitrary
values of λ ∈ [0, 1]. Then, LSTD in [29] becomes a special
case for λ = 0. At the other extreme of λ = 1, the al-
gorithm is an incremental construction of supervised linear
regression.
2.3.2 Least squares policy iteration

Motivated by the LSTD algorithm, reference [31] pro-
poses the least squares policy iteration (LSPI) algorithm
that combines VFA with linear architectures and approxi-
mate policy iteration. LSPI is presented as a model-free, off-
policy, offline approximate policy iteration algorithm for fi-
nite MDPs that uses LSTD-Q (a modified version of LSTD)
to evaluate state-action Q-factors of a fixed policy, and a
generic deterministic error bound of the approximate policy
iteration as in [7] is provided as convergence support for the
algorithm.
2.3.3 Representative policy iteration

Reference [32] extends the LSPI algorithm within a novel
spectral framework called representative policy iteration
(RPI). By representing a finite sample of state transitions
induced by the MDP as an undirected graph, the algorithm
automatically generates subspaces on which to project the
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orthonormal basis functions using spectral analysis of graph
Laplacian operators. The algorithm provides a potential so-
lution to one of the major open problems in approximate
dynamic programming, which is feature (basis function) se-
lection.
2.3.4 Off-policy TD learning

Reference [33] introduces an off-policy TD learning al-
gorithm that is stable with linear function approximation
using importance sampling. The algorithm converges al-
most surely given training under any ε-soft policy (Boltz-
mannn exploration). Reference [34] presents an off-policy
TD algorithm, called gradient temporal-difference (GTD).
The learning algorithm uses i.i.d. sampling of initial states
combined with on-policy transitions to perform stochastic
gradient descent and to update the VFA estimates. The algo-
rithm converges almost surely to the same solution as con-
ventional TD and LSTD with linear complexity.
2.3.5 Fitted TD learning

Reference [35] presents a convergent fitted TD learning
(value iteration) algorithm with function approximations
that are contraction mappings, such as k-nearest neigh-
bor, linear interpolation, some types of splines, and local
weighted average. Interestingly, linear regression and neu-
ral networks do not fall into this class, and they can in
fact diverge. The main reason for divergence is the exag-
geration feature that small local changes can lead to large
global shifts of the approximation. Reference [36] proves
a weaker convergece result (converge to a bounded region
almost surely) for linear approximation algorithms such as
SARSA(0) (a Q-learning-type algorithm presented in [37])
and V (0) (a value-iteration-type algorithm introduced by
[38]).
2.4 Residual gradient algorithm

To overcome the instability of Q-learning or value itera-
tion when implemented directly with a general function ap-
proximation, residual gradient algorithms, which perform
gradient descent on the mean-squared Bellman residual
rather than the value function or Q-function, are proposed
in [39]. For a deterministic MDP, the change of weight w of
the linear approximation is

wn+1 = wn + Δw

= wn + αn(C(xn, π(xn)) + γV (x′|wn)

−V (xn|wn))
( ∂

∂w
γV (x′|wn) − ∂

∂w
V (xn|wn)

)
,

where αn is the step size, C(xn, π(xn)) is the reward,
V (x|w) is the value function for state x given weight vector
w, and x′ = π(x) is the next state if we are following pol-
icy π. Convergence of the algorithms to a local minimum of
the Bellman residual is guaranteed only for the determinis-
tic case.
2.5 Bridge algorithm

Reference [40] describes the Bridge algorithm for TD
learning applied to a fixed policy. The VFA is derived from
linear combinations of a specified set of basis functions.
Graphically, the algorithm uses a novel projection operator
called B instead of the standard operator to ‘build’ a bridge
across the hypothesized class of functions towards the opti-

mal solution for VFA updates. The algorithm can be applied
to any ‘agnostically learnable’ hypothesis class other than
the class of linear combination of fixed basis functions, and
it is provably convergent to an approximate global optimum
given approximation error bounds.
2.6 State-action-reward-state-action (SARSA) updat-

ing

SARSA is an algorithm whose name reflects the notation
of reinforcement learning that is designed for discrete states
and actions. Assume we are in state s, choose action a ac-
cording to some policy (such as ε-greedy), observe a reward
r and then the next state s′, after which we again choose
an action a′ based on the same policy. This is an on-policy
(the value of being in state s is based on the same policy for
choosing action a as we use to determine the action a′ out of
the next state s′), convergent algorithm as long as the policy
guarantees that each state is visited infinitely often. Refer-
ence [41] presents a model-free type of approximate policy
iteration that combines online SARSA updates (see [42])
with linear state-action Q-factor approximation for policy
evaluation and uses a new policy improvement operator for
policy improvement. Under certain technical assumptions
on the policy improvement operator, the algorithm is prov-
ably convergent to a unique solution from any initial policy.
2.7 Linear quadratic regulation

In the 1990s, convergence proofs of dynamic program-
ming algorithms were established for a special problem
class with continuous states called linear quadratic regu-
lation (LQR), which has been studied extensively in con-
trol theory. LQR is a control problem with linear dynamic
transition and quadratic cost/reward function for continuous
state and action spaces. What follows is a canonical form of
LQR. The state system evolves as xt+1 = Atxt + Btut +
wt+1, where wt is random at time t and the objective is to
find an optimal control law minimizing the quadratic cost
function:

E
{ ∞∑

t=0
γt(x′

tQtxt + u′
tRtut)|x0 = x

}
,

where t is the time index, xt is the state vector of dimension
n, ut is the control vector of dimension m, At, Bt, Qt, Rt

are matrices with appropriate dimensions, and wts are inde-
pendent random vectors with zero mean and finite variance
and they do not depend on the state and control. Further-
more, Qt is assumed to be positive semidefinite and Rt is
positive definite so that the objective function is convex and
a unique solution exists.

One nice feature of the LQR-type problems is that they
can be solved analytically using algebraic Riccati equa-
tions. However, computing these equations can be com-
putationally challenging. In addition, many applications
require a model-free setting with the ability to compute
the control policy online. Under these circumstances, the
transition matrices A,B and cost matrices Q,R are un-
known, but rewards/penalties and state transitions can be
directly observed from a physical process. As a result, re-
cursive stochastic algorithms are proposed to find the op-
timal control, and we would expect that an approximation
dynamic programming algorithm with quadratic basis func-
tions would converge to the true value function and optimal
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control. However, such convergence results only exist for
the deterministic case by Brandke and Landelius and for the
stochastic case by [43].
2.7.1 Bradtke’s reinforcement learning algorithms

Reference [44] proposes two algorithms based on Q-
learning to apply to deterministic infinite-horizon LQR
problems (without the noise term wt in the transition). One
resembles a policy iteration algorithm, while the other be-
longs to optimistic policy iteration or classic value iteration
algorithm. Optimistic policy iteration, introduced in [45],
represents a form of partial policy evaluation. The policy it-
eration algorithm is provably convergent to the optimal con-
trol policy, but an example shows that the value iteration
algorithm only converges locally.

For a deterministic LQR with fixed, stable policy π, as
shown before, the value function has the form vπ(xt) =
xtK

πxt, where Kπ is a positive semidefinite matrix. The
Q-factor for a stable control policy π is defined to be

Qπ(xt, ut) = C(xt, ut) + γQπ(xt+1, π(xt+1)).
With straightforward computation, it can be written as

Qπ(x, u) = [x, u]′Hπ[x, u],
where

Hπ =

(
Q + γA′KπA γA′KπB

γB′KπA R + γB′KπB

)
.

The quadratic function can be rewritten as a linear function,
e.g., x′Qx = Θ(Q)′φ, where φ is the vector of quadratic
basis functions and Θ(Q) is the corresponding parameter
vector. Then, the recursive formula becomes
C(xt, ut)=([xt, ut]−γ[xt+1, π(xt+1)])′Θ(Hπ) = φ′

tθ
π,

where [x, u] is a concatenation of x and u.
With this formulation, the least-squares method can be

applied to estimate θπ . Recursive least squares (RLS) is
used in actual implementations since observations come se-
quentially and updates of parameters are also done sequen-
tially. Reference [46] proved that starting with a stabilizing
control and adding in a noise term to serve as a form of
exploration (also known as persistent excitations), if a suffi-
ciently accurate estimation of Hπ for policy πn is obtained
before updating to an improved policy πn+1, then the pol-
icy iteration algorithm is guaranteed to converge to the opti-
mal control law π∗. On the other hand, a numerical example
with scalar state and action in [44] shows that the value iter-
ation algorithm only converges locally. If the initial policy is
set close enough to an unstable solution, the algorithm con-
verges to the unstable solution. This is because the unstable
initial policy is very likely to generate a concave quadratic
function approximation rather than a convex one in suc-
cessive estimation. As a result, the policy obtained using
differentiation maximizes rather than minimizes the value
function in LQR. Failure of convergence to the true optimal
policy is no surprise, and the algorithm should converge to
the optimal control law if the initial estimation of the value
function is convex and the control policy is set accordingly.
2.7.2 Landelius’ heuristic dynamic programming algo-

rithms

Reference [47] presents convergence analysis of several
adaptive critic algorithms applied to LQR problems includ-

ing heuristic dynamic programming (HDP, another name
for approximate dynamic programming), dual heuristic pro-
gramming (DHP, which works with derivatives of the value
function instead), action-dependent HDP (ADHDP, another
name for Q-learning), and action-dependent DHP (AD-
DHP), which were first introduced by [48]. The one that
is of the most interest to us is the HDP algorithm since it
uses greedy iteration (value iteration) and it is supposed to
provide faster convergence.

For an infinite horizon problem, reference [47] uses the
following updating formula for the parameter matrix:

Kn+1 = Kn − αxnx′
n{x′

n[Kn − Q − L′
nRLn

−(A + BLn)′Kn(A + BLn)]xn},
where Ln = −(R +B′KnB)B′KnA and 0 � α < 1 is the
fixed step size. Then, reference [47] transforms from matrix
form to vector form by letting vec(K) be the vector formed
by stacking columns of K. Then, letting kn = vec(Kn) and
vn = vec(xnx′

n), the updating rule becomes
kn+1 = kn − αvnv′nvec([Kn − Q − L′

nRLn

−(A + BLn)′Kn(A + BLn)]).
With this transformation, reference [47] is able to prove
convergence of the algorithm. The basic difference between
HDP and the Q-learning algorithm proposed in [44] is the
parameter updating rule. Reference [44] uses RLS, while
reference [47] uses a stochastic gradient method that may
introduce a scaling problem.
2.7.3 Szita’s stochastic algorithm

It seems reasonable to extend the two algorithms from the
deterministic case to the stochastic case, but convergence
for the stochastic gradient method is established in [43] only
for the case of Gaussian noise that arises when observing
the state, as is standard in many control theory applications.
The state evolves as follows:

xt+1 = Axt + But + wt+1, yt+1 = Hxt + ξt+1,

where yt+1 is a noisy observation and wt+1, ξt+1 are un-
correlated, zero mean noise terms with covariance matrices
Cw and Cξ. The evolution of estimates of the state is

Ŝt+1 = AŜt + Bxt + Kt(yt+1 − HŜt),
Kt = AΣtH

T(HΣtH
T + Cξ)−1,

Σt+1 = Cw + AΣtA
T − KtHΣtA

T.

The updating rule for the parameter matrix is essentially the
same as the algorithm in [47], but reference [43] uses the es-
timate of states and a stochastic step size. With the assump-
tion that the state is bounded in expectation (equivalent to
say that the state is bounded with high probability), refer-
ence [43] shows almost sure convergence of the algorithm.
The proof relies heavily on the following lemma in [36].

Lemma 1 [36] Let J be a differentiable function,
bounded below by J∗, and let ∇J be Lipschitz continu-
ous. Suppose the sequence satisfies wt+1 = wt + αtst

for a random vector st independent of wt+1, wt+2, · · · .
Suppose st is a descent direction for J in the sense that
E(st|wt)T∇J(wt) > δ(ε) > 0 whenever J(wt) > J∗ + ε.
Suppose that
E(‖st‖2

∣∣wt) � K1J(wt) + K2E(st

∣∣wt)T∇J(wt) + K3,

and αt satisfies αt > 0,
∑
t

αt = ∞ and
∑
t

αt < ∞.Then,
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J(wt) → J∗ with probability 1.

Here, reference [43] takes J(w) =
1
2
‖w − w∗‖2 and the

same descent direction used in [47].
2.7.4 Nonlinear HJB solution using approximate dy-

namic programming

From a control theory perspective, reference [49] consid-
ers a value-iteration-based approximate dynamic program-
ming algorithm without knowledge of the internal dynam-
ics of the system. Under the assumption of exact updates
of the value function and action, it is proven that the algo-
rithm converges to the optimal control and the optimal value
function that solves the HJB equation in infinite-horizon
discrete-time nonlinear optimal control. The algorithm is of-
ten used with neural networks for approximation: one critic
network to approximate the value function and another actor
network to approximate the optimal control policy. Specifi-
cally, LQR is a special case of the exact solution assumption
for the nonlinear systems and the algorithm returns zero ap-
proximation error.
2.7.5 Discrete-time linear quadratic zero-sum game

With a model-free setting, reference [50] proposes a Q-
learning-type approximate dynamic programming (forward
in time) algorithm to find the optimal solution to discrete-
time linear system quadratic zero-sum games (with contin-
uous state and action spaces) related to the H-infinity op-
timal control problem. The algorithm adaptively trains the
state-action Q-factor of the zero-sum game instead of the
state value function forward in time using adaptive critic
methods, and it is provably convergent to the equilibrium of
the game. Reference [51] extends the work in [50] to two
schemes: a) HDP to solve for value function and b) dual
HDP to solve for the costate of the game.
2.8 Batch reinforcement learning

A series of papers [52∼55] derive finite-sample proba-
bly approximately correctness (PAC) bounds for batch re-
inforcement learning problems. These performance bounds
depend on the mixing rate of the sample trajectory (which
captures the degree to which the stochastic process moves
between states while following a policy), the smoothness
properties and controllability of the underlying MDP, the
approximation power and capacity of the function approxi-
mation method used, the iteration counter of the policy im-
provement step, and the sample size for policy evaluation.
With these properties, they show the algorithms produce
near-optimal policies with high probability. More specifi-
cally, reference [54] presents a sampling-based fitted value
iteration algorithm (a special form of approximate value it-
eration) for MDP problems with large-scale or continuous
state spaces but finite action spaces in an offline setting
where a known system model can generate sample transi-
tions from any initial state for each possible action. At each
time step, the Monte Carlo simulation is used to generate
estimates of the optimal value function with a PAC bound
that controls the approximation error.

Assuming a model-free setting, references [52, 53] con-
sider a fitted policy iteration algorithm based on a single tra-
jectory of following some fixed sampling policy (off-policy)

to solve MDPs with continuous state space and finite ac-
tion space. The algorithm provides a finite-sample, high-
probability bound on the performance of the VFA capac-
ity. In addition, it is shown that the algorithm is equivalent
to LSPI if linear approximation is used. In order to han-
dle problems with continuous actions, reference [55] steps
forward to extend previous algorithms to a variant of fitted
Q-iteration, in which policy improvement is done by max-
imizing the average action values in a restricted set of po-
tential policies rather than selecting the greedy policy. By
imposing regularity conditions on the action space, finite-
time, high-probability performance bounds can be obtained
for the algorithm.
2.9 Kernel-based reinforcement learning

Reference [56] presents a kernel-based approach to ap-
proximate the value function, avoiding the problem of de-
signing basis functions. The algorithm progresses by ap-
proximating the transition probabilities for each action us-
ing Monte Carlo samples, limiting the idea to relatively
small action spaces. Then, the optimal policy is found given
this approximation using conventional contraction argu-
ments.

The algorithm is provably convergent to a unique solu-
tion to an approximate Bellman’s equation regardless of its
initial values for a finite training data set of historical tran-
sitions. As the size of the transition data set goes to infin-
ity, the approximate value function and approximate policy
converge in probability to the optimal value function and
optimal policy, respectively. Moreover, it is shown that the
value function estimate of the limiting distribution is Gaus-
sian with the kernel-based approach.

Reference [57] considers a kernelized version of LSPI
in [31], which applies the kernel RLS algorithm developed
in [58] to LSTD-Q for approximating state-action Q-factors
of a fixed policy. The kernel RLS algorithm is a nonlinear
version of the RLS algorithm, which applies linear regres-
sion to a high-dimensional feature space induced by a Mer-
cer kernel to recursively solve the nonlinear least-squares
problem. To strike a balance between policy quality and
learning efficiency, reference [57] uses approximate linear
dependence developed in [58] for online sparsification by
sequentially eliminating samples that can be well approx-
imated by a linear span of other samples. A Kernel-based
LSPI performs empirically better than LSPI in terms of
learning efficiency and policy quality on typical nonlinear
reinforcement learning tasks such as ship heading control
and the inverted pendulum.

Reference [59] extends LSTD to the framework of a
subspace-based variant least-squares support vector ma-
chine (LS-SVM) to handle online learning problems with
a large training sample size and a sequential data process.
Adapted from Gaussian process regression, the algorithm
has only linear computational complexity compared to the
original optimization problems of cubic complexity.

Reference [60] proposes another algorithm with online
nonparametric approximation of the value function, called
equigradient descent algorithm (EGD). It is a TD algorithm
using kernel regression with least absolute shrinkage and se-
lection operator (LASSO) for regularization, and the com-
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putational cost of the algorithm is kept reasonable.
References [?, 61] present an approximate policy itera-

tion algorithm using support vector regression (SVR) for
Bellman residual minimization at selected states. When the
entire state space is sampled, the algorithm converges to the
same result as exact policy iteration in the limit under cer-
tain conditions about the chosen feature mapping and the
associated kernel function.

Reference [62] proposes a fitted Q-iteration algorithm
that can be combined with either linear or nonlinear func-
tion approximation and uses L2 regularization to control the
complexity of the value function in problems with continu-
ous state space. Reference [63] extends reference [62] to
an approximate policy iteration algorithm that applies non-
parametric methods with L2 regularization to policy evalua-
tion approaches such as Bellman residual minimization and
LSTD. Finite-sample performance bounds are provided for
both algorithms to show that the optimal rates of conver-
gence can be achieved under the certain conditions.
2.10 Gaussian process models

Another nonparametric approach to optimal control prob-
lems is the Gaussian process model, in which value func-
tions are modeled with Gaussian processes. For fixed pol-
icy evaluation, reference [64] presents the Gaussian process
TD algorithm, which is a Bayesian approach to VFA with
continuous state spaces. The algorithm imposes a Gaussian
prior over value functions and assumes a Gaussian noise
model. Then, it updates the posterior Gaussian process pa-
rameters using an online sparsification method. Reference
[65] then extends GPTD in [64] to the framework of approx-
imate policy iteration. Reference [66] introduces a Gaus-
sian process dynamic programming (GPDP) algorithm. It
is an approximate value iteration algorithm, which models
value functions in the dynamic programming recursion with
Gaussian processes. These GP algorithms have successful
applications in complex nonlinear control problems without
convergence guarantees.
2.11 Other convergent algorithms

Reference [67] proves convergence of policy iteration al-
gorithms for average cost optimal control problems with
unbounded cost and general state space. The algorithm as-
sumes countable action space and requires exact computa-
tion of the expectation. With further assumptions of a c-
regular initial policy (a strong stability condition where c
represents the cost function) and irreducibility of the state
space, the algorithm generates a sequence of c-regular poli-
cies that converge to the optimal average cost policy.

One extension of the TD algorithm to the continuous do-
main can be found in [68, 69], which show the convergence
of a Q-learning algorithm with linear function approxima-
tion under a fixed learning policy for MDP problems with
continuous state space but finite action space. Under strong
technical conditions on the structure of basis functions, ref-
erence [68] proves almost sure convergence of Q-learning
used with linear function approximation. Reference [69]
shows convergence with probability 1 of Q-learning and
SARSA algorithms with linear approximation under strong
assumptions on the sampling policy.

2.12 Examples of divergence

Value iteration-type algorithms with linear function ap-
proximation can fail to converge. Reference [70] describes
a counter-example of TD(0) algorithm with stochastic gra-
dient updating for the parameters. It is shown that the algo-
rithm converges but can generate a poor approximation of
the optimal value function in terms of Euclidean distance.
Reference [27] presents a similar counter-example as in [70]
but with a least-squares updating rule for the parameter esti-
mates, in which case divergence happens even when the op-
timal value function can be perfectly represented by the lin-
ear approximator. Reference [71] illustrates that divergent
behavior occurs for value iteration algorithms with a variety
of function approximation techniques such as polynomial
regression, back-propagation, and local weighted regression
when the algorithm is applied to simple nonlinear problems.
2.13 Continuous-time algorithms

With respect to the timescale of control input signals be-
ing sent to the system, the control community often distin-
guishes algorithms between discrete-time and continuous-
time. However, continuous-time algorithms are out of the
scope of this paper and interested readers can find details of
the algorithms in the references [72∼77].

3 Mathematical foundations for continuous
MDPs

We begin by defining the MDP and the idea of post-
decision states, which we use to avoid the imbedded expec-
tation within the minimization operator. We then describe
some important properties of MDPs with continuous states,
and close with a brief introduction to policy iteration, which
we use as the basis for our work.

We use as our basic model the MDP described in the in-
troduction, where Bellman’s equation is given by

Vt(xt) = sup
ut∈U

{C(xt, ut) + γE[Vt+1(xt+1)|xt]}, (7)

where

xt+1 = SM(xt, ut,Wt+1). (8)

For infinite horizon problems, we simply drop the time in-
dex throughout, recognizing that W is a random variable at
time t. The following two assumptions on MDPs are im-
posed to facilitate convergence analysis.

Assumption 1 The state space X , the decision space U ,
and the outcome space W are convex, compact, and Borel
subsets of R

m, R
n, and R

l, respectively.
Assumption 2 The contribution function C, the state

transition function SM, and the transition probability den-
sity function Q : X × U ×W → R+ are all continuous.
3.1 Post-decision state variable

In order to avoid computing the expectation within the
Bellman’s equation directly, we use the idea of the post-
decision state (see [78, 79], also known as end-of-state [80]
and after-state [42]). The transition function (8) is broken
into the two steps:

xu
t = SM,u(xt, ut), (9)

xt+1 = SM,W (xu
t ,Wt+1). (10)
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xu
t denotes the post-decision state immediately after a de-

cision is made. To illustrate, take a simple reservoir man-
agement problem for example. Let xt be the water supply
at time t, ut be how much to release or store, and Wt+1 be
random precipitation. Then, using post-decision states, the
state transition becomes

xu
t = xt − ut, xt+1 = xu

t + Wt+1.

Constructing a post-decision state typically reflects the
structure of the problem. We might be traversing a graph,
where when we arrive at a nice i, we are able to see sam-
ple realizations of costs cij on links emanating from node i.
The pre-decision state would be xt = (i, (cij)j), consisting
of the current node (node i) and the costs on links emanating
from node i. If we decide to go to node k, the post-decision
state would be xu

t = k, since we have not actually arrived
at node k, and have not observed the costs out of k. An-
other form of post-decision state is xu

t = (xt, ut) (which
is what is done with Q-learning), but if ut is vector-valued,
the resulting state variable becomes much more difficult to
work with. See Chapters 4 and 5 in [14] for more thorough
discussions of the concept of post-decision states.

Let the post-decision state space denote X u and the post-
decision value function V u : X u → R be

V u(xu
t ) = E{V (xt+1)|xu

t }, (11)
where V u(xu

t ) is the value of being in the post decision
states xu

t . There is a simple relationship between the pre-
and post-decision value functions:

V (xt) = max
ut∈U

{C(xt, ut) + γV u(xu
t )} . (12)

The Bellman’s equation of post-decision value function is
V u(xu

t )=E{ max
ut+1∈U

{C(xt+1, ut+1)+γV u(xu
t+1)}|xu

t }.
(13)

For a fixed policy, the MDP becomes a Markov chain on
the post-decision states. The Bellman’s equation (13) for the
post-decision state is

V π(x) =
�
Xπ

Pπ(x,dx′)(Cπ(x, x′) + γV π(x′)), (14)

where V π is the policy value funcion, Pπ( ·, · ) is the
transition probability function of the chain, Cπ( ·, · ) is
the stochastic reward function with Cπ(xπ

t , xπ
t+1) =

C(xt+1, π(xt+1)), and X π ⊂ R
d is the post-decision state

space of policy π.
Q-learning is often used to approximate the Q-factor

Q(x, u) around the state-action pair, which is impracti-
cal for high-dimensional applications. With post-decision
states, instead of approximating Q(x, u), we only have to
approximate V u(xu), which for most applications is much
easier. It reduces complexity significantly because the post-
decision state is often of much smaller dimensions than the
state-action pair.
3.2 Markov chains with continuous state space

Classic approximate dynamic programming methods for
discrete states can generally be applied to continuous states
without modification, but the proofs can be considerably
more intricate. Stability of the underlying process is criti-
cal in the convergence analysis of any stochastic algorithms.
The underlying stochastic process becomes a Markov chain

for fixed policy evaluation. The following definitions related
to positive Harris chains are helpful in convergence analysis
with Monte Carlo sampling because the well-known strong
law of large numbers [81] can be applied.

Definition 1 (ψ-irreducibility) For any measure ϕ, a
Markov chain Φ on state space X is called ϕ-irreducible
if there exists a measure ϕ on B(X ) such that whenever
ϕ(A) > 0 for A ∈ B(X ), we have

Px{Φ ever enters A} > 0, ∀x ∈ X ,

where Px denotes the conditional probability on the event
that the chain starts in state x. Let ψ be the maximal irre-
ducibility measure among such measures, and the chain is
called ψ-irreducible (For the existence of ψ, see Proposition
4.2.2 of [81]).

Definition 2 (Invariant measure) Let P ( ·, · ) be the
transition kernel of a chain Φ on the state space X . A σ-
finite measure μ on B(X ) with the property

μ(A) =
�
X

μ(dx)P (x,A), ∀A ∈ B(X )

will be called invariant.
Definition 3 (Positive Harris chain) The set A ∈ B(X )

is called Harris recurrent if
Px{Φ ∈ A infinitely often} = 1, ∀x ∈ X .

A chain Φ is called Harris (recurrent) if it is ψ-irreducible,
admits an invariant probability measure μ and every set in

B+(X ) = {A ∈ B(X ) : ψ(A) > 0}
is Harris recurrent.
3.3 Policy iteration

The new algorithms we present below are all variations of
policy iteration, which typically consists of two steps: fixed
policy evaluation and policy improvement. The convergence
result of the exact policy iteration algorithm is well known
(e.g., see [82]). However, policy evaluation can rarely be
achieved exactly, so approximate policy iteration, in which
the policy evaluation is done approximately, is often used in
practice. Approximate policy iteration achieves a statistical
estimate (possibly biased) of the true value function of the
policy based on the sample trajectory of the chain by fol-
lowing a policy. Given a compact state space with the sup
norm ‖·‖∞ defined for continuous functions, reference [83]
proves mean convergence of approximate policy iteration
in the following theorem, which is the foundation for the
convergence analysis of all the variations. The proof is an
extension of error bounds for approximate policy iteration
with discrete and deterministic VFAs in [7].

Theorem 1 (Mean convergence of approximate policy it-
eration) Let (π̂i)n

i=0 be the sequence of policies generated
by an approximate policy iteration algorithm and (V̂ π̂i)n

i=0

be the corresponding approximate policy value functions.
Further assume that, for each fixed policy π̂n, the MDP is
reduced to a Markov chain that admits an invariant proba-
bility measure μπ̂n

. Let {εn} and {δn} be positive scalars
that bound the mean errors in approximations to value func-
tions and policies (over all iterations), respectively, that is,
∀n ∈ N,

Eμπ̂n‖V̂ π̂n − V π̂n‖∞ � εn, (15)

Eμπ̂n‖Mπ̂n+1 V̂
π̂n − MV̂ π̂n‖∞ � δn. (16)
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Suppose the sequences {εn} and {δn} converge to 0 and

lim
n→∞

n−1∑
i=0

γn−1−iεi =
n−1

lim
i=0

γn−1−iδi = 0, e.g., εi = δi =

γi. Then, this sequence eventually produces policies whose
performance converges to the optimal performance in the
mean: lim

n→∞Eμπ̂n‖V̂ π̂n − V ∗‖∞ = 0.

4 Algorithms for multidimensional continu-
ous MDPs

In this section, we propose algorithms that are specifi-
cally designed for problems with multidimensional and con-
tinuous states and actions, and where the expectations can-
not be computed exactly. The algorithms use both paramet-
ric and nonparametric architectures. We also use on-policy
learning, since off-policy sampling strategies can be imprac-
tical for multidimensional and continuous action spaces.

The details of the convergence analysis can be found in

[83, 84]. We start with the preliminaries that are crucial for
understanding the algorithms.
4.1 RLS approximate policy iteration with known ba-

sis functions

Reference [83] extends the off-policy LSPI introduced
by [31] to an online, on-policy RLS approximate policy iter-
ation (RLSAPI) algorithm, which is summarized in Table 1.
LSTD by [7] is used to combine linear VFA with approxi-
mate policy iteration for policy evaluation. Instead of work-
ing with the state-action Q-factor as in LSPI, RLSAPI ap-
plies LSTD to approximate the value functions around the
post-decision state to avoid the computation of the expec-
tation. Furthermore, RLSAPI extends LSTD to the continu-
ous problem class and solves the identification problem for
parameter convergence with continuous states. RLSAPI is
able to handle continuous (and vector-valued) states and ac-
tions as long as we have an algorithm that will solve the
deterministic optimization problem.

Table 1 Infinite-horizon approximate policy iteration algorithm with RLS method [83].

Step 0 Initialization:
Set the initial values of the value function parameters θ̂0;
Set the initial policy π1(x) = arg max

u∈Γ (x)
{C(x, u) + γφ(xu)Tθ̂0};

Set the iteration counter n = 1.
Step 1 Do for n = 1, · · · , N ,

Set the initial State xn
0 .

Step 2 Do for m = 0, · · · , M ,
Initialize θ̂n,m and v̂m = 0;
Draw randomly or observe Wm+1 from the chain;
Do the following:

Set un
m = πn(xn

m),
Compute xn,π

m = SM,π(xn
m, un

m) and xn
m+1 = SM,W (xn,π

m , Wm+1),
Compute un

m+1 = πn(xn
m+1) and xn,π

m+1 = SM,π(xn
m+1, u

n
m+1),

Compute input variable/regressor using the corresponding basis function values: φ(xn,π
m ) − γφ(xn,π

m+1).
Step 2 Do the following:

Compute/observe the response variable v̂m = C(xn,π
m , xn,π

m+1);
Update parameters θ̂n,m with LS/RLS method that regresses response v̂m on regressor φ(xn,π

m ) − γφ(xn,π
m+1).

Step 3 Update the parameter and the policy θ̂n+1 = θ̂n,M , πn+1(x) = arg max
u∈Γ (x)

{C(x, u) + γφ(xu)Tθ̂n}.
Step 4 Return the policy πN+1 and parameters θ̂N .

To prove convergence and simplify the policy improve-
ment, the following assumption on the policy value function
is proposed.

Assumption 3 Assume that the policy value function
for a fixed policy π is continuous with a linear architecture,
i.e., V π(x|θ) = φ(x)Tθ, where φ(x) = [ · · · , φf (x), · · · ]
is the vector of basis functions of dimension F = |F| and
f ∈ F (F denotes the set of features or basis functions).

The key step in RLSAPI is LSTD for policy evaluation.
Reference [83] follows [29] to use the error-in-variable lin-
ear regression for parameter estimates. Rearranged from
Bellman’s equation

φ(x)Tθ∗ =
�
Xπ

Pπ(x,dx′)[Cπ(x, x′) + γφ(x′)Tθ∗].

Rearranging terms, this can be written as

Cπ(x, x′) =
(
φ(x) − γ

�
Xπ

P (x,dx′)φ(x′)
)T

θ∗

+Cπ(x, x′) −
�
Xπ

P (x,dx′)Cπ(x, x′),

where φ(x)Tθ∗ is the true value function of following the
fixed policy π, Pπ( ·, · ) is the transition probability func-
tion of the chain, Cπ( ·, · ) is the stochastic reward func-
tion with Cπ(xπ

t , xπ
t+1) = C(xt+1, π(xt+1)), and X π is

the post-decision state space by following policy π. Then,
the estimate of θ∗ using m samples is

θm =
[ 1
m + 1

m∑
i=0

φi(φi−γφi+1)T
]−1[ 1

m + 1

m∑
i=0

φiCi

]
,

(17)

where Ci = Cπ(xi, xi+1) denotes the ith observation of the
reward.

Convergence of LSTD requires stability of the underlying
Markov chain of a fixed policy π. If a chain is positive Har-
ris recurrent, the invariant measure μπ satisfies the stability
requirement. Unlike discrete states with a lookup table rep-
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resentation, where we have to guarantee that we visit every
state infinitely often, with basis functions, we only need to
ensure that we visit enough states often enough that we can
identify the parameter vector θ.

Owing to the assumptions on the state space and transi-
tion functions, it suffices to have a ψ-irreducible Markov
chain. Hence, the following assumption on the underlying
system is imposed.

Assumption 4 Assume that, for all π ∈ Π , the MDP
is reduced to a ψ-irreducible Markov chain Φπ with state
space X π and the support of ψ has nonempty interior.

Convergence of RLSAPI is fully determined by the con-
vergence of LSTD for policy evaluation. The following the-
orem illustrates the details.

Theorem 2 (Convergence in the mean of RLSAPI) Un-
der Assumptions 1, 2, and 4, suppose that for any policy
π ∈ Π the policy value function V π satisfies Assump-
tion 3 with known basis functions that are either linearly in-
dependent (with invertible correlation matrix) or orthonor-
mal with respect to the invariant measure μπ . Then, LSTD
for policy evaluation converges μπ-almost surely and The-
orem 1 holds for RLSAPI.

Note that RLSAPI does not have any explicit exploration
policy. Instead, it simply assumes that there is a density μπ

giving the likelihood of visiting each state, which has cer-
tain properties. If we assume that a value function is per-
fectly modeled by a given set of basis functions, exploration
is less important. The real issue is identification. Are we
visiting enough different states to statistically identify θ? A
careful exploration policy, however, can influence the rate
of convergence, just as it is easier to fit the slope of a linear
function when we measure covariates that are far from the
center.

If the basis functions do not capture the function per-
fectly, then the right choice of θ depends on the probability
we will visit different states. Of course, the likelihood that
we will visit different states depends on our policy, which in
turn depends on the VFA. It is precisely this circular depen-
dence that complicates the identification of optimal policies
in approximate dynamic programming. We circumvent this
issue with our assumption of an invariant probability mea-
sure. This is not a major assumption if our basis functions
capture the optimal value function, but becomes more of an
issue when the accuracy of our approximation degrades.
4.2 Recursive LSPI policy iteration with Mercer ker-

nels

Using an idea similar to [57], reference [84] presents a
kernelized version of the RLS approximate policy algorithm
(KRLSAPI) using the post-decision state value function in-
stead of the state-action Q-factor. In order to apply LSTD
with nonlinear function approximation, the Mercer kernel
trick, which is stated in the following theorem, is applied
to convert a nonlinear architecture to a linear architecture
(specifically, linear in the parameters). As a result, the al-
gorithm can be shown to be convergent using similar proof
techniques for algorithms with linear function approxima-
tion.

Theorem 3 (Mercer’s theorem) Let S be a measur-
able space and the kernel K be a positive and semidefi-

nite function, i.e.,
∑
i,j

K(si, sj)rirj � 0, for any finite sub-

set {s1, · · · , sn} of S and any real numbers {r1, · · · , rn}.
There exists a function φ : S → F , where F (feature space)
is an inner product space of possibly high dimension, such
that K(x, y) = 〈φ(x), φ(y)〉.

The algorithm transforms the original nonlinear function
space into a higher-dimensional inner product feature space
F , so that linear algorithms such as LSTD can be subse-
quently applied for estimation. However, the dot products
between two vectors of feature function φ, which is neces-
sary for parameter estimates, are replaced with the kernel
function in the implementation of the algorithm, so the fea-
ture vectors do not need to be explicitly calculated. This
gives us the attractive capability that infinite-dimensional
feature spaces (imagine very high-dimensional polynomial
basis functions) can be represented without explicitly calcu-
lating these features.

More specifically, for policy evaluation, KRLSAPI uses
KLSTD, which maps the nonlinear LSTD function space to
a high-dimensional feature space F . Denote the mapping
associated with the feature space F to be φ : Sπ → F ,
where Sπ ⊂ R

d is the original post-decision state space
arising when following a fixed policy π, and φ(x) is the
vector of feature functions. Then, the policy value function
becomes V̂ π

m(x) = φ(x)Tθm, where φ(x) and θ are both
column vectors and m is the number of samples. The Kernel
Representor theorem in [85] ensures that the weight vector
θ can be rewritten as the weighted sum of state feature vec-

tors, i.e., θm =
m∑

i=0

φ(xi)βi, where xi (i = 1, 2, · · · ,m) are

the sampled post-decision states and βi (i = 1, 2, · · · ,m)
are the parameters. Hence, by the reproducing kernel prop-
erty,

V̂ π(x) = φT(x)θ =
m∑

i=1

K(x, xi)βi.

Then, the least-squares regression equation for KLSTD be-
comes

m∑
i=1

φ(xi)(φ(xi) − γφ(xi+1))T
m∑

i=1

φ(xi)βi

=
m∑

i=1

φ(xi)ci + εi,

where ci = Cπ(xi, xi+1) is the ith observation of the con-
tribution and εi is the noise for each time step. The single-
step regression function is

φ(xi)(φ(xi) − γφ(xi+1))T
m∑

i=1

φ(xi)βi

=
m∑

i=1

φ(xi)ci + εi.

Denote

Φm = [φ(x1) · · · φ(xm)]T,

km(xi) = [K(x1, xi) · · · K(xm, xi)]T.

Since all the inner products in the feature space can be re-
placed with kernel function K(x, y) = 〈φ(x), φ(y)〉 due
to the kernel trick, by multiplying Φm on both sides of the
previous equation, the least-squares regression function be-
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comes
m∑

i=1

km(xi)(km(xi) − γkm(xi+1))Tβm =
m∑

i=1

km(xi)ci.

Let

Mm =
m∑

i=1

km(xi)(km(xi) − γkm(xi+1))T

bm =
m∑

i=1

km(xi)ci.

Then, the parameter estimates can be computed recursively
as follows:

βm = M−1
m bm

with
Mm+1 = Mm + km+1(xm+1)(kT

m+1(xm+1)
−γkT

m+1(xm+2)),
bm+1 = bm + km+1(xm+1)cm.

Like other policy iteration algorithms, after each policy
evaluation step, KRLSAPI makes incremental policy im-
provements until the optimal policy is reached. It is worth
noting that the automatic feature generation property of
KRLSAPI provides a solution to the feature selection prob-
lem of the LSPI algorithm. The details of the KRLSAPI al-
gorithm are illustrated in Table 2.

Table 2 Infinite-horizon kernel-based approximate policy iteration algorithm with least-squares method [84].

Step 0 Initialization:
Set the initial policy π0;
Set the kernel function K;
Set the iteration counter n = 0;
Set the initial State x0

0.
Step 1 Do for n = 0, · · · , N ,

Do for m = 1, · · · , M ,
Initialize ĉm = 0;
Choose one step sample realization ω;
Do the following:

Set un
m = πn(xn

m),
Compute xn,π

m = SM,π(xn
m, un

m) and xn
m+1 = SM(xn,π

m , un
m, Wm+1(ω)),

Compute and store the corresponding kernel function value km(Sn,x
m ) and km(Sn,x

m+1) in dictionary.
Step 2 Do the following:

Compute and store ĉm = C(xn
m, un

m) and Mm and bm;
Update parameters β̂n,m = M−1

m bm.
Step 3 Update the parameter and the policy: β̂n+1 = β̂n,M , πn+1(x) = arg max

u∈U
{C(x, u) + γkM (xu)Tβ̂n+1}.

Step 4 Return the policy πN
t and parameters β̂N .

For convergence analysis, we use the notion of a repro-
ducing kernel Hilbert space (RKHS). There is a Hilbert
space HK associated with each positive semidefinite ker-
nel function K, and HK is a vector space containing
all linear combinations of the functions K( ·, x), f( · ) =
m∑

i=1

αiK( ·, xi). Let g( · ) =
n∑

j=1

βjK( ·, yj). The inner prod-

uct over HK is defined as

〈f, g〉 =
m∑

i=1

n∑
j=1

αiβjK(xi, yj),

and the norm is ‖f‖HK
=

√〈f, f〉. The following assump-
tion on the policy space Π is imposed for convergence anal-
ysis purpose.

Assumption 5 Assume that the policy value function
for any fixed policy π ∈ Π is in the RKHS HK .

This is a much weaker assumption than if we required
a value function to be in the space spanned by a fixed set
of basis functions. Convergence of KLSTD combined with
the approximation errors of both policy evaluation and pol-
icy improvement determines the convergence of KRLSAPI,
and Theorem 4 states the details of the convergence results.

Theorem 4 (Mean convergence of KRLSAPI [84])
Suppose Assumptions 1, 2, and 5 hold and the Markov chain
around the post-decision states following any fixed policy

π ∈ Π is a positive Harris chain having transition kernel
Pπ(x,dy) and invariant probability measure μπ . Further as-
sume the policy value function V π is in the RKHS HK with
the kernel function K being C∞ and ‖K‖∞ � M for some
constant M . Then, V̂ π

m → V π in probability where

V̂ π
m(x) =

m∑
i=1

K(x, xi)βi,

and Theorem 1 holds for the KRLSAPI algorithm in Table
2.

The algorithm in Table 2 requires high computational
and memory capacity in implementation since all past sam-
ples have to be stored. Kernel sparsification procedures can
be applied to deal with this problem, including approxi-
mate linear dependence developed in [57, 58] for online
sparsification, subspace-based variant of LS-SVM by [59];
Bellman residual minimization methods and SVR by [61];
LASSO L1 regularization by [60]; and L2 regularization
by [62, 63].
4.3 Approximate policy iteration with kernel smooth-

ing

Reference [84] extends the kernel-based value iteration
algorithm for continuous MDPs by [56] to an online, on-
policy approximate policy iteration algorithm by avoiding
two major limitations in [56]: the requirement of a finite ac-
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tion space and the need for an off-policy, offline uniform
sampling scheme. We caution the reader that we avoid the
need for an offline uniform sampling scheme by introduc-
ing a technical assumption on the behavior of the Markov
process for a fixed policy.

It starts with a random approximation of the fixed-policy
Bellman operator M̂π

m from a sample trajectory:

M̂π
mV (x) =

m−1∑
i=0

k(xi, x) (Cπ(xi, xi+1) + γV (xi+1)) ,

where

k(xi, x) = K(
‖xi − x‖

b
)
/m−1∑

i=0

K(
‖xi − x‖

b
),

and (xi)m
i=0 is the sample trajectory of past transitions fol-

lowing the policy π. The kernel weighting function k, which
is based on a univariate kernel function K, assigns weights
according to the distances between points. By construction,
the weights are all nonnegative and add up to 1. Owing to
the fixed point property of Mπ , M̂π

mV π is used to approxi-

mate the true post-decision policy value function V π on the
finite sample of post-decision states (xi)m

i=1. The algorithm
searches for the fixed point solution to the approximate Bell-
man equation

V̂ π = M̂π
mV̂ π = P̂π[cπ + γV̂ π], (18)

where V̂ π is the post-decision state vector of size m, Pπ

is a m × m stochastic matrix with the i, jth entry being
k(xi−1, xj) for i, j ∈ {1, · · · ,m}, and cπ is the reward vec-
tor of dimension m with the ith entry being Cπ(xi−1, xi)
for i ∈ {1, · · · ,m}. The existence and uniqueness of the
solution is guaranteed, since P̂π is a stochastic matrix and
I − γPπ is invertible. The solution is

V̂ π = (I − γP̂π)−1cπ. (19)
Then, the function estimates are extrapolated to the points
(that are not in the sample) x ∈ X π \ {xi}m

i=1 with

V̂ π(x)=
m−1∑
i=0

k(xi, x)(Cπ(xi, xi+1)+γV̂ π(xi+1)). (20)

The details of the algorithm are illustrated in Table 3.
Table 3 Infinite-horizon kernel-based approximate policy iteration algorithm [84].

Step 0 Initialization:
Set the initial policy π0;
Set the kernel function K;
Set the iteration counter n = 0.

Step 1 Do for n = 0, · · · , N ,
Set the iteration counter l = 0;
Set the initial state xn

0 ;
Do for j = 0, · · · , m,

Set un
j = πn(xn

j ) and draw randomly or observe Wj+1 from the stochastic process,
Compute xn,π

j = SM,π(xn
j , un

j ) (store also) and xn
j+1 = SM,W (xn,π

j , Wj+1);
Let cπ be a vector of dimensionality m with ith entry Cπ(xn,π

i−1, x
n,π
i ) for i = 1, · · · , m;

Let P̂ π be a matrix of dimensionality m × m with i, jth entry k(xn,π
i−1, x

n,π
j ) for i, j ∈ {1, · · · , m}.

Step 2 Solve for v̂ = (I − γP̂ π)−1cπ with v̂ being a vector of dimensionality m with ith element v̂(xn,π
i ) for i = 1, · · · , m.

Step 3 Let v̂n(x) =
m−1P

i=0

k(xn,π
i , x)

`
Cπ(xn,π

i , xn,π
i+1) + γv̂(xn,π

i+1)
´
.

Step 4 Update the policy: πn+1(x) = arg max
u∈U

{C(x, u) + γv̂n(xu)}.
Step 5 Return the policy πN+1.

Under the following additional technical assumptions on
state space, reward function, kernel, and the underlying
Markov chain, the algorithm is convergent in mean.

Assumption 6 a) For each policy π ∈ Π , Sπ = [0, 1]d.
b) The contribution function, Cπ(x, y) is a jointly Lip-

schitz continuous function of x and y, i.e., there exists a
KC > 0 such that

|r(x′, y′) − r(x, y)| � KC‖(x′ − x, y′ − y)‖. (21)

c) The kernel function K+ : [0, 1] → R
+ is Lipschitz

continuous, satisfying� 1

0
K+(x)dx = 1

and K is the completion of K+ on R.
d) For each policy π ∈ Π , the invariant probability

measure μπ is absolutely continuous with respect to the
Lebesgue measure λ and

0 < Kπ � dμπ

dλ
� K̄π.

In other words, the invariant probability measure μπ has
a continuous density function fπ such that fπ is bounded
from above and away from 0 on Sπ .

It is worth noting that the assumption of the post-decision
state space being a d-dimensional unit cube [0, 1]d can be re-
laxed to X π = [a1, b1] × · · · × [ad, bd] since X π is isomor-
phic to the unit cube [0, 1]d with a bijective linear mapping
L : X π → [0, 1]d. The policy value function V π on X π

can be easily recovered from policy value functions on the
unit cube. With the above assumptions, mean convergence
analysis is stated in the following theorem.

Theorem 5 (Convergence in mean of the kernel-based
API [84]) Suppose Assumptions 1, 2, and 6 hold and for
any policy π ∈ Π , the Markov chain of the post-decision
states follows a positive Harris chain having transition ker-
nel P (x,dy) and invariant probability measure μ. Let the
bandwidth b(m) satisfy b(m)d+1

√
m → ∞ and b(m) → 0,

e.g., b(m) = m− 1
2(d+2) . Let V̂ π

m be defined as in (20). Then,
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Eμπ‖V̂ π
m − V π‖∞ → 0 as m → ∞, and Theorem 1 applies

to the kernel-based approximate algorithm in Table 3.
There is a trade-off between the convergence perfor-

mance of the algorithm and the sample efficiency. The ma-
trix inversion in Step 2 of the algorithm requires O(m3)
computational complexity, which causes difficulty if a large
sample is used to ensure convergence performance. Hence,
reference [84] proposes a hybrid value/policy iteration al-
gorithm, which is illustrated in Table 4. It is called hybrid
because a value iteration type updating (O(m2) computa-
tional complexity) is applied to policy evaluation. In matrix
notation, the updating is

V̂ π
m,k+1 = P̂π(Cπ + γV̂ π

m,k), (22)

where V̂ π
m,k and V̂ π

m,k+1 are the old and updated policy

value function estimates, respectively.
Since the random operator M̂π has the contraction prop-

erty, the Banach fixed point theorem guarantees the conver-
gence of the updating in (22) to a unique fixed point so-
lution satisfying equation (18), which is just V̂ π

m. Hence,
Theorem 6 states that, under the same set of conditions, the
hybrid algorithm in Table 4 is convergent in mean as well.

Theorem 6 (Convergence in mean of the hybrid ker-
nel-based API) Suppose the assumptions in Theorem 5
hold. Theorem 1 applies to the hybrid kernel-based approx-
imate algorithm in Table 4 with policy evaluation stopping
criterion satisfies

‖V̂ π
m,k+1 − V̂ π

m,k‖∞ � 1 − γ

2γ
εn. (23)

Table 4 Infinite-horizon kernel-based hybrid value/policy iteration algorithm [84].

Step 0 Initialization:
Set the initial policy π0;
Set the kernel function K;
Set the iteration counter n = 0.

Step 1 Do for n = 0, · · · , N ,
Set the iteration counter l = 0;
Set the initial state xn

0 ;
Do for j = 0, · · · , m,

Set un
j = πn(xn

j ) and draw randomly or observe Wj+1 from the stochastic process,
Compute xn,π

j = SM,π(xn
j , un

j ) (store also) and xn
j+1 = SM,W (xn,π

j , Wj+1);
Initialize v̂0 where v̂0 is a vector of dimensionality m with element v̂0(x

n,pi
i ) for i = 1, · · · , m;

Let Cπ be a vector of dimensionality m with ith entry Cπ(xn,π
i−1, x

n,π
i ) for i = 1, · · · , m;

Let P̂ π be a matrix of dimensionality m × m with i, jth entry k(xn,π
i−1, x

n,π
j ) for i, j ∈ {1, · · · , m}.

Step 2 Do for l = 0, · · · , L − 1,
v̂l+1 = cπ + γP̂ π v̂l.

Step 3 Let v̂n(x) =
m−1P

i=0

k(xn,π
i , x)

`
Cπ(xn,π

i , xn,π
i+1) + γv̂L(xn,π

i+1)
´
.

Step 4 Update the policy: πn+1(x) = arg max
u∈U

{C(x, u) + γv̂n(xu)}.
Step 5 Return the policy πN+1.

4.4 Kernel-based policy iteration with finite horizon

approximation

Reference [84] proposes an approximate policy iteration
algorithm using kernel smoothing and fixed horizon rewards
(KSFHRAPI) with details illustrated in Table 5. The ba-
sic idea behind the algorithm is very straightforward. It ap-
plies kernel smoothing techniques to finite horizon rewards
to approximate policy value function for the infinite hori-
zon problems. More specifically, the infinite horizon post-
decision policy value function V π is approximated with the
kth finite horizon policy value function

V π
k (x) = E

{ k∑
t=0

γtCπ(xt, xt+1)|x0 = x
}
. (24)

Since the problem class is modeled as discounted MDPs,
for each ε > 0, there exists k ∈ N such that for all x ∈ X π ,

|V π
k (x) − V π(x)|

=
∣∣E{ ∞∑

t=k+1

γtCπ(xt, xt+1)|x0 = x
}∣∣

� γk+1

1 − γ
Cmax < ε,

where Cmax is an upper bound on the contribution function
Cπ . As a result, the post-decision policy value function can
be approximated arbitrarily close using the finite-horizon
counterpart. Then, this algorithm naturally lends itself to
different kernel smoothing techniques such as Nadaraya-
Watson estimate and local polynomial regression (either
recursive or nonrecursive) to estimate the VFA with data
structure (xi, yi) where

yi =
i+k∑
�=i

γ�−iCπ(x�, x�+1). (25)

KSFHRAPI is provably convergent in mean. For analysis
purpose, the generic form of the kernel smoothing estimates
for VFA is considered

m̂(x) =
1

nhd

n∑
i=1

YiK(
x − Xi

h
), (26)

where h is a bandwidth and K : R
d → R is a kernel func-

tion. This generic form admits Nadaraya-Watson estimators
of the regression function and local polynomial estimators
with a proper choice of the kernel function K. To show con-
vergence of the algorithm, the kernel smoothing techniques
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with strong uniform convergence are favored. Due to the
dependence structure in the data of MDPs, some technical

assumptions, which are listed below, have to be imposed on
kernel functions and data structure.

Table 5 Infinite horizon approximate policy iteration algorithm using kernel smoothing and fixed horizon rewards [84].

Step 0 Initialization:
Set the initial policy π0 and the iteration counter n = 0;
Set the kernel function K and fixed horizon number k.

Step 1 Do for n = 0, · · · , N ,
Set the iteration counter m = 0 and the initial state xn

0 .
Step 2 Do for m = 0, · · · , M ,

If m = 0, do the following:
Set the initial state xn

0 , initial kernel estimate f̂n
−1 = 0 and v̂m = 0,

Draw randomly or observe W1, · · · , Wk+1 from the stochastic process,
Do for j = 0, · · · , k,

Set un
j = πn(xn

j ),
Compute xn,π

j = SM,π(xn
j , un

j ) and xn
j+1 = SM,W (xn,π

j , Wj+1).
If m = 1, · · · , M , do the following:

Draw randomly or observe Wm+k+1 from the process,
Set un

m+k = πn(xn
m+k),

Compute xn,π
m+k = SM,π(xn

m+k, un
m+k) and xn

m+k+1 = SM(xn
m+k, un

m+k, Wm+k+1),
Compute un

m+k+1 = πn(xn
m+k+1) and xn,π

m+k+1 = SM,π(xn
m+k+1, u

n
m+k+1).

Compute v̂m =
k−1P

j=0

γjCπ(xn,π
m+j , x

n,π
m+j+1);

Apply kernel sparsification approach and compute kernel estimate f̂n
m with (xn,π

j )m
j=0 and (v̂j)

m
j=0 or recursively with

f̂n
m−1, xn,π

m and v̂m.
Step 3 Update the policy: πn+1(x) = arg max

u∈U
{C(x, u) + γf̂n

M (xu)}.
Step 4 Return the policy πN+1.

Assumption 7 Let K be a kernel function. |K(x)| �
K1 for all x and

�
Rd

|K(x)|dx � K2 < ∞. Furthermore,
suppose for some K3, C < ∞, either |K(x)| = 0 for all
|x| � K3 and ∀x, x′ ∈ R

d,
|K(x) − K(x′)| � C‖x − x′‖,

or
∂

∂x
K(x) � K3 and for some ν > 1,

∂

∂x
K(x) � K3‖x‖ν

for ‖x‖ > C.
Assumption 8 The Markov chain Xπ is positive Harris

that admits a bounded invariant density. Assume the chain is
initialized according to its invariant measure and its mixing
coefficients α(n) satisfy α(n) � An−β where A < ∞ and

β > 1 + d +
d

q
for some q > 0.

Assumption 9 The Markov chain Xπ satisfies the
strong Doeblin condition: there exist n > 1 and ρ ∈ (0, 1)
such that pn(y|x) � ρf(y) where f is the invariant density
of the chain and pn(y|x) is the nth transition density defined
as

pn(y|x) =
�
Xπ

p(y|z)pn−1(z|x)dz (27)

for n = 1, 2, · · · . The transition density p(y|x) is r � 1

times differentiable with
∂r

∂yr
p(y|x) being uniformly con-

tinuous for all x. ‖x‖qf(y) is bounded for some q � d.
Assumptions 7 states that the kernel function K is

bounded, integrable, and smooth. Assumptions 8 and 9 are

alternatives of one another depending on the applications.
Assumption 8 is applied to stationary data (the chain can
be initialized at their invariant distribution), while Assump-
tion 9 is considered for the chains initialized at some fixed
state or some arbitrary distribution (nonstationary data).
With the assumptions, it is ready to state the convergence
result.

Theorem 7 (Convergence in mean of KSFHRAPI [84])
Suppose for all policy π ∈ Π , Assumptions 7 and ei-
ther 8 or 9 hold. Let the data (X, Y ) be of the form as
in equation (25), V π

k (x) be defined in equation (24) and
V̂ π

k defined in the same way as m̂ in equation (26). Then,
supx |V̂ π

k (x) − V π
k (x)| → 0 almost surely and Theorem

1 applies to the kernel-based approximate policy iteration
algorithm with finite horizon approximation in Table 5.

The situation of sequential sample observations over time
arises naturally in MDPs. Therefore, recursive regression
estimation is more favorable than nonrecursive smoothing.
Moreover, recursive estimates have the advantage of be-
ing less computationally demanding with lower memory re-
quirements, since the estimate updates do not involve matrix
inversion and are independent of the previous sample size.
The KSFHRAPI algorithm is ready to incorporate a vari-
ety of recursive kernel smoothing techniques including the
Robbins-Monro procedure by [86] and recursive local poly-
nomials by [87].
4.5 Kernel-based policies and exploration

We made the argument that exploration is not a major is-
sue if we use a parametric representation of the value func-
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tion and if this representation accurately captures the op-
timal value function. Using kernel regression, we can no
longer make the same argument, since kernels allow us to
capture functions exactly by only using local information.
Observing the value of being in state s tells us nothing about
the value of being in state s′ if s and s′ are far apart.

Our convergence proof using a kernel-based policy ap-
pears to again avoid the need for any explicit exploration
policy. We accomplished this by assuming that the strong
Doeblin condition holds, which is comparable to assuming
that a policy is ergodic. We anticipate that this may not hold
in practice, and even if it does, we may see slow conver-
gence. The strength of kernel regression, which is its use
of local information to build up the approximation, is also
its weakness, in that we learn much less about the function
from a few observations. Compare this to problems with
discrete states, where observations about one state teach us
nothing about the value of another state. For this reason,
we anticipate that some form of explicit exploration will be
needed.

The reinforcement learning community has long used
various exploration heuristics (see Chapter 10 in [14]). Per-
haps the most popular is epsilon-greedy, where with proba-
bility ε we choose an action at random (exploration), while
with probability 1 − ε we choose what appears to be the
best action. Of course, such strategies cannot be applied to
problems with vector-valued, continuous actions.

A common strategy with continuous actions is to simply
add a noise term of some sort to what appears to be the
optimal action. Ignoring the lack of any theoretical guaran-
tees, such a strategy can become hard to apply to problems
with vector-valued controls. The real problem is the sheer
size of both the state space and the control space for these
problems. If you are going to run an algorithm for 1000 it-
erations, 1000 random samples of, say, a 100-dimensional
state or control space provide very little information locally
about a function. Needless to say, research is needed in this
area. As of this writing, there is very little in the way of prin-
cipled approaches to exploration in dynamic programming
even for problems with discrete actions.

5 Conclusions

In this paper, we reviewed many stochastic algorithms
with continuous VFA from different perspectives of the al-
gorithms: linear and nonlinear approximation, discrete and
continuous application, online and offline, on-policy and
off-policy, algorithm types (fixed policy, policy iteration,
and value iteration), computable expectation, and special
problem structures such as linear transition, quadratic re-
wards, and linear additive noises. Some of the algorithms
are provably convergent (in different ways, such as with
probability 1, in probability, and in expectation), while oth-
ers perform nicely in practice without rigorous convergence
guarantees.

We also presented several online, on-policy approximate
policy iteration algorithms: parametric models with linear
architectures and nonparametric approximations using ker-
nel regression. These algorithms are all provably conver-
gent in mean under a variety of technical assumptions. Ap-

proximations with linear architectures work fine if they ac-
curately approximate the problem, but they introduce the
challenge of choosing the proper features (basis functions).
Kernel-based approximations perform better for nonlinear
problems but they suffer from scaling problem and may be
slow for high-dimensional applications. Hence, kernel spar-
sification and methods that adjust the importance of differ-
ent dimensions are necessary to cope with the curse of di-
mensionality.
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