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Abstract

The drayage services between a container terminal and the origin (or destination) of a shipment account for a significant
portion of the total transportation cost. They are the key sources of shipment delays, road congestions, and disruptions in
the international logistics network. Such a situation is even worse when the drayage services involve cross-border issues.
Using Hong Kong, the busiest port in the world, as an example, we illustrate the challenges and issues in managing drayage
activities in hub cities. We show that managing cross-border drayage container transportation is a very challenging prob-
lem because not only individual resources (e.g., driver, tractor, and chassis) but also the composites of them (e.g., the dri-
ver–tractor–chassis triplets) need to be managed simultaneously. The problem is further complicated by the regulatory
policies which govern the cross-border activities. We use an attribute–decision model for this problem and implement
an adaptive labeling algorithm to solve it. We conduct numerical experiments to evaluate the system performances under
various regulatory policies. The results show that the benefit gained by relaxing the regulatory policies is significant.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Due to intensifying globalization, both the volume and the complexity of the logistics flow in international
port cities have rapidly increased. The port cities in the Asia Pacific region, in particular, have experienced
phenomenal growth over the last few years. In 2004, the world’s six busiest ports were all in the Asia Pacific
region. As shown in Fig. 1, the growth of China’s ports has been particularly strong. Growth as well as ever-
increasing customer expectations and speed requirements have put pressure on major international port oper-
ators to improve efficiency and reduce cost. In terms of improving terminal operations and planning, there has
been a substantial amount of research devoted to understanding these issues (see Steenken et al., 2004 for a
review). Drayage services (that is, short-haul connecting services between a container terminal and the origin
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Fig. 1. Throughput of the top eight container ports from 1994 to 2004.
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or destination of the container), however, have not received much research attention. As the volume of con-
tainer flow is growing larger, managing the drayage activities is becoming increasingly difficult. Such a situa-
tion is even worse when the drayage activities involve cross-border issues. In this paper, we use the case of
Hong Kong to illustrate how policies create challenges in managing the drayage activities, and present a label-
ing algorithm to solve the problems for various drayage situations.

As indicated in Fig. 1,1 both Hong Kong and Singapore have topped the world in terms of container
throughput for the last decade. In 2004, both handled over 20 million twenty-foot equivalent units (TEU)
of containers. Due to the nature of these ports, however, the levels of drayage container transportation activ-
ities, called the drayage problem, are very different. Singapore is basically a transshipment port where contain-
ers from long-haul vessel services are transferred to other long-haul vessel services or regional feeder services.
Hong Kong, on the other hand, has a much smaller proportion of transshipment cargo. Most containers pass-
ing through Hong Kong’s port are imports, exports and re-exports from the southern part of Chinese Main-
land (PRC). The sources or destinations of these containers are almost all in the Pearl River Delta (PRD)
region, which is within 100 km of Hong Kong. Thus, the level of drayage activities in Hong Kong is much
higher than in Singapore. Millions of containers pass through the three check-points at the Hong Kong –
Shenzhen, PRC border each year. Because the licensing and regulatory policies in Hong Kong and in main-
land China are different, the cross-border drayage activities are difficult to manage.
1.1. Cross-border drayage problem

Despite the productivity of container handling in Hong Kong being high and the vessel turnaround times
being short at the container terminals in Hong Kong, the trucking of containers between Hong Kong and
PRD has very low productivity in terms of drivers’ time, trip time and tractor time. First, a typical round trip
for trucking a container from Hong Kong to PRD is less than 160 km and should take less than 3 hours of
transportation time. Thus, during one shift of duty, a driver could take at least two trips. In practice, however,
the average number of trips per day is only 1.2 (Hong Kong Special Administrative Region, 2004). Second, in
an ideal trip, a laden (loaded) container is taken from Hong Kong to PRD and then on the way back, another
laden container is returned. In reality, in a trip, a laden container is taken in one direction and the same con-
tainer is returned empty in the other direction. Even worse, this empty container may be moved later to PRD
again for goods loading. Third, a tractor is typically operated for less than 10 h per day (including traveling
and waiting at the factory and the border). Most of the time, the tractor is idle. The combined effect is that the
1 Source: Dubai Ports Authority, Port of Hamburg.
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productivity of container trucking is less than 40% of what it could be. One major factor that causes the low
productivity is the regulatory policies governing the cross-border drayage activities.

1.2. Regulatory policies

Two regulatory policies have the largest impact on the drayage productivity. The first is the 4-up-4-down

policy. Under this policy, when a quadruple of driver–tractor–chassis–container goes from Hong Kong to
PRD, the exact same quadruple has to come back to Hong Kong together. The policy was set up in the early
1990s to avoid illegal import of containers to mainland China where an empty container was considered as a
commodity rather than an item of transportation equipment. With this policy, the quadruple is considered as a
single resource, rather than four individual resources. This policy severely constrains how the resources are
used. First, a driver who has taken a laden container from Hong Kong to a factory in PRD needs to wait
a long period for unloading. Second, the driver needs to take the emptied container back to Hong Kong,
thereby creating low utilization of the driver time and the trip time.

Suppose this policy is relaxed, the ‘‘pick up and deliver’’ operational mode can be launched as illustrated in
Fig. 2: the driver-tractor picks up a chassis and a loaded container, then delivers it to one manufacturing site.
Instead of waiting, it leaves the chassis and the container there for unloading. Then it goes to another man-
ufacturing site, picks up a loaded container and delivers it to the depot. In this way, the frequency of trips is
increased and the utilization of the driver-tractor is significantly improved by bypassing the loading and
unloading activities.

Another policy that imposes strong limitation on resource management is the 1-driver-1-tractor policy. As
shown in Fig. 3, under this policy, a Hong Kong driver is licensed to operate on a specified tractor and this
Fig. 2. The impact of the 4-up-4-down policy.



Fig. 3. The impact of the 1-driver-1-tractor policy.
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tractor can only be operated by this particular driver. Such a policy causes a low utilization of the truck time.
Suppose this policy is relaxed, a tractor can be operated by multiple drivers of different shifts.

Therefore, the constraints representing the regulatory policies must be incorporated in the models.
In the remaining part of this paper, we consider three circumstances which have different levels of policy

restriction on these two policies. We use the notation P to denote the set of circumstances:
P ¼ f4-up-4-down; 2-up-2-down; Policy-freeg

In the circumstance of 4-up-4-down, the quadruple of driver–tractor–chassis–container has to be together dur-
ing the whole trip and the 1-driver-1-tractor policy has to be obeyed. In the circumstance of 2-up-2-down, only
the 1-driver-1-tractor policy has to be obeyed. Under the circumstance of Policy-free, both the 4-up-4-down

policy and the 1-driver-1-tractor policy are relaxed. In the below, without loss of generality, the phases ‘‘pol-
icy’’ and ‘‘circumstance’’ are equivalent.

The cross-border drayage problem, is actually a short-haul full-truckload management problem, or, in a
broader sense, a vehicle routing and scheduling problem (Bodin and Golden, 1981 and Fisher, 1995). Versions
of these problems that consider uncertainty have appeared in the literature. For example, see Dror et al. (1998)
for stochastic vehicle routing problems, Smilowitz (2006) for a stochastic dial-a-ride problem, and Powell
(1998) for the full-truckload problems with random demands. On land transportation of ocean containers,
Cheung et al. (2003) develop a dynamic stochastic approach for assigning drivers to loads. If a driver can
cover multiple requests, we can consider the problem as determining the trips of the drivers. The length of
the trip is typically constrained by the maximum number of hours a driver can spend on the road. To solve
such a problem, tour construction and tour improvement procedures are used (see Ball et al., 1981 and Des-
rosiers et al., 1995). However, research on modeling the regulatory policies for cross-border drayage activities
is not found in the literature.

1.3. Composite resource management

When the flexibility is introduced by relaxing the policies, the quadruple of resources cannot be considered
as a single resource. We have to manage those individual resources and the composite of them simultaneously.
Meanwhile, we have to respect the practical constraints on using them as well as the interactions between
them. Those constraints and operational details cannot be captured by the classical vehicle routing and sched-
uling models.

The difficulty of drayage operations has attracted the attention of some researchers. Sinclair and Dyk
(1987) give an excellent description on practical constraints and issues of this problem. Smilowitz (2006) model
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this problem as a multi-resource routing problem and solve it by the column generation technique, regarding
the ‘‘driver and tractor’’ as a single resource. Some researchers in artificial intelligence field apply multi-agents
system (MAS) in the scheduling and planning of the resources (Fish and Chaibdraa, 1999; Gorodetski et al.,
2003). The application of such an approach seems limited to classical vehicle routing problems.

1.4. Contribution

The contributions of this paper are three-fold:

• We discuss the challenges facing the cross-border drayage operators and show how the regulatory policies
impact the system.

• We use an attribute–decision model that readily handles a high degree of operational details and incorpo-
rates the constraints representing different levels of policy restriction. Furthermore, we implement an effi-
cient labeling algorithm for solving this problem.

• We use this approach as a policy evaluator to quantify the benefit of relaxing the 4-up-4-down policy and
the 1-driver-1-tractor policy. The numerical experiments demonstrate that the benefit is very significant.

This paper is organized as follows. In Section 2, an attribute–decision model is presented. Section 3 dis-
cusses different solution approaches. The numerical experiments are reported in Section 4. Section 5 concludes
this paper.

2. The attribute–decision model

Simao et al. (xxxx) introduce a new class of composite resource scheduling problems where different types
of resources are involved. To solve this class of problems, they propose an attribute–decision model which not
only considers the interactions among resources but also the flexibility of dynamically reusing resources. The
fundamental idea is to represent a resource by an attribute vector associated with a decision set. With those
attribute–decision pairs, a generic adaptive labeling algorithm can be applied. In this paper, we apply the attri-
bute–decision model for the drayage problem.

2.1. Resources and attribute vectors

In the drayage problem, there are four primitive resources in the system: Driver (D), Tractor (T), Chassis (I)
and Container (C). The set of primitive resource classes, is represented using:
CR : the collections of primitive resources : fD; T; I; Cg:
Any instance of primitive resource can be uniquely described by an attribute vector a. From all attribute vec-
tors, we abstract a vector of common attributes, which is named as a ‘‘generic attribute vector’’:
ag ¼

ag;1

ag;2

ag;3

2
664

3
775 ¼

Time Window

Time

Location

2
664

3
775: ð1Þ
The availability of one resource is characterized by the attribute ‘‘Time Window’’. The constraints on the
working shift of one driver, the maintenance period of a tractor, and the convenient time of picking up
and delivering a container, can be specified by this attribute. In our application, the attribute ‘‘Time Window’’
is specified by an interval, for example, [8:00am, 16:00pm]. It could be a union of those intervals in more com-
plex applications.

Each generic attribute vector includes a ‘‘Time’’ attribute. It represents the instant at which the resource will
have the attributes in the attribute vector. The ‘‘Location’’ attribute represents the geographical position of the
resource.
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Besides these generic attributes, each resource may have specific attributes. In our application, the attri-
butes we are concerned with one driver are
ad ¼

ag

ad;1

ad;2

ad;3

2
664

3
775 ¼

Generic attributes

Domicile

Remaining duty hours

Preferred tractor’s types

2
664

3
775: ð2Þ
The drivers may have different domiciles, and their maximum duty hours are protected by the government
regulation. Meanwhile, their preferences on the tractors are respected by the attribute ‘‘Preferred tractor’s
types’’. Since one driver may have several preferred types of tractors, this attribute actually is an ordered list.

The tractors have different types. Each type of tractor may only match some specific types of chassis. Thus
we consider the following attributes:
at ¼
ag

at;1

at;2

2
4

3
5 ¼ Generic attributes

Type

Preferred chassis’s types

2
4

3
5: ð3Þ
The chassis have two lengths: 20 feet or 40 feet. The length determines how many containers can be carried. A
20-foot chassis can carry only one 20-foot container. A 40-foot chassis can carry either one 40-foot container
or two 20-foot containers. Due to the tractors’ preferences, there are two different types of chassis. We con-
sider the following attributes for the chassis:
ai ¼
ag

ai;1

ai;2

2
4

3
5 ¼ Generic attributes

Length

Type

2
4

3
5: ð4Þ
We assume that there are enough empty containers in the system and exclude the necessity of knowingly repo-
sitioning them. Therefore, the ‘‘container’’ actually represents the request of transporting a loaded container.
It is defined by the origin, destination and its length. In some applications (for example, the inventory routing
problem), we can have two resources ‘‘container’’ and ‘‘request’’ respectively since one container can be used
for several different requests. Here, we prefer to have the resource ‘‘container’’ only. Its attributes are
ac ¼

ag

ac;1

ac;2

ac;3

2
664

3
775 ¼

Generic attributes

Origin

Destination

Length

2
664

3
775: ð5Þ
We can combine two primitive resources to get a composite resource. For example, one driver can couple with
a tractor and form a composite resource of driver-tractor. A composite resource can further combine another
primitive resource to form a new one, or it can be uncoupled into primitive resources which can be reused
later. We define
CC : the collections of composite resources : fD–T; D–T–I; D–T–I–C; T–I; T–I–C; I–Cg:

As primitive resources, we use attribute vectors to characterize the composite resources. Take the example in
Fig. 4 for instance: ad–t is the attribute vector of a D–T resource. It can be obtained by concatenating the attri-
butes of ad and at, denoted by: ad–t = adjat. Note that the generic attributes of ad–t are determined by the gen-
eric attributes of ad and those of at. More specifically, the attribute ‘‘Time Window’’ of ad–t is the intersection
of the ‘‘Time window’’ of ad and the ‘‘Time window’’ of at. The attribute ‘‘Time’’ and ‘‘Location’’ of ad–t

should be the same as ‘‘Time’’ and ‘‘Location’’ of ad and at.
According to the roles of the resources in the decision making process, we categorize the resources into two

groups: leading resources and passive resources. The leading resources can make decisions and take actions
while the passive resources can only be passively involved. Let
CL ¼ The collections of leading resources : fD; D–T; D–T–I; D–T–I–Cg:
CP ¼ The collections of passive resources : fT–I–C; T–I; I–C; T; Ig:



Fig. 4. An attribute vector of a D-T resource.
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By definition, we know that: CC [ CR ¼ CL [ CP. We represent the attribute vectors using:
A ¼ The set of all possible attribute vectors:

AL ¼ The set of all possible attribute vectors for all leading resources:

AP ¼ The set of all possible attribute vectors for all passive resources:
In the remaining part of this paper, when there is no ambiguity, we will use the term ‘‘resource’’ to represent
‘‘an attribute vector of the resource’’.

2.2. Decisions

What decision can be made on a resource depends not only on the type, but also on the status of the
resource. For example, a Hong Kong driver who has less than two hours of remaining duty period should
not take a load crossing the border to mainland China. Let
Da ¼ The set of possible decisions that can be performed on a resource with the attribute vector a:

xad ¼
1 if decision d 2 Da is acted on a resource with attribute vector a

0 otherwise

�

There are three types of possible decisions in a composite resource scheduling problem, namely Couple deci-
sions, Uncouple decisions and Modify decisions.

Couple decisions represent the combining of one resource with another. For example we may take a driver–
tractor, and act on it by coupling it with a chassis. It is important to notice that we have to model not only the
change in the attributes of the resource, but also the fact that we no longer have the chassis as an individual
resource.

Uncouple decisions are the reverse of the couple decisions in which a composite resource is decomposed into
individual resources. If a composite resource is to be decomposed into more than two resources, we can per-
form the uncouple decision multiple times.

Modify decisions do not involve any interaction of resources. It only changes the attributes of resources.
For example, if one driver–tractor–chassis resource moves from the depot to one manufacturing site, the deci-
sion ‘‘move’’ is referred to as a modify decision since it only changes the resource’s ‘‘Location’’ attribute.

By definition, any decision is involved with a leading resource, however, only ‘Couple’ decisions are
involved with passive resources. To describe the relationships between a decision and the involved resources,
let us define:
dða; dÞ ¼
1 if a is the leading resource which executes the decision d

0 otherwise

�

kðp; dÞ ¼
1 if the passive resourcepis involved in the decision d

0 otherwise

�
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We can use a transferring function to represent the consequence of a decision d (let d 2 Da). The resulting lead-
ing resource a 0 of the decision d can be denoted as a0 ¼MLða; dÞ. For the uncouple type decision, we have to
record the resulting passive resource p 0, denoted by p0 ¼MPða; dÞ. It is especially important to recognize that
‘‘Time’’ is handled as an attribute. If we couple a resource that is available at time t with a resource that is
available at time t 0, and it takes time s to complete the coupling, then the resulting resource is available at time
max{t, t 0} + s. These calculations are all imbedded in the transferring function.

Mathematically, the relationships between a decision and its resulting resource attribute vectors can be rep-
resented by the following indicators:
cða0; dÞ ¼
1 if a0 is the resulting leading resource of the decision d

0 otherwise

(

bðp0; dÞ ¼
1 if p0 is the resulting passive resource of the decision d

0 otherwise

(

The relationships between the resources and the decisions can be further illustrated by the example in Fig. 5.
The attribute vector a1 represents one resource of D–T–I type. It couples a container p1. Let d1 be such a ‘‘cou-
ple’’ decision. Then, its resulting leading attribute vector a2 can be obtained by the transferring function
MLða1; d1Þ. The attribute vector a2 then uncouples the container at the destination of the container. Let d2

be such an ‘‘uncouple’’ decision. Then its resulting leading attribute vector a3 can be obtained by
MLða2; d2Þ and its resulting passive attribute vector p2 can be obtained by MPða2; d2Þ. According to the def-
initions, d(a1,d1) = 1, k(p1,d1) = 1, c(a2,d1) = 1, c(a3,d2) = 1 and b(p2,d2) = 1. In the remaining part of this
paper, we use p(d) to represent one passive resource such that k(p,d) = 1.

A resource can generally be acted on with more than one type of decision, which we refer to as ‘‘decision
set’’. The idea is best illustrated with a D–T–I composite resource. A driver with a tractor and a chassis may:
(1) load a full-load container at the manufacturer’s site; (2) uncouple the chassis and leave it at the manufac-
turer’s site for loading; (3) move to another location.

In our application, the decision set for one driver is
Da ¼ d1½ � ¼ Couple a tractor½ �: ð6Þ
Fig. 5. The relationships between attribute vectors.
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For one driver-tractor,
Da ¼
d1

d2

d3

2
64

3
75 ¼

Couple a chassis

Uncouple a tractor

Move back to domicile

2
64

3
75: ð7Þ
For one driver–tractor–chassis,
Da ¼
d1

d2

d3

2
64

3
75 ¼

Load a container

Empty move to another place

Uncouple a chassis

2
64

3
75: ð8Þ
For one driver–tractor–chassis–container,
Da ¼

d1

d2

d3

d4

2
66664

3
77775 ¼

Unload a container

Load one more container

Unload the chassis together the container

Empty move to another place

2
66664

3
77775: ð9Þ
Note that the feasible decision set for any given attribute vector is policy dependent. In the following, we use
D4-up-4-down

a , D2-up-2-down
a and Dfree

a be the decision sets for attribute vector a under the 4-up-4-down policy, the 2-up-

2-down policy and the Policy-free situations respectively. Generating the decision set for one attribute vector is
easy to implement by rule-based programs.

2.3. System dynamics

We now can express the flow conservation constraints for the system:
X
d 02Da0

xa0d 0 �
X
a2AL

X
d2Da

cða0; dÞxad ¼ Ra0 ; a0 2AL ð10Þ

X
a2AL

X
d2Da

xadkðp; dÞ �
X
a2AL

X
d2Da

bðp; dÞxad 6 Rp; p 2AP ð11Þ
where Ra0 is the number of initial leading resources with attribute vector a
0
and Rp is the number of initial pas-

sive resources with attribute vector p.

2.4. Objective function

The objective function can be simply stated as
max
X
a2AL

X
d2Da

cadxad ð12Þ
where cad is the contribution of one action d acted on a. In the implementation, such an outcome is computed
by rule-based functions which take account of the violation of ‘‘soft’’ constraints such as the time window
constraints.

Through this model, all the constraints of the problem are contained in the specification of the attribute
vectors, the determination of the decision set function Da, and the computation of the outcomes of the deci-
sions (which contain most of the engineering calculations).

3. Solution approaches

We first introduce an exact method which can be used to solve small size problems exactly. The optimal
solutions obtained by this method can be regarded as the benchmarks. We then use the labeling algorithm
proposed in Simao et al. (XXXX) which can solve problems of much larger size.
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3.1. An exact integer programming approach

To solve the integer programming problem of (10)–(12), by the commercial integer programming solver, we
have to enumerate the complete set of attributes vectors and the complete set of decisions. They can be
obtained by a tree search procedure:

Tree Search Procedure

Step 1: InitializationGenerate the attribute vectors for all drivers. Put them in a list Q.
Step 2: Breadth-first search for one attribute vectorRemove one attribute vector a from Q. Generate its deci-

sion set Da. For each d 2 Da, generate a0 ¼MLða; dÞ and p0 ¼MPða; dÞ. Put a 0 in the tail of Q. Set up
the indicators d(a,d), b(p 0,d), c(a

0
,d), k(p(d),d) and compute the contribution cad.

Step 3: Termination checkIf Q is empty, stop. Otherwise go back to Step 2.

After running this procedure, we can write the integer programming formulations and solve the problem by
CPLEX. The complication for practical problems is that the number of attribute vectors can become quite
large. It is intractable to enumerate all attribute vectors for middle size problems. In our application, a PC
with 1.0 G memory and 2.4 GHZ CPU cannot store the attribute vectors for a problem of 2 drivers, 2 tractors,
2 chassis and 10 containers.

To solve this problem, we, therefore, implement a labeling algorithm proposed in Simao et al. (XXXX)
which intelligently searches out good solutions. In the dynamic fleet management literature, Powell et al.
(2000) have applied a multi-attribute labeling method to solve a driver-task assignment problem where there
is only one type of resources which have complex attributes. Powell et al. (2002) use an adaptive dynamic pro-
gramming algorithm for heterogeneous resource allocation problems, which again only considers one type of
resources. Simao et al. (XXXX) propose a labeling algorithm that can solve composite resource scheduling
problem. We demonstrate that this algorithm works well for the drayage problem. In the next section, we
introduce the solution approach in detail.

3.2. Labeling algorithm

When a decision is made, the attribute vectors of the resources involved will be changed (the values of its ele-
ments or even its dimensions). To tackle this attribute–decision model, we can build a candidate list, Q, that con-
tains a list of attribute vectors. For a given attribute vector, a, we select and make the most beneficial decision
among all decisions that can be applied. The decision, however, may result in some changes to the system such as
making a previously made decision invalid, reducing or increasing the number of resources available, etc.

We will use the following notations in the description of the algorithm:

pp = the dual price of one passive resource p

n = iteration counter
Nmax = a preset maximum number of iterations
zad = the net contribution of the decision d 2 Da

The major steps are

Step 1: Initialization:
Generate the attribute vectors for all primitive resources.
Put the attribute vectors of the drivers in a candidate list Q.
Put the attribute vectors of the tractors, trailers and containers to the set AP.
Set pp = 0 for any p 2AP.
Set �D ¼ ; and n = 0.
Explanation: The drivers in the list Q are sorted in the sequence of ascending available times. Namely,
the ones with earliest available times will be put to the head of Q. The set D is used to store all previously
made decisions.
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Step 2: Choose the best decision:
2 Du
Set n = n + 1.
Remove an attribute vector, a, from the head of Q.
Generate the decision set Da.

For each decision d 2 Da,

Set zad = 0.
Compute the direct contribution cad, update zad zad + cad.
If the decision d involves with the passive resource p(d),

set zad zad � pp(d).
End If
a 0 the resulting attribute vector of d.
Obtain v(a 0) and set zad zad + v(a 0).

End For

Obtain the best decision d̂ from Da, that is, d̂ ¼ arg maxd2Dafzadg.
Explanation: The net contribution of a decision d consists of three cost elements. The first is the direct con-
tribution (or cost) cad of the decision. The second is the estimated price pp(d) that we are prepared to pay for the
resource p(d) that is used by decision d. The third is the future value v(a 0) of the attribute a 0 that is resulted
from the decision just made.

The values v(a 0) estimate the future contributions of the resulting attribute vectors. To calculate an estima-
tion, we can use a parameter-controlled tree search approach. The procedure is similar with Step 2 in Tree

Search Procedure of the exact method except that the depth and the width of the search are controlled by
parameters: m1, m2, respectively. From this tree, we select the path with the largest contribution and set the
contribution of this path as v(a 0). The procedure can be described as follows:

Estimate v(a 0)

Step 1: Initialization
Put a 0 in a list Q. Let the breadth courter i = 0.
Step 2: Breadth-first search for one attribute vector
Remove the attribute vector a 0 from the top of Q. Generate its decision set Da0 . Let d be one of the best
m2 decisions in Da0 . For each d, generate a00 ¼MLða0; dÞ and p0 ¼MPða0; dÞ. Put a00 in the tail of Q and
compute the contribution ca0d , and if i = m1 � 1, put a 0 in the top of another list Q 0. Set i = i + 1.

Step 3: Backtrack the future value
If i = m1, set v(a00) = 0. Retrieve one element a00 from Q 0. Identify the leading attribute vector a 0 and its
decision d that results a00. Update vða0Þ  minfvða0Þ; vða00Þ þ ca0dg. Put a 0 at the tail of Q 0. Repeat this
step until Q 0 becomes empty.
In our short-haul truckload problem, the partial tree search strategy is affordable since for each driver the
possible number of trips per day is typically no more than four.

The price pp(d) measures the level of competition for getting the resource p that is involved in d. The more
intense the competition, the higher the price should be. It will be updated during the execution of the best
decision.

Step 3: Execute the best decision d̂:

If the decision d̂ exists,2

a 0 the resulting leading attribute vector of d̂.
p 0 the resulting passive attribute vector of d̂.
Put a 0 to the head of Q.
Put p 0 to the set AP if p 0 exists.
e to the availability of resources, the attribute vector a may not be able to find a feasible decision.
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Set dða; d̂Þ ¼ 1, bðp0; d̂Þ ¼ 1, cða0; d̂Þ ¼ 1, kðpðd̂Þ; d̂Þ ¼ 1.
If the decision d̂ involves with the passive resource pðd̂Þ,

obtain the second best decision �d by:
�d ¼ arg maxd2Da;d 6¼d̂fzadg.
Let ppðd̂Þ  ppðd̂Þ þ zad̂ � za�d þ �.

End if

End If
Explanation: One way to update ppðd̂Þ is to use the concept of opportunity cost. The opportunity cost
for not implementing d̂ but implementing �d is zad̂ � za�d . The rationale is that if another resource wants to
couple with the same resource, the benefit created by this new couple should at least offset the opportunity
cost.

Besides this opportunity cost, we add a small value � to break the tie. This idea is borrowed from the auc-
tion algorithm in Bertsekas et al. (1997).

Note that the resulting attribute vector a 0 is put to the head of the Q. In this way, the resources with the
largest number of primitive resources are considered first in most cases.

Step 4: Decision adjustment
For each decision d 0 2 D,
If cðpðd̂Þ; d 0Þ ¼ 1, /*, i.e., there is some previously made decision d 0 used the resource pðd̂Þ.*/
adjust all decisions related to the decision d 0.
End If

End For

Explanation: When a previously made decision is being canceled, the downstream decisions based on this
decision need to be canceled. Using the example in Fig. 6, if the chassis with attribute vector p1 is recou-
pled with a D-R resource with attribute vector a7, then all the decisions related to a1, which previously
couple with p1, should be removed.

Step 5: Secondary dual price adjustment

Add d̂ to D.
If n is divisible by M

For each p 2AP,P

If d 02Dkðp; d 0Þ ¼ 0, /*, i.e., the resource p has not been used. */

Update pp pp*b, /* b is a parameter within (0,1).*/
End If

End For

End If
Explanation: After a number of iterations, the dual prices of some passive resources can be increased too
high such that they may be ignored by the leading resources. Thus, we reduce the price by a factor b
every M iterations as long as these passive resources remain unused.
The couple decision, which was previously made on a1, is adjusted. All links with ‘‘·’’ represent the decisions should be adjusted.



R.K. Cheung et al. / Transportation Research Part E 44 (2008) 217–234 229
Step 6: Termination check
If Q = ; or n = Nmax + 1
terminate,

Else
If n = Nmax,
For each p 2AP,
If
P

d 02Dkðp; d 0Þ ¼ 0, /*, i.e., the resource p has not been used. */
Set pp = 0.

End If

End For

End If

Go to Step 2.
End If

Explanation: If Q is null or n = Nmax + 1, terminate the algorithm. It is possible that after Nmax itera-
tions, some containers have not been covered. Thus, we reduce the dual prices of all unused containers
to 0. In this way, some of the unserved containers may be covered.
4. Numerical experiment

We conduct numerical experiments to estimate the impact of different policies on the system performance.
4.1. Problem setting

We generate a set of test problems and use a time horizon of 720 periods (representing 24 h with 720 two-
minute intervals). The origin and the destination of a load are randomly located in a 100-by-100 unit square.
The travel speed is 1 unit per period. The middle point of the time-window of picking up a container is gen-
erated uniformly between 0 and 360 while the width of the window is generated uniformly between 120 and
180. The number of 40-foot loads and the number of 20-foot loads are controlled by a ratio k:
k ¼ Number of 40-foot loads

Number of 40-foot loadsþNumber of 20-foot loads
ð13Þ
We assume that the tractors and the chassis are available during the whole planning horizon such that they can
be reused.

The major cost items include:

• Matching cost: When we couple a ‘‘driver’’ with a ‘‘tractor’’, the matching cost depends on whether the dri-
ver ‘‘prefers’’ the tractor. The cost can be set as a big-M if the driver is not able to operate the ‘‘tractor’’.
Similarly, the coupling between a ‘‘driver-tractor’’ with ‘‘chassis’’ also involves such a matching cost.

• Transportation cost: The major part of transportation cost is the oil consumption fee that is proportional to
the transportation time/distance. As a simplification, the transportation cost from location i to location j is
independent with the resources’ attributes and can be calculated by the following formula:
cij ¼ d�ij15 ð14Þ

where dij is the distance.
• Penalty of violating the time window: The time window constraints for drivers, tractors and chassis are hard

constraints which cannot be violated. While the time window constraints for picking up and delivering a
container can be violated by paying a penalty. The penalty is set as 10 per time unit for per cargo.

• Reward: The reward will be gained when the full-load container arrives at the destination. In our experi-
ments, it is set to be a function of the size of container. The 40-foot container has a reward of 4000,
and the 20-foot container has a reward of 2000.
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In the below, we use ND, NT, NI, NC to represent the numbers of drivers, tractors, chassis and containers
respectively.

The parameters that are used in our numerical experiments are listed in Table 1.

4.2. Solution quality

We conduct a set of experiments to evaluate the solution quality of the labeling algorithm. We create a set
of test problems whose parameters are listed in Table 2.

We compare the solutions obtained by the labeling algorithm with the optimal solutions obtained by the
exact method introduced in Section 3. The results are shown in Table 3. In this table, columns 3 and 5 record
the solutions obtained by CPLEX and the labeling algorithm respectively. Columns 4 and 6 record the com-
putational times (measured by seconds), while column 7 records the solution gap.

The results show that for most test problems, the labeling algorithm obtains the optimal solutions. The
largest gap between the solutions is within 2.5%. On the other hand, the computation times of the labeling
algorithm are less than those of the exact method.

Now, we are ready to use the labeling algorithm as a ‘‘policy evaluator’’ to evaluate the system perfor-
mances under different policies. We conduct two set of experiments. The first set of experiments is to compare
the system performance under the 4-up-4-down policy with the correspondence under the 2-up-2-down policy.
The second set of experiments is to compare the system performance under the 2-up-2-down policy with the
correspondence under the policy-free policy.
Table 1
Parameters

Nmax 400ND

M 40ND

b 0.8
m1 4
m2 3
� 50

Table 2
Test problems

Problem Policy ND NT NI NC

1 4-up-4-down 1 1 1 4
2 4-up-4-down 1 1 1 6
3 4-up-4-down 1 1 1 8
4 4-up-4-down 2 2 2 4
5 4-up-4-down 2 2 2 6
6 4-up-4-down 2 2 2 8
7 2-up-2-down 1 1 1 4
8 2-up-2-down 1 1 1 6
9 2-up-2-down 1 1 1 8

10 2-up-2-down 2 2 2 4
11 2-up-2-down 2 2 2 6
12 2-up-2-down 2 2 2 8
13 Policy-free 2 1 1 4
14 Policy-free 2 1 1 6
15 Policy-free 2 1 1 8
16 Policy-free 4 2 2 4
17 Policy-free 4 2 2 6
18 Policy-free 4 2 2 8
19 4-up-4-down 2 2 2 9
20 2-up-2-down 2 2 2 9
21 Policy-free 4 2 2 9



Table 3
Comparisons between the exact method with labeling algorithm for small problems

Problem Exact method Labeling algorithm Solution gap (%)

Profit Time Profit Time

1 3537 3.3 3537 0.7 0
2 7071 4.9 7071 1.1 0
3 7071 16.2 7071 1.1 0
4 6764 4.1 6764 2.4 0
5 8771 4.3 8771 2.5 0
6 10,569 31.3 10,569 3.3 0
7 7076 1.4 7076 1.2 0
8 7076 3.3 7076 1.5 0
9 11,064 27 11,064 1.5 0

10 10,211 3.4 10,210 2.1 0
11 12,306 4.3 12,169 2.6 1.1
12 18,140 45.0 18,140 3.6 0
13 10,211 3.4 10,211 0.3 0
14 12,306 4.3 12,306 0.8 0
15 18,140 45.0 18,140 3.6 0
16 11,770 6.2 11,468 4.9 2.5
17 16,822 13.3 16,818 6.8 0.2
18 22,391 70.8 22,387 7.8 0.2
19 7071 195.4 7071 5.7 0
20 18,308 467.9 18,308 3.2 0
21 24,327 867.3 24,327 9.1 0
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4.3. 4-up-4-down policy vs. 2-up-2-down policy

We create two sets of test problems. In the first set of test problems, the number of containers is fixed as 48
and we consider three possible ratios k: 25%, 50% and 75%. For each case, we increase the number of drivers
from 4 to 10. Using this set of problems, we can see the marginal benefit of adding one driver in the system. All
drivers are available in [0, 360]. We assume there are enough tractors and chassis, namely, ND = NT = NI. In
such a setting, the Policy-free policy is no difference with the 2-up-2-down policy since there are enough
tractors.

Table 4 illustrates the result for the first set of test problems. Columns 3 and 5 record the contributions
under the 4-up-4-down policy and the 2-up-2-down policy respectively. Columns 4 and 6 record the computa-
tional times (measured by seconds), while column 7 records the contribution improvement under the 2-up-2-

down policy compared with the 4-up-4-down policy. The result shows that as more drivers are put in the
Table 4
System performances under the 4-up-4-down policy and the 2-up-2-down policy, when the number of drivers increases

ND k (%) 4-up-4-down 2-up-2-down Improvement (%)

Profit Time Profit Time

4 25 29,661 9.9 48,087 12.9 62
6 25 40,061 11.5 83,154 11.8 107
8 25 43,425 13.1 97,827 11.7 125

10 25 57,480 18.3 100,221 25.8 74
4 50 30,457 8.8 54,516 11.7 78
6 50 38,562 11.1 67,349 9.5 74
8 50 50,532 17.3 75,693 27.4 49

10 50 52,610 20.0 91,592 34.6 74
4 75 20,794 6.5 48,222 12.0 131
6 75 30,470 7.4 52,964 24.4 73
8 75 44,701 9.8 64,956 42.4 45

10 75 50,803 18.0 82,400 47.2 62
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system, more contribution will be earned. The drivers can earn more money when k is smaller since there are
more 40-foot containers in the system.

In the second set of test problems, we increase the number of containers from 60 to 240. The number of
drivers is increased from 10 to 40 accordingly. Namely, ND = NC/6. We assume that there are enough tractors
and chassis in the system, namely, NT = NI = ND. The format of Table 5 is the same as Table 4. The result
shows that under the 2-up-2-down policy, we can always achieve better results than under the 4-up-4-down

policy. In addition, the algorithm can compute the result for a problem with 40 drivers and 240 containers
in reasonable time.

4.4. 2-up-2-down policy vs. Policy-free policy

The purpose of this set of experiments is to compare the 2-up-2-down policy and the Policy-free policy. The
drivers in the system work in two different shifts. The first group of drivers work in the period [0, 360] while the
second group of drivers work in the period [360,720]. Under the 2-up-2-down policy, one tractor can only be
licensed to one driver. While under the Policy-free policy, one tractor can be operated by two drivers of dif-
ferent shifts.

We first consider a set of test problems where there are 48 containers. We increase the number of drivers
from 4 to 10. The tractors are regarded as scarce resources and their number is set as NT = ND/2. The results
are shown in Table 6. In Table 6, the term ‘‘2U’’, ‘‘4U’’, ‘‘PF’’ represent the 2-up-2-down policy, the 4-up-4-

down policy and Policy-free policy respectively.
Table 5
System performances under the 4-up-4-down policy and the 2-up-2-down policy, when the number of containers increases

NC k (%) 4-up-4-down 2-up-2-down Improvement (%)

Profit Time Profit Time

60 25 57,533 24.8 112,036 47.6 95
120 25 110,638 202.1 254,523 270.5 130
240 25 221,502 1345.4 504,654 803.7 128
60 50 36,015 24.1 101,421 30.9 182

120 50 115,239 236.3 252,154 414.2 119
240 50 221,463 1272.2 512,440 1887.3 131
60 75 48,582 49.1 91,832 53.2 89

120 75 106,121 230.7 221,772 646.9 109
240 75 210,609 1199.2 441,714 1807.1 110

Table 6
System performances under the 4-up-4-down policy, the 2-up-2-down policy and the Policy-free policy, when the number of tractors
increases

NT k (%) 4-up-4-down 2-up-2-down Policy-free Improvement (%)

Profit Time Profit Time Profit Time 2U/4U PF/2U

4 25 14,660 3.7 47,320 6.2 83,546 9.6 233 77
6 25 27,320 5.8 58,934 11.8 91,334 10.6 116 55
8 25 31,321 7.3 66,926 9.6 119,387 11.4 114 78

10 25 34,798 6.3 82,525 14.2 170,916 14.1 137 107
4 50 13,998 3.4 43,187 19.9 69,039 16.4 209 60
6 50 20,785 3.8 47,065 22.0 80,870 13.7 126 72
8 50 22,576 12.5 58,034 18.6 92,229 22.1 157 59

10 50 27,434 8.8 66,103 28.8 112,108 41.7 141 70
4 75 13,908 3.9 34,961 38.0 56,000 16.8 151 60
6 75 20,726 11.8 44,593 17.4 65,899 13.7 115 48
8 75 20,916 18.2 46,027 30.4 73,998 36.7 120 61

10 75 23,454 13.8 49,799 31.7 79,999 65.0 112 61



Table 7
System performances under the 4-up-4-down policy, the 2-up-2-down policy and the Policy-free policy, when the number of containers
increases

NC k (%) 4-up-4-down 2-up-2-down Policy-free Improvement (%)

Profit Time Profit Time Profit Time 2U/4U PF/2U

60 25 35,448 14.1 86,781 13.5 145,261 13.1 144 67
120 25 72,299 71.3 164,988 92.7 281,788 28.1 128 71
240 25 145,532 701.8 380,517 747.1 620,846 2766.0 161 63
60 50 29,308 27.7 75,765 27.8 113,631 30.2 158 50

120 50 56,801 110.9 143,787 185.8 278,333 527.6 153 94
240 50 115,426 1323.3 333,048 1638.4 493,418 4444.6 188 48
60 75 23,728 25.3 53,621 48.3 88,855 47.2 125 66

120 75 50,903 203.0 131,615 309.5 205,734 720.9 158 56
240 75 98,007 1514.4 185,287 2512.1 317,799 9747.7 89 72
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Secondly, we consider a set of test problems where the number of containers increases from 60 to 240, the
number of drivers increases from 10 to 40, respectively, (namely, NR = NC/6). We also assume that there are
enough chassis. The results are shown in Table 7.

According to our numerical experiments, if the 4-up-4-down policy is relaxed, the system performance can
be improved by more than 100%. If the 1-driver-1-tractor policy is relaxed, the system performance can be
further improved by more than 70%. The experimental results also show the efficiency of the labeling algo-
rithm. Our approach can handle the problem with 40 drivers, 40 tractors, 40 chassis and 240 containers in
reasonable time.

5. Conclusion

We have described the challenges in managing cross-border drayage operations. We show that two regu-
latory policies, 4-up-4-down and 1-driver-1-tractor, significantly restrict the trucking efficiency. Meanwhile,
it is shown that the attribute–decision modeling perspective together with the adaptive labeling algorithm
can provide good solutions for such a complex problem. It is interesting to apply this attribute–decision model
to other applications such as handicapped person transportation problem where different vehicles can be used
to serve different types of patients. It is also very interesting to investigate the theoretical foundation for the
labeling algorithm.
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