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There are a host of complex operational problems arising in transportation and logistics

which are characterized by dynamic information processes, complex operational character-

istics and decentralized control structures. Yet, they are also optimization problems. The

optimization community has made outstanding progress in the solution of large optimiza-

tion problems when information processes are static (we do not model the arrival of new

information) and when the entire problem can be viewed as being part of a single control

structure. Not surprisingly, this technology has been extremely successful in applications

such as planning airline operations which meet these requirements.

This paper has grown out of the challenges we faced modeling complex operational prob-

lems arising in freight transportation and logistics, which are characterized by highly dynamic

information processes, complex operational characteristics and decentralized control struc-

tures. Whereas people solve more traditional problems have struggled with the development

of effective algorithms, we have struggled with the more basic challenge of simply modeling

the problem.

We feel that our ability to solve these problems is limited by the languages that we use

to express them. Classical mathematical paradigms do not provide an easy and natural

way to represent the optimization of these problems in the presence of dynamic information

processes, or to capture the complexities of large scale operations. In particular, models

do not capture the organization and flow of information in large organizations, preferring

instead to assume the presence of a single, all-knowing decision-maker. As a result, most

dynamic models posed in the literature are myopic or deterministic.

The characteristics of more complex operations has spawned an extensive literature pre-

senting models that are unique to a particular industry. For example, we solve airline fleet

assignment problems (Hane et al. (1995)), railroad car distribution problems (Jordan &

Turnquist (1983), Mendiratta & Turnquist (1982), Haghani (1989), and Herren (1973), for

example), the load matching problem of truckload trucking (Powell (1991), Powell (1996),

Schrijver (1993)), routing and scheduling problems in less-than-truckload trucking (Powell

(1986), Crainic & Roy (1992)), the flow management problem in air traffic control (An-

dreatta & Romanin-Jacur (1987) and Odoni (1986)) and the management of ocean contain-

ers (Crainic et al. (1993)). Even within an industry, rail car distribution is different from rail
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locomotive management or rail crew scheduling. Clearly, this tendency reduces our ability

to learn from similar problems in different industries and excessively fragments the field.

This paper offers a new vocabulary for representing complex problems in a stochastic,

dynamic setting. Our focus is on operational problems that need to be solved under uncer-

tainty, and complex problems which are difficult to formulate mathematically in a clear and

elegant way. We believe that similarities between problems are often disguised by semantic

differences that reflect the contextual domain of an application. It is not readily apparent,

for example, that the blocking problem of railroads and the load planning problem of less-

than-truckload trucking are both instances of a dynamic service network design problem.

The question that tends to arise is: When are apparently different problems similar, and

when are seemingly similar problems different? Consider, for example:

Example 1: Discrete scheduling
1a: A customer wants to move a truckload shipment from Cleve-

land to Atlanta. A motor carrier has a Dayton-based driver
in nearby Dayton (creating the challenge of getting him back
home after moving the load), and farther away an Altanta-
based driver sitting in Detroit (but the load would take him
home). Which driver should the carrier use to move the
load?

1b: A manufacturer sells speciality pipes cut to the length re-
quired by the customer. A customer order for a 12 foot
length of pipe comes in. The manufacturer has bins of pipes
ranging in length from two feet to 20 feet. Right now, he
only has 15 and 20 foot sections of pipe. He can cut a 15
foot section, leaving a three foot remnant, or use a 20 foot
section, leaving an eight foot remnant. Which length of pipe
should he cut down to satisfy the customer order?

These apparently very different problems are actually almost identical, if viewed with the

proper vocabulary. Both are instances of using heterogeneous, reusable resources to satisfy

customer tasks. In each case, a resource is applied to a task which satisfies the customer,

and produces a modified resource. In the case of the trucking example, the load modifies the

driver resource by moving the driver to a new location. The pipe example modifies longer

lengths of pipes and produces shorter ones. (This example is based on a conversation with

Dan Adelman, who introduced a similar problem in fiber optics in Adelman & Nemhauser

(1999) in the context of a remnant inventory problem.)
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In this paper, we offer a paradigm for representing a class of problems that we refer to as

dynamic resource transformation problems. If “DRTP” is hard to pronounce, we encourage

readers to refer to the problem class as “DRiP’s,” (it is easier to pronounce, and we have

built a Java-based simulation library around the problem class that we call the “DRiP

Java library). Subclasses include dynamic resource allocation problems, which generally

address spatial problems, dynamic resource scheduling problems, which specifically address

problems which focus on timing (such as classical machine scheduling) or, more broadly

dynamic resource management problems. While much of what we cover will also apply to

static problems, our focus is on stochastic, dynamic problems, which have received very

little attention in the context of large-scale optimization problems. Our goal is to develop

a vocabulary that is not only relatively context-free, but is also (again, relatively) free of a

particular algorithmic strategy. In addition, our focus is primarily on very complex problems,

such as those that arise in freight transportation. These are problems that have classically

been modeled as large scale linear or integer programs.

A number of papers have been published which offer representations of well-defined prob-

lems oriented toward identifying problems with common properties. The “M/G/k” paradigm

for queueing systems, introduced by Kendall (see Gross & Harris (1985) for a summary and

references), served for decades to define the field of queueing theory. This framework actu-

ally takes the form “A/B/X/Y/Z” where A and B capture the arrival and service processes,

while X, Y and Z represent the number of services, system capacity, and queue discipline.

The machine scheduling literature uses “α | β | γ” to represent, respectively, the machine

environment, processing characteristics, and the number of machines (see Pinedo (1995)).

Eiselt et al. (1993) propose a “I / II / III / IV / V” taxonomy for classifying location prob-

lems, and use this to organize the extensive literature in location theory. Bodin & Golden

(1981) list 13 dimensions in their classification of vehicle routing problems, each of which is

divided into several categories.

A different approach to problem representation has been modeling languages, which are

more generally oriented toward much broader problem classes. An excellent review of this

field is given in Geoffrion (1989b). Modeling languages can take two general forms: algebraic

modeling systems, such as AMPL (Fourer et al. (1990)) which are high level code or data
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generators for lower level systems, and conceptual representations, such as Geoffrion’s Struc-

tured Modeling Language (Geoffrion (1989a), Geoffrion (1989b), Geoffrion (1992a),Geoffrion

(1992b)). The challenge in developing any representational system is the tradeoff between

scope of application (generality) and ease of application (which requires domain-specific fea-

tures). The more a representation is tied to a specific problem class, the easier it is to apply

to that problem class, and the less useful it becomes to other problem classes. In our view,

other work on general modeling approaches is difficult to apply to the stochastic, dynamic

problems that arise in complex arenas such as freight transportation. This is not to say that

they cannot be applied, but rather that we cannot easily determine how to apply them.

A major goal of the paper is an explicit representation of this problem class. This requires

identifying the major elements of a DRTP in a way that could be represented in a computer

dataset. As an illustration, a linear program, expressed as min cx subject to Ax = b, x ≤

u, x ≥ 0, is expressed by specifying A, b, c, u and x. This representation has provided a

highly flexible mathematical vocabulary, as well as serving as the basis for the venerable

“MPS” format. In fact, one could argue that Dantzig’s most valuable contribution was not

the simplex algorithm, but the basic problem representation that has served as a useful

language for a wide range of algorithms that do not even use the simplex method.

The central thesis of this paper is that we lack a basic representational paradigm for the

types of stochastic, dynamic problems that arise in the context of complex operational ap-

plications such as freight transportation and logistics. These problems have been classically

formulated as large-scale mixed integer optimization problems, where the primary emphasis

is on finding an algorithm, while accepting strong simplifications on the representation of

the problem. In this paper, we do not focus on an algorithm for solving a problem, but

rather on simply representing the problem in a general way that captures the much richer

set of modeling issues that arise in a dynamic setting. We feel that in a static, deterministic

setting, the challenge of modeling the problem is relatively easy, while solving the problem is

quite hard. In a stochastic, dynamic setting, the reverse is true. Since we will never obtain

truly optimal solutions (for realistic problems), “solving” a stochastic, dynamic problem is

relatively easy (since we do not generally look for optimal solutions), whereas simply mod-

eling the problem can be extremely difficult. Of course, optimal solutions for this problem



6

class are exceptionally hard, and the challenge of obtaining (and verifying) better solutions

will remain an intellectually challenging task.

A goal of this paper is to provide a flexible representational structure that others can

build on and adapt to fit their needs. Since our interest is in very complex problems, our

intent is to build on existing modeling paradigms, rather than try to replace them with

something completely new. At the same time, we feel that no single modeling paradigm,

classically applied, allows us to capture the richness of complex stochastic, dynamic problems

that arise in practice. The standard paradigm of most research in the operations research

community is to propose a model, and then focus on developing an algorithm. In the case of

large, complex problems, and in particular those arising in a dynamic setting, we feel that

it is more important at this stage to agree on a mathematical representation that covers the

important dimensions that distinguish a stochastic, dynamic problem.

The contributions of this paper are as follows: a) We define the DRTP as a problem

class, and show how it includes a variety of problems in operations research. We provide

a compact but comprehensive organization of the elements of a DRTP , which uses only

three primary dimensions, which we consider fundamental, and a set of subdimensions. We

claim that this organization encompasses all the essential features of this problem class, and

as such, can become the basis for classifying problems (which we do not attempt). b) We

provide a full notational system that is highly mnemonic and which captures the important

elements of these problems in a natural way. Our mathematical representation provides easy

interfaces with classical concepts in mathematical programming and stochastic processes. c)

Our representation provides what we believe to be the first representation that focuses on the

information content in decisions for a multiagent system, along with a novel characterization

of information. Finally, d) we provide a structure for storing instances of a DRTP in files

that can be shared.

The DRTP problem class offers several dimensions which appear to be new: 1) the concept

of resource layering, whereby different types of resources can be combined to make composite

resources; 2) the representation of complex physics through the use of a type of transfer

function (called the modify function), that works at the level of each resource, with explicit

treatment of the information content of each decision and the modeling of multi-period
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transfer times; 3) the classification of information into four distinct sets, which then forms

the basis for different classes of decision functions, 4) the introduction of the concept of

knowability and actionability, and 5) the modeling of informational subproblems, capturing

the property in most large-scale systems that decisions are made in subproblems using subsets

of information.

A challenge of this paper is striking a balance between specificity and generality. Individual

researchers may react to our representation by claiming that it “forces” a lot of “unnecessary”

complexity. Our intent in this paper is not to encourage any particular representation (we

even provide for the explicit use of deterministic approximations). However, we do wish to

highlight simplifying assumptions when they are made, so that perhaps other researchers

may in time investigate the impact of these assumptions. Ultimately, the goal of modeling

is finding the set of approximations that balances accuracy with tractability.

Section 1 gives a number of examples of these problems, illustrating the fundamental

elements of a DRTP . Section 2 outlines the three primary and the associated secondary

dimensions of a DRTP . The remainder of the paper focuses on the mathematical represen-

tation of this problem. Given the complexity of our problem class, we present our notational

conventions in section 3. Then, sections 4, 5 and 6 give mathematical descriptions of the

three primary dimensions of a DRTP . Section 7 summarizes the optimization formulation of

a DRTP, providing a complete statement of the objective function, constraints and system

dynamics. Section 8 shows how a DRTP can be represented as a set of files giving in the

form of numeric data and software. Finally, section 9 summarizes the paper.

We wish to add what might be construed as a word of caution as this paper is read. We offer

here a tremendously general view of dynamic resource management problems in a relatively

abstract setting. It is only for the most complex problems that all the dimensions of this

representation would be used (the authors have been involved in problems that genuinely

use all of them). But, most students of operations research will find themselves using only

a small portion of the modeling concepts in this paper. For these students, we offer this

description as a way of highlighting modeling issues that might be important, but which

you may not yet have identified (if you try to solve problems in the real world, you will

start to find these issues arising). A strong understanding of all the dimensions of a problem
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produces more informed questions when you are trying to learn about a problem. The focus

of the paper is notation, and we have developed a notational framework that simplifies the

modeling of very complex problems. However, it is not generally the best notation for the

very simplest problems.

1. Examples

Dynamic resource transformation problems arise in a variety of settings. Each of these

involves the transformation of one or more types of resources in a way that not only generates

costs, but also some sort of benefit that justifies the cost of transformation. Although

our interest is primarily in transportation-related problems, we include nontransportation

examples to stress the generality of the problem class.

A central feature of our problem class is that resources often occur in layers. Problems with

more layers are inherently more difficult to solve than problems with fewer layers. Below,

we list a series of applications, organized by the number of layers in each example.

• One layer problems:

– Classical inventory planning (but with no demand backlogging).

– Distribution problems (possibly multiproduct) with stochastic demands (but no

demand backlogging).

– The dynamic travelling repairman problem.

– Machine scheduling (with no setups).

– Airline crew scheduling problems (with fixed times for flights).

– Truckload fleet management I: managing the flows of (perhaps multiple types

of) trucks over a set of loads with fixed departure and arrival times.

– Less-than-truckload trucking I: the traffic assignment problem (routing ship-

ments).

– Rail operations I: distributing box cars to customers with no demand backlog-

ging.

• Two layer problems:

– Vehicle routing problems (vehicles and product).

– Machine scheduling with setups (jobs and machines).
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– Personnel planning (assigning people to jobs).

– Fleet management (vehicles and loads or customers to be moved).

– Truckload fleet management II: optimizing the assignment of drivers to loads,

both of which may be served over specified periods of time (time windows).

– Less-than-truckload trucking II: routing shipments and trailers.

– Rail operations II: Scheduling locomotives to move trains.

• Three layer problems:

– Truckload fleet management III: (simultaneously managing drivers, tractors and

trailers).

– Machine scheduling (with setups) with operators (jobs, machines and people).

– Less-than-truckload trucking III: routing shipments, trailers and drivers.

– Rail operations III: Scheduling locomotives and crews to move trains.

• Four layer problems:

– Routing and scheduling for chemical distribution (driver, tractor, trailer and

product).

– Multiple machine scheduling (with setups) with operators (jobs, two types of

machines and people).

– Less-than-truckload trucking IV: routing shipments,tractors, trailers and drivers.

– Rail operations IV: Scheduling locomotives, crews and boxcars to satisfy external

customer demands that may be backlogged.

DRTP ’s involve objects with attributes that evolve over time as a result of various physical

processes. Examples of these processes include:

• Temporal processes - These are physical processes that govern how long a task or

operation takes. These include travel times, time required to execute a task, time to

clean a trailer, time to train a person, and off-duty and sleeping time.

• Economic processes - Each transformation is assumed to generate one or more mea-

surable quantities that are accumulated directly in an objective to be optimized.

These include the generation of costs, revenues, service measurements and measures

of equipment productivity or employee satisfaction.
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• Discrete classification processes - Resources often have one or more discrete classifica-

tions that can change. This might be the location of a truck, the state of a machine,

or the skill level of a consultant.

• Aging and replenishment processes - Many resources have a dimension that undergoes

aging and replenishment. Examples include consumption of allowable work hours,

fuel consumption and deterioration of equipment.

• Arrival and departure processes - These describe the arrival and departure of re-

sources to and from the system.

• Information processes - Most important, information processes describe the arrival

of data into the system that can be used for making decisions.

The last dimension of a DRTP is the means by which the system can be controlled. Most

complex systems are run by more than one decision-maker, referred in the literature to multi-

agent control, while classical optimization models assume a single-agent structure. Given

a control structure, we need then to charactierize the means by which decisions are made.

A decision function may be rule-based (given a state, choose an action) or based on some

form of cost minimization. Simple problems may use cost, profit or level of service, but more

complex systems combine multiple measures, and may not even have quantifiable evaluation

criteria.

2. Dynamic resource transformation problems

This section provides a conceptual overview of a DRTP , summarizing all the major

dimensions and subdimensions, and discussing some of the conceptual issues. This section is

then followed by a more formal mathematical representation of all the elements in sections

(4), (5) and (6).

The first step in the development of a representational system is to describe the dimensions

of a dynamic resource transformation problem. A DRTP , in our view, is comprised of three

fundamental elements:
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• Knowledge - This is the set of exogenously supplied data, and a set of inference

functions (which includes forecasting) used to estimate data elements that are not

currently known to the system.

• Processes - Here we capture the physics of the problem, comprised of the laws that

govern how the system evolves over time, physical constraints that must be observed,

and the evolution of information coming to the system.

• Controls - Controls describe what decisions need to be made, who makes them, how

information is provided to the decision maker, and how the decision maker separates

good from bad decisions.

We use this fundamental organization to represent an instance of a DRTP . We use the

general style of queueing theory and machine scheduling, and propose that dynamic resource

transformation problems be identified using the notation:

Knowledge || Processes || Controls

where each element (knowledge, process or control) can be replaced by a series of descriptive

abbreviations that describe the nature of that element. As such, our organization can be

used as a basis of a taxonomy. For reasons of space, we do not attempt to actually design

such a taxonomy in this paper.

As this paper was being written, there was active consideration of whether the first di-

mension should be called “resources” (which for many people refers to physical objects),

“information” (to more broadly capture the set of data that may or may not encompass

physical resources) or “knowledge” (which brings into play subtle distinctions between “in-

formation” and “knowledge”). If the reader is considering a problem involving the man-

agement of physical resources (drivers, trucks, planes, inventory), then the only interesting

type of information might be the resources themselves. In this case, we invite the reader to

use the notation “Resources||Processes||Controls”. The difficulty with using “Resources”

as the first dimension is that it does not leave us a mechanism for expressing other forms

of information (specifically, parameters that do not constitute resources) or the functions

which we commonly use to add to our knowledge base (most notably, forecasting equations

and aggregation functions).
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We now summarize the subelements of each one of these dimensions. Our goal in this

section is to provide a comprehensive summary of the elements of a DRTP . We claim that

our list of three primary dimensions, and the subdimensions given below, is complete and

comprise all the dimensions needed to express this problem class. We acknowledge that

different people might organize the information within the subdimensions differently (in the

course of writing this paper, we progressed through a range of organizations before settling

on the structure presented here).

In our structure, we identify the subdimensions of a problem using numbers, as in K.1

(for the first dimension of information) or P.1.a (as in subelement 1.a of processes). Section

2.1 outlines the elements of information, section 2.2 does the same for processes, and section

2.3 summarizes the elements of controls.

2.1. Knowledge. As we emphasized earlier, there are two ways to approach a DRTP. The

simplest is to assume that the only interesting object being managed is a resource (particu-

larly, a physical resource), where all other information is static and where there is no use of

forecasting or other inference functions. In this case, our first dimension consists purely of

the attributes of the resources being managed. Here, we are presenting the first dimension

in its full generality.

The knowledge available to our system may be organized as follows:

K.1) Data knowledge - This includes all data that is exogenously supplied to the system

which is then used by the system. This includes:

K.1.a) Data about resources to be managed. This includes the resource classes, and

the vector of attributes that describe a resource class.

K.1.b) Data about parameters that govern the physics of the system (for example, travel

times and costs).

K.1.c) Data describing plans that have been made in the past which are to be used to

influence future decisions. Plans can be specified in three ways: plans (aggre-

gated forecasts of future decisions), patterns (forecasts of future decisions based

on the historical behavior of past decisions) and policies (rules that govern how

decisions should be made in the future).
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K.2) Functional knowledge - This covers functions which allow us to infer knowledge about

data elements which cannot be directly observed, and includes:

K.2.a) Functions that allow us to infer knowledge that has not been directly given to

us (for example, the level of inventory of product at a retailer) but which can be

estimated from other information.

K.2.b) Aggregation functions, which are a powerful tool for inferring information. Ag-

gregation functions provide natural groupings of data that allow knowledge

about one part of a group to be used to infer knowledge about another part.

In our work, we have found aggregation to be an especially powerful tool.

K.2.c) Forecasting functions, which allow us to infer information that has not yet ar-

rived.

We are particularly interested in data describing resources. There are many applications

(routing and scheduling, physical distribution, fleet management, personel management)

where the only resource is a physical resource. It is common in such settings to drop the

adjective “physical” because these are the only resources being managed. For the most part,

this paper focuses on physical resources, and this should be assumed unless it is specifically

indicated otherwise. However, we invite the reader to consider other applications.

The reader may be considering a problem where the dimension of functional knowledge

is not relevant, and the only interesting data knowledge is about resources. In this case,

the reader should resort to the “resources||processes||controls′′ notation, where resources

consists of the resource classes (what are the different types of resources being managed)

and the attributes of each resource class (we provide formal notation for this below).

Data classes can be broadly categorized as follows:

• Static classes are classes with data that will never change within the context of a

model.

• Dynamic classes have data that will change. This class can be further categorized by

how the attributes of the object change. Attributes may change as a result of:

– Exogenous processes, such as weather, equipment failures, or decisions made by

exogenous agents, or
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– Endogenous processes, reflecting decisions made within our system.

The concept of a resource is especially important in our paradigm since our focus is on how

to control this class of elements. For this reason, we need a formal definition of a resource:

Definition 2.1. A resource is an endogenously controllable information class which con-

strains the system.

We take as our premise that if something does not constrain the system, it is not a resource.

When we optimize the operations of a company, we do not model air and water because we

view them as infinite resources (the situation changes if we were to study pollution on a global

scale). But, is anything that constrains the system a resource? Here the issue becomes a

bit more subtle. Consider the flow of goods through a warehouse with a fixed capacity

that restricts how much can be controlled. The warehouse then becomes a resource which

needs to be managed effectively (if we cannot move all the goods right away, we need to

decide which goods should use this resource). But, if we do not fully use the capacity of

the warehouse in time t, this does not increase the capacity of our system at time t + 1. By

contrast, if a truck is not assigned to move a load now, it can be used later (and conversely).

For practical purposes, although we have to think about which goods move through the

warehouse at time t, we are not actually managing the warehouse itself. In this setting, the

capacity of the warehouse shows up as a parameter of our problem, and not as something to

be managed in any way. In our view, the warehouse would not constitute a resource. On the

other hand, if we are undertaking a planning process where we have to decide the capacity of

the warehouse, then the warehouse becomes an endogenously controllable information class,

and it now becomes a warehouse.

Any object that can be acted on to change its attributes is a resource (presumably this

resource generates costs and/or rewards as it is being modified, and since there is a finite

number of these objects, there is a limit to how many of them we can act on to generate

these rewards).

It is important to distinguish between resources in terms of what we can do with them:

Definition 2.2. An active resource class is a resource with attributes that can be endoge-

nously modified while remaining in the system. A passive resource layer is one that limits
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the flow of active resources. Passive resources cannot be directly acted on, but we can control

the quantity that are available.

We do not have all the formalism required to define active and passive resources, but this

definition provides a general idea. Active resources are the resources that we are managing.

Passive resources enable the active resources to do their job (and if there are not enough

of them, then they prevent active resources from doing their job). Passive resources often

appear only as constraints. If the constraint is itself a decision variable (specifically, we

control how many of these resources are there), then the object is a resource. If the quantity

is fixed, then we would argue that it is simply a physical parameter and exclude it from

our set of resource classes. For example, in the military, certain types of aircraft that move

freight require a piece of equipment called a “K-loader” to load and unload. The number

of aircraft that can be loaded and unloaded in a period of time is limited by the number of

K-loaders that are available. K-loaders constrain the system, but if we have no control over

how many K-loaders are in the system, then this is no different than a physical capacity

constraint.

The concept of active and passive resources is more precisely defined in sections 2.3 and

6 when we formally define what we mean by controls. In the case of trucking, we might

consider three layers of resources: loads, drivers and trucks. A truck and a driver may move

empty, and a load, truck and driver may represent a loaded move. Assume that a truck

by itself cannot do anything. In this case, the truck would be a passive resource, while the

driver with the truck can move empty.

It can be argued that there are six broad types of resources: physical, financial, informa-

tional, time, energy and risk. Of these, the first three classes are special, since these are the

only classes that can be active in that we can act on them and change their attributes. The

last three are purely passive; we can decide on their quantity (for example, how much time

can be allotted to a project or an acceptable level of risk) but we cannot actively manage

them. Of course, physical, financial and informational resources may also be passive. (We

note that information is typically a passive resource, but there is emerging research on the

management of information as an active resource).
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Definition 2.3. A reusable resource is one that remains in the system after it is acted on.

A perishable resource is one that vanishes from the system after it is used. Perishability

comes in degrees; a resource may undergo a loss of capacity after being used, but may still

remain in the system after a single use, but may eventually disappear from the system.

A closely related concept is persistence:

Definition 2.4. A persistent resource is a resource that remains in the system when it is

not acted on. A transient resource is one that either immediately or eventually vanishes

from the system, even when it is not acted on.

These two concepts allow us to define a resource that is persistent (it remains in the system

when we do not act on it) but is perishable (it vanishes after we act on it). Often, we will

assume that a transient resource vanishes from the system immediately if it is not acted on,

but we may talk about degrees of transience.

Important classes of persistent resources include:

Definition 2.5. A recurrent resource is a persistent resource that needs to continually cycle

back to a particular base state. A strongly recurrent resource needs to return to a base

state in a fixed period of time (drivers returning home at the end of the day; aircraft that have

to cycle back for a legally mandated maintenance check). Weakly recurrent resources have

an incentive to cycle back, but the force of this requirement is not as strong. Nonrecurrent

resources, such as trucks, trailers and containers, often move aimlessly around the system

with no particular constraint to return to a particular state.

Most applications involve a resource layer that can be viewed as a task, customer, job,

requirement or demand. A customer demand is a form of passive resource: it is endogenously

controllable, since we determine if (and possibly when) the demand should be satisfied, and

it constrains the system, since it limits how many times a revenue generating activity may be

undertaken. We acknowledge that many readers will probably have initial difficulty with the

notion that a “demand” is a type of “resource.” We do not feel that there is any difficulty

labeling a resource class as a task or demand, but notationally, it is important to understand

that tasks are just a special case of a resource.
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An important distinguishing characteristic of transient resources is the set of entry and

exit points from the system. We propose the following definitions:

Definition 2.6. Point resources have a single point of entry and exit (e.g. a customer

demand at a point in the system which may be backlogged). Path-based resources have a

single point of entry and exit which are different. Tree-based resources have a single point

of entry with multiple exit points or a single point of exit with multiple entry points. General

transient resources have multiple entry and exit points (e.g. agricultural commodities that

can be produced and consumed at multiple points in the network).

An important dimension of a DRTP is the ability to build up complex resources from

simple ones. We define:

Definition 2.7. A primitive resource is an elementary, indivisible resource with a fixed set

of attribute types and predefined behavior. A composite (or compound) resource is formed

by joining two or more resources in different classes to make a resource with a combined set

of attributes.

Definition 2.8. We bundle two resources by joining two resources in the same object class.

We couple two resources in different classes.

A composite resource is a resource with attributes drawn from multiple resource classes.

For this reason we define:

Definition 2.9. A resource layer is a set of attributes drawn from one or more resource

classes.

Resource layers would be defined based on natural couplings of resources, such as “pilot

× aircraft”. While these are largely determined by the physical realities of the problem, the

choice of resource layers will generally be up to the modeler. It is useful to define:

Definition 2.10. A primitive layer is a resource layer with attributes drawn from a single

object class; a composite layer has attributes drawn from more than one class.

The concept of layering arises frequently in complex operations. Not all problems need the

complexity of layering (many problems can be effectively modeled as one-layer problems), but
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it is important to provide the framework to handle more complex problems, where multiple

types of resources may be combined to form a new resource with a richer set of behaviors.

Compound resources arise in many settings. When the resources are people, they are

called teams. If the resources are financial assets, we call compound resources portfolios.

When the resources are components being assembled, we refer to the compound resources

as a product (to be sold).

Sometimes it is a bit tricky defining the set of resources, keeping in mind that we want to

define the simplest set of resources possible. In machine scheduling (in particular, problems

involving machines with setups), there would be two resource layers: machines and jobs. If

the machines do not have setups, then we can model this problem with one resource layer,

consisting only of jobs. The operations research literature has long used the vocabulary of

managing resources (such as people and machines) to serve customers (or tasks). In our

view, tasks and jobs are instances of customer orders which is a form of passive resource.

We make a clear distinction between customer orders, which are endogenous “resources” to

be managed, and customers, which are typically exogenous to the system.

2.2. Processes. The elements of processes are:

P.1) Information processes - Systems are affected by information processes that impact

the transformation of a resource. There are two types of information processes:

P.1.a) Exogenous information processes, which represent information updates from out-

side the system.

P.1.b) Endogenous information processes, which is the sequence of decisions being

made. Central to this dimension is the determination of when a decision should

be made (e.g. discrete time, in response to new information).

P.2) System dynamics, which are the physical laws that govern the evolution of the system

over time. There are three subelements in this component:

P.2.a) The modification of attributes - These are the equations governing how the at-

tributes of a resource change over time in response to endogenous and exogenous

controls.

P.2.b) The economics of a transformation (generation of costs and rewards).
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P.2.c) The time required to effect a transformation, called the transfer time.

P.3) Constraints on transformations - These restrict our ability to transform a process.

We provide for exactly two classes of constraints:

P.3.a) Conservation of mass (a resource can not be in two places at the same time;

you cannot create or destroy resources, although they can enter and leave the

system).

P.3.b) Rate of process transformation - Here we explicitly account for the presence

of multiple resources where there is a restriction on the number of resources

that can be modified at any given time. Specific classes of rate transformation

constraints include:

P.3.b.i) Technology constraints - The speed of a machine or the size of a truck

both represent technological parameters that restrict the rate at which a

resource may be transformed.

P.3.b.ii) Exogenous controls - The rate of process transformation may be limited

by exogenous factors such as policies set by higher levels of management.

P.3.b.iii) Market demands - We provide a special category to represent the effect

of market demands, since satisfying a customer enables a special type of

resource transformation, that is limited by the size of the market. However,

a market demand can be represented by a constraint only in very special

cases (no advance information, and no demand backlogging).

The concept of decisions as an information process is unusual, but we will see later that

exogenous information and decisions both play a similar role. Furthermore, this characteri-

zation will lead us to a nonstandard mathematical description of the problem.

Virtually all of the physics of a real problem are contained in the dimension called system

dynamics. It is common in classical mathemathical programming paradigms to mix system

dynamics with what we call constraints into a group of equations called constraints. What we

refer to as a constraint is much more limited than what is normally modeled as a constraint

in an optimization model. For example, the time required to effect a transformation is a

type of constraint, but we capture this in the transfer function. Similarly, time window
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constraints may be modeled in the cost function (e.g. a high cost for transformations that

are outside the time window) or through rules that govern allowable transformations.

2.3. Controls. There are five subdimensions of this component:

C.1) The types of controls - This defines the ways in which we can control our system.

C.2) The control structure - Since large problems are often divided into zones of control

(often called multiagent systems) we have to specify who owns what decision.

C.3) The information set - An important dimension of complex problems is specifying

what information is available when a decision is made.

C.4) The decision function - This covers how decisions are made, and with what informa-

tion.

C.5) Measurement and evaluation - Finally, we have to specify how we compare one deci-

sion to another.

We define two broad classes of controls:

Definition 2.11. Direct controls are the only means by which the attributes of a resource

may be changed. Indirect controls are parameters that can be changed endogenously and

which have an effect on the outcome of a direct control, but which do not themselves directly

change the attributes of a resource.

Direct controls are what we typically think of as decision variables: moving the truck,

making product, managing inventories. Direct controls have the effect of changing the state

of one or more resources. Since there are five major resource classes (physical, financial,

informational, time and energy) there are, in effect, five major classes of direct controls.

Decisions which act on physical resources are often viewed as primal controls, while those

that impact prices are often termed dual controls. Indirect controls represent a kind of

“everything else” category that covers parameters that impact the results of a decision (the

speed of an aircraft, the capacity of a roadway, the price of a product).

For the remainder of our presentation, we focus only on a discussion of direct controls.

Recall that direct controls are a type of information process since they are generated as the

system evolves. As a result, the definition of these controls is given under subdimension P.1.b
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of processes. The controls dimension of our representation, then, focuses on how decisions

are made. Capturing the set of direct decisions is helped by defining:

Definition 2.12. A primitive decision is an elementary action that modifies the system

and which cannot be represented as a sequence of other decisions.

Definition 2.13. A composite decision or tactic is a sequence of two or more decisions

that can be executed with the same set of information.

A tactic might be a simple sequence of actions. For example, a cab company might

have a tactic: “serve a customer” which consists of: 1) move from current location to the

pickup point of the customer (a form of modify called a “move”), 2) pick up the customer

(a coupling), 3) go to the customer’s desired destination (another “move”), and 4) drop off

the customer (uncouple). It is not uncommon to predefine certain classes of tactics. When

this is the case, a tactic is handled just like a primitive decision, but it may impact more

than one resource (or type of resource).

There are three fundamental classes of primitive controls. These are:

Couple - Putting resources in different layers together, such as putting a pilot in an

aircraft.

Uncouple - Such as taking the pilot out of the aircraft.

Modify - For example, using the pilot to fly the aircraft to another location, producing

a change in location, fuel, and pilot hours.

We claim that the three fundamental decisions (couple, uncouple, and modify) are the only

ways a DRTP can be directly controlled (endogenously), and that all decision variables are

instances of this subset. The challenge in a DRTP is to choose a set of controls over time to

achieve specific objectives, represented in the evaluation dimension.

Important special cases of modify include:

(1) Do nothing (the “null decision.”).

(2) Move (a resource from one spatial location to another).

(3) Entry (allow a resource to enter the system).
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(4) Exit (allow a resource to leave the system, a process).

The presence of a null decision is fundamental to a DRTP. In fact, we assume that there is

always a null decision, which means that we never have to worry about feasible solutions. In

most cases, the null decision literally means “to do nothing” but the precise interpretation of

“doing nothing” can depend on the context. For example, consider the problem of modeling

the flight of an aircraft through a series of decision points. At each decision point, the

pilot cannot literally “do nothing” since he must continue flying the aircraft. Here, the null

decision is to stay on course. Given the importance of the null decision, we introduce special

notation to represent them:

dφ = The decision to “hold” a resource.

Later, we provide specific conditions for the presence of the “hold” decision.

3. Notational style

Since this is a modeling paper, precise, elegant notation is critical. For this reason, we

follow a number of notational conventions that are designed to simplify the process of mod-

eling complex operations. If we have a vector a, we denote elements of the vector at all

times using subscripts. Since we have many quantities defined over time, we may view a as

the vector of all elements over all points in time, and at as the vector of elements at time

t, with individual element ait or aijt. We often need different flavors of a variable, such as

different types of costs, or different types of decisions. Rather than using different variable

names, we generally use the same variable with a superscript to denote a particular flavor.

Thus, we might use ch as a holding cost and cf as a fixed cost. If one flavor is used most of

the time, we may define this without a superscript. When there are multiple subscripts (or

superscripts), we feel that it best not to use commas to separate the subscripts unless there

is a specific need to do so. For example, we would write aijt but ai+1,jt.

We often need to update a variable iteratively. It is important to use a common variable

such as n (k is also often used) to represent the iteration counter. n is useful as an iteration

counter because variables such as i, j, k or ` often have other uses. Also, some algorithms

have inner and outer iterations; in this case, we recommend using n as the outer iteration
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counter, and m as the inner iteration counter. We always put the iteration index in the

superscript (as in xn). If we are using the superscript to represent the flavor of a variable,

we may need to use a double superscript, as in x`,n; in this case, the iteration counter (n)

must be the outer index (since “x`” is the name of the variable). It is sometimes necessary

to have different flavors of the same variable. In this case, we recommend using notation

such as x̂ and x̄.

We make extensive use of sets. Sets are denoted using the calligraphic font A, and subsets

are denoted using a subscript, as in Ac. Thus, for any set such as A, we would later make

a statement such as a ∈ A. Following our convention on superscripts, A represents a set,

while As represents a different set (the superscript forms part of the ”name” of the set);

Ac represents a subset of A (similarly As
c would be a subset of the set As). We always use

specific lowercase letters to index a set (almost always the lowercase version of the set), as

in a ∈ A, t ∈ T , c ∈ C. Thus, xt always refers to t ∈ T , while xi would always refer to i ∈ I.

The element xit, then, refers to the element i ∈ I, t ∈ T . If we need to simultaneously refer

to two different elements of a set, we would use a, a′, a′′, ā or â to refer to elements of A.

We generally would not use b as an element of A. We say that we almost always use the

lower case version of a set to index the set, because some exceptions are bound to arise. For

example, it is very common in transportation to index a location by i and j (as in xij; our

notation would require us to say xii′ or even x`,`′ for locations ` ∈ L). We feel it is acceptable

to define i and j to be locations in, say, the set I (or some other set), but would insist that

i and j always refer to a city.

Every effort has been made to make the notation as mnemonic as possible. For example,

x is always a decision variable, t always refers to time, and so on. When we need different

variables for time, we use t′, t′′ and so on. We make extensive use of sets, and stringently

avoid numerical indices such as x1, x2, . . .. We have worked to make our notation “friendly”

to software implementation, and have adopted several C programming language conventions.

The extensive use of sets is important, since we often use subscripts which are themselves

vectors. Thus, xa might be the number of elements with attribute vector a. Summing over

these elements, then, is accomplished using notation such as
∑

a∈A xa. We feel that this is

preferable to creating an index i where I = {0, 1, . . . , |A|} are the elements in the set since

the numerical indexes have no inherent meaning.
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Because of the importance of stochastic processes in our modeling paradigm, we need to

standardize our notation for random variables. It is fairly standard to represent a probability

space using notation such as (Ω,F ,P) where Ω is a set of elementary outcomes, F is a set

of events (think of it as a collection of the outcomes of a set of random variables), and P

is a probability measure defined on the space (Ω,F) (giving us, in effect, the probability of

an outcome in the set F). The notation Ω and P is fairly standard, but it is not unusual to

see E (set of events) H (set of histories) used instead of F . When information arrives over

time, it is common to define a series of subsets Ft (or Ht) which capture what is known by

a particular point in time (if Ft ⊆ Ft+1, then the process is a filtration, which is the reason

behind the popularity of the notation F).

One of the most difficult challenges is in the representation of a random variable, partly

because there is not a single standard in the research literature. Some common conventions

for representing random variables (capital letters, bold letters, letters with hats, the letters

X,Y or Z) are not generally workable in engineering applications. One easy way to express

that a function f is a random variable is to write it using functional notation: f(x, ω), which

indicates that the function depends on both x and ω. This is fine, but the reader needs to

realize that the probability community will often write a function, say St (the state of the

system at time t) without indicating what the function depends on (the functional notation

St(x, ω) is more common in engineering). It is common to simply define a function, say ft

to be, say, a Ft-measurable function (which means that ft is a function of the events in Ft),

and then the reader simply has to remember that the function is random (it is not indicated

in the notation). This is rarely an issue until it is necessary to take an expectation. Thus, if

ft is random and gt is not, then E{ft + gt} = Eft + gt. In some communities, it is perfectly

acceptable to write E{ft(x, ω) + gt(x)} = Eft(x, ω) + gt(x); the reader must be warned,

however, that this is not acceptable in the applied probability community, which views ω as

a number (not a random variable, which is always viewed as a function of ω), which means

that Eft is the expectation of the random function ft, while Eft(x, ω) = ft(x, ω), since given

ω, ft(x, ω) is no longer random.
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4. Knowledge

The knowledge dimension of our representation captures what we know about our system.

There are two dimensions of knowledge: data knowledge, and functional knowledge.

4.1. Data knowledge. To capture the state of the system, we begin by defining:

CK = The set of data knowledge classes in our system.

Ect = Set of information elements within class c ∈ CI at time t.

Each data element has an attribute vector given by:

ae = Vector of attributes of element e ∈ E .

Ac = Attribute space of elements in class c, where ae ∈ Ac for e ∈ Ec.

We capture all the information in our system using:

Kt = The knowledge base (equivalently, the state of the database) at time t.

= {ae, e ∈ Ect, c ∈ CI}

The set K0 is given to us as data. Later, we formalize how Et and Kt evolve over time.

We need to divide information classes based on how the attribute vector ae evolves. Let:

CK,s = Set of information classes with static attributes.

CK,d = Set of information classes with dynamic attributes.

We now divide the classes with dynamic attributes into two groups: those with attributes

that change purely as a result of exogenous events, and those that evolve at least in part as

a result of endogenous events. Following our earlier definition, we create a special class of

elements which fall in the category of resources:

CR = Set of information objects that comprise our resources.

⊆ CI,d.

The basic data for resources is captured using:
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Rct = Set of individual resources (in class c) at time t. This is the same as Ec

for c ∈ CR, but we need mnemonic notation that specifically refers to the

set of resource elements.

ar = Attribute vector of the rth resource, r ∈ Rt.

Ac = Space of possible attributes of resources in class c.

We can think of ar as data that would be read in from a file for a given resource r, and A is

the set of possible values of each element of a. A crew scheduling application, for example,

might have an attribute vector a = {alocation, aDOThours, askillset}. Then, Ac,location would be

the set of possible locations for an element in class c, and alocation,r would be the location of

the rth driver (at a particular point in time).

An important issue arises when representing the difference between what we know about

the system now, versus what we think will be true about the future. Thus, a vector of

attributes ar may describe the resource not as it exists “here and now” but rather as we

think it will exist at some point later (for example, a resource r is moving from i to j, and is

currently enroute between these locations; the vector ar may describe the attributes of the

resource as we think they will exist when it arrives at j). For this purpose, we define:

tr = The time at which the attributes of r (given by ar) becomes knowable.

tar = The time at which the attributes of r become actionable.

When modeling systems, we most commonly model the time that something becomes know-

able directly, while the actionable time behaves more like a parameter of the system. For

this reason, we do not put a superscript on tr. The concept of knowability vs. actionability

is often overlooked in the modeling of physical problems. It is common for resources to be

modeled based on when they are actionable without regard to when they became known.

The remainder of this section provides discussions of two special types of resources. Section

4.1.1 discusses simple classes of resources that are more commonly referred to as “commodi-

ties” in the operations research literature. Then, section 4.1.2 introduces a very complex

set of composite resources create by combining the attributes of different types of primitive

resources. Finally, section 4.1.3 reviews some important concepts in the definition of state

spaces.
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4.1.1. Multiattribute resources and commodities. We wish to formalize the relationship be-

tween a multiattribute resource and what are often referred to as multicommodity flow

problems. To do this, we begin by observing that the elements of the attribute vector a can

be divided into two broad groups of elements:

a = (as, ad), where:

as = The static elements of a that do not change over time.

ad = The dynamic elements of a that do change over time.

We then define:

As = The space of possible outcomes of as.

Ad = The space of possible outcomes of ad.

For example, we might represent the attributes of a generic driver for a trucking com-

pany by the attributes: a = (alocation, adomicile, abid status, asleeper status, adriving hours, aduty hours).

Thus, as = {adomicile, abid status, asleeper status} would represent the static elements, while

ad = {alocation,

adriving hours, aduty hours} would be the dynamic elements.

We make this observation because it is common in some communities to view different

types of resources as commodities. To complete this important relationship, let the elements

of As be indexed by k, and let:

K = {1, 2, . . . , |As|}

Then we may write:

As = {as
k}k∈K

Next, we define a set of states:

I = {1, 2, . . . , |Ad|}

Ad = {ad
i }i∈I

(The use of the non-mnemonic labeling i ∈ I for states follows the standard convention for

multicommodity flow problems; it also avoids confusion between “static” and “state.”)
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This notation allows us to provide a definition of the concept of a commodity that is

broader, and more formal, than is typically used in the literature:

Definition 4.1. A commodity k is a subset of resources Rk defined by:

Rk = {r|as
r = as

k ∈ As}

If the concept of a commodity gives us a short-hand notation for the static attributes of a

resource, then we need a short-hand notation for the dynamic attributes of a resource. For

this purpose, we might define:

Definition 4.2. The state i of a commodity k is the vector of dynamic attributes ad
r = ad

i .

Thus, if ar is the attribute vector of resource r, then we would say that resource r is a

commodity of type k in state i if ad
r = ad

i , r ∈ Rk, i ∈ I.

In some applications, the dimensionality of the vectorAd is quite small, representing a type

of product (wheat or corn), a type of vehicle (Boeing 747, Boeing 727) or a pilot (identified

by a unique ID). In these problems, the concept of a “commodity” is useful. However, the

single word “commodity” is awkward when there are different resource layers, creating, for

example, different commodities that represent not only different types of aircraft, but also

different pilots, as well as the combination of aircraft and pilots. If a reader is comfortable

with the term commodity, we would suggest introducing the concept of commodity classes so

that different classes of commodity (aircraft and pilots) can be distinguished from different

types of resources within a commodity class.

4.1.2. Composite resources. One of the most challenging dimensions of more complex DRTP ’s

is the representation of different types of resources and their interactions. The bundling,

coupling and uncoupling of resources arises because in many problems, resources can be

organized in layers which can be coupled together to acquire new behaviors. In some cases,

resources in the same layer may work together, such as arises when multiple locomotives are

joined to create a single power unit (called a consist) to pull a train.

It is important to distinguish between resource classes, CR, and resource layers. Resource

classes might be a pilot, aircraft, navigator or fuel. A resource layer is generally a resource
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coupled with one or more other classes (or layers). Resource layers arise when we want to

define resources that may be coupled with other resources. Let:

L = Set of resource layers (each comprised of a set of one or more resources

classes coupled together).

If a layer consists of resources from, say, classes 1, 2 and 3, then the attribute vector of this

layer is given by:

a1|2|3 = The attribute vector of layer 1

= a1|a2|a3

We illustrate our approach to layering using an air freight example with four resource classes:

(1) fuel, (2) aircraft, (3) pilot and (4) freight. Let the attribute vector of each class i be

given by ai ∈ Ai. There is a natural hierarchy in these layers: 1 → 2 → 3 → 4. That

is, we put fuel in the aircraft, then add a pilot, and then add freight. The combination

fuel|aircraft|pilot is an active composite resource (for example, I can fly this aircraft empty

from one city to another), or I can add in freight, and fly the aircraft loaded. We represent

these possible combinations using:

L = {1, (2|1), (3|2|1), (4|3|2|1)}

The first layer is the fuel layer, which is a primitive resource. The second is the aircraft layer,

which includes the aircraft and fuel, and so on. We label each layer by its lead resource, so

the pilot layer is comprised of pilot|aircraft|fuel. We represent the attribute vector of each

layer using:

a3|2|1 = a3|a2|1

= a3|a2|a1

∈ A3|2|1 = A3 ×A2 ×A1

The vector a3|2|1 is formed of the original attribute vector a3 with additional elements that

represent fields indicating the potential for coupling with layer 2. Note that this field may be

empty, indicating (in this example) a pilot with no aircraft. Thus, a pilot layer may consist

of just a pilot, or a pilot coupled with an aircraft (which may in turn be coupled with fuel).
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Clearly, the field that captures which aircraft a pilot is coupled with is a decision variable

and needs to be determined endogenously.

Wtih these concepts in mind, we define:

Definition 4.3. A layering is a set L of subsets of resource classes c ∈ CR, representing

all the possible composite resources that may arise in practice. A layer consists of a lead

resource class and any resource classes that may be combined with the lead resource class.

A resource class may be the lead resource class for only one layer.

Typically, each layer is given the name of the lead resource class, meaning that the number

of layers is equal to the number of resource classes.

We refer to attributes of layers using:

a(`) = Attributes of layer ` ∈ L.

A(`) = The space of attributes of layer `.

If ac is the attribute vector for resources in class c, then we would use a(`) to represent the

attribute vector for resources in layer `. In principle resource layer ` could be a primitive

resource class, but generally a resource layer will represent a concatenation of attribute

vectors. In our example above where layer 2 consists of (2|1), we would write a(2) = a2|1 =

a2|a1.

An important dimension of coupling is determining the physics of what can be coupled

with what. For example, you need one pilot (or crew) per aircraft, but you can put two

pilots on an aircraft, with one flying the aircraft and the other repositioning (flying free).

We may need three locomotives to pull a train, but put five locomotives on the train because

we need to reposition power (or put only two locomotives if that is enough to move the train

and we are short on power). These issues are captured by parameters of the resources and

physical laws represented in the system dynamics (see below).

4.1.3. A note on state spaces. It is useful to discuss the issue of state spaces, since in our

problem class, there are different ways of measuring the number of states. We can say that

a ∈ A is the state of a particular resource, Rat is the number of resources in this state at time
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t, and Rt is the state of our system (actually, only a portion of our full system state). The

mathematics of control theory and dynamic programming always refer to the state of the

system. In our problems, we need to capture the state of the system, but we also find it useful

to represent the state of a resource. For example, it is not unusual to have someone note

that a system has a large state space. We are often more interested in the size of the resource

state space A than we are in the size of the system state space. Thus, if N =
∑

a∈ARat is

the number of resources in the system at time t, then |A| is the size of the attribute space,

while the state space S is the set of all possible instances of the vector Rt. If any resource

can be in any element of A, then the size of our state space can be shown to be given by:

|S| =
(

N + |A| − 1

|A| − 1

)
If we have an instance of a single salesman spread among 50 cities, then both our resource

and our system have 50 states. If we have 100 salesman that we can distribute among 50

cities, then each resource may have 50 possible states, but our system has approximately

6.7 × 1039 states. This is not even a big problem. In Powell & Shapiro (1996), a problem

instance is given with |A| = 1, 188, 000, and N = 6000. Thus, we wish to avoid formulations

that require working explicitly with the full system state variable.

Even our resource state space can become extremely large in the presence of multiple

resource layers when we want to consider both primitive and composite resources. In practice,

modelers often avoid the complexity of composite states by handling these states in a simple

way. For example, an idle taxicab usually belongs to a fairly small set of states (perhaps the

set of discrete locations). When a cab picks up a customer, he will move through a sequence

of intermediate steps which include picking up the customer, and driving through a series of

nodes on the network before arriving at the destination. This sequence of steps is typically

handled in a simple way.

Let A be the set of all possible states, including all possible composite states made up of

coupled resources. We can typically divide this state space into:

Ap
c = Set of primary states (in class c).

As
c = Set of secondary states (in class c).
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where Ac = Ap
c

⋃
As

c. We only store the vector Rat for a ∈ Ap
c . Thus, we have a real incentive

to keep |Ap
c | as small as possible.

The choice of what is a primary versus a secondary state is up to modeling judgment. For

example, Ap
c might include an empty vehicle sitting idle at any location, a driver at rest at

his home domicile, or a machine that just completed a job. As a rule, the simulation of a

resource should proceed from one primary state to another, with secondary states serving

more as intermediate accounting points. Typically, it is not possible to model the arrival of

new information which requires a change in decision in between secondary states.

The distinction between primary and secondary states is a powerful modeling tool. For

example, a pilot may be sitting at home, or may be coupled with an aircraft, navigator and

stewarding crew half way through a trip. This is a very complex state, and if we had to

enumerate them all, the problem would normally be far too large. However, we can use

specialized algorithms to track a resource from one primary state to another within the

setting of a subproblem. In this way, secondary states can be generated and destroyed on

the fly. It is through the primary states that we communicate the impact of decisions in

one subproblem on another, so primary states that have been visited normally have to be

retained.

4.2. Functional knowledge. Functional knowledge is expressed as mathematical functions

which are used to enhance our knowledge base. In particular, there may be data elements

which are missing or which are not known with certainty. These may be data elements that

describe the system now (how many items are on the retailers shelf right now?), or the future

(how many customers will purchase my product over the next week?). We can make random

guesses, but functional knowledge allows us to make more informed guesses.

Equations for forecasting data elements come in a variety of forms, and we do not make

any effort to summarize the vast statistical forecasting literature that can be used to esti-

mate unknown data elements. There is one class of functions, however, that deserve special

mention. Given a resource with an attribute a, it is not uncommon for us to make decisions

which do not require all the elements of a. We express the important elements of the at-

tribute vector a through the use of an aggregation function. In most complex versions of a



33

DRTP , there are likely to be a family of aggregation functions. We represent these using:

Gn : A → AGn

where Gn is the nth level aggregation of the attribute space A. While it may be that

AGn ⊆ AGn+1
, this will not always be true (for example, a driver may have a location which

is a city, and we may aggregate this into whether he is at home or not, outcomes that are

not instances of cities). Since multiple resources may aggregate into the same element, we

define:

Ra,t = number of resources at time t that are expected to have attribute a.

=
∑
r∈Rt

1{G(ar)=a}

Rt = vector of elements of Ra,t

where 1{x} is the indicator variable which is 1 if x is true, and 0 otherwise. If we are using the

nth level of aggregation, we will refer to the vector RGn
. Normally, we would have preferred

to use the lowercase vector rt to indicate the vector of resources, but this creates confusion

with the elements r ∈ R.

5. Processes

The process component of a DRTP includes the elements that describe how a system

evolves over time, excluding the control of the process which is covered under the third

dimension. Our discussion of processes covers three subdimensions: information processes,

system dynamics, and the specification of constraints.

Our representation of processes requires that we first adopt a convention for labeling time.

For dynamic problems, it is often convenient to index variables using a time index that is

relative to the current time. We let tc refer to clock time and t refer to relative time. Let:

tccurrent = The absolute clock time corresponding to t = 0. tccurrent may be a piece

of data, or it may be a function which, when referenced, returns the

“current” time.

tc(t) = The clock time corresponding to relative time t.

= t + tccurrent.
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In a planning setting, the clock tccurrent is a fixed number. In a real-time control setting, the

clock tccurrent is changing (possibly continuously, or perhaps only in periodic jumps, such as

once an hour).

We find it useful to distinguish between the past, defined by events where t < 0, and the

future represented by t > 0. With this indexing, t = 0 is called “here and now.” Since we

sometimes have to refer to different points in time in the context of a single variable, we will

use the indices t, t′ and t′′ where it will generally be true that t ≤ t′ ≤ t′′. We often have to

refer to what we know at time t about what will (or might) happen at time t′, which might

be represented using xt,t′ . We use the notation xt,Tt to refer to the entire vector {xt,t′}t′∈Tt

for a given set of (generally contiguous) time periods Tt.

Variables of the form xt,t′ arise frequently in dynamic models, representing information

about time t′ that is known at time t. In most models, time t = 0, representing here and

now, whereas t′ ∈ T ph represents a point within the planning horizon in the model. When

this is the case, it is more compact to use the simpler notation xt where t ∈ T ph and all

information is assumed to be relative to “here and now.” This creates a potential notational

ambiguity, since we also will use xt to represent the family of vectors xt = {xt,t′ , t ∈ T ph
t }.

We suggest that in the formulation of a model, the reader should consistently adopt either

a single or double time indexing style to avoid this confusion.

Our discussion requires that we define:

T ph
t = The set of time periods in the planning horizon for a decision made at

time t, where all the data that may directly or indirectly impact the

decision at time t must fall within the planning horizon.

T ih
t = The set of time periods in the implementation horizon for a decision

made at time t, reflecting the set of time periods over which decisions

that have been planned will be implemented without replanning with

new information.

T sh = The set of time periods in the simulation horizon, representing the total

number of time periods over which we will be evaluating a given policy.
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The definitions of these horizons imply that T ih
t ⊆ T ph

t ⊆ T sh. The planning horizon

captures the time periods where data of any form may impact a decision at time t. The

implementation horizon captures the set of time periods where decisions planned within

those time periods may have a direct impact on a decision at time t.

Our terminology is consistent with the literature on planning horizons. We have avoided

explicit reference to forecast horizons and decision horizons, which have formal definitions

(see, for example, Bhaskaran & Sethi (1987), Bes & Sethi (1988), Aronson & Chen (1989),

Sethi & Bhaskaran (1985)). White (1996) discusses “decision rolls” which involve the imple-

mentation of a one-period decision (based on a T period horizon) and “horizon rolls” which

involve the implementation of all decisions made within the T period planning horizon.

We have replaced the concept of a “decision roll” with an “implementation horizon.” It

is customary to assume that the set of events |ΩT ih| = 1, which is to say that there is only

one set of possible outcomes within the implementation horizon. We do not require this. It

is possible to have |ΩT ih| > 1, but this means that we would have to determine a decision

x(ω) for ω ∈ ΩT ih (since we do not allow replanning within the implementation horizon, we

would have to compute a decision for each possible outcome). This, in fact, is exactly the

approach used by the stochastic programming community.

5.1. Information processes. An explicit dimension of our representation of the system is

the arrival of information to the system.

We consider two classes of information:

1) Exogenous information processes (new information arriving to the sys-

tem).

2) Endogenous information processes (internal decisions).

Although the process of making decisions is covered under the dimension “Controls,” we

need to capture the effect of a decision on our process. We found that there are parallels

between exogenous information and decisions that seem to be overlooked in the classical

modeling literature.
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5.1.1. Exogenous information processes. We can divide exogenous information processes into

two broad classes:

1) Information generated by an actual exogenous process.

2) Information generated by a forecasted exogenous process.

From the perspective of building a model, we deal only with forecasted processes. These are

generally much simpler than actual processes. For example, we may wish to model weather

delays to aircraft, but not mechanical failures or the fact that a crew may not show up for

work.

The only information that we can model is information that updates an element within our

system. Recall that CK represents our set of information classes in our system and that Ect is

the set of all information elements in class c at time t. To model the process of information

arriving to the system, let:

Êct = The set of new information elements arriving at time t for class c. If

e ∈ Êt but e6∈Et then this represents a new information element entering

the system.

κet = An individual data packet arriving at time t to update information ele-

ment e ∈ Êt.

κt = The collection of all information arriving at time t.

=
⋃

e∈Êt κet

An information packet contains two types of information. First, we can think of an infor-

mation packet for element e as consisting of a revised set of elements of the vector ae (in

general, a packet will consist of an update of only a subset of these elements). The second

piece of information is when this data will become actionable, which we define as:

tact
et = The time at which the information in κet becomes actionable, which is to

say the first time that it can be used in the system dynamics (see below)

to describe the evolution of the system. We assume that tact
et ≥ t.
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(A more general representation would provide for a tact for each element in ae; our represen-

tation will do for now.) Following our convention earlier (see section 4), we let aact = tact

store the time at which the data in a becomes actionable.

As each new piece of information arrives, we assume that there is a process for updating

the database in some way. This can be generally represented using:

K ′ ← UK(K, κe)(1)

or:

Kt+1 = UK(Kt, κt+1)(2)

The update function is easiest to understand using the version in (1). If the element e ∈ E ,

then typically the update function is taking the new elements in κe and modifying the

appropriate elements in ae. If e is a new element, then the update function has to augment

the set of elements E and then add the new element. Similarly, we assume that there is a

protocol for indicating when an information element e needs to be dropped from the set E .

In general, the sequence κt will be random, so, using standard convention, we define:

Ω = The set of possible outcomes of data packets κt, t ∈ T , for points in time

t ≥ 0.

κt, then, is a random realization with outcome κt(ω). The probability community prefers

to let ωt represent the information arriving in time t, but in this setting, ωt is simply an

element of ω, and is not itself a random variable. We let ωt = κt(ω) represent an outcome

of our random variable κt.

It is useful to introduce special notation for updates that represent the arrival of new

resources to the system. Let:

R̂tt′ = The set of (discrete) new resources that become known to the system at

time t, and which become actionable at time t′.

R̂t = The set of all resources that become known at time t.

R̂att′ = The number of new resources with attribute a that become known at

time t and which become actionable at time t′.

R̂t = The vector of resources that become known at time t.
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It is sometimes easiest to use the set notation R̂t when we are modeling discrete resources. In

other settings, it is more convenient to use the vector R̂t. If all resources become actionable

as soon as they become known, then we can drop the second time index t′.

Remark: At this point, it is useful to contrast our representation with classical stochastic

processes. Let ht = {κ0, κ1, . . . , κt−1} be the history of the (forecasted) process, giving all

the events prior to time t (but after time 0). Assume that ht ∈ Ht and let Ft = σ(Ht) be

the σ−algebra on the set Ht. As a rule, Ft ⊆ Ft+1 which means that events up to time t

are not forgotten by time t + 1 (since these events remain in the information set). In this

case, Ft is a filtration (hence the notation Ft). In real systems, this standard assumption is

often violated. The update process UK(Kt, κt+1) typically does in fact “forget” past data. It

is not unusual for corporate databases to retain detailed records of only a limited subset of

past history. For this reason, our notation Kt more accurately depicts the real information

flow.

The sample space Ω must be defined over some horizon. When necessary, we use notation

such as Ω∞ to denote an infinite horizon, or ΩT to denote a sample space over a set of

time periods T . An element ω ∈ ΩT , then, represents a particular outcome of the sequence

{κt, t ∈ T }.

The vector Kt captures the data about all the objects in the system. The subset of

information about resources is, for the most part, contained in the vector Rt. In some cases,

however, it is notationally convenient to have a global set Kt to describe all the data for the

system. The data in Kt that is not captured by Rt primarily covers parameters used in the

modify function (defined below).

We now wish to distinguish between actual and forecasted processes. The sequence of

data packets κt, t < 0 represents information that has actually happened, whereas κt, t > 0

represents information that might happen in the future. While these two sets should be

defined with respect to the same probability space, in practice this will never be true. (We

assume that “actual” events are drawn from a probability space (Ωa,Fa,Pa).) Similarly,

simulated events are defined with respect to a probability space (Ω,F ,P). Also, we will

always need to estimate the probability measure P , whereas we will generally not need (nor

will we be able) to estimate Pa.
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An important difference between actual and forecasted events is that we have no control

over what actually happens, but we can make simplifying assumptions with regard to what

we are forecasting will happen in the future. For example, while we may receive actual

updates on both resources and parameters, we generally only forecast updates to resources

(customer orders being called in, changes in driver ETA’s, and so on). Other data may also

be changing (for example, the price of fuel) but we may not want to model these changes in

the future.

The challenge of forecasting is to estimate the set of outcomes Ω and the probability

measure P . For simplicity, assume that outcomes are discrete, so that for ω ∈ Ω, the

probability p(ω) is well defined. There are four strategies that are generally used to create

a probability law for the forecasted sample space Ω:

1. We ignore future events (Ω is empty).

2. We use a point estimate of the future, which is assumed to occur with probability

one (in this case, we assume that |Ω| = 1).

3. We use past history to estimate the parameters of an assumed probability distribution

(e.g. normal, Poisson). In this case p(ω) is derived from the assumed probability

distribution, from which we can calculate expectations or randomly sample outcomes.

4. We use a set of samples drawn from past history to create a (finite) sample space of

future outcomes (typically, p(ω) = 1/|Ω|).

Myopic models use the first option, deterministic models use the second option, and most

stochastic models use the third. The stochastic programming community (and especially

the modeling of financial problems) uses the fourth option, primarily because there is not an

accurate mathematical model of the underlying physical processes.

Both deterministic models and stochastic models require the ability to estimate parameters

from which a probability distribution may be constructed. To formalize this process, define:

ρtt′ = Vector of parameters at time t to be used to forecast a realization of a

random outcome at time t′.

ρett′ = Subvector of ρtt′ used to estimate at time t the outcome of element e ∈ E

at time t′.



40

ρt = {ρtt′ , t ∈ T ph
t }

The subvector ρett′ might be the mean and variance of a travel time or a fuel price. We

may wish to represent this outcome explicitly as a normal distribution, or simply use a point

estimate (such as the 80th percentile estimate of the travel times).

We have written the estimation of our parameters as ρt,t′ , but in practice, we typically

only have estimates as of time t = 0. We could, in theory, update ρ as simulated events

occur (that is, κt for t > 0), but this is not normal modeling practice.

We represent the process of estimating the forecasting parameters using another class of

update function, which we denote U f . The update process would be written:

ρt+1 = U f (ρt, κt+1)

We close this discussion by observing that there are two views of the future that need to

be represented. We have represented Ω as the set of outcomes that we are forecasting may

happen in the future. This set may include the possibility of a number of extreme outcomes

that we do not necessarily want to consider when developing a plan. For this reason, we

define:

Ωp = The set of outcomes that we wish to plan on during the horizon T ph.

We give the set Ωp a special name because it is the set of outcomes that a company has

planned on when developing a strategy. This set may contain a single outcome, or a set of

“anticipated outcomes.” This representation allows us to capture the behavior of companies

to plan for certain contingencies, but not all of them. The set Ωp may be the same as Ω,

but not necessarily. If they are different, then we are planning around a set of anticipated

outcomes (or a single outcome), but we may still want to evaluate a solution in terms of a

larger set of outcomes.

5.1.2. Endogenous information processes. In addition to exogenous information, our system

evolves as a result of endogenous information, in the form of a sequence of decisions. A

thorough discussion of decisions and other methods of control is given in the third dimension

of our paradigm. Here, we are not so concerned with the issue of how decisions are made or
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even the exact types of decisions, but rather with the fact that there is a set of decisions,

and these are triggered by specific events exogenous to the system. Let:

D = The set of different types of decisions that can be made which act on the

resources in our system.

There are two classes of decisions:

Definition 5.1. Direct decisions act on an (active) resource class and change the attributes

of the class. indirect decisions modify a parameter of the problem (a price, the speed of

operation, the capacity of a process).

For the case of direct decisions (which act on resources), we need to count the number of

times a particular transformation is made. For this reason, we define the counting variable:

xadt = Number of times decision d was executed at time t on a resource with
attribute a.

We sometimes use the notation xadt(ω) when we want to express the dependence of the

decisions xt on a specific set of outcomes.

We call xt = {xtt′ , t
′ ∈ T ph

t } a plan, just as we call ω = {κt, t ∈ T ph} a forecast. Viewed

in this way, we can think of a plan as a forecast of future decisions.

Remark: It is useful to briefly contrast our notation with classical modeling techniques.

First, we note that it is more common to represent flow, say from node i to node j, as

xij. This would be comparable to writing our counting variable as xaa′ (letting the time

dimension be implicit in a and a′). In simple problems, the xij representation works because

we think of the decision as going from i to j. In our more complex problems, the decision

might be to move from location i to location j, but this decision carries implications on the

evolution of other dimensions of the attribute vector. Thus, we do not really decide to go

from state a to state a′, but rather we are in state a, and decide to implement an action

d ∈ D. The outcome a′ may be uncertain, so it is inappropriate to write xa,a′ unless we want

to condition on the outcome.

Aside from the source of the information, the biggest difference between an exogenous

information event κt and an endogenous decision dt is the means by which the information
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changes the knowledge base. In the case of exogenous information, the update is handled

through the update function UK . Typically, we assume that a data packet κet is directly

revising elements of an attribute vector ae. In the case of a decision, the impact on the

system is handled through the system dynamics, described later.

The concept of a “planned” set of (possibly random) outcomes is widely used in practice,

although in these cases the plans are generally deterministic. Often, along with the set Ωp

we may also define:

xp
t,Tt

= A plan, made at time t, in the form of a set of decisions over a set of

time periods Tt.

A plan xp is often a set of decisions that has been developed at an earlier time and commu-

nicated to individuals that are exogenous to our system. For this reason, deviations from

plan come with a cost. If |Ωp| > 1, we might specify a plan for each outcome, that is, xp(ω)

for ω ∈ Ωp.

5.1.3. A note on model updating. It is important to distinguish between the updating of

information due to actual exogenous processes (which by definition occur in the past) from

the updating of information due to simulated processes in the future. The issue is most

significant in the context of forward algorithms that start at time t = 0 and progress forward

in time, using a Monte Carlo sample. Such procedures are used in simulation software, and

are becoming increasingly popular in problems that use dynamic programming (see Sutton

& Barto (1998) and Bertsekas & Tsitsiklis (1996)) and Bender’s decomposition in stochastic

programming (Higle & Sen (1991), Infanger & Morton (1996), Morton (1996) and Pereira &

Pinto (1991)).

When we are working in the future, it is common to simulate a new event that wemay

reference as κt(ω) (the dependence on ω indicates that this is a random sample), and then

update the knowledge base:

Kt+1(ω) = UK(Kt(ω), κt+1(ω))

but we generally would not update the forecast parameters ρ, since these would have been

estimated using purely historical data.
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5.2. System dynamics. At the heart of our DRTP is a function, which we call the modify

function, which captures the changes induced by a control. This function can be represented

as the mapping:

Mt(a, d, Kt)→ (a′, c, τ)(3)

where:

a = The attribute vector of the (possibly composite) resource being modified.

d = An endogenous (or exogenous) control.

Kt = The knowledge base of our system at time t.

a′ = The attributes of the modified resource.

c = The (possibly vector of) costs (or contributions) resulting from the action.

τ = The transfer time, giving the time required to complete the action.

(Note the convenient mnemonic that the right hand side of (3) spells “act.”) This represents

a modification of an attribute at time t based on a decision to be implemented at time t.

The knowledge base Kt depends, of course, on the flow of exogenous information {κt, t ∈ T }.

An instance of this sequence of information is captured by an element ω ∈ Ω, meaning that

we can equivalently write (3) as:

Mt(a, d, ω)→ (a′, c, τ)(4)

This way of writing the system dynamics is popular in certain parts of the modeling literature.

It is both mathematically accurate and notationally more compact, but it does not express

as precisely the information content of a decision as the forms expressed in (3). The applied

probability community will use the representation in (4), where it is “understood” that the

modify function uses only the history of ω up to time t. It is somewhat more precise to

write Mt(a, d, ht) where ht is the history of the process (some communities use ωt to capture

the history up to time t, but this runs against our notational style), or Mt(a, d,Ht), where

Ht is the σ−algebra generated by ht (many people use Ft instead of Ht). As we observed

earlier, this carries the implicit assumption of a memoryless process which is independent of

the updating mechanism UK .
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We use both systems in our discussion; we prefer the representation in (3) when the

additional precision is needed, and we use (4) when we simply want to capture the dependence

of a transformation on exogenous information.

If a resource is a composite resource, then this fact is reflected in the elements of the vector

a which indicates the presence of coupled resources. The modify mapping must be coded to

check for the presence of coupled resources and update the attributes of these resources as

well.

We generally need to know how a decision actually impacts the system. Let:

δa′tt′(a, d, ω) = Change in the system at time t′ given a decision executed at time t.

=

{
1 if Mt(a, d, ω) = a′, t + τ = t′

0 otherwise

Note that we represent the triplet (a, d, ω) as an argument for δ, because we think of δ as a

function with argument (a, d, ω).

Using this notation, we can express the evolution of the system using:

Ra,t+1,t′(ω) = Ratt′(ω) + R̂att′ +
∑
d∈D

∑
a′∈A

δatt′(a
′, dtt′ , ω)xa′dt a ∈ A, t′ > t(5)

Equation (5) contains three elements on the right hand side: 1) what we knew about the

status of resources for time t′ at time t, 2) the exogenous changes to resources (for time t′)

that arrived during time t, and 3) the endogenous changes to resources for time t′ that were

made during period t.

We note that Rt has been defined to include only information known prior to time t.

For reasons that we cannot fully explain in this paper, we define Rt to be an incomplete

resource state vector (see Powell et al. (2000)). This simplifies the development of certain

approximation strategies based on dynamic programming.

5.3. Constraints. In section 2.2, we divided constraints between conservation of mass (or

conservation of flow) and constraints on the rate of process transformation. Conservation of

flow at each point in time t is easily written as:∑
d∈D

xadt = Rat ∀a ∈ A(6)
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We listed three types of constraints that restrict the rate of process transformation. All

three of these can be modeled in the same way. Using the counting variable xadt we can

express constraints on the rate of process transformation. We might, for example, require

that:

xadt ≤ uadt

where uadt(ω) may represent a physical constraint (the capacity of a truck or terminal) or a

market demand (the transition a→ a′ may represent satisfying a demand, where uadt(ω) is

the amount of the demand). As we point out later, we can only represent a market demand

as a constraint if unsatisfied demands are lost. Note that we allow the bound to be a function

of both endogenous and exogenous controls.

In some cases, a constraint is specified at an aggregate level. Given subsets A′, T ′ and D′,

we may write:

xA′,D′,T ′(ω) =
∑
a∈A′

∑
d∈D′

∑
t∈T ′

xadt(ω)

then we may require that:

xA′,D′,T ′(ω) ≤ uA′,D′,T ′(ω)

It is extremely valuable, perhaps even essential, in a stochastic control problem that a

feasible solution always exist. For this purpose we make the following assumption:

Assumption 1: If a ∈ Ap (a primary state), then dφ ∈ Da.

This allows us to assume that the hold option always exists from a primary state. Then, we

impose:

Assumption 2: Given any finite upper bound uA′,D′,T ′(ω) we require that dφ 6∈D′.

Thus, we cannot limit our ability to hold (in a primary state). In our work, we have never

found it necessary to use a hard constraint on our ability to hold resources in a primary

state. By requiring that the hold decision be unconstrained (although it may face cost and

time penalties) we guarantee that there will always be a feasible solution to any DRTP .
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The reader will notice that we have pointedly left out constraints such as time window

constraints. It is our belief that the phrase “time window constraint” is a phrase based on

the vocabulary of linear programming. Time windows arise as a result of a reward structure

that varies over time. In static problems, one way of capturing this nonlinear structure is

through a constraint. Our belief is that time windows are not true physical constraints (that

is, we do not violate any physical laws if a time window is violated), and therefore should

be modeled through the reward structure, and not as a constraint.

6. Controls

We now turn our attention to how decisions are made. This discussion is divided into five

components: the types of decisions, the control structure, the information set, the design of

the decision function, and measurement and evaluation.

6.1. Types of decisions. Let:

CD = Set of decision classes.

Dc = Set of specific decisions in class c ∈ CD.

D =
⋃

c∈CD Dc

For example, an airline might have the control classes:

CD = {move aircraft, purchase aircraft, accept reservation, set ticket prices,

cancel a flight}

The class “move aircraft” might include decisions:

Dmove aircraft = {Chicago, Detroit, Newark, . . .}

It is often convenient in practice to define:

Dc,a = The set of decisions in class c that can be applied to resources with

attribute a (if the control class is implicit, we simply writeDa to represent

the set of decisions that can be applied to a resource with attribute a).
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It is useful to think of the set Da as a function. As such, this is one of the most important

functions in practice that describe a physical problem. Through it, a user can imbed a

considerable amount of insight into the types of behaviors a system is allowed to have. It

is important to emphasize that this notation implicitly assumes that the set of allowable

decisions is based on the attribute of the resource being acted on, rather than the state of

the entire system. We make this assumption because it is the most practical. We depend on

the optimization algorithms being used to capture the rest of the state of the system.

6.2. Control structure. Large, complex systems invariably exhibit a multi-agent control

structure. We propose that any set of decisions D =
⋃

c∈CD Dc can be broken along three

dimensions:

1) A subset of the attribute space. This subset may be based on geography, the type of

resource being managed, and the status of the resource.

2) A subset of the control classes which are the responsibility of an agent.

3) A subset of time periods within the planning horizon.

We define the decomposition of the problem using:

Q = Set of subproblems that encompass the problem.

Aq = Subset of the attribute space for subproblem q, where
⋃

q∈QAq = A and

Aq1

⋂
Aq2 = φ when q1 6= q2.

CD
q = Set of control classes associated with subproblem q.

T ih
q = The implementation horizon for subproblem q. This is the set of time

periods during which subproblem q controls the decisions.

The information elements within our control would be given by:

Eq = {e|ae ∈ Aq}

If we let dt be a decision to be implemented at time t, then we can define the set of decisions

in subproblem q:

Dq = Subset of decisions in subproblem q.

= {dt′ ∈ Da,c, c ∈ CD
q , a ∈ Aq, t

′ ∈ T ih
q }
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Recall that we may make a decision at time t to be implemented at time t′. The element q

implies the implementation time, but not the time the decision is made. For this reason, we

let:

Dqt = Set of decisions that are planned at time t in the setDq to be implemented

(by definition of q) within the interval T ih
q .

When we divide a problem into subproblems, we need to establish a few concepts estab-

lishing the relationship between subproblems. First define:

Definition 6.1. We say that two decisions in the same subproblem are tightly coupled.

Two decisions that impact each other (perhaps indirectly) which are not in the same sub-

problem are loosely coupled.

We especially need notation that describes what subproblems are affected by decisions in

other subproblems. For this we define:

Definition 6.2. The forward reachable set is given by:

→
Mq = {q′ ∈ Q | ∃ a ∈ Aq, d ∈ Dq with M(a, d, ·) 7→ (a′, ·, ·), a′ ∈ Aq′}.

Thus, the forward reachable set is the set of subproblems q′ which can be reached directly

from q. Conversely we may define:

Definition 6.3. The backward reachable set is given by:

←
Mq = {q′ ∈ Q|q ∈

→
Mq′}

An important special case of a control structure is where Q = T , which is to say that

subproblem q is equivalent to time t. Frequently, we will address a problem from the per-

spective of a single subproblem (in the sense that we are looking from the perspective of

a single agent), but we still have to model the evolution of information over time. In this

special case,
→
Mq=

→
Mt= t + 1.

6.3. The information set. Up to now, we have used the word “information” in a rela-

tively general way. As preparation for building a decision function, we have to specify the

information that is available to us when we make a decision.



49

There are four fundamental classes of information that we may use in making a decision:

Knowledge] (Kt)- Exogenously supplied information on the state of the

system.

Forecasts of exogenous information process (Ω) - Endogenously created

forecasts of future exogenous events.

Forecasts of endogenous information processes (xp) - Plans of future de-

cisions.

Forecasts of the impact of decisions on other subproblems (V) - These are

functions which capture the impact of decisions made in one subproblem

on another.

Our view of information, then, can be viewed as one class of exogenously supplied information

(data knowledge), and three classes of forecasts. In this setting, we view “plans”, represented

by xp, as a forecast (at some level of aggregation) of a future decision.

Of our four classes of information, the only one we have not discussed previously are the

value functions which capture the impact of decisions on other components of the system.

Let:

Vq′(Rq′) = The value of resource vector Rq′ to subproblem q′.

V →
Mq

= {Vq′(Rq′)}q′∈ →
Mq

= The family of value functions impacted by decisions made in subproblem

q.

The fourth class of information, V →
Mq

, is widely used in dynamic programming (in the form

of a value function) and stochastic programming (via recourse functions or approximations

of the recourse function such as Bender’s cuts). If Ωq is a forecast of future (primal) events,

and xp is a forecast of future decisions, then V →
Mq

can be thought of as a forecast of dual

variables. In dynamic programming, a value function can be computed using classical back-

ward techniques (e.g. Puterman (1994)) or using adaptive methods based on Monte Carlo

sampling within forward dynamic programming (Bertsekas & Tsitsiklis (1996), Sutton &

Barto (1998)). In stochastic programming, it has been popular to “approximate” the future

using Bender’s cuts (Van Slyke & Wets (1969), Birge (1985), Higle & Sen (1991), Chen &
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Powell (1999)) which also has the effect of approximating (in a formal way) the impact of

a decision now on the future. Other authors have developed specialized approximations for

resource allocation problems. Powell & Carvalho (1998) and Powell & Shapiro (1996) use

linear approximations, while Cheung & Powell (1996) and Godfrey & Powell (to appear)

suggest separable nonlinear approximations.

Value functions can be expressed exogenously. For example, a decision by component q

to purchase xqq′ items from unit q′ at a price pq′ would produce a value function pq′xqq′ . In

many settings, however, the value function Vqq′ has to be estimated endogenously, and this

estimate depends on forecasts of future exogenous events. For this reason, it is sometimes

convenient to write Vqq′(Ω) to express the dependence of the value function estimate on

exogenous forecasts.

We have, then, four classes of information that may be used in a decision function. We

let I represent all the different classes of information sets, and define four subclasses:

IM = Kt

= The class of myopic policies.

IRH = {Kt, (ΩT ph
t

)}

= The class of rolling horizon policies (if |Ω| = 1, then these are classical

deterministic rolling horizon policies).

IPP = {Kt, x
p

T ph
t

)}

= The class of “proximal” policies, since these policies produce algorithms

that fall in the class of proximal point algorithms (Rockafellar (1976)).

IDP = {Kt,V →
Mq

(Ω)}

= The class of dynamic programming policies, which depend on the current

state of the system and the impact of decisions on other parts of the

system, expressed through value functions.

Virtually any reasonable decision function has to include the knowledge base, Kt. Beyond

this, it is possible to define a variety of policies that use some mixture of the other three

information classes. For example, it is not hard to find examples of real-world decision rules

that use only Kt to make decisions. In general, better decisions require better information.
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Incorporating forecasts of future events is often a first step for many companies. Capturing

both forecasts of future exogenous events, as well as plans, is a next step. Finally, including

the impact of decisions of one component on another is the last step, since it can be the

most difficult.

Having defined the information set that is available to us, we have to specify how the

information is updated so that we can model the information set It for t ∈ T ph (that

is, within our planning horizon). Already, we have defined the update function UK that

specifies how the database Kt is updated with new information. Also, we have specified the

updating of the forecasting parameters using the funciton U f (we assume no change in the

basic functional form). As a general rule, we do not model the updating of the plan xp as

part of the forecasting process (this is typically fixed at a given point in time). This leaves

only the updating of the value functions.

There are two ways of estimating V̂t: statically and dynamically. A static approximation is

created once (for a given time horizon). This might be done via classical backward dynamic

programming, or, in the context of multistage linear programming, by using a complete set

of scenarios to create Bender’s cuts (as in Van Slyke & Wets (1969) and Birge (1985)). Under

such a scheme, the functions V̂t would only be updated when new information is available

from history (that is, it is not updated iteratively using purely forecasted information). In

such a scheme, the updating of V̂ is similar to the updating of the forecast parameters ρ.

With respect to a specific history ht, t < 0, then, the value functions would be static.

The second method is where the functions are updating dynamically within the algorithm.

Such techniques arise in the context of forward dynamic programming (Bertsekas & Tsitsiklis

(1996),Sutton & Barto (1998)) and nested Bender’s decomposition (Higle & Sen (1991),Birge

(1985),Infanger & Morton (1996),Pereira & Pinto (1991)). Using these methods, we assume

that each solution of the decision function Xπ
t (Kt, ωt, V̂t+1) produces a vector v̂t(ω) that can

be used to update V̂t using:

V̂t ← UV (V̂t, v̂t)

The vector v̂t might be a vector of estimates of the value of a particular state, or it might

be a vector of duals used in the generation of Bender’s cuts.
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With the addition of the function UV , we now have our full family of information updating

functions:

U = (UK , U f , UV )

We now have the basis for updating our information set if new exogenous or endogenous

information arrives to our system. This can be expressed using the general mapping:

U : I × K 7→ I

6.4. The decision function. The next step is to define how we make decisions within a

subproblem. For this purpose, we define:

xq = Vector of decisions for subproblem q,

= {xdq|d ∈ Dq}

Xπ
q (Iq) = The function that determines the set of decisions xq, where:

The information field Iq defines the information that the decision function Xπ
q has access to

(we can think of it as the “IQ” of the decision function). The set Iq is a specific dataset, and is

therefore a random variable. For this reason, we may write Iq(ω) to express this dependence

on the sequence of outcomes. This notation elegantly communicates the relationship that

the information set is a random function of the input datastream, and the decision function

depends on the information set (and is therefore also random).

The superscript π is derived from the term “policy” in dynamic programming. When opti-

mizing our system, our challenge is often one of finding the best function Xπ
q for subproblem

q. So, we can think of π as expressing both the structure of the function (the specification)

and any parameters in the specification. Let:

Π = The set of all possible decision functions that may be specified.

The reader will probably find it useful to separate classes of policies versus instances of a

policy within a class (which would require setting all the parameters within the policy).

We can divide the class Π into four major subclasses:

ΠM = The class of myopic policies, where It = Kt.
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ΠRH = The class of rolling horizon policies, where It = (Kt, ΩT ph). Note that if

|ΩT ph | = 1, then we get a classical deterministic, rolling horizon policy

which is so widely used in dynamic settings.

ΠPP = The class of proximal point policies, where It = (Kt, x
p
t ), which include

plans of future decisions (these policies often include forecasts of exoge-

nous events).

ΠDP = The class of dynamic programming policies, where It = (Kt, ΩT ph ,V →
Mt

),

where we use a functional approximation to capture the impact of deci-

sions at one point in time (or one subproblem) on the rest of the system.

The specification of the information content of a decision appears to be new in the modeling

literature. Deterministic models assume that each decision contains all the information

available in the system; stochastic models typically assume that a decision has access to all

static parameters, and the history of any stochastic processes up to time t when a decision

is made. In complex systems such as freight transportation, it is common for one decision

maker to simply not have access to information that are available to others simply because

of the way the computer system is designed, or as a result of his own work process.

We can provide some structure to the information field Iq. In a multiagent system, we

can define three classes of information that might be included in Iq:

Iq = {Kq, (Ωq,X p
q ),V →

Mq
}

where:

Kq = The information elements that are used in subproblem q, derived directly

from the sequence κt and stored in the database using the update function

UK .

Ωq = Information events that we have forecasted for time periods Tq based on

parameters estimated from historical events.

X p
q = The “plan” for subproblem q, representing a projected set of future deci-

sions. In general, there may be a separate plan for each scenario ωq ∈ Ωq,

but in practice there will typically be a single plan that we may denote

xp
q .
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V →
Mq

= A forecast of the economic impact of decisions made in subproblem q on

subproblems in the forward reachable set for q.

It is not necessary to use all four classes of information. Myopic models use Iq = Kq. Rolling

horizon models which use a forecast of future events use Iq = {Kq, Ωq} (where, once again,

|Ωq| = 1 means we are using a deterministic approximation of the future, while |Ωq| > 1

means we have a stochastic model). Dynamic programming algorithms and some stochastic

programming algorithms use a value function of some sort.

6.5. Measurement and evaluation. Our last task is to compare one solution to another.

That is, given two decision functions Xπ1 and Xπ2 , how do we know which is better? In this

section, we discuss how to measure the performance of a function, focusing on the choice of

sample space. This presentation is undertaken from two perspectives. Section 6.5.1 considers

the classical problem of optimizing a well-defined objective function. Section 6.5.2 focuses

instead on optimizing performance in actual operations (the ultimate acid test).

A goal of this section is to bring out the different types of “optimality” that arise in stochas-

tic, dynamic problems. This issue is rarely addressed in the context of static, deterministic

problems where the objective function is well defined.

6.5.1. Calculating costs. Most optimization problems in a stochastic, dynamic setting would

like to find a function Xπ that minimizes (or maximizes, if c is a contribution) the following

function:

F (π|T∞, Ω) = E

{∑
t∈T∞

αtct(X
π(It), Kt)

}
(7)

where 0 ≤ α < 1 is a discount factor and the expectation operator E is defined with

respect to the probability space (Ω, E ,P)∞ defined over an infinite horizon T∞. We include

a discount factor which, combined with some standard assumptions on the boundedness of

the problem, ensures that (7) remains finite. Note that Kt and It are both Ft−measurable

random variables.

For most modelers, this objective function is a kind of unachievable “ultimate” since, for

hard problems, it is virtually impossible to prove infinite horizon optimality, and it is equally

impossible to even compare two functions in this setting to see which is better.
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Practical, experimental research must, as a rule, focus on calculating:

F (π|T sh, Ωsh) =
∑

ω∈Ωsh

p(ω)

{ ∑
t∈T sh

αtct(X
π(It(ω)), Kt(ω))

}
(8)

If we have a multi-agent control structure, the problem is quite similar. We basically

replace the time index t with the subproblem index q as follows:

F (π|T sh, Ωsh,Q) =
∑

ω∈Ωsh

p(ω)
∑
q∈Q

{
cq(X

π
q (Iq), Kq)

}
6.5.2. Measuring actual performance. The desire to optimize a well-defined, computable

function in a controlled setting sometimes disguises the real problem, which is to change

decisions as they are made in a real problem. Our efforts to optimize some function Fn must

recognize that in most real applications, no-one actually cares what value we obtain for Fn.

This function, ultimately, must be a surrogate for a more realistic problem.

Let xa
t , t ∈ T sh represent a set of actual decisions made over a particular time period T sh.

During this period of time, a single set of events ωa ∈ Ωa occurred. Given these events and

decisions, we suggest that there are three major classes of objective functions that may be

computed:

F (xa|T sh, ωa) = Surrogate cost function used by the optimization system. Here,
we are using actual decisions, but evaluating them using our cost
function.

G(xa|T sh, ωa) = Management goal satisfaction - this function measures the de-
gree to which actual decisions produced results that match spe-
cific management goals. These goals are specific, quantifiable
measurements that are used to evaluate system performance.

H(Xπ, xa|T sh, ωa) = The user happiness function: this function provides a measure
of how well actual decisions xa match optimized decisions Xπ.

If we have developed a good optimization algorithm, we would expect to do well in terms

of F (xa). However, if we do poorly in terms of the user happiness function H(Xπ, xa), then

we may not do well in terms of F (xa). Management, of course, wants to focus on their own

measurements (which we call G), and tends to be frustrated when modelers focus on F or

users focus on H. The reality is that we have to work on all three. Our model only sees

the function F , so this is the means by which we influence the behavior of the computer.

We need to design algorithms that optimize F (if our algorithms do not optimize F , then

changing F will have an unpredictable effect on system performance). We then need to work
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to adjust F , as well as train the users, to achieve the highest possible H, since a low value

for H, by definition, means that the users are ignoring the model.

We can, of course, do well in terms of both F (xa) and H(Xπ, xa) but poorly in terms of

G(xa). If this happens, we have a case of a disconnect between user behavior and manage-

ment goals. If we have indeed achieved a high level of user happiness (which means building

trust and confidence in our model), then we have an opportunity to change actual decisions

by slowly modifying the model.

7. The optimization formulation

In practice, we typically find ourselves wanting to solve the finite horizon problem:

max
π∈Π

E

{ ∑
t∈T sh

αtct(X
π(It), Kt)

}
(9)

Since we cannot generally calculate the expectation, we will choose a particular sample path

ω ∈ Ω and assume that if we choose a policy that works well over a sufficiently long horizon,

then we probably have a good policy. As a result, the most practical optimization problem

looks like:

max
π∈Π

{ ∑
t∈T sh

αtct(X
π(It(ω)), Kt(ω))

}
(10)

The decision function Xπ(It(ω)) must be designed to satisfy the following constraints:

Conservation of flow: ∑
d∈D

xadt = Ratt + R̂tt′ ∀a ∈ A, d ∈ D(11)

Rate of process transformation

xadt ≤ uadt(12)

Nonnegativity (and possibly integrality)

xadt ≥ 0 and possibly integer ∀a ∈ A, d ∈ D(13)

In addition to these constraints, the problem must also satisfy the following equations gov-

erning system dynamics:
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Resource dynamics:

Ra,t+1.t′(ω) = Ratt′(ω) + R̂att′ +
∑
d∈D

∑
a′∈A

δatt′(a
′, dtt′ , ω)xa′dt a ∈ A, t′ ≥ t(14)

Information updating:

Kt+1 = UK(Kt, κt+1)(15)

If forecasts are being updated based on simulated information (a process called “bootstrap-

ping” which is not generally used in conventional modeling practice), we would include:

ρt+1 = U f (ρt, κt+1)(16)

If we are using a value function, which is being updated dynamically based on sample

information, we would include:

V̂t ← UV (V̂t, v̂t(ω))(17)

The careful reader should have noted a lack of symmetry in our handling of the dynamics of

information about resources and other forms of knowledge. Our resource vector Rt is defined

to include arrivals prior to time t; arrivals in time t are added explicitly to the right hand

side of equation (11). By contrast, our knowledge base Kt is defined to include updates to

knowledge contained in κt. For some algorithms, this choice is not necessary; we could easily

have revised our definition of Rt to include R̂t, allowing us to write the right hand side of

(11) as simply Rt. But, a relatively new class of adaptive dynamic programming algorithms

described in Powell et al. (2000) requires that Rt be an incomplete resource vector. We have

chosen to write Kt as a complete knowledge state because it is notationally simpler.

8. Data representation

Using our mathematical model, we now have the elements needed to specify an instance

of a DRTP in data. Below we list three types of information that comprise a DRTP : model

related parameters and sets; raw data; and functions. We propose that this list, which we

claim is comprehensive, can serve as a basis for a richer data specification that would allow

modelers to share instances of relatively complex problems.
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Model specification:

Q = The set of informational subproblems.

Aq = The set of elements of A in each subproblem.

Cq = The set of control classes for subproblem q.

Tq = The set of time elements for subproblem q.

T ih, T ph
t , T sh

t = Implementation, planning and simulation horizons.

Problem data:

CK = The set of data classes

CR = The set of resource classes

CD = The set of decision classes

Rc,0 = The set of resources in class c at time period 0, c ∈ CR.

L = The set of resource layers (sets of resources that may be
coupled together)

ar = Attribute vector of the rth resource in the first time period,
r ∈ Rc,0, ar ∈ Ac.

K0 = Initial data set of resources and parameters.

Ωph = Forecasted exogenous information (required if forecasting is in-
volved).

ρ0,t = Initial set of forecast parameters for points in time t ∈ T ph

(generally required if forecasting is involved).

uA,T (d, ω) = Upper bounds on the rate of process transformation. We present
this here as data, but it can also be a function (if applicable).

xp
T ph(Ω

p) = A plan (or set of plans (if |Ωp| > 1), which have been com-
municated to components that are exogenous to our system.
Although rarely included in models, a “plan” can represent an
important piece of data because of the cost of changing a plan
(if applicable).
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Functions:

Da = This is is the set of decisions that can be applied to a resource
with attribute a

.

M(a, dt, Kt) = The modify function that determines how a resource is changed
as a result of endogenous and exogenous factors. Implicit to
the modify function are its component cost and transfer time
functions.

Xπ
q (Iq) = A function giving a decision (or set of decisions) xdq, d ∈ Dq to

be made at time t given an information set Iq for subproblem
q.

Gn = The attribute aggregation function for aggregation level n (if
applicable).

V̂t,t′(Rt,t′) = The (approximate) value of having Rt,t′ resources at time t′ in a
problem being solved at time t (of course, this function may be
zero) (if applicable).

UK(Kt, κt) = The updating function for the database (required for any sto-
chastic model).

U f (ρt, κt) = The updating function for forecast parameters, given new infor-
mation κt (if applicable - forecasts are generally fixed for a given
model)

UV (V̂t, v̂t) = The updating function for value function approximations (if ap-
plicable)

The modify function captures all of the physics of our problem. The decision function

captures the intelligence. For many problems, the only dynamic data (within the model) is

the set of resources, which is captured by the initial set R0 and the updates in Ωph.

9. Summary

This paper offers a new way of thinking about dynamic resource management problems,

a problem class which we have named dynamic resource transformation problems. We have

tried to offer as much generality as possible, subject to the constraint that the properties

of the problem be sufficiently well defined that the problem can be easily represented as a

well defined set of data and software. An important contribution of our representation is

that it exposes many of the prominent dimensions of dynamic problems that are often lost

or ignored in specific problems.

A software library built around this representation has been developed in Java. Elements

of the architecture of this system are described in Shapiro & Powell (1998).



60

We have intentionally left out any algorithmic details, since these are viewed as being

problem specific. This decision, of course, raises the common question in operations research,

Why model a problem that cannot be solved? A central claim of our representation is

that any problem can be decomposed into suitably small subproblems and then solved.

In Shapiro & Powell (1999) we propose an algorithmic metastrategy that describes how

DRTP ’s can be decomposed and solved using a class of approximation strategies drawn

from dynamic programming. The mathematical foundation of this metastrategy is based

on dynamic programming techniques developed especially for solving resource management

problems. Readers are referred to Powell et al. (2000) for a description of these techniques.
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