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A Stochastic Formulation of the Dynamic
Assignment Problem, with an Application
to Truckload Motor Carriers

WARREN B. POWELL

Department of Civil Engineering and Operations Research, Princeton University, Princeton, New Jersey 08544

The dynamic assignment problem arises in a number of application areas in transportation
and logistics. Taxi drivers have to be assigned to pick up passengers, police have to be assigned
to emergencies, and truck drivers have to pick up and carry loads of freight. All of these
problems are characterized by demands that arrive continuously and randomly throughout the
day, and require a dispatcher to assign a driver to handle a specific demand. We use as our
motivating application the load matching problem that arises in long-haul truckload trucking,
where we have to assign drivers to loads on a real-time basis. A hybrid model is presented that
handles the detailed assigninent of drivers to loads, as well as handling forecasts of future
loads. Numerical experiments demonstrate that our stochastic, dynamic model outperforms
standard myopic models that are widely used in practice.

Consider the problem of dynamically assigning
drivers for a truckload motor carrier to handle loads
that arise randomly over time. At any instant in
time, we have a set @ of drivers to be assigned to a
set £ of loads, where the size of £ may be greater or
smaller than 9. The situation is illustrated in Fig-
ure 1 which shows drivers (representing units of
capacity) and a series of loads to be covered. The
problem is to decide what driver to assign to each
load. Loads are characterized by a) start and ending
time window, b) origin and destination (the origin
and destination of each task may be the same), ¢)
duration (which might include travel time if the
origin and destination are different) and d) a vector
of required or desirable attributes for the driver
being assigned to handle the load. Drivers, on the
other hand, are characterized by a) time of availabil-
ity (which may be in the future, if the driver is
currently utilized on a task, or the past, if the driver
became available earlier), b) location at time of ETA,
and c) a vector of attributes which might include
hours of service, desired time off, training (which
determines which tasks he can cover), equipment
available (special type of tractor or trailer, special
tools), and home domicile.

The load matching problem for truckload motor
carriers is an instance of a resource allocation prob-
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lem where a complex resource (a driver) needs to be
assigned to tasks (loads) that arise randomly over
time. While demands are random, they do arise in a
somewhat predictable way. In particular, the distri-
bution of demands over time and space is inhomo-
geneous. Furthermore, if a demand cannot be ser-
viced within a reasonable period of time, it is lost to
the system, with the associated penalties that ac-
company poor service (loss of revenue, loss of good-
will).

The need to reposition resources in anticipation of
future demands arises in problems like taxi service
or truckload trucking (where a driver is responsible
for moving a full load from one point to another),
where the origin and destination of the task is dif-
ferent. In such problems, the flow inbound to a par-
ticular region or area is often not equal to the flow
out of a region, creating over time imbalances in the
allocation of capacity over space. In some instances,
these imbalances can be handled in real-time using
a process known as checkerboarding, which is illus-
trated in Figure 2. In this figure, region A has one
truck and no loads, while region B has one truck and
two loads. If we have assigned drivers greedily to
loads, it is likely that we would have ended up with
a solution where there would have been no drivers to
cover the second load in region B. However, by per-
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Fig. 1. Spatial illustration of a dynamic assignment problem.

forming a global assignment, we are able to effec-
tively shift drivers from region A to region B, often
by assigning drivers to loads other than the closest
load. This solution assumes, however, that all the
drivers can move the longer distances and still pick
up their loads on time. In some instances, it is nec-
essary to move excess capacity before all the de-
mands are known.
This paper accomplishes the following tasks:

1. We describe basic truckload motor carrier opera-
tions, and summarize the key dimensions of the
dynamic fleet management problems for truck-
load motor carriers.

2. We review alternative models for the dynamic
assignment problem, and discuss their strengths
and weaknesses.

3. We develop a stochastic model of the dynamic
booking process for truckload motor carriers, and
show how it can be integrated into a stochastic
network model for planning vehicle movements.

4. We develop a methodology for evaluating and
testing dynamic fleet management models in a
continuous time setting using rolling horizon
simulations. This methodology is implemented in
a system called MIDAS, which is described and
used to test both the speed of the model and the
quality of the resulting solution.

The primary methodological contributions of this
paper include:

1. A new model is developed for solving (approxi-
mately) the stochastic, dynamic assignment prob-
lem in continuous time and space. The resulting
model combines actual and forecasted demands
in an integrated way that allows the model to
react to real demands at the same time that it

Fig. 2. Illustration of checkerboarding in an assignment prob-
lem.

anticipates forecasted demands. We believe this
model is the first model proposed for the stochas-
tic, dynamic assignment problem in a continuous
time, continuous space setting.

2. The hybrid model can be solved as a pure net-
work, which allows it to be used in a real-time
setting. We show that the model is computation-
ally fast enough to handle the largest problems
that may arise in actual applications. The model
also possesses the flexibility to accommodate a
variety of real-world issues.

3. Extensive simulation experiments demonstrate
that the model outperforms myopic models which
are widely used in practice. Our experiments
show that this effect is most pronounced over
relatively long periods of time (several weeks of
dispatching).

Finally, using the fleet simulator, we are able to
make substantive contributions to our understand-
ing of the economics of fleet operations:

1. By simulating fleets of different size, we were
able to estimate the economies of density for
truckload motor carriers. The results demon-
strate that carriers with fleets of over 1,000
trucks have a significant cost advantage over car-
riers with fleets under 500 trucks. This is the first
quantitative estimate of the value of increased
density for the truckload industry reported in the
research literature.

2. By simulating the effects of different demand

booking profiles, we were able to estimate the
cost of uncertainty in demand forecasts, and the
value of having shippers provide advance notice
regarding demands. We provide experimental ev-

(=]

ol o)

[

[ T D e B i ¢ 2]

Pt Oy

L Ot Ot oY D O TNt OO

Ny N o

O =™ 00 S~ N EHEA TSN



o U

e B W)

WA A e W o T 1 N 1 TS WY

idence to support the hypothesis that the value of
this advance information is minimal.

Although the model is developed for truckload
motor carriers, we believe some of the ideas ex-
pressed here can be applied to other dynamic fleet
management problems. The model should also be of
interest to researchers in stochastic programming
since this is the framework we use to handle uncer-
tainties in forecasted demands. Also, since the
model is an approximation, we feel that other re-
searchers may be able to contribute insights which
may further improve the model.

We are not aware of any papers which directly
address the real-time dispatching problem of truck-
load motor carriers. BROWN and GRAVES (1981)
present an integer linear programming formulation
of a real-time routing and scheduling problem for
petroleum tank trucks. The model develops truck
tours for known (deterministic) customer demands
(the problem they consider, however, is much more
complex than our problem). BELL ET AL. (1983) de-
scribes a set-partitioning formulation for a similar
problem (routing and scheduling of tanker trucks in
real time). GAVISH (1981) describes an optimization-
based, hierarchical model for real-time routing and
scheduling. All of these papers present optimal al-
gorithms or near optimal heuristics (actually, even
the optimal methods produced suboptimal results
due to heuristic pruning of the solution space) for
use in a real-time environment. At the same time,
the underlying models are all essentially static and
deterministic, running on periodic snapshots of
data. and do not incorporate forecasted demands.

Considerably more attention has been given to
handling forecasted demands in the literature on
the dynamic vehicle allocation problem. Early pa-
pers treated forecasted demands as deterministic
(WHITE (1972), MAGNANTI and SIMPSON (1978)) and
focused on the development of specialized algo-
rithms (WHITE and BOMBERAULT (1969), ARONSON
and CHEN (1986)). More recently, a series of papers
have considered models which explicitly treat uncer-
tainty in demand forecasts. JORDAN and TURNQUIST
(1983) first introduced stochastic demands using a
distribution formulation, and represented stochastic
inventories of vehicles using normal distributions.
POWELL (1986) extended this model to the full dy-
namic vehicle allocation problem (which modeled
stochastic loaded movements). Later, POWELL
(1988) showed how this problem could be modeled as
a multistage dynamic network with random arc ca-
pacities. Methods for approximating the expected
recourse function for this problem have since been
developed (FRANTZESKAKIS and POWELL (1990),
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POWELL and CHEUNG (1994a,b), CHEUNG and Pow-
ELL (1995)) and shown to outperform deterministic
models. CRAINIC ET AL. (1993) proposes a stochastic
dynamic model for the allocation of empty contain-
ers, again using the distribution form introduced by
Jordan and Turnquist (repositioning empty contain-
ers without tracking loaded movements). They pro-
pose, but do not test, a stochastic linearization ap-
proach for incorporating forecasted demands.

A separate but related literature has evolved
around the dynamic traveling repairman problem.
Like the dynamic vehicle allocation problem, the
DTRP has the elements of a foundation problem for
dynamic routing. A series of papers (BERTSIMAS and
VAN RYZIN (1991, 1993) and BERTSIMAS and HOWELL
(1993) have provided a probabilistic analysis of rel-
atively simple heuristics for solving the dynamic
traveling repairman problem. Thus, the underlying
models used in these papers are essentially myopic
in nature.

A limited literature has evolved around stochastic
formulations for a stochastic version of the classical
vehicle routing problem (see DROR ET AL. (1989),
DROR and TRUDEAU (1986), LAPORTE and LOUVEAUX
(1990), LAPORTE ET AL. (1992), STEWART and
GOLDEN (1983), and TRUDEAU and DROR (1992).
However, all of these papers focus primarily on a
two-stage formulation where vehicle routes are de-
signed prior to knowing customer demands.

Section 1 provides a description of truckload mo-
tor carrier operations, including an overview of the
dynamic fleet management problem, and an intro-
duction to basic driver dispatching. The following
sections describe a series models for the dynamic
assignment problem. Section 2 presents a static net-
work assignment model for handling driver assign-
ment. Section 3 describes a deterministic, dynamic
network model, followed in Section 4 by a stochastic
formulation of the same model. Section 5 reviews
methods for approximating the expected recourse
function, and Section 6 shows how a piecewise linear
separable approximation yields a pure network for
the first stage problem. Finally, a hybrid model is
introduced in Section 7 which combines the
strengths of all three models. Section 8 describes the
experimental environment used to run the tests,
covering the generation of demands, the nature of
the datasets used, and the running of the experi-
ments. Section 9 then presents the results of exper-
iments to answer a series of questions: What is the
value of a dynamic model over a myopic one? What is
the cost of uncertainty? And what are the economies
of density in the truckload industry?
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1. DYNAMIC FLEET MANAGEMENT FOR
TRUCKLOAD MOTOR CARRIERS

TRUCKLOAD MOTOR CARRIERS represent a relatively
simple operation in transportation. Basically, a
shipper calls a carrier and requests that a driver
come by and pick up a load. The load may be in the
form of a trailer that is already loaded with freight,
or it might represent a consignment of freight that
must be loaded into a trailer. In the first case, the
carrier must send a driver with a tractor (the driver
might also bring a trailer that will be dropped off at
the shippers trailer pool); in the second, the driver
must bring an empty trailer that will then be filled
with freight.

Once the trailer is loaded, it is the job of the
carrier to move the load from origin to destination.
In most cases, this simply involves having the driver
drive the load to the destination over the road net-
work. In some instances, the driver might bring the
trailer back to a terminal and turn it over to another
driver who will handle the movement. Many loads
must be delivered quickly and therefore must be
handled by a single driver (or a team of two drivers,
which allows the trailer to move without stopping
for rest). Some loads might have several days of
slack built into the schedule, allowing or even forc-
ing the carrier to store the trailer at a yard (this
creates both problems and opportunities for the car-
rier).

After the load is delivered, the driver becomes
available to be assigned to a new demand. It is the
responsibility of the carrier to find work for the
driver, who is typically paid by the mile. If the load
terminated in a region with low demand (relative to
the supply of trailers) the carrier must decide be-
tween holding the driver in the region until a de-
mand does arise, or repositioning him empty to an-
other region which is more promising.

Elements of the fleet management problem can be
divided into supply (or capacity) management (serv-
ing the customer) and demand management (con-
trolling the demands placed on the carrier). The
supply management problem includes:

e Determining what driver to assign to handle a
demand.

¢ Repositioning excess capacity from one region to
the next.

e Determining how a load is to be handled once it
is pgcked up. A driver may simply move the load
directly from origin to destination. Alterna-
tively, the carrier may be able to hold the load
for a period of time at a location, and assign a
new driver to move the load to the final desti-
nation. In the extreme, a carrier could move the

load using several drivers over a relay network
where each driver simply moves the load a sin-
gle leg (this allows the carrier to keep drivers
close to home).

e Managing the flows and inventories of trailers
required to satisfy shipper demands.

An important dimension of the capacity manage-
ment problem is driver management. The choice of
what driver to assign to a load, repositioning empty
drivers, and the routing and scheduling of the driver
while moving a load, must take into consideration
factors such as:

e Driver work rules—Federal laws, and in some
cases local work rules, limit the number of hours
a driver can work at any one time. The most
important rules are: a) the driver cannot be on
the road for more than 10 hours during a single
work shift, b) the driver cannot be on duty (driv-
ing plus other on-duty activities) for more than
15 hours before an eight hour rest period, and c)
the driver cannot work more than 70 hours
(time on duty) in any eight-day stretch. Since a
driver can be on duty up to 15 hours in a day,
this last constraint is often binding (a driver
that has worked 65 hours in the last seven days
can only work 5 hours on the eighth day).

e Driver pay—Drivers are only paid when they
work, and therefore the carrier must be careful
to balance the workload across drivers (this is
especially important during low demand peri-
ods).

¢ Returning drivers home—Drivers in truckload
trucking may easily spend anywhere from one
to four weeks away from home, although most
carriers try to return a driver home at least
every two weeks. Assigning drivers to loads that

bring the driver home, then, is an important

criterion in the choice of load assignment.

e Driver skills—A load may require special skills,
such as experience handling hazardous materi-
als or oversize loads, or expertise with customs
for cross-border loads.

e Driver quality—Some shippers expect or re-
quire drivers with good customer-relation skills.

Demand management is an important side of the
fleet management problem. Demands may arise ei-
ther because the shipper calls the carrier (of course,
this is the most common mechanism) or through a
call to the shipper initiated by the carrier. Shippers
can further be divided into three broad groups: a)
primary shippers, where the carrier is effectively
obligated to move any load tendered by the shipper,
b) secondary shippers, where the carrier is obligated
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to move loads only in certain traffic lanes (for exam-
ple, the carrier may only take the shipper’s north-
east freight), and c) tertiary shippers, where the
carrier may accept or reject any piece of freight.

Under these conditions, the carrier must manage
two important aspects of the fleet management
problem, which include:

e Load acceptance/rejection—For secondary and
tertiary shippers, a carrier may accept or reject
certain loads based on real-time capacity avail-
ability or system balance considerations.

o Load solicitation—The carrier may wish to ag-
gressively solicit freight out of specific regions or
in specific lanes to correct short term balance
problems.

Load acceptance/rejection and load solicitation
represent two important -tools in a carrier’s arse-
nal to influence the demands on the carrier. They
require that a carrier be able to quickly evaluate
the profitability of “spot” loads (loads tendered by
secondary and tertiary shippers), anticipate areas
of surplus or deficit, and trade off the profitability
of current versus future demands (especially when
the current demand is from a tertiary shipper,
while the future demands might be from a primary
account).

2. A DETERMINISTIC ASSIGNMENT MODEL

SOME OF THE MOST important elements of the
problem of assigning drivers to loads can be cap-
tured by a simple assignment model. Consider a
snapshot of available drivers and loads as depicted
in Fig. 1. Let

¥ =set of loads,

@ =set of drivers,

cg; =cost of assigning driver d to load [,

c; =cost (penalty) from not assigning any drivers to
load [ (cost of a load rejection),

¢” =cost of holding driver d, and not assigning him
to any load,

xy= [1 if driver d is assigned to load /

0 otherwise,

y; =1if load ! is refused (no driver is assigned to
pick it up),

x% =1 if driver d is not assigned to any load.

The driver assignment problem can then be stated
simply as:

(DAP) min 2, X cixly+ > chah+ > cly,

©,0 geg leg deD e
(1)
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subject to:

D xyty=1 1€ &
deD

>xy+xhi=1 d e (2)

leg
xS, y,xh=0 1 € £,d € @

This, of course, is a simple assignment model with
dummy supply and demand nodes to handle situa-
tions with excess drivers or excess loads. For a given
set of costs, the problem of finding the optimal as-
signment of drivers is easily handled using an effi-
cient network algorithm.

Variations of this basic model are now marketed
commercially by software vendors to truckload mo-
tor carriers. While in its infancy (only a handful of
carriers have actually implemented optimization
models as of 1994), the widespread availability and
use of satellite tracking and two-way mobile commu-
nications between driver and dispatcher have in-
creased the demand for computer-assisted dispatch
systems. Of particular value in the dynamic world of
truckload trucking is the speed with which simple
assignment models can be solved. In truckload
trucking, a medium-sized carrier will have between
300 and 1000 drivers, and only two carriers have
more than 5000 drivers. These problems can be
solved from scratch on a modern workstation in a
few seconds for medium sized carriers. Further-
more, in a real-time setting, these models can be
optimized each time the data changes (a new load is
called in, a driver is dispatched, a pickup or delivery
appointment changes) in a fraction of this time. In
fact, most of the time required to fully respond to a
change in the data is consumed by reading and
writing files.

The real challenge in developing the model DAP is
estimating the cost coefficients. In an elementary
model, we could use:

¢, =cost of moving empty from a driver’s current
location d to the pickup point of the load [. This
is normally the distance times a fixed cost per
mile,

¢k =0, if we do not wish to penalize holding, or we
might use a fixed cost per hour that a driver
has been waiting (even more realistic, we could
use a nonlinear function to penalize making
drivers sit a long time),

¢; =management specified “penalty” for not assign-
ing any driver to a load (equal, perhaps, to the
cost of the longest “acceptable” empty move-
ment).
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Specific, technical limitations of this cost structure
include:

1. If there are not enough drivers to handle a par-
ticular load now, there may be drivers becoming
available in the future that can cover the load.
Thus, it is important not to set ¢ too high.

2. Depending on the location of a driver and the
number of drivers available relative to demands,
the cost of holding a driver may actually be quite
high, reflecting the fact that the driver will likely
have to wait a long time before being assigned a
load.

The real strength of the model is its flexibility which
allows it to handle a wide variety of practical con-
cerns by modifying the basic cost structure with a
set of penalties and bonuses (negative costs). For
example, it is possible to put an increasingly high
penalty for not assigning a driver to a load so that
drivers that have been waiting longer will be favored
over drivers that just became available (the cost
tradeoff must be set by management). Other issues
that can be accommodated using similar methods
include:

¢ Assigning drivers to loads that will help return
them to their home domicile.

o Favoring drivers with more seniority or better
work records. Also, placing good drivers on
longer loads (which are more profitable for the
driver).

o Favoring loads for special customers.

e Ensuring that driver teams (teams of two driv-
ers that move continuously, alternating driving)
are assigned to longer loads.

¢ Assigning drivers with tractors requiring main-
tenance to loads that bring the tractor near a
maintenance facility.

¢ Assigning drivers with special skills (e.g., expe-
rience handling customers paperwork) to loads
with special needs (loads headed to Canada or
Mexico).

Of course, the determination of these bonuses and
penalties is ad hoc, but it does provide an important
degree of management participation.

In summary, the strengths of the static driver
assignment model include:

1. It is easy to develop and explain.

2. It can be optimized in real-time using simple,
robust network optimization codes.

3. It can be easily adapted to handle a wide variety
of real-world issues.

S pace {cities, regions)

............... = Inventory ———7 Loaded (revenue)

————] P Salvage  ~=------ P Empty repositioning

Fig. 3. Deterministic, dynamic network for fleet management.

The model does, however, suffer from several lim-
itations as a result of the static formulation. Weak-
nesses include:

1. The model is unable to recommend repositioning
drivers to neighboring regions in anticipation of
forecasted loads.

2. The model is unable to recommend which loads
should be accepted or rejected based on the prof-
itability of the destination of the load.

3. The model can not be used to provide recommen-
dations of where the carrier should solicit new
freight to fill anticipated capacity in the future.

To be sure, all of these issues can be dealt with in an
ad hoc way. However, we can consider more ad-
vanced models which explicitly handle forecasted
demands and future inventories of trucks.

3. A DETERMINISTIC, DYNAMIC MODEL

WE CAN DEVELOP a dynamic model which incorpo-
rates both current and future activities. In our as-
signment model, we can model the exact location of
each individual driver and load, using, for example,
a five-digit zip code or even a street address. How-
ever, it is difficult to accurately forecast loads at this
level, and as a result it is common to aggregate space
into larger regions. In addition, we will aggregate
time into days, and develop demand forecasts from
region i to region j at time ¢. The resulting model is
depicted in Figure 3, which uses four types of arcs:

e revenue (or demand, or loaded) arcs, which rep-
resent the task of moving loaded from a region,

e empty arcs, which represent the task of moving
available capacity empty,

¢ holding (or inventory) arcs, which represent

e+ b=+ o+ N
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holding capacity in the same region from one
time period to the next,

e salvage arcs, which bring flow from each region
at the end of the planning horizon into the su-
persink.

Supplies of vehicles enter nodes over the first few .

time periods, representing inventories of vehicles
that either are available or are becoming available.
In the basic model, all of these supplies leave
through a supersink.

We start by defining:

@ =set of cities or regions (aggregations of space),
where we will use i and j to index this set,

7,; =travel time from i toj (1; = 1),

T =length of the planning horizon,

x;; =flow of loaded vehicles from i to j, departing in
period ¢ (and arriving in period ¢ + T7;;),

¥ =flow of empty vehicles from i to j, departing in

period ¢,

¥;;; =vehicles held in region i from time period ¢ to
t+ 1, :

D,;, =market demand for loads from ¢ toj in period
¢

¢;;; =cost of moving empty from i toj in period ¢,

r;,, =net revenue derived from a loaded move in

ijt
time period ¢, ,

R,, =capacity entering the network for the first

time in region { at time ¢.

This model can be stated mathematically in two
forms: a simultaneous form, and a recursive form.
The simultaneous form of the problem is given by:

T
(DVA) max Z 2 z[rijtxijt - Cm}’ijz] (3)

t=0 i€¢ jE6
subject to, forz = 0, ..., T
Z(xm + Vi) — > (Xhiytmm T Vist-m)
j€ kES
=R, Vi€ %

(4)
xijtsDijt Vi,j € €

xijt’ yijtZO Vl:.] € (8

In this model, we assume that T is chosen to be a
near forecast horizon (ARONSON and CHEN, 1985),
meaning that it is long enough to suggest that the
optimal first period provide good results when im-
plementing solutions (x,, y,) on a rolling horizon
basis.

An alternative to the simultaneous form of the
model is the recursive form. First, for notational
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simplicity, assume all travel times are one period.
That is, 7;; = 1, i, j € 4. Now let:

S, = total flow moving through region i at time ¢

=2 (Zhie-1F Yhiye-1) (5)
=0
Next, we define recursively, for¢t = 1, ..., T:
QAS) = max rx,—cy,+ Q:+1(Si1) (6)
xz,y:,Sm
subject to:

E(xijt+yljt)=sit I € 46
J

E(x.-,ﬁym)—SM:O i €9

x,ﬁSDiﬂ l,] € 4
xijt’yijtzo l:.] S (6

The recursive form of the basic model is important
because it sets the foundation for the stochastic
model presented later. POWELL ET AL. (1993) shows
that for nonlinear cost functions, the recursive forms
allow the development of much faster algorithms.
Below, the recursive form is necessary to handle
uncertainties in forecasted demands. For the basic
linear model, however, the only methods that have
been specialized for linear, dynamic networks are
the inductive algorithms presented in WHITE and
BOMBERAULT (1969) and ARONSON and CHEN (1986),
which start with a one period problem and solve
progressively longer horizons.

Specific advantages of this model over the assign-
ment model include:

1. It captures both actual and forecasted demands
over the planning horizon.

2. The model can recommend repositioning excess
capacity from one region to the next.

3. The model can recommend which loads to accept
or reject when there is too little capacity.

Disadvantages of the model include:

1. Deterministic loads which have already been
booked are not differentiated from forecasted loads.
The model can recommend moving a load that has
been forecasted but has not really materialized.

2. Truncation errors can be significant in a deter-
ministic model, forcing the use of a long planning
horizon. The result can be a surprisingly large
dynamic network.

3. Forecasted demands are generally noninteger,
producing fractional solutions. Heuristic round-
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ging of the demands (or the optimal fractional
flows) can introduce significant errors.

4. Spatial aggregation into regions simplifies demand
forecasting, but eliminates the ability to recognize
specific characteristics of drivers and loads.

4. A STOCHASTIC, DYNAMIC MODEL .

SOME OF THE WEAKNESSES of the deterministic for-
mulation of the dynamic vehicle allocation problem
can be corrected by introducing a stochastic formu-
lation that explicitly handles uncertainties in de-
mand forecasts. Randomness in forecasted demands
can be formulated using a dynamic network with
random arc capacities. This model was first pro-
posed by POWELL (1988). We review this basic
model, starting with the simpler formulation which
assumes that travel times between each pair of cit-
ies is exactly one time period. This assumption is
also used in POWELL (1988), as well as in FRANTZ-
ESKAKIS and POWELL (1990), which proposes a
method for solving the stochastic program. These
earlier papers also assume that all demands in the
first period are known, and that all demands in
future time periods are forecasted. In contrast, we
suggest a method that not only handles multiple
period travel times, but also a mixture of known and
forecasted demands in future time periods. The dis-
tinction between known and forecasted loads (in the
future) is important for several reasons. First, de-
terministic loads in the future can be handled more
accurately than stochastic loads (if we lump deter-
ministic loads to be served in the future with sto-
chastic loads, our solution quality will not be as
high). Second, we wish to investigate problems
where we vary the percentage of demands that is
known in the future. If we do not handle correctly
the optimization of loads in the future, we will un-
derestimate the value of future information.

4.1. Single Time Period Travel Times

To begin, we assume that we have a probability
space (2, &, P) with elementary outcome w = {w;,
wg, ..., wrl. An outcome w, represents a realization
of all market demands D, in time period ¢. We as-
sume that decisions (x,, y,) are made in time period
t after the realization of demands in period ¢, and
before the realization of demands in later time peri-
ods. In this case, we refer to time period ¢ as a stage.
The history of the process, %,, is given by

%t = {(xO’ yO)’ (0)1, Xy, yl)a

(wg, X9, ¥3), - .., (@1, Xi-1, ¥e-1)}

The history of the system, for our purposes, can be
summarized by a state variable S,.

Let
D, =random market demand from i toj in
period ¢.
ﬁijo =actual (known) market demand from
i toj in period 0.
X0 =flow of loaded vehicles in stage 0,
Yijo =flow of empty vehicles in stage 0,
S, =S,(%,)
=state of the system at the beginning of
stage ¢, which depends on the history
of the process up to stage ¢,
x,(S,, w,), =flows of (loaded, empty) vehicles in
y(S,, w,) stage t, which depends on both the

state of the system S, and the random
outcomes in stage ¢, w,.

It is important in our notation to express the fact that
our decision variables are conditionally dependent on
both the state of the system at the beginning of the
stage (or alternatively, the history of the process up to
that stage) as well as random outcomes in that stage.

Under the assumption that 7,; = 1, S, is defined by
equation (5). For the case with unit travel times, the
basic stochastic model for dynamic fleet manage-
ment can be written as the following multistage
stochastic program:

max{roxo — coyo + E,[Q:(S;, w))]} (7)

x0,¥0,S1
subject to:
Zlxgo+ vy =Ro Vi € (8)
J
xijts',DiJO Vi, E% (9)
X, Yo=0 Vi,j € € (10)
2(xjo+ye) —Sp=0 Vi,j € % (11)

1

Q1(8,, wy) is the conditional recourse function, de-
fined recursively using:

QS w,) = max{rx,(S, w,) - ¢y (S, w,)
+ EM+1[Q!+1(St+1y wt+1)]} (12)
subject to:

> (2l(Ss @) + y5lS, w)) =S, Vi € @

J

z (xijz(sn w,) + ym(Sn w,)) — Sj,t+1 =0 Vj €<%
' (13)

xijt(sn wt)SDijt(wt) Vi,j € €

xzjta yijtZO VZ:JE%




Let
Qt(st) = Ewg{Qt(Sta wt)}

be the expected recourse function. @(S,) is a convex
function of S,. If we could determine this function
explicitly, we could substitute it back into equation
(7) and determine the optimal first-period decisions.

4.2. Multiperiod Travel Times

The previous section benefited from the simplifica-
tion afforded by the assumption that all travel times
between cities require one period. In practice, of
course, travel times between cities might take on
integer values 7,; = 1, 2,..., 7. One way to handle
multiperiod travel times is to define an extended
state variable:

S;,(k) =flow inbound to regionj at time period k that
will not actually arrive to region j until time
period t + &

Ny(k) ={ilr; = k)

Now our state variable is augmented to include
not only the inventory of vehicles in each city, but
also the number that are inbound but % periods
away. Now the equations for single period travel
times become:

max{rox, = coyo + E,[Q:(S), w)]}  (14)

x0,y0,S1
subject to:
E(xijo +y5) =Ry Vi € €
J

xp=Dy Vi,j € 6

(15)
Xijo, Yjo= 0 Vi,j € 4
2 (x40 + yio) + Spo(k) — Sj(k — 1)
iEN,(k)
=0 Vj € ¥
The conditional recourse function is defined

similarly:
QUS,, w) = max{rx(S, w) = cy(S, w)
+ B, [Qui1(Sih1, win)) ]}
subject to:

2 xS, @) + yl(S, 0) =8S,(0) Vi € ¢

J

2 (x2S, @) + ¥3(Sy, ) + S, (k)
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-S;mk-1)=0 Vj € € (16)

xijt(Sh w,) = Dij:(wt) Vi, € €

xijt, yitZO Vl,] S <€)

This rather straightforward extension to multipe-
riod travel times is technically correct, but as we
show below, causes us problems in the development
of tractable approximations.

5. APPROXIMATING THE RECOURSE FUNCTION

STOCHASTIC PROGRAMS, and especially multistage
stochastic programs, are in practice computationally
Intractable, requiring instead the development of
approximations. In this section, we review methods
for approximating the expected recourse function,
focusing on techniques for replacing the recourse
function with a nonlinear (or piecewise linear), sep-
arable approximation. We begin with scenario ag-
gregation, which is a general purpose method widely
used in the field of stochastic programming. Against
this “brute force” approach are a number of other
methods that do more to take advantage of the spe-
cific structure of our problem.

Scenario Aggregation

Scenario aggregation involves solving the so-
called equivalent deterministic function (WETS
(1974)). Assume that from our sample space that we
choose L scenarios denoted by (w!, w2, ..., o, ...,
"), and assume that p® is the probability of sce-

nario »°®. This involves solving:

L T
max Z Ps[ Z ra (@) — CJ:(‘I)S)J (17)
s=1 t=0

subject to, fort = 1,2, ..., T:

E(xijl(d‘) + yijl(d’)) =Sy+R; Vi €% (18)

JjE®

E[xijt((b) + yijt(G))] - 2 (xk,»_,-l(d))

JEY ke
+yki,t~1(‘;))) =R, Vi € 4 (19)
(@) =Dy(@) Vi,j € 4 (20)
xijo(ws)-xijo——‘o S=1,...,L, Vl,] S (6
(21)
y,jo(ws)—yij():O 3:1,...,L, VZ,J € 4
(22)

Equations (21) and (22) are called nonanticipativity
constraints. Without them, the problem would de-
compose by scenario @, which means that we would
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have more than one answer to implement in the first
stage.

This formulation works for two-stage problems only.
It is possible to develop a multistage formulation by
defining a scenario @, for each stage . Then, we would
require nonanticipativity constraints for each stage.
Typically, the resulting linear program explodes in
size. More common in practice is to simply approxi-
mate all future stages as being a single stage. In effect,
we will allow decisions in period ¢ to “anticipate” the
outcomes in period ¢ + 1, for periods ¢ = 1. However,
even this approximate formulation can produce intrac-
tably large linear programs. For example, assume we
have a stochastic network with 1,000 nodes and 10,000
arcs, of which 1,000 have random upper bounds. If we
model this problem with, say, 50 scenarios, it becomes
a linear program with 600,000 constraints (one for
each node and capacitated arc, times the number of
scenarios, plus a nonanticipativity constraint for each
arc and each scenario), and 500,000 variables (one for
each arc and each scenario).

The advantage of the equivalent deterministic for-
mulation, which is a standard approach used within
the stochastic programming community, is that it
allows for the random generation of correlated de-
mands, and explicitly represents the full optimiza-
tion problem under each scenario. Thus, the ap-
proach allows for the simultaneous optimization of
current and future actions. The major limitation is
that this approach typically produces a very large
scale linear program, forcing us to use a relatively
small number of scenarios to capture future out-
comes. In addition, the method does little to take
advantage of the underlying structure of most prob-
lems that arise in transportation.

Stochastic Gradient Methods

Stochastic gradient methods (generally referred to
as stochastic quasigradient, or SQG, methods) re-
place the expected recourse function with sample
gradients. At each iteration, we would solve prob-
lems of the form:

max roxo = cyo + (8978,

X0,Y0, Sl
subject to equations (8)—(11). g* is an estimate of the
gradient of the recourse function calculated by:

2=(1-vg"" + yg(oh)

where vy is a smoothing constant and g(w®) is a
subgradient of Q(S, w*) defined in equation (12).
For our problem, Q(S, o*) is a pure network, so
g(w*) is typically just the dual of the flow conserva-
tion constraints (11).

Stochastic quasigradient methods were developed

by ERMOLIEV (1983) using a projection operator to
handle constrained problems. GUPAL and BAJENOV
(1972) demonstrate convergence for the constrained
stochastic linearization, which requires the smooth-
ing step for the gradient estimate (that is, it requires
v < 1)

Response Surface Methods

BEALE ET AL. (1980) suggest approximating ex-
pected recourse functions using response surface
methods. For example, we might replace @(S) with:

Q(S) = a, + (@S + a»S?

€€

Of course, we could include cross products and
higher order terms, but the basic idea is to replace
the recourse function with a statistically estimated
function. If we choose to use a separable function,
then the first stage problem can be solved as a non-
linear network. If the dimensionality of S is high
(which is typical) then a large number of samples
may be required to adequately estimate the coeffi-
cients.

Simple Recourse

The complexity of problem (10) is the demand
constraint (13) with the random right hand side.
Assume now that we replace this constraint with the
following:

Xyt xi;t(w) - xi;t(w) = Dijt(w)

where x " (w) and " (w) are recourse variables. We
assume that the fecourse variables are chosen after
a realization D(w) is made. If x;;, > D, (), then
x;w) = x;;, — D;;(w) can be interpreted as trucks
moving empty from i to j. If x,;, > D (w), then
xj(@) = D;;(w) = x, is the lost demand. The key
is that x is chosen before we know w while the
recourse variables x“(w) and x " (w) are chosen after
we know w.

Depending on the distribution of D(w), this
change converts the original stochastic program to a
nonlinear network problem (see POWELL (1988) and
POWELL and FRANTZESKAKIS (1992)), which can be
solved using standard algorithms. The limitation, of
course, is that the approximation of the expected
recourse function can be quite crude.

Successive Linear Approximation Procedure
(SLAP)

The SLAP algorithm (FRANTZESKAKIS and Pow-
ELL, 1990) is designed for multistage, dynamic net-
works with random arc capacities, where each stage
is comprised of a bipartite graph. Assume the re-
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course function for stage ¢ + 1 is replaced with a
linear approximation:

Qf’u(stu) = Z Ui,H-lSi,H-l

€4

where v, is an approximation of VQt(St). Then the
recourse problem for stage ¢ decomposes by region:

Qt(st) = Z Qit(sit)

I€¢
where
Qit(sit) = Ew, max Z(rzjxijt - cijyijt + vj,l+lSj,t+1)
X:,Su] JES
(23)
subject to:
Z(xijt+yijt)—sj,t+1=0 JjE % t=1,..., T
€4
(24)
y}
xijt<Dijt(wt) I,j € 4, t=1,...,T

The optimal solution of equation (23) can be found
by letting w,, be the value of the n,, option out of
region i. An option can be moving loaded or empty to
region j, with value r;; + Uje+1 OF —Cy + V)i,
respectively. If the options are ranked so that w;; =
W;o = ... = w;y, then the optimal solution is to
allocate as much flow to the highest ranked options
until all S;, units of flow have been assigned. Pow-
ELL (1987) (see also FRANTZESKAKIS and POWELL,
1990) shows how the expectation in (23) can be eas-
ily found, producing a piecewise linear, convex func-
tion of the form:

Qu(s) = 2 qulk) (25)
k=1

where q;,(k) is the expected value of the £ unit of
flow in region i at time ¢.

Successive Convex Approximation Procedure
(SCAM)

CHEUNG and POWELL (1995) introduce an approx-
imation for the expected recourse function that
takes the same form as equation (25) but which does
not require the linearization approximation given in
equation (5). Instead, @, ,(S,, ) is replaced with a
piecewise linear, convex (but separable) approxima-
tion. Using results from POWELL and CHEUNG
(1994a,b)), a separable, piecewise linear approxima-
tion of @,(S,) is developed that is more accurate that
than produced by the SLAP procedure. The reader is
referred to these papers for details.

THE DYNAMIC ASSIGNMENT PROBLEM / 205

Hybrid Stochastic Gradient Methods

Finally, it is possible to combine stochastic linear-
ization methods with a nonlinear approximation.
CULIOLI and COHEN (1990) suggest solving problems
which at iteration £ would look like:

min ¢™x + K(x) + (a,8* — VK(x*)Tx

where x is our vector of first-stage decision vari-
ables, a, is a stepsize (such as a, = 1/k), g* is a
sample gradient at iteration &, and K(x) is a strictly
convex function (for example, we might use K(x) =
[[I*). The function K(x) helps stabilize the process
from one iteration to the next, thereby correcting a
major deficiency of pure stochastic linearization.

Building on this idea, CHEUNG and POWELL (1994)
propose solving problems of the form:

min ¢z, + Qk(Sl) + a,(g* - ¢h’s,

x0,81

where:

g* =a stochastic subgradient of Q(S) at S* that

is, g* € 3Q(S*, w**1);

Q*(S) =a convex approximation of Q(S);

k =a subgradient of Q*(S%), that is ¢* €
aQ*(S%).

The function Q*(S¥) is updated iteratively using:
QH1(S)) = QX(S)) + ax(g* — gM7Sy;

This method assumes that we start with an initial
approximation Q°(S). This approximation could be
as simple as Q°(S) = IS|2, or it could be produced
using one of the other methods described above. It is
shown in CHEUNG and POWELL (1994) that the sam-
ple information can greatly improve the quality of
the solution in a two-stage problem. Furthermore,
since we are basically adding a linear correction
term to the original approximation, we retain prop-
erties of separability if these exist in the original
approximation Q°(S).

Q>

Remarks

Each of these methods offers specific strengths
and weaknesses, and testing each one is a project in
itself. Scenario aggregation provides a mechanism
for capturing complex correlations in the data. This
is usually done by sampling realizations from past
history. However, the resulting model is typically a
very large linear program, which becomes intracta-
bly large if we try to capture multistage effects.
Integer solutions are extremely difficult to obtain.

At the other extreme are stochastic gradient
methods which replace the recourse function with a
linear approximation. While we are not aware of
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results for solving multistage problems, these meth-
ods have rigorous proofs of convergence for two stage
applications (by contrast, scenario methods provide
an optimal solution only for the specific scenarios
represented, not the entire sample space). Stochas-
tic gradient methods are also very easy to solve, and
produce integer solutions naturally. However, they
are known to have notoriously slow rates of conver-
gence.

Response surface methods have a certain appeal,
combining the flexibility of sampling with nonlinear
approximations, but we are not aware of any testing
or refinement of these methods for this problem
class. It is an approach worth pursuing, but out of
the scope of this paper.

Simple recourse provides simple nonlinear ap-
proximations which are easy to solve, but the ap-
proximations are very poor in quality, and the re-
sulting models do not easily yield integer solutions.

The SLAP and SCAM approximations, which are
more sophisticated versions of the approximation
first introduced in POWELL (1987), both represent
attempts to replace the expected recourse function
with a separable, piecewise linear approximation.
Current evidence suggests that the SCAM approxi-
mation will outperform SLAP (which in turn, should
outperform the approximation in POWELL (1987)),
but this is purely an experimental question. The
primary limitation of all these approximations is
that they are not convergent—they are purely ap-
proximations.

The hybrid method described in CHEUNG and
POWELL (1994) offers the promise of combining a
good approximation with an adjustment term that
provides a rigorous proof of convergence. The attrac-
tiveness of this approach is that it achieves this goal
without destroying the underlying network struc-
ture of the problem. The result certainly has theo-
retical appeal, but it remains to be seen whether it
contributes substantially to the accuracy of the ap-
proximations.

6. A PURE NETWORK APPROXIMATION

IF WE CHOOSE to approximate the expected recourse
function using the equivalent deterministic frame-
work, we face the daunting task of solving a poten-
tially very large linear program. A more attractive
alternative is to use one of the separable (convex)
approximations. Starting with the version of the
problem with single period travel times, equation (7)
would become:

max{ roXe — Co¥Yo + 2 le(Sjl)
20,50, S1 JjEC

Stochastic links

Transportation
links

Fig. 4. Equivalent network formulation of stochastic program
with single-period travel times.

If the random variables in the expected recourse
function are discrete, then Q(S,) should be a piece-

"wise linear, convex function. In this case, (26) is

equivalent to the network shown in Figure 4, where
the approximate recourse function is represented by
a cluster of “recourse links” which capture the ex-
pected marginal contribution of each unit of flow
into a region in a time period. Known demands (in
the first time period) are represented as links mov-
ing between the origin and destination of the de-
mand, with a positive contribution and an upper
bound of one (or equal to the number of loads moving
between the same origin and destination).

In addition to assuming one period travel times,
this formulation also assumes that there is no
“known” information in the future. In practice, real
problems not only have multiperiod travel times, but
a portion of the demands that have to be satisfied in
the future will be known now. Of course, we can
simply lump these into the forecasted demands, but
in doing so, we lose the opportunity to work with this
additional information.

If travel times span multiple time periods, then
we would solve:

maxj roXo — CoYo t > > th(sh) (26)

x0, 0,51 t=1 jeb

(27) can be formulated as a pure network as illus-
trated in Figure 5.

This section has outlined an approach for solving
the first stage problem of managing vehicle inven-
tories by approximating the expected recourse func-
tion as a separable, piecewise linear function. The
network model shown in Figure 5 was first intro-
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t=2 ta3

>

Fig. 5. Equivalent network formulation of stochastic program with multi-period travel times.

duced in POWELL (1987), and was the basis for the
LOADMAP model first implemented at North Amer-
ican Van Lines (POWELL ET AL., 1988).

7. A HYBRID MODEL FOR THE DYNAMIC
ASSIGNMENT PROBLEM

WE HAVE NOW reviewed two broad classes of models
for the real-time dynamic problem. The first uses a
static assignment model that assigns specific drivers
to specific loads, while the second uses a dynamic
network that accounts for forecasted demands, but
requires temporal and spatial aggregation to handle
forecasting of future activities. We have also de-
scribed both deterministic and stochastic versions of
the dynamic network. Clearly, each model offers
both valuable strengths as well as significant weak-
nesses.

It is possible to produce a model that combines the
best features of both models, illustrated in Figure 6.
The network has two components. The first is the
assignment network, which includes nodes for each
individual driver and load, and arcs representing
the assignment of drivers to loads. The second part
is the forecast network, which works at an aggregate
level and includes all forecasted demands as well as
loads that have already been called in but are not to
be picked up until some time into the future. Loads
which are available to be picked up immediately or
in the near future are represented by an origin (pick-
up) node in the assignment network, and a destina-
tion node in the forecast network. The only other set
of links that move between the assignment network
and the forecast network are empty repositioning
arcs which join a driver to a specific region and time
period.

We assume for the modeling of the forecast net-
work that time is aggregated into specific time pe-
riods. In truckload trucking, a typical time period is
one day, since most loads must be picked up on a
specific day (with varying time windows within the
day). The model, however, may be solved in real-
time over the course of a day as new information on
drivers and loads becomes available. For this rea-
son, the first time period in the forecast network
(which we refer to as time period 0) specifically
covers demands which are forecasted to be called in
during the remainder of the day, while all future
time periods refer to complete days (of course, time
periods need not be of a particular size—time period
3 could cover two days if we wish). For example,
when the model is run at 10 am, the first time period
will include demands that are forecasted to be called
in for pickup later that day. These forecasts will
have to be updated periodically over the course of
the day.

Nodes in the assignment network (drivers and
loads) do not necessarily represent activities in the
first time period. Rather, we associate with each
node a time of availability. For example, driver D;
might be enroute to Chicago, and is forecasted to
become available at hour 14 (later in the same day).
Refer to this time as (0, 14). We could still represent
this driver as a node in the assignment network, but
we would have to restrict the links that can be
generated out of this node. For example, this driver
could only be assigned to loads that could be picked
up after time (0, 14), accounting for driving time
from the destination of the load to the origin of the
next load.

Now consider a load that is available at time 1,
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Assignment
network

Forecast network

t=1 t=2 t=3

A

Y
A
Y
A
Y

()

()

® Driver nodes

A Task nodes

""""""""" * Driver to task arcs

r————— = priver to forecast network
(empty repositioning)

Fig. 6. Hybrid network for solving combined assignment and fleet management problem.

15) (that is, hour 15 on day 1) in region i. We can
represent the origin of this load as a node in the
assignment network, or as a link emanating from
the node for region i on day 1 in the forecast net-
work. The value of modeling the load as a node in
the assignment network is that it allows us to cap-
ture all the characteristics of the load. By contrast, if
we model the load as originating in the forecast
network, then it is possible the load could be covered
by a driver moving, say, from region k to region i on
day 1, which could then be assigned to handle the
second load. In this way, the model can assign one
driver to handle two loads, although the unique
characteristics of the driver and load are lost in the
forecast network.

When a driver is assigned to an activity in the
forecast network, there are essentially four possible
options. The driver may be assigned to a node in the
current time period or a future one. In addition, a
driver may be assigned to a node representing the
region where he is currently located, or a different
region. The actions to be taken for each option are
summarized as follows:

Assignment to first time period:
—Assignment to “own” region:

1. The truck should sit and do nothing. Its most
profitable option is to wait for a load to be
called in later in the day.

—Assignment to a different region:

2. The truck should reposition empty to the re-
gion in anticipation of demands that may be
called in later in the day. If the truck sits
where it is, it may be too far away from the
load when it is called in, thereby resulting in
lost revenue.

Assignment to a future time period:
—Assignment to “own” region:

3. Again, the truck should sit and do nothing,
but if the model assigns him to a future time
period, then it is unlikely that the driver will
be used any time soon. This represents an
opportunity for using telemarketing to per-
form load solicitation.

—Assignment to a different region:

4. The driver should reposition empty (typically
moving overnight) to another region. Since
the driver is not expected to be needed until
some time in the future, it may not be neces-
sary for the truck to start moving empty im-
mediately.
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The model can be stated mathematically by com-
bining the assignment model (equation 1), with the
approximate recourse function (equation 26):

(DAP) min >, X caxy+ 2 chxlh+ > ey,

ded leg dey leg
T
+ 2 2 QS (27)
t=1 jee
subject to:
2 xy+y=1 (28)
dea
>oxs+xh=1 (29)
lee
x;lr Yo xZZO (30)
Sy = E[xg,:-ﬁ,- + Yit-r) (31)
= ,

Specific features of this hybrid model include:

¢ Drivers and loads can be modeled with the same
level of detail possible in a static assignment
model.

e The model can not only recommend which
driver should be assigned to a particular load,
but also whether a driver should be “held” in a
region (in anticipation of future loads) or repo-
sitioned empty to a neighboring region (again,
in anticipation of future loads).

e Known (“booked”) loads and forecasted loads are
each handled in a natural way. The model
avoids the problem of deterministic models
where known and forecasted loads are indistin-
guishable to the model.

¢ The model is a pure network, and can be opti-
mized extremely quickly.

e The model returns integer solutions.

The integration of known and forecasted demands
in a single model in this way is, we believe, new. Of
particular value is the combination of the assign-
ment network, which provides a high level of detail,
and the forecast network, which handles forecasted
activities at a lower level of detail.

Of course, the model also possesses limitations,
including:

e The model can assign a driver to a single load,
but cannot develop tours for specific drivers that
cover multiple loads. The model can assign a
driver to more than one load, but loses the iden-
tity of the driver past the first load.

o Forecasted loads require spatial and temporal
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aggregation, which can produce errors in deci-
sions to reposition equipment.

e The separable approximation of the expected
recourse function can ignore interactions be-
tween neighboring regions. In some cases, vehi-
cles arriving to a region i; might be routinely
repositioned empty to region i, which might be
quite close by. The result can be significant dis-
tortions in the recourse functions for both re-
gions.

At this point, we have a model with tremendous
potential for solving the real-time driver assignment
problem for truckload motor carriers. The question
that arises is: What is the value of including an
approximation of the expected recourse function,
and how do errors introduced by approximating the
recourse function impact the actual dispatch deci-
sions? Lacking theoretical answers, we have to ad-
dress this question experimentally.

8. EXPERIMENTAL TESTING

THE HYBRID NETWORK illustrated in Figure 6 repre-
sents an important extension of the standard assign-
ment model that is most widely used in practice. It
raises a series of experimental questions:

e Does the hybrid, stochastic, dynamic network
model outperform a myopic, assignment model
working alone?

¢ Can the resulting network model be optimized
in real time for problems of realistic size?

e Does the model accurately capture the dynamics
of real-time dispatching?

These questions address the validity of the model
and whether it can be solved in real-time. The first
question is of particular interest, since the standard
approach in practice is to use a myopic assignment
model to assign drivers to loads. The practical argu-
ment in favor of this simple model is that carriers do
not need to reposition drivers empty in anticipation
of future demands. Instead, they will simply wait
until the customers call in, and then take advantage
of the large size of the fleet to cover loads.

If the third question can be answered affirma-
tively, then not only have we developed the founda-
tion for a successful real-time dispatching system,
we also have a simulation model that can be used to
address more substantive questions. For example:

e What is the cost of uncertainty in truckload
dispatching?

e What are the economies of density that can be
derived from larger operations?
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A stochastic, dynamic model is particularly valu-
able in estimating the value of knowing more de-
mands in advance. If we tried to answer this ques-
tion with a simple myopic model, we could
overestimate the value of reducing uncertainty sim-
ply because the myopic model might perform artifi-
cially badly in an environment where very little is
known in advance (but where demands can be fore-
casted).

We investigate these questions using a simulation
package called MIDAS (Micro Dispatch and Simu-
lation). We begin with Section 8.1 by describing the
process by which demands are generated. Next, Sec-
tion 8.2 describes the specific optimization model
used in MIDAS. Then, Section 8.3 describes the sim-
ulation model itself. Finally, Section 8.4 outlines the
development of the datasets used for the simulations
and summarizes initial testing that guided the run-
ning of the experiments.

8.1. The Booking Process

For this paper, we use a relatively simple model of
the order booking process. We represent time by (d,
h) where d represents a day, and h represents a
time of day (for example, 0 = 2 =< 23). An order is
characterized by call-in time, pickup window, origin
and destination. If we let d, represent the ¢ order,
we can write:

d( = [(dy h)c’ (d} hl) h2)pa i’ j]("
where:

(d, h), =the day and hour that an order is first
called in, which is when it becomes
known to the carrier,

(d, hy, hy), =the day, and time window within the

day (represented by the interval (h,,

hy)) during which the load must be

picked up,

I, J =origin and destination locations of the
load.

Let:

Ag = aggregate rate at which demands are

called in over the week over the en-
tire system

dy=d, — d, =the number of days in advance that a
load is “booked.”

A, is assumed known. We further assume that calls
arrive to the system according to a time-varying
Poisson process. An order d, is determined by the
outcome of four independent random variables: the
call-in time (d, t),, the difference between the
pickup day and the call-in day (d, ~ d_), the origin

and the destination. From historical data, we as-
sume that the following statistics can be generated:

pld,) =fraction of demands called in on day of
weekd,,1=d, =17,
=fraction of demands called in during
hour 2, 0 = h = 23,
py(d,ld,,) =fraction of demands called in d, days in
advance (0 = d, = d7®), given that the
order was originally called in on day of
week d,,,
p,(i) =fraction of demands which originate in
city i,
=fraction of demands which terminate in
city j given that they originated in i.

We make the assumption that if d, = 0, then (h,,
hy) = (h,, t,), where t, is defined as the “end” of the
working day. In other words, if the call-in day is the
same as the pickup day, then the pickup window
spans from the time the order is called in until the
end of the day (which we might define as 6 pm). On
the other hand, if d, > 0, then (k,, hy) = (¢, t.),
where ¢, is the beginning of the working day (per-
haps 7 am).

All of these statistics are easily obtained from
historical data files. A key statistic is p,(d,|d,)
which is referred to as the booking profile. This gives
the amount of time which a demand is known in
advance of the actual pickup. This distribution im-
plies that a certain percentage of demands are al-
ready known by the beginning of the day. The pro-
cess of randomly generating demands for the system
is now fairly straightforward. Consider a particular
point in time ¢.= (d, k). Let d(¢) be the day of week
for time ¢, and let A(¢) be the hour of day for time ¢.
At time ¢, calls are coming into the system at rate
At) = Agp (d()pr(h(2)). Using methods for simu-
lating time-varying Poisson processes, we can easily
obtain the call-in time for a demand. Once the call-in
time is known, we can find the pickup day from the
distribution p,(d,ld, = d(t)). Finally, the origin of
the demand can be determined from the distribution
Po(i), and given the origin, we can sample a desti-
nation from p4(i|j).

This simple booking model captures a number of
important qualities of an actual demand process. An
important dimension of the process is the booking
profile which tells us how much of the demand is
known in advance. In addition, we capture time of
day, and day of week effects, as well as a realistic
spatial pattern. All of the parameters driving this
model are easily estimated for a real company using
commonly available historical data. At the same
time, the model ignores other effects, some of which
are easily incorporated, and others being more dif-
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ficult. Among the easier fixes are using distributions
that are dependent on the origin (time of day and
day of week distributions may vary geographically)
or even the destination of the load. The booking
profile depends on the day of the week (this is par-
ticularly important for weekends) but not the time of
day (the likelihood that a load should be picked up
the next day increases with time of day). Also, the
underlying model is Poisson, and does not account
for more complex patterns of demands.

8.2. The Optimization Model

The optimization model used within MIDAS is the
network model displayed in Figure 6, as originally
described in CAPE (1987). The expected recourse
function was calculated using the methods described
in POWELL (1987). This is not the most advanced
technology, as it ignores subsequent developments
in FRANTZESKAKIS and POWELL (1990) and CHEUNG
and POWELL (1995). The testing of different calcula-
tions of the expected recourse function is very diffi-
cult from a software development perspective, and
the testing and comparison of alternative technolo-
gies for approximating the expected recourse func-
tion is beyond the scope of this paper.

The network model was generated from scratch at
the beginning of the simulation, and at midnight for
each subsequent day. This step is time consuming,
but we took advantage of the low demand rate after
midnight to perform the reoptimization (we did not
“stop the clock” to regenerate and optimize the net-
work). Once generated, the model was then updated
and reoptimized over the course of the day, using the
previous basis as a starting point. Once a driver is
actually dispatched on a load, the model would esti-
mate the next time of availability for the driver, and
regenerate the driver node, and links to any load
nodes (taking into account the time of availability of
the driver, which might be several days in the fu-
ture). Each time a new load was “called in” the
model would generate a new load node in the assign-
ment network, and a link from this node to the
appropriate node in the forecast network. Then, we
would generate links from nearby drivers into the
load node.

The network was optimized with a primal net-
work simplex code, developed by the author. A “big
M” start was used for the initial optimization. Each
time a driver was dispatched on a load, a high cost
would be put on the corresponding assignment arc.
The model would flag this arc to be dropped, and it
would be eliminated from the data structures as
soon as the system detected that the link was no
longer in the basis (at this point, both the loaded
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movement arc, as well as all assignment arcs into
the load node, would be dropped from the network).

8.3. The MIDAS Simulator

MIDAS is a system that simulates the real-time
process of customers calling in orders (truckload
movements) and the dispatching of drivers to those
loads. The system uses as input a set of regions
(used for the forecast network), forecasted region to
region demands (by day of week), travel times and
distances, hour of day booking profile, and the dis-
tribution of days between the time an order is called
in, and the earliest time it can be picked up. The
user fixes the number of drivers the system should
use, and a preprocessor generates a file of initial
driver positions (location, and the earliest time they
will be available). Loads are also randomly gener-
ated in advance and stored in a file.

With these datasets in place, we are now ready to
run a full simulation using MIDAS. MIDAS runs a
simulation at a rate that is a specified factor times
an actual clock. We did not, for example, allow MI-
DAS the time to optimize the problem with the clock
turned off. This approach allowed us to determine
whether the optimization could actually keep up
with a problem. For example, assume that loads are
called in at a rate of 600 per week. This rate is
equivalent to an average hourly rate of 3.5 loads per
hour. However, this could easily produce peak de-
mand rates of up to 30 loads per hour. If we run the
simulation at, say, 50 times normal speed, then we
are testing the ability of the simulation to actually
handle as much as 1500 loads per hour.

The running of the simulation was relatively sim-
ple. An internal loop cycled continuously, constantly
checking the “real” time. An event list of drivers
becoming available, and the call-in time of the next
load, was maintained. Whenever the time of an
event matched the real clock time, the system would
call the optimization model to determine what ac-
tion should be taken. As each action was taken, or as
new events occurred (such as a new load being
“called in”) we would update the network model and
reoptimize.

Whenever an action was taken, statistics would be
computed and a running summary was presented to
the user. In addition, a file giving cumulative statis-
tics each hour was produced. Statistics recorded in-
cluded: total profits, total empty miles, total loaded
miles, total loads moved, and total refused loads.

We developed the model with a detailed graphical
user interface which allowed us to see each individ-
ual dispatch. This display was valuable in the early
stages of the development both for model debugging,
as well as refining the model. For example, one
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Truck code 98
~ .. Load bill 5
. NN----- Deadhead dist 149
Deadhead time 4
Move contibution 243
© Deadhead cost 67
Net move profit 176
Press the LEFT mouse button
\\ to confirm your assignment.
Press the RIGHT mouse button
+ to cancel your assignment,
/
Truck code 98
/ Truck number 61
Origin region 18
Destination region 18
P Current region 18
Load contract ID GEN 5
Fleet size 43  Total revenue 39405 B Must dispatch by 10/20/87
Loads offered 42 Total costs 23935 Travel distance 353
Empty moves 1 Loaded 22449 W Load revenue 541
Avg haul length 671 Empty 61 § Est. line haul cost 298
Ave empty length 135 Deadhead 1425 B Load contribution 243
Avg deadhead length 73 Total profits 15470 § Origin region 21
Percentempty  10.10 Ave profits/mile 0493 § Dest. region 23

Assigned Truck

Available Truck

. Assigned Load

Newly Available Load

& Régional Centroid

Fig. 7. Illustration of interactive screen for MIDAS simulator.

anomaly that was discovered through the graphical
interface was the tendency of the model to move
trucks empty back and forth between certain nearby
regions, since this empty cost was less than the

driver layover cost (the result was higher profits, but -

also higher empty miles).

The graphical interface is depicted in Figure 7. In
the lower left hand corner is a map of the United
States with a small rectangle. By adjusting the size
and location of the rectangle, the user could control
the contents of the main panel. In the main panel,
the system would show loads waiting to be picked
up, drivers waiting and unassigned, drivers moving
loaded, drivers moving empty to pick up a load, and
drivers moving empty as a repositioning move to a
neighboring region. At the bottom of the screen is a

system summary report with a variety of statistics
that are updated as the simulation progresses. Fi-
nally, along the right hand column, three panels are
provided which allow the user either to override the
recommendation of the optimization model, or to
perform all the optimizations manually. This fea-
ture allowed us to run simulations comparing the
performance of the optimization model to that of
manual dispatchers (students).

8.4. Experimental Design

The data for our runs was derived from a major
truckload motor carrier. The carrier had a fleet of
approximately 1,100 drivers serving 2,600 loads per
week between 60 regions. Using an historical data-
set that covered approximately one month of actual
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Fig. 8. Hour-of-day call-in distribution.

loads, we were able to construct the distribution of
loads by origin; the conditional distribution of loads
by destination; the distribution of loads called in by
hour and by day of week; and the booking profile.
The hour of day distribution is given in Figure 8.

The booking profile, which gives the distribution
of loads called in 0, 1, 2, . . ., days in advance, was
replaced with a simpler distribution for the purposes
of parametric testing. The data showed that approx-
imately 60 percent of the loads were called in for
same day pickup, and roughly 40 percent were for
pickup on the next working day. Therefore, we used
as a booking profile the data given in Table I. In
subsequent experiments, we replaced the percent of
loads called in for pickup tomorrow, assumed in this
table to be 0.4, with a parameter p, which was
allowed to vary from zero to one. If the call-in day
was Friday, Saturday or Sunday, we assumed that
the fraction called in for same-day pickup was 1 —
Dy, While the rest of the distribution was assumed to
be proportional to the values in Table I.

Finally, Table II gives the distribution of demands
called in by day of week. For this dataset, Mondays
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TABLE II
Day of Week Call-in Distribution
Day Percent
Monday 21.2
Tuesday 18.7
Wednesday 18.5
Thursday 16.8
Friday 20.7
Saturday 3.2
Sunday 1.0

and Fridays were the heaviest days for loads called
in. Of course, a proportion of the Friday loads were
called in for Monday pickup, making Monday and
Tuesday the heaviest days for picking up loads.

Using this data, we randomly generated a set of
drivers and loads. We decided to scale the system to
a 200 driver fleet. We chose a system demand rate
equal to 600 loads per week. The ratio of three loads
per driver per week is higher than is achieved in
practice, where numbers in the range of 2 to 2.5 are
more typical (the ratio depends on the average
length of a load). Our choice of a higher load to
driver ratio was intended to capture refused loads,
which are never present in historical datasets which
only show the loads that were actually carried.

A number of runs were conducted to determine
model warm-up and to evaluate the statistical sta-
bility of key output estimates (such as operating
contribution per mile). We initially expected that,
given our care in generating realistic initial condi-
tions, that we would not need to account for a
warm-up period, and, given the number of events
being simulated, that a one or two week simulation
would suffice. However, one key aspect of the model
we are testing is its ability to reposition empty
equipment from regions with excess inbound de-
mand to regions with excess outbound demand. Fig-
ure 9 shows the number of drivers available in each
region at the end of each week, over a four week run.
From this data, we concluded that the distribution of
inventories had not stabilized even at the end of a

TABLE I
Day of Week Booking Profile
. Pickup Day
Call-in
Day Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Monday 0.6 0.4 0.0 0.0 0.0 0.0 0.0
Tuesday 0.0 0.6 0.4 0.0 0.0 0.0 0.0
Wednesday 0.0 0.0 0.6 0.4 0.0 0.0 0.0
Thursday 0.0 0.0 0.0 0.6 0.4 0.0 0.0
Friday 0.3 0.0 0.0 0.0 0.6 0.1 0.0
Saturday 0.3 0.0 0.0 0.0 0.0 0.6 0.1
Sunday 0.4 0.0 0.0 0.0 0.0 0.0 0.6
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Fig. 9. Distribution of capacity by region at the end of each
week in the simulation.

full week of simulated dispatching, despite the care
given to generating reasonable initial distributions.
However, weeks 2, 3 and 4 do seem fairly similar.
For all subsequent analyses, we discarded statistics
derived from the first week, and averaged the last
three weeks.

We next conducted a series of runs to develop a
sense of the statistical stability of a simulation run.
Table III summarizes the results of four separate
datasets, each using a different set of drivers and
loads. For each run, we show the loads per driver per
week, the contribution (in dollars) per driver per
week, the percent of miles run empty, and the per-
cent of loads that were “refused.” This dataset is too
small to provide accurate estimates of the distribu-
tion or even the standard deviation of these statis-

TABLE III
Results of Repeated Runs Showing Statistical Variability

Data Loads/Driver/  Contribution/ Percent Empty  Percent Loads

Set Week Truck/Week Miles Refused
P1 2.05 $176.3 8.57 31
P2 1.95 $178.3 8.63 35
P3 1.86 $163.8 8.89 38
P4 1.92 $157.4 8.68 36

tics, but it does provide an indication of the degree of
variability in each statistic.

These runs were all conducted using an internal
simulation clock that ran 120 times real time. To
further speed the simulations, we used a speedup
factor of 400 between 7 pm and 7 am, when there
was relatively little activity. At this speed, our 200
driver fleet with 600 loads per week had the effective
size, in terms of algorithmic demands, of a fleet with
24,000 drivers and 72,000 loads per week. By con-
trast, the largest truckload fleets have approxi-
mately 8,000 drivers handling approximately 20,000
loads per week. However, we were not able to run a
1,000 driver fleet at this speed. (The runs were made
on a Silicon Graphics IRIS workstation.) To keep
execution times reasonable, we implemented a
strategy where dispatching is performed once every
15 simulated minutes. Thus, new customer requests
are batched up and dispatched once every 15 min-
utes (at a speedup of 120, this is equivalent to run-
ning the optimization model once every 7.5 seconds
in real time). Comparisons with a pure continuous
time application of the optimization model (where
we optimize each time a customer calls in) showed
that the results were virtually the same. From these
results, we can already conclude that the model can
handle problems well in excess of those encountered
in practice.

9. EXPERIMENTAL RESULTS

THREE EXPERIMENTAL QUESTIONS were addressed.
The first, and most important methodologically, is
the value of a dynamic model over a more traditional
myopic model. Section 9.1 shows that the dynamic
model does in fact outperform a myopic model, and
provides an estimate of the benefit. Then, Section
9.2 estimates the value of future information by
simulating problems where loads are known farther
in advance. Finally, Section 9.3 addresses the sub-
stantive question of the economies of density, and
provides an estimate of the relative productivity of
small versus large fleets.

9.1. The Value of a Dynamic Model

We begin our investigations by addressing the ques-
tion of the value of the stochastic, dynamic model.
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Fig. 10. Effect of discount factor on expected recourse function over the length of the simulation.

Other researchers have considered the value of a
stochastic, dynamic model over a deterministic, dy-
namic model (FRANTZESKAKIS and POWELL (1990),
CHEUNG and POWELL (1995)). This prior research
was restricted to discrete time (using a unit of one
day) and discrete space (where capacity in one re-
gion was not allowed to handle demands in another
region in the same day). Here, we test the value of a
stochastic, dynamic model in the context of a contin-
uous time, continuous space problem. As described
earlier, a discrete time, discrete space approxima-
tion was used for the forecast network. However, the
assignment model observed no such boundaries.
Furthermore, MIDAS simulates real-time dispatch-
ing, thereby testing the model in both a continuous
time, continuous space setting.

We tested the value of the stochastic, dynamic
model by introducing a “discount factor” « in front of
the expected recourse function Q(S). If « = 0, then
the model is equivalent to a myopic assignment
model, introduced in Section 2. If @ = 1, then we
have the full hybrid model presented in Section 7.
We also tested intermediate values of a.

The results of these experiments are shown in

Figure 10. For each value of « from 0 to 1, we show
the total system profits for each of weeks 2, 3 and 4,
as well as the average over all three weeks. From
this single diagram, we can make the following ob-
servations:

* A stochastic, dynamic model (with a > 0) signif-
icantly outperforms a myopic assignment model
when measured in terms of the contribution per
truck.

* At the same time, overall performance is opti-
mum with a = 0.3, which outperforms the fully
dynamic model (a = 1).

e The performance of the system with a« = 0 is
fairly good in week 2 of the simulation, but
degrades substantially in weeks 3 and 4. Thus,
the value of a dynamic model is noticeable only
over a fairly long simulation period. If we ex-
cluded week 2, and treated weeks 3 and 4 as
more representative of steady state, the value of
the dynamic model would be even more pro-
nounced. By contrast, week 2 is not that differ-
ent from weeks 3 and 4 for values of a greater
than 0.2.
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TABLE IV
Effect of Advance Booking of Demands to Reduce Uncertainty
Proportion of

Demands Loads/ Percentage of

Known in Truck/ Contribution/ Percentage of Loads

Advance Week Truck/Week Miles Empty Refused
0.0 1.97 $166.2 9.06 34
0.2 2.01 $172.9 8.94 33
0.4 1.97 $171.9 8.51 34
0.6 2.06 $175.6 9.08 31
0.8 1.94 $184.2 8.07 35
1.0 1.90 $189.7 7.63 36

9.2. The Value of Future Information

We next considered the value of future information.
This question was studied by varying the prebook
parameter in Table I. In this base table, the prebook
parameter was set to p,, = 0.4. We varied this from
0.0 to 1.0, ranging from no advance information to
the situation where all demands are known a day in
advance. As we varied p,, we handled the weekends
by spreading the distribution of loads picked up on
each day in the future by using the same proportions
in Table I. For example, loads called in on Friday
show 10 percent to be picked up on Saturday, and 30
percent to be picked up the following Monday. If we
use p, = 0.2 instead of 0.4, we would simply scale
these percentages down by 50 percent.

The results of varying p; from 0 to 1.0 are shown
in Table IV. For each run, we used the exact same
set of drivers and loads, but simply generated new
pickup dates for each load. This approach minimized
the statistical variability between the runs. The re-
sults show a steady improvement in profits as the
proportion of advance information increases. Inter-
estingly, there was not a significant change in the
percent of loads refused (which actually seemed to
increase slightly) but there was a marked decline in
empty miles, and approximately a 15 percent im-
provement in overall profitability between the two
extremes.

One application of this result is calculating the
benefits of a price discount to encourage advance
booking. The question is, are the savings of advance
information large enough to warrant a price dis-
count, which in itself would have to be large enough
to encourage a change in behavior on the part of the
shipper. From the results in Table IV, it seems un-
likely that the economics are strong enough to war-
rant the use of significant price discounts to encour-
age shippers to call in their demands early. From a
base of 40 percent advance booking, increasing the
advance booking to 80 percent would improve aver-
age profitability of each driver by approximately 8
percent. This improvement would be offset by a de-

TABLE V
Economies of Density for Truckload Motor Carriers
Loads/ Percentage of

Fleet Size and Truck/ Contribution/  Percentage of Loads

Demand Rate Week Truck/Week Miles Empty Refused
100T, 300L 1.41 $123.9 8.69 53
200T, 600L 1.97 $171.9 8.51 34
300T, 900L 2.13 $193.6 8.36 28
400T, 1200L 2.26 $213.4 7.75 25
1000T, 3000L 2.55 $280.2 5.51 17

crease in price of approximately one percent. Thus, a
price discount to encourage shippers to call in their
orders one day in advance would have to be less than
one percent to be attractive to the carrier.

9.3. Economies of Density

Our last set of experiments addressed the substan-
tive question of economies of density in the motor
carrier industry. We created five different datasets,
with 100, 200, 300, 400 and 1,000 drivers, respec-
tively. For each dataset, we held the ratio between
the number of loads per week and the number of
drivers to exactly three. Each simulation was run for
four weeks.

The results are shown in Table V. First, it is
useful to note that most carriers will average be-
tween 2.0 and 2.5 loads per driver per week. Also, an
unoptimized carrier (that is, using manual dispatch-
ing) will exhibit empty mile rates of around 6 to &
percent for the largest carriers, up to 10 to 12 per-
cent for medium sized carriers (more specialized
carriers might run as much as 20 percent empty).
Considering thdt our model optimizes empty miles,
without regard to other factors (such as getting driv-
ers home) which would increase overall empty miles,
the numbers in Table V seem quite realistic, with
the exception of those for the 100 truck fleet. In
practice, a 100 truck fleet (and even 200 trucks)
would serve only a regional customer base, whereas
our simulator generates demands nationally (heavi-
ly weighted around the midwest, east and south).
Therefore, we should discount the statistics for our
smallest fleet size.

The most important column is the contribution
per truck per week, which shows substantial im-
provements in overall profitability from the increase
in density. Typically, a truck will average around
2,000 miles per week. Comparing the 200 truck fleet
to the 1,000 truck fleet shows over an improvement
in overall contribution of $100 per week, which
translates to improved profits of around $0.05 per
mile. With transportation rates around $1 per mile,
such an advantage would provide a carrier with a
substantial cost advantage.




Today, there are perhaps approximately two
dozen carriers with fleets of 1,000 drivers or more,
with two megacarriers with fleets approaching
10,000 drivers. While we did not simulate fleets this
size, it is likely that these largest carriers also enjoy
a modest cost advantage of around $0.01 per mile
due purely to economies of density. However, in an
industry with tight profit margins, such a difference
is indeed significant.

10. CONCLUSIONS

THIS PAPER HAS provided both an introduction to the
load matching problem for truckload motor carriers,
and an overview of a variety of different modeling
approaches. The paper represents one of the earliest
attempts to perform dynamic routing and schedul-
ing of drivers using a model that takes explicit ac-
count of forecasted demands. The experimental re-
sults in this paper, on a single dataset derived from
an actual carrier, show that the dynamic model does
in fact outperform the more standard myopic one.

This paper is, at the same time, only a first, small
step in what is likely to become an active field of
research. While these initial results are encourag-
ing, many questions remain. Methodologically, this
paper has described several ways for approximating
the expected recourse function, but only the most
primitive was actually tested. Additional testing is
needed to evaluate the newer approximations that
have been developed (such as FRANTZESKAKIS and
POWELL (1990) and CHEUNG and POWELL (1995)).
We also need to refine and test the hybrid method
suggested in CHEUNG and POWELL (1994). This
method has tremendous conceptual appeal, but ex-
perimentation is needed for the complete evaluation.

An area that sparks considerable debate within
the research community is the need for stochastic
models. FRANTZESKAKIS and POWELL (1990) and
CHEUNG and POWELL (1995) show that stochastic
approximations will outperform deterministic mod-
els, but other researchers will no doubt argue that a
better deterministic approximation might work as
well, or better, than the stochastic model. Determin-
istic models do not need the separability approxima-
tion that we have used in the development of our
stochastic models. A significant problem with our
separable approximations is our need to treat a lo-
cation ¢ at time ¢ independently of location i at time
t + 1. Assuming separability across time limits our
ability to use smaller time steps. Deterministic mod-
els do not have this problem. Only time will tell
which approximation works out the best.

There is an open question of how all of these
methods work with different data sets. Real prob-
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lems vary in terms of the width of the time windows,
which in turn impacts the need to anticipate future
demands. If there is a single, important factor in the
testing of stochastic models in a dynamic setting, it
is the need to anticipate demands before they hap-
pen. Clearly, taxi drivers must anticipate their de-
mands. Railroads, on the other hand, do not face the
same service demands. Truckload carriers fall in -
between. As we tested our models, we found that
consistently, the area where they performed poorly
was their tendency to overanticipate demands. The
introduction of the discount factor « represented a
simple, heuristic mechanism to dampen the effect of
the recourse function, which reduced some of the
unnecessary empties.

Another question of this research is our ability to
approximate the history of the process using a rela-
tively simple state variable, giving the number of
drivers available at each location at each point in
time in the future. Thus, we care about how many
drivers will be in Chicago on Wednesday, but we do
not care how many of these drivers need to get home,
how many have run out of hours, how many have
tractors needing maintenance, and so on. In our
simulations, we ignored the need to get drivers
home, but did capture their duty hours. This re-
search suggests that aggregate state variables may
be useful, but again, more research is needed.

There are, of course, many other questions that
arise. Considering the relative simplicity of the
problem, it is astonishing, and exciting, to see the
number of research questions that arise. Having
developed the Midas simulator in the 1980’s, we are
now embarking on the developing of an entirely new
simulation library that will become a test bed for
investigating some of these questions.
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