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Introduction
Given a vehicle fleet and a stochastic process characterizing
the load arrivals in a transportation network, the primary
objective of fleet management models is to make the vehi-
cle repositioning and vehicle-to-load assignment decisions
so that some performance measure (profit, cost, deadhead
miles, number of served loads, etc.) is optimized. However,
besides making these vehicle repositioning and assignment
decisions, an important question that is commonly over-
looked by many fleet management models is how the per-
formance measures would change in response to a change
in certain model parameters. For example, freight carriers
are interested in how much their profits would increase if
they introduced an additional vehicle into the system or
if they served an additional load on a certain traffic lane.
Railroad companies want to estimate the minimum number
of railcars that is necessary to cover the random shipper
demands. The Airlift Mobility Command is interested in
the impact of limited airbase capacities on the delayed ship-
ments. Answering such questions, in one way or another,
requires sensitivity analysis of the underlying fleet manage-
ment model responsible for making the vehicle allocation
decisions.
In this paper, we develop efficient sensitivity analysis

methods for a stochastic fleet management model previ-
ously developed in Godfrey and Powell (2002a, b). This
model formulates the problem as a dynamic program,
decomposing it into time-staged subproblems, and replaces

the value functions with specially structured approxima-
tions that are obtained through an iterative improvement
scheme. Two aspects of this model are crucial to our
work: (1) Due to the special structure of the value function
approximations, the subproblem that needs to be solved for
each time period is a min-cost network flow problem. This
enables us to use the well-known relationships between the
sensitivity analyses of min-cost network flow problems and
min-cost flow augmenting trees. In particular, we can use
the fact that the change in the optimal solution of a min-
cost network flow problem in response to a unit change in
the supply of a node or a unit change in the upper bound of
an arc is characterized by a min-cost flow augmenting path.
(2) Letting � be the set of time periods in the planning
horizon, just as the value functions �Vt�·�� t ∈ � � describe
an optimal vehicle allocation policy through the so-called
optimality equation (see Puterman 1994), a set of value
function approximations ��V �

t �·�� t ∈� � describes a (possi-
bly suboptimal) vehicle allocation policy �. Thus, given a
trajectory of load realizations �dt� t ∈� �, one can think of
the trajectory of vehicle allocation decisions �x�dt � t ∈ � �
induced by policy � under load realization trajectory d =
�dt� t ∈ � �. In this paper, we exploit the aforementioned
sensitivity relationships to compute the change in the deci-
sion trajectory �x�dt � t ∈ � � in response to a change in a
problem parameter and to assess how changes in the current
decisions affect the future time periods. In particular, we
develop methods to compute how much the profits would
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change if an additional vehicle or an additional load were
introduced into the system.
Our work is motivated by the fact that the freight trans-

portation industry is interested in “what-if” scenarios, and
this conventionally refers to changing certain parameters
of the model and re-running it. However, there are obvi-
ous advantages associated with being able to extract sen-
sitivity information from a single model run. For example,
there can be many parameters whose impact on the model
performance is of interest, and making one (or more) run
for each parameter might be impossible. Furthermore, the
decision maker simply might not have an idea about the
critical parameters, and it is important to point out where
“the biggest bang for the buck” lies. Also, sensitivity infor-
mation is useful in determining the optimal fleet size and
mix, or making pricing decisions.
A well-known class of models, from which one can

quickly obtain sensitivity information, formulates the prob-
lem over a state-time network, where the nodes repre-
sent the supply of vehicles in different states at different
time periods and the arcs represent the vehicle movements.
Examples of such models from three different industries
are Dantzig and Fulkerson (1954), Hane et al. (1995), and
Holmberg et al. (1998), and we refer the reader to Dejax
and Crainic (1987) and Powell et al. (1995) for detailed sur-
veys. For these types of models, sensitivity information is
readily obtained by using the dual solution. However, these
models are inherently deterministic and can incorporate
the random future load arrivals only through the expected
values.
The model we analyze in this paper falls into the cat-

egory of stochastic models, which decompose the prob-
lem with respect to time periods and assess the impact
of the current decisions on the future through value func-
tions. However, because practical fleet management models
involve large numbers of decision variables and possible
load realizations, standard stochastic optimization meth-
ods are not feasible for computing the value functions.
Therefore, most of the stochastic fleet management mod-
els revolve around the idea of approximating the value
function in a tractable manner. For stochastic fleet man-
agement models other than the one in Godfrey and Powell
(2002a, b), we refer the reader to Frantzeskakis and Powell
(1990), Crainic et al. (1993), Carvalho and Powell (2000),
and Topaloglu and Powell (2006).
Given a set of value function approximations, these mod-

els behave just like simulation models, generating differ-
ent trajectories of vehicle allocation decisions for different
trajectories of load realizations. Therefore, a key question
for their sensitivity analysis is to be able to assess how
the decision trajectories change when certain model param-
eters are perturbed. Our approach has similarities with
infinitesimal perturbation analysis, which refers to comput-
ing the gradient of a performance measure in a discrete-
event dynamic system with respect to an input parameter
(see Glasserman 1991, Ho and Cao 1991). However, for the

systems we consider, the transitions between the states are
more complex than those that are conventionally consid-
ered by discrete-event dynamic systems because these tran-
sitions are governed by the solutions of min-cost network
flow problems.
In this paper, we make the following research contribu-

tions. We develop efficient sensitivity analysis methods for
a stochastic fleet management model previously developed
in Godfrey and Powell (2002a, b). In particular, we show
how to compute the change in the objective value of this
model in response to an additional vehicle or an additional
load introduced into the system. An accurate, but tedious,
sensitivity analysis method is to physically change a param-
eter of interest and rerun the model. We compare our meth-
ods with this “brute force” approach and show that they
are quite accurate even when theoretical analysis requires
certain approximations.
The rest of this paper is organized as follows. In §1,

we briefly describe the fleet management model used
throughout the paper. Understanding this model is impor-
tant because we analyze the sensitivity of the objective
value under the policy prescribed by this particular model.
In §2, we consider problems with a single vehicle type and
show how to compute the change in the objective value
in response to an additional vehicle or an additional load
introduced into the system. Section 3 extends these results
to problems with multiple vehicle types. The computational
experiments presented in §4 show the accuracy of the pro-
posed sensitivity analysis methods. Section 5 contains con-
cluding remarks.

1. Problem Formulation
We have a fleet of vehicles to serve the loads of different
types that arrive over time. At every time period, a certain
number of loads enter the system, and we have to decide
which loads to cover and to which locations we should
reposition the empty vehicles. We are interested in maxi-
mizing the total expected profit over a finite horizon, but
we formulate our model to minimize cost for compatibility
with the min-cost network flow literature. We assume that
advance information about the future loads is not available
and the loads that cannot be covered in a given time period
are served by an emergency subcontractor. These enable
us to assume that the uncovered loads immediately leave
the system. For notational brevity, we assume that it takes
one time period to move between any pair of locations. It
is straightforward to extend our analysis to the case where
there are multiperiod travel times by using the approach
described in Topaloglu and Powell (2006). We define the
following:
� = set of time periods in the planning horizon, � =

�1� � � � � T �.
� = set of locations in the transportation network.
�= set of available vehicle types.
� = set of movement modes, � = �0� � � � �L�. (Move-

ment modes represent different ways in which a vehicle
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can move from one location to another. Movement mode 0
always corresponds to empty repositioning, whereas other
modes correspond to carrying different types of loads.)
xkijlt = number of vehicles of type k dispatched from

location i to j at time period t using movement mode l.
ckijlt = cost of dispatching one vehicle of type k from

location i to j at time period t using movement mode l.
Dijlt = random variable representing the number of loads

that need to be carried from location i to j at time period t
and correspond to movement mode l.
As will be clear shortly, the random variable Dijlt serves

as an upper bound on the decision variables �xkijlt � k ∈��.
Because the movement mode 0 corresponds to empty repo-
sitioning and the empty repositioning movements are not
bounded, we assume that Dij0t =� for all i� j ∈� , t ∈ � .
In practice, the movement modes in �\�0� can correspond
to different types of loads or different shippers, and we usu-
ally have ckijlt < 0 when l ∈�\�0�. The vehicle type might
reflect the size of the vehicle, the skill level of the driver
of the vehicle, the ability of the vehicle to satisfy certain
safety or sanitary requirements, or a combination of these
factors, which ultimately determine whether it is feasible to
cover a certain type of load with a certain type of vehicle
and what profit is obtained by doing so. If it is infeasible
to cover a load of type l with a vehicle of type k, then
we capture this by letting ckijlt =� for all i� j ∈ � , t ∈ � .
Throughout this paper, we use dijlt to denote a particular
realization of Dijlt . By suppressing some of the indices in
the variables above, we denote a vector composed of the
components ranging over the suppressed indices. For exam-
ple, we have dt = �dijlt � i� j ∈�� l ∈�� and d = �dijlt � i,
j ∈� , l ∈�, t ∈� �.
To capture the state of the system at time period t, we

define
rkit = number of vehicles of type k that are available at

location i at time period t.
The vector rt = �rkit � i ∈ �� k ∈ �� completely defines

the state of the vehicles at time period t. Given this state
vector and the realization of the loads at time period t, the
set of feasible decision vectors and the set of state vectors
generated by these decisions at the next time period are
given by

��rt� dt�=
{
�xt� rt+1��

∑
j∈�

∑
l∈�

xkijlt = rkit

for all i ∈�� k ∈�� (1)∑
i∈�

∑
l∈�

xkijlt − rkj� t+1 = 0

for all j ∈�� k ∈�� (2)∑
k∈�

xkijlt � dijlt

for all i� j ∈�� l ∈�� (3)

xkijlt ∈�+

for all i�j ∈�� l∈�� k∈�
}
� (4)

We are interested in Markovian deterministic policies
that minimize the total expected cost over the planning
horizon. A Markovian deterministic policy � can be char-
acterized by a sequence of decision functions �X�

t �·� ·��
t ∈ � � such that X�

t �·� ·� maps the state vector rt and the
realization of the loads dt at time period t to a decision
vector xt . One can also define the state transition functions
�R�

t+1�·� ·�� t ∈� � of policy � such that R�
t+1�·� ·� maps the

state vector and the realization of the loads at time period t
to a state vector for the next time period. We note that given
X�
t �·� ·�, R�

t+1�·� ·� can easily be defined by noting the state
transition constraints in (2). Then, for a given state vec-
tor rt and realization of future loads �dt� � � � � dT � at time
period t, the cumulative cost function for policy � can be
written recursively as

F �
t �rt�dt�dt+1�����dT �

=ct ·X�
t �rt�dt�+F �

t+1�R
�
t+1�rt�dt��dt+1�dt+2�����dT �� (5)

with the boundary condition F �
T+1�·�= 0. By repeated appli-

cation of (5), we obtain

F �
1 �r1�d1� � � � � dT �

= c1 ·X�
1 �r1�d1�+ c2 ·X�

2 �R
�
2 �r1�d1��d2�

+ · · ·+ cT ·X�
T �R

�
T �R

�
T−1�� � � � dT−2��dT−1��dT �� (6)

which is the total cost incurred over the whole planning
horizon when we use policy �; the initial state vector is r1
and the realization of the loads is �d1� � � � � dT �.
Assuming that, given rt , Dt is independent of �Dt′ �t

′ =
1� � � � � t−1�, it can be shown that the optimal policy �∗ is
Markovian deterministic, satisfying

�∗ = argmin
�∈�

Ɛ�F �
1 �r1�D1� � � � �DT � � r1��

where � is the set of Markovian deterministic policies. This
optimal policy can be found by computing the value func-
tions through the so-called optimality equation (see Puter-
man 1994):

V �∗
t �rt�= Ɛ

{
min

�xt � rt+1�∈��rt �Dt�
ct · xt +V �∗

t+1�rt+1�
∣∣∣ rt

}
� (7)

In this case, the decision and transition functions for the
optimal policy become

�X�∗
t �rt� dt��R

�∗
t+1�rt� dt��

= argmin
�xt � rt+1�∈��rt � dt�

ct · xt +V �∗
t+1�rt+1�� (8)

Throughout this paper, to keep the presentation simple, we
assume that the cost vector ct is perturbed by small random
amounts so that problem (8) has a single optimal solu-
tion. Under this assumption, the decision and state transi-
tion functions are properly defined, and our proofs become
easier.
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Computing the value functions �V �∗
t �·�� t ∈ � � through

(7) is intractable for almost all problem instances of prac-
tical significance, because it requires enumerating over all
possible values of rt and taking an expectation over the
multidimensional random variable Dt for all t ∈ � . In this
paper, we follow a class of (suboptimal) policies proposed
in Godfrey and Powell (2002a), which are obtained by
replacing �V �∗

t �·�� t ∈� � in (8) with separable approxima-
tions ��V �

t �·�� t ∈� � of the form

�V �
t �rt�=

∑
i∈�

∑
k∈�

�V �k
it �rkit�� (9)

where each �V �k
it �·� is a one-dimensional piecewise-linear

convex function with points of nondifferentiability being
a subset of positive integers. In this case, for a policy �
characterized by separable piecewise-linear convex value
function approximations ��V �

t �·�� t ∈� �, we can define the
decision and state transition functions as

�X�
t �rt� dt��R

�
t+1�rt� dt��

= argmax
�xt � rt+1�∈��rt � dt�

ct · xt + �V �
t+1�rt+1�� (10)

We note that although the value function approximations
��V �

t �·�� t ∈� � are separable, the cumulative cost functions
�F �

t �·�dt� � � � � dT �� t ∈ � � for policy � are not necessar-
ily separable. Furthermore, we have V �∗

t �rt� = Ɛ�F �∗
t �rt�

Dt� � � � �DT � � rt� for the optimal policy �∗ by the principal
of optimality (see Puterman 1994), but we do not neces-
sarily have �V �

t �rt�= Ɛ�F �
t �rt�Dt� � � � �DT � � rt� for the pol-

icy � characterized by the value function approximations
��V �

t �·�� t ∈� �.
Godfrey and Powell (2002a) give a sampling-based algo-

rithm that can be used to obtain a “good” set of value
function approximations. The question of whether these
suboptimal policies yield high-quality solutions is outside
the scope of this paper. We refer the reader to Godfrey and
Powell (2002a, b) and Topaloglu and Powell (2006), where
the experimental work indicates that this class of policies
beat standard benchmarks by significant margins. Here, we
assume that we already have a “good” policy �, and we are
interested in computing the change in F �

1 �r1�d1� � � � � dT �
induced by changing an element of the state vector r1 or the
load availability vector d1. We make this question precise
in the next two sections. However, before going into the
specific details, we can summarize the contents of the next
two sections as follows: (1) We note that if we use a policy
characterized by separable piecewise-linear convex value
function approximations, then problem (10) is a min-cost
network flow problem. (2) We use the well-known relation-
ships between the sensitivity analyses of min-cost network
flow problems and min-cost flow augmenting trees to find
how the solution of problem (10) at time period 1 changes
in response to an additional vehicle or an additional load
introduced into the system. (3) We find how the state vec-
tor at time period 2 changes in response to the change in
the solution of problem (10) at time period 1. (4) Finally,

we find how the solution of problem (10) at time period 2
changes in response to the change in the state vector at
time period 2. We repeat the same argument in a recursive
fashion for the subsequent time periods.
In §2, we start by considering problems with a single

vehicle type. We generalize the ideas to multiple vehicle
types in §3.

2. Problems with a Single Vehicle Type
In this section, we assume that ��� = 1 and drop the vehi-
cle type superscript, in which case (9) becomes �V �

t �rt�=∑
i∈� �V �

it �rit�. Letting R be the total number of available
vehicles, the relevant domain of �V �

it �·� is �0�1� � � � �R�.
Therefore, assuming that �V �

it �0� = 0 without loss of gen-
erality, we can represent �V �

it �·� by a sequence of num-
bers �ṽ�it �q�� q = 1� � � � �R�, where ṽ�it �q� is the slope of
�V �
it �q� over �q− 1� q�. That is, we have ṽ�it �q�= �V �

it �q�−�V �
it �q − 1�. In this case, problem (10) can explicitly be

written as

min
�xt � rt+1� zt+1�

∑
i� j∈�

∑
l∈�

cijltxijlt+
∑
j∈�

R∑
q=1

ṽ�j� t+1�q�zj�t+1�q� (11)

subject to
∑
j∈�

∑
l∈�

xijlt = rit for all i ∈�� (12)

∑
i∈�

∑
l∈�

xijlt − rj� t+1 = 0 for all j ∈�� (13)

rj� t+1 −
R∑

q=1
zj� t+1�q�= 0 for all j ∈�� (14)

xijlt � dijlt for all i� j ∈�� l ∈�� (15)

zj�t+1�q��1 for all j ∈�� q=1�����R� (16)

xijlt� rj� t+1� zj� t+1�q� ∈�+

for all i� j ∈�� l ∈�� q = 1� � � � �R� (17)

where we use a standard technique to embed the piecewise-
linear convex functions ��V �

j� t+1�·�� j ∈ �� into the prob-
lem above through the decision variables �zj� t+1�q�� j ∈��
q = 1� � � � �R�. In particular, due to the convexity of
�V �
j� t+1�·�, we have ṽ�j� t+1�1� � ṽ�j� t+1�2� � · · · � ṽ�j� t+1�R�.

Because the objective function is minimized, noting con-
straints (14), (16), and (17), we must have

R∑
q=1

ṽ�j� t+1�q�zj� t+1�q�=
rj� t+1∑
q=1

ṽ�j� t+1�q�= �V �
j� t+1�rj� t+1�

in the optimal solution. Therefore, the second term in (11)
computes

∑
j∈� �V �

j� t+1�rj� t+1� (see Nemhauser and Wolsey
1988). Although constraints (13) and (14) can be combined
into

∑
i∈�

∑
l∈� xijlt −

∑R
q=1 zj� t+1�q� = 0, we leave them

separate to emphasize that (13) handles the state transi-
tion, whereas (14) handles the computation of the value
function approximation. It is easy to see that problem (11)
is the min-cost network flow problem in Figure 1. In this
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Figure 1. Problem (11) is a min-cost network flow
problem.

a

b

c

a

b

c

xijlt rj, t +1 zj, t +1(q)

Sink
node

n

n

m

Note. The path in bold arcs represents a possible min-cost flow augment-
ing path from node a on the left side to the sink node. Such min-cost flow
augmenting paths will be useful in §2.1.

figure, we assume that � = �a� b� c� and � = �n�m�.
Constraints (12), (13), and (14), respectively, correspond
to the flow balance constraints for the white, gray, and
black nodes. The sets of decision variables �xijlt � i� j ∈ � ,
l ∈ ��, �rj� t+1� j ∈ ��, and �zj� t+1�q�� j ∈ �� q =
1� � � � �R�, respectively, correspond to the arcs that leave the
white, gray, and black nodes.

2.1. Policy Gradients with Respect to Vehicle
Availabilities

In this section, we develop a method to compute how much
the total cost under policy � would change if an addi-
tional vehicle were introduced into the system. We let �x�dt �
t ∈� � and �r�dt � t ∈� � be the sequences of decisions and
states visited by the system under policy � and load real-
ization d= �dt� t ∈� �. That is, �x�dt � t ∈� � and �r�dt � t ∈
� � are recursively computed by

x�dt =X�
t �r

�d
t � dt�� r�dt+1 =R�

t+1�r
�d
t � dt��

with r�d1 = r1� (18)

Then, noting (5), F �
t �r

�d
t � dt� � � � � dT � becomes the total

cost incurred at time periods �t� � � � � T � under policy � and
load realization d. Letting ei be the �� �-dimensional unit
vector with a one in the element corresponding to i ∈ � ,
our objective in this section is to compute

#�
t �ei� d�= F �

t �r
�d
t + ei� dt� � � � � dT �− F �

t �r
�d
t � dt� � � � � dT �

(19)

for all i ∈� , t ∈� . Then, Ɛ�#�
1 �ei�D�� tells us how much

the total expected cost under policy � would change by
introducing an additional vehicle at location i at the first
time period. We note that #�

t �ei� d� can be computed by
two simulations of policy � under load realization d, one
of which starts with the state vector r�dt and the other with
r�dt + ei. However, doing this for all i ∈ � , t ∈ � and
for multiple load realizations can get time consuming. Our

objective is to be able to compute #�
t �ei� d� for all i ∈� ,

t ∈� from a single simulation.
Using (5) and (18), (19) can be written as

#�
t �ei� d�= ct · �X�

t �r
�d
t + ei� dt�−X�

t �r
�d
t � dt��

+ F �
t+1�R

�
t+1�r

�d
t + ei� dt��dt+1� � � � � dT �

− F �
t+1�R

�
t+1�r

�d
t � dt��dt+1� � � � � dT �

= ct · �X�
t �r

�d
t + ei� dt�− x�dt �

+ F �
t+1�R

�
t+1�r

�d
t + ei� dt��dt+1� � � � � dT �

− F �
t+1�r

�d
t+1�dt+1� � � � � dT �� (20)

As will be clear shortly, computing X�
t �r

�d
t + ei� dt�− x�dt

and R�
t+1�r

�d
t +ei� dt�−r�dt+1 is key to computing #

�
t �ei� d�.

Because we have

�x�dt � r�dt+1�= argmin
�xt � rt+1�∈��r�dt � dt�

ct · xt + �V �
t+1�rt+1�� (21)

X�
t �r

�d
t + ei� dt� − x�dt and R�

t+1�r
�d
t + ei� dt� − r�dt+1 are

related to how the solution of problem (11) changes when
the right side of constraints (12) is increased from r�dt to
r�dt + ei.
Consider problem (21) and its network representation

in Figure 1. Set the flows on the arcs in this network
such that these flows correspond to the optimal solution
�x�dt � r�dt+1�. Let �

�
t �ei� d� be the min-cost flow augmenting

path from node i ∈ � on the left side to the sink node in
this figure. One possible flow augmenting path when i= a
is shown in bold arcs. We define the vector $�t �ei� d� =
�$�ı't�ei� d�� ı�  ∈�� ' ∈�� as

$�ı't�ei�d�=




+1 if the arc corresponding to variable
xı't is a forward arc in ��

t �ei�d��

−1 if the arc corresponding to variable
xı't is a backward arc in ��

t �ei�d��

0 if the arc corresponding to variable
xı't is not in ��

t �ei�d��

Similarly, we define the vector (�t+1�ei� d�= �(�� t+1�ei� d��
 ∈�� as

(��t+1�ei�d�=




+1 if the arc corresponding to
variable r�t+1 is a forward
arc in ��

t �ei�d��

−1 if the arc corresponding to
variable r�t+1 is a backward
arc in ��

t �ei�d��

0 if the arc corresponding to
variable r�t+1 is not in
��

t �ei�d��

(22)

For example, for the flow augmenting path in Figure 1,
we have $�abnt�ea�d�=+1, $�cbnt�ea�d�=−1, $�ccmt�ea�d�=+1, and (�c� t+1�ea�d� = +1. The following result charac-
terizes how the solution of problem (21) changes when the
number of vehicles available at location i is increased by 1.
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Lemma 1. The following results hold:
(1) We have X�

t �r
�d
t + ei� dt� = x�dt + $�t �ei� d� and

R�
t+1�r

�d
t + ei� dt�= r�dt+1 + (�t+1�ei� d�.

(2) One element of the vector (�t+1�ei� d� is equal to +1
and the other elements are equal to 0.

Proof. The first part is a direct result of Theorem 1 in
Powell (1989). The second part holds because any acyclic
path from node i ∈ � on the left side of Figure 1 to the
sink node traverses exactly one of the arcs corresponding
to one of the variables �rj� t+1� j ∈��. �

The second part of the lemma implies that if an addi-
tional vehicle is introduced at a certain location at time
period t, then exactly one element of the state vector at time
period t+ 1 will increase by 1. The following proposition
gives an efficient method to compute #�

t �ei� d�.

Proposition 2. We have #�
t �ei� d� = ct · $�t �ei� d� +

#�
t+1�(

�
t+1�ei� d��d� for all i ∈� , t ∈� with the boundary

condition #�
T+1�·�d�= 0.

Proof. Using Lemma 1, (20) can be written as

#�
t �ei� d�= ct · $�t �ei� d�

+ F �
t+1

(
r�dt+1 + (�t+1�ei� d��dt+1� � � � � dT

)
− F �

t+1
(
r�dt+1�dt+1� � � � � dT

)
= ct · $�t �ei� d�+#�

t+1�(
�
t+1�ei� d��d�� �

The first term in ct ·$�t �ei� d�+#�
t+1�(

�
t+1�ei� d��d� cap-

tures how much the cost incurred at time period t changes
in response to an additional vehicle at location i at time
period t, whereas the second term captures how much
the cost incurred at time periods �t + 1� � � � � T � changes
in response to an additional vehicle at location i at time
period t.
Thus, the idea is to start with the last time period T and

let #�
T �ei� d�= cT · $�T �ei� d� for all i ∈� . Then, we move

to time period T − 1. Because (�T �ei� d� is always a posi-
tive integer unit vector, #�

T−1�ei� d� can easily be computed
as cT−1 · $�T−1�ei� d�+#�

T �(
�
T �ei� d��d�. We continue in a

similar fashion until we reach the first time period.
We note that to evaluate the expected cost impact of an

additional vehicle, we need to compute Ɛ�#�
t �ei�D�� as

opposed to #�
t �ei� d� for a particular load realization d.

In this case, because computing this expectation is usu-
ally intractable, we can sample N load realizations, say
d1� � � � � dN , use the method described in this section to com-
pute #�

t �ei� d
n� for all n= 1� � � � �N , and use the standard

confidence interval methodology to estimate Ɛ�#�
t �ei�D��.

By carrying out a “pilot run” that uses a small number of
load realizations, we can assess the number of load realiza-
tions that are needed to estimate Ɛ�#�

t �ei�D��with a certain
precision (see Law and Kelton 2000).
Finally, we note that a similar method to compute

#�
t �−ei� d�
= F �

t �r
�d
t − ei� dt� � � � � dT �− F �

t �r
�d
t � dt� � � � � dT � (23)

can be developed by using min-cost flow decreasing trees.
This will be useful in the next section.

2.2. Policy Gradients with Respect to Load
Availabilities

Freight carriers continuously face the problem of evaluating
newly arriving loads to decide whether to accept or reject
them. In this section, we develop a method to compute how
much the total cost under policy � would change if an
additional load were introduced into the system. This infor-
mation can, in turn, be used for load evaluation decisions.
The class of policies we consider assume that there is no
advance information about future load realizations. For this
reason, we assume that if t is the current time period, then
the additional load that is introduced into the system is a
load that needs to be served at time period t.
Letting eijlt and eijl be the �� �2����� � and �� �2���-

dimensional unit vectors with a one in the element corre-
sponding to i� j ∈ � , l ∈�, t ∈ � and i� j ∈ � , l ∈�, we
want to compute

*�
t �eijl� d�= F �

t �r
��d+eijlt
t � dt + eijl� dt+1� � � � � dT �

− F �
t �r

�d
t � dt� dt+1� � � � � dT �� (24)

which is the change in the total cost of policy � under load
realization d in response to an additional load of type l on
lane �i� j� at time period t. Using an argument similar to
the one in (20) and noting that r

��d+eijlt
t is a function of the

load realizations up to (but not including) time period t,
(24) can be written as

*�
t �eijl� d�= F �

t �r
�d
t � dt + eijl� dt+1� � � � � dT �

− F �
t �r

�d
t � dt� dt+1� � � � � dT �

= ct · �X�
t �r

�d
t � dt + eijl�− x�dt �

+ F �
t+1�R

�
t+1�r

�d
t � dt + eijl�� dt+1� � � � � dT �

− F �
t+1�r

�d
t+1�dt+1� � � � � dT �� (25)

To compute *�
t �eijl� d�, we now need to characterize

X�
t �r

�d
t � dt + eijl� − x�dt and R�

t+1�r
�d
t � dt + eijl� − r�dt+1.

These quantities are related to how the solution of the min-
cost network flow problem (11) changes when the upper
bound on the decision variables xt is increased from dt to
dt + eijl.
Consider problem (21) and its network representation

in Figure 2. Set the flows on the arcs in this net-
work such that these flows correspond to the optimal
solution �x�dt � r�dt+1�. Let 	�

t �−ei� ej � d� be the min-cost
flow augmenting path from node j ∈ � in the middle
section to node i ∈ � on the left side in Figure 2.
Denote the cost of this min-cost flow augmenting path
by 
�

t �−ei� ej � d�. One possible flow augmenting path
when i = a, j = c is shown in dashed arcs. We define



Topaloglu and Powell: Sensitivity Analysis of a Dynamic Fleet Management Model
Operations Research 55(2), pp. 319–331, © 2007 INFORMS 325

Figure 2. 	�
t �−ea� ec�d� is the min-cost flow augment-

ing path from node c in the middle section
to node a on the left side.

a

b

c

a

b

c

Sink
node

n

n

m

xijlt rj, t +1 zj, t +1(q)

the vector $�t �−ei� ej � d� = �$�ı't�−ei� ej � d�� ı�  ∈ ��
' ∈�� as

$�ı't�−ei� ej � d�=




+1 if the arc corresponding to
variable xı't is a forward arc
in 	�

t �−ei� ej � d��
−1 if the arc corresponding to

variable xı't is a backward
arc in 	�

t �−ei� ej � d��
0 if the arc corresponding to

variable xı't is not in
	�
t �−ei� ej � d��

We also define the vector (�t+1�−ei� ej � d� similar to (22),
but using the flow augmenting path 	�

t �−ei� ej � d�. For
example, for the flow augmenting path in Figure 2,
we have $�aant�−ea� ec�d� = −1, $�cbmt�−ea� ec�d� = +1,
$�ccnt�−ea� ec�d�=−1, (�a� t+1�−ea� ec�d�=−1, and (�b� t+1 ·
�−ea� ec�d�=+1. The following result characterizes how
the solution of problem (21) changes when the number of
loads of type l on lane �i� j� is increased by one.

Lemma 3. The following results hold:
(1) Letting

1�a<b� =
{
1 if a< b�

0 otherwise�

we have

X�
t �r

�d
t � dt + eijl�

= x�dt + 1�
�
t �−ei� ej � d�+cijlt<0��$

�
t �−ei� ej � d�+ eijl��

R�
t+1�r

�d
t � dt + eijl�

= r�dt+1 + 1�
�
t �−ei� ej � d�+cijlt<0�(

�
t+1�−ei� ej � d��

(2) The vector (�t+1�−ei� ej � d� can be written as
(�t+1�−ei� ej � d�= (�+t+1�−ei� ej � d�−(�−t+1�−ei� ej � d� where
one element of each of the vectors (�+t+1�−ei� ej � d� and
(�−t+1�−ei� ej � d� is equal to +1 and the other elements are
equal to 0.

Proof. See the appendix.

Therefore, if 
�
t �−ei� ej � d�+cijlt � 0, then an additional

load of type l on lane �i� j� does not change the solution of
problem (21). We note that the min-cost flow augmenting
path 	�

t �−ei� ej � d� may not include any arcs correspond-
ing to one of the variables �rj� t+1� j ∈��. In this case, we
have (�t+1�−ei� ej � d�= 0 and we can set (�+t+1�−ei� ej � d�=
(�−t+1�−ei� ej � d� in the second part of Lemma 3. The fol-
lowing proposition gives an efficient method to compute
*�

t �eijl� d�.

Proposition 4. Letting

+�t �eijl� d�= 1�
�
t �−ei� ej � d�+cijlt<0��$

�
t �−ei� ej � d�+ eijl�

for notational brevity, we have the following results:
(1) If 
�

t �−ei� ej � d�+ cijlt � 0 or (�t+1�−ei� ej � d�= 0,
then we have *�

t �eijl� d�= ct · +�t �eijl� d�.
(2) If F �

t+1�·�dt+1� � � � � dT � is a separable function,

�

t �−ei� ej � d�+ cijlt < 0 and (�t+1�−ei� ej � d� 
= 0, then we
have

*�
t �eijl� d�= ct · +�t �eijl� d�+#�

t+1�(
�+
t+1�−ei� ej � d��d�

+#�
t+1�−(�−t+1�−ei� ej � d��d� (26)

for all i� j ∈ � , l ∈ �, t ∈ � , where #�
t+1�∓ei� d� is as

defined in (19) and (23).

Proof. Under the conditions stated in the first part, Lemma
3 implies that R�

t+1�r
�d
t � dt + eijl�= r�dt+1 and (25) becomes

*�
t �eijl� d�= ct · �X�

t �r
�d
t � dt + eijl�− x�dt �. Then, the first

part follows by the definition of +�t �eijl� d� and Lemma 3.
By using Lemma 3, (25) becomes

*�
t �eijl� d�= ct · +�t �eijl� d�+ F �

t+1

· (r�dt+1 + (�+t+1�−ei� ej � d�− (�−t+1�−ei� ej � d��
dt+1� � � � � dT

)
− F �

t+1�r
�d
t+1�dt+1� � � � � dT ��

Because F �
t+1�·�dt+1� � � � � dT � is separable, Lemma 8 in the

appendix implies that

*�
t �eijl� d�= ct · +�t �eijl� d�

+ F �
t+1

(
r�dt+1 + (�+t+1�−ei� ej � d��dt+1� � � � � dT

)
− F �

t+1�r
�d
t+1�dt+1� � � � � dT �

+ F �
t+1

(
r�dt+1 − (�−t+1�−ei� ej � d��dt+1� � � � � dT

)
− F �

t+1�r
�d
t+1�dt+1� � � � � dT �� �

The first part of the proposition corresponds to the
case where an additional load of type l on lane �i� j�
at time period t either does not change the decisions at
time period t or does not change the state vector at time
period t+1. The second part corresponds to the case where
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an additional load of type l on lane �i� j� at time period t
does change the state vector at time period t+1. Given the
fact that (�+t+1�−ei� ej � d� and (�−t+1�−ei� ej � d� are positive
integer unit vectors, (26) can be easily computed once we
know #�

t+1�∓ei� d� for all i ∈� .
As noted in §1, F �

t+1�·�dt+1� � � � � dT � is not necessar-
ily a separable function. However, we propose using
(26) as an approximation to *�

t �eijl� d� even when
F �
t+1�·�dt+1� � � � � dT � is not separable. Our computational
experiments show that this approximation yields accurate
results. We believe that the accuracy of this approximation
is due to the following. The expression in (26) captures the
change in the total cost of policy � under load realization d
in response to an additional load of type l on lane �i� j�
at time period t. Among the three terms on the right side
of (26), the first term accurately captures the change in the
cost incurred at time period t, whereas the sum of the sec-
ond and third terms approximately captures the change in
the cost incurred at time periods �t+ 1� � � � � T �. Therefore,
accurately capturing the change in the cost incurred at the
current time period and approximately capturing the change
in the cost incurred at the future time periods appear to be
adequate to obtain a good approximation.
Assuming that 
�

t �−ea� ec�d� + cacmt < 0 and noting
that (�a� t+1�−ea� ec�d� = −1, (�b� t+1�−ea� ec�d� = +1 for
the min-cost flow augmenting path in Figure 2, the approx-
imation in (26) can be interpreted as follows. The first term
gives the change in the immediate cost due to the change
in the decisions at time period t. The second term gives
the change in the future cost due to having an additional
vehicle at location b at time period t + 1. The third term
gives the change in the future cost due to having one less
vehicle at location a at time period t+ 1.

3. Problems with Multiple Vehicle Types
In this section, we extend the ideas in §2 to the case where
there are multiple vehicle types. Topaloglu and Powell
(2006) note that if there are multiple vehicles types and pol-
icy � is characterized by a set of separable piecewise-linear
convex value function approximations, then problem (10)
becomes a min-cost integer multicommodity network flow
problem, and this inhibits exploiting properties of min-
cost flow augmenting and decreasing trees as we did in
the previous section. Nonetheless, they also show that if
each �V �

t �·� is a linear function of the form �V �
t �rt� =∑

i∈�
∑

k∈� ṽ�kit r
k
it , then problem (10) is a min-cost net-

work flow problem. Furthermore, over a limited domain,
say ,0�1- or ,0�2-, linear functions approximate piecewise-
linear functions quite well. Because the sum of the elements
of the �� ����-dimensional vector rt is always equal to the
number of available vehicles, say R, if �� ���� � R, then
we expect the elements of the vector rt to be mostly 0s, 1s,
or 2s. In this case, using piecewise-linear approximations
does not bring too much advantage over linear approxima-
tions. For these reasons, when working on problems with

Figure 3. Problem (27) is a min-cost network flow
problem.

(a, f )

(a,g)

(b,g)

(b, f )
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node

Upper bounds
are dijlt

Different
locations

Different
vehicle types

multiple vehicle types, we use policies characterized by lin-
ear value function approximations.
We now extend the results of §2.1 to the case of multiple

vehicle types. Noting (2), the objective function of prob-
lem (10) under a policy defined by linear value function
approximations is

ct · xt + �V �
t+1�rt+1�

= ∑
i� j∈�

∑
l∈�

∑
k∈�

ckijltx
k
ijlt +

∑
j∈�

∑
k∈�

ṽ�kj�t+1

(∑
i∈�

∑
l∈�

xkijlt

)
�

Then, the decision function for policy � can be written as

X�
t �rt� dt�= argmin

xt

∑
i� j∈�

∑
l∈�

∑
k∈�

�ckijlt + ṽ�kj� t+1�x
k
ijlt (27)

subject to (1), (3), (4)�

which is the min-cost network flow problem in Figure 3.
In this figure, we assume that � = �a� b�, � = �n�m�, and
�= �f � g�. Constraints (1) represent the flow balance con-
straints for the gray nodes. Defining the additional decision
variables �wijlt � i� j ∈�� l ∈�� and splitting constraints (3)
into two sets of constraints

∑
k∈� xkijlt−wijlt = 0 and wijlt �

dijlt for all i� j ∈� , l ∈�, the first set represents the flow
balance constraints for the white nodes in the middle sec-
tion.
We let � be a policy characterized by the linear value

function approximations ��V �
t �·�� t ∈ � � with the decision,

state transition, and cumulative cost functions X�
t �·� ·�,

R�
t+1�·� ·�, F �

t �·� ·� � � � � ·�. We also define �x�dt � t ∈ � �
and �r�dt � t ∈ � � similar to their counterparts in §2.1.
Letting eki be the �� ����-dimensional unit vector with a
one in the element corresponding to i ∈ � , k ∈ �, we
want to compute #�

t �e
k
i � d� = F �

t �r
�d
t + eki � dt� � � � � dT �−

F �
t �r

�d
t � dt� � � � � dT � for all i ∈� , k ∈�, t ∈� .

Consider problem (27) and its network representation in
Figure 3. Set the flows on the arcs in this network such
that these flows correspond to the optimal solution x�dt .
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Let ��
t �e

k
i � d� be the min-cost flow augmenting path from

node �i� k� ∈ � × � on the left side to the sink node
in this figure. One possible flow augmenting path when
�i� k�= �a� f � is shown in bold arcs. We define the vector
$�t �e

k
i � d�= �$�1ı't�e

k
i � d�� ı�  ∈�� ' ∈�� 1 ∈�� as

$�1ı't�e
k
i �d�=




+1 if the arc corresponding to variable
x1ı't is a forward arc in ��

t �e
k
i �d��

−1 if the arc corresponding to variable
x1ı't is a backward arc in ��

t �e
k
i �d��

0 if the arc corresponding to
variable x1ı't is not in ��

t �e
k
i �d��

We also define the vector (�t+1�e
k
i � d�= �(�1� t+1�e

k
i � d��  ∈��

1 ∈�� as

(�1� t+1�e
k
i � d�=

∑
ı∈�

∑
'∈�

$�1ı't�e
k
i � d�� (28)

For example, for the flow augmenting path in Figure 3, we
have

$
�f
aant�e

f
a �d�=+1� $

�g
aant�e

f
a �d�=−1� $

�g
abmt�e

f
a �d�=+1�

(
�f
a�t+1�e

f
a �d�=+1� (

�g
a�t+1�e

f
a �d�=−1�

and

(
�g
b� t+1�e

f
a �d�=+1�

The following result characterizes how the solution of prob-
lem (27) changes when the number of vehicles of type k
available at location i is increased by one.

Lemma 5. The following results hold:
(1) We have X�

t �r
�d
t + eki � dt� = x�dt + $�t �e

k
i � d� and

R�
t+1�r

�d
t + eki � dt�= r�dt+1 + (�t+1�e

k
i � d�.

(2) There exist two disjoint subsets of � × �, say
2�+
t+1�e

k
i � d� and 2�−

t+1�e
k
i � d�, such that (�t+1�e

k
i � d� can be

written as

(�t+1�e
k
i � d�=

∑
��1�∈2�+

t+1�eki � d�

e1 −
∑

��1�∈2�−
t+1�eki � d�

e1 �

Proof. In the first part, the first equality is a direct result
of Theorem 1 in Powell (1989) and the second equality
follows from the definition of (�t+1�e

k
i � d� in (28) and the

state transition constraints (2). We show the second part in
the appendix. �

The second part of the lemma shows that an additional
vehicle of type k at location i at time period t could change
the state vector at time period t + 1 in a complicated
manner, but each component of the state vector at time
period t+1 changes by at most one. The following propo-
sition gives an efficient method to compute #�

t �e
k
i � d�.

Proposition 6. If F �
t+1�·�dt+1� � � � � dT � is a separable func-

tion, then we have

#�
t �e

k
i � d�= ct · $�t �eki � d�+

∑
��1�∈2�+

t+1�eki � d�

#�
t+1�e

1
 � d�

+ ∑
��1�∈2�−

t+1�eki � d�

#�
t+1�−e1 � d� (29)

for all i ∈ � , k ∈ �, t ∈ � with the boundary condition
#�

T+1�·�d�= 0.

Proof. Using Lemma 5, we have

#�
t �e

k
i �d�

=ct ·$�t �eki �d�

+F �
t+1

(
r�dt+1+

∑
��1�∈2�+

t+1�eki �d�

e1−
∑

��1�∈2�−
t+1�eki �d�

e1 �dt+1�����dT

)

−F �
t+1�r

�d
t �dt+1�����dT �

=ct ·$�t �eki �d�
+ ∑

��1�∈2�+
t+1�eki �d�

{
F �
t+1�r

�d
t+1+e1 �dt+1�����dT �

−F �
t+1�r

�d
t+1�dt+1�����dT �

}
+ ∑

��1�∈2�−
t+1�eki �d�

{
F �
t+1�r

�d
t+1−e1 �dt+1�����dT �

−F �
t+1�r

�d
t+1�dt+1�����dT �

}
�

where the second equality uses the separability assumption
and Lemma 8 in the appendix. �

On the right side of (29), the first term captures how
much the cost incurred at time period t changes in response
to an additional vehicle of type k at location i at time
period t, whereas the second and third terms capture
how much the cost incurred at time periods �t+1�����T �
changes in response to an additional vehicle of type k at
location i at time period t.
F �
t+1�·�dt+1�����dT � is not necessarily a separable func-

tion. However, we propose using (29) as an approxima-
tion to #�

t �e
k
i �d� even when F �

t+1�·�dt+1�����dT � is not
separable.

4. Computational Experiments
This section focuses on the results of §§2.2 and 3 and
numerically establishes the accuracy of the methods pro-
posed to compute *�

t �eijl�d� and #�
t �e

k
i �d�. In particular,

we use a variety of test problems to show that (26) and (29)
can approximate *�

t �eijl�d� and #
�
t �e

k
i �d� accurately even

when F �
t+1�·�dt+1�����dT � is not a separable function. The

method proposed to compute #�
t �ei�d� in §2.1 is exact and

does not require numerical validation.
Our test problems involve 40 locations and 41 move-

ment modes (40 load types and one movement mode
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Table 1. Accuracy of the policy gradients with respect to load availabilities.

Histogram Coeff. of variation
Corr. Avg. Time

Problem coeff. % dev. 2.5% 5% 10% 25% (sec.) Avg. 20% 80%

�10�1000�1�100�2� 0.99 6.27 45 56 71 100 0.09 0.55 0.20 0.82
�10�1000�1�100�4� 0.98 8.91 58 58 61 86 0.08 0.99 0.39 1.56
�10�1000�1�100�8� 0.99 6.95 65 68 70 89 0.08 1.01 0.46 1.47
�10�1000�1�200�2� 0.99 6.31 62 65 72 92 0.08 0.27 0.14 0.36
�10�1000�1�200�4� 0.98 5.73 67 71 74 93 0.08 0.35 0.16 0.45
�10�1000�1�200�8� 0.98 2.85 87 88 89 94 0.08 0.37 0.15 0.52
�30�3000�1�100�2� 0.98 9.48 54 55 62 81 0.31 0.68 0.19 0.99
�30�3000�1�100�4� 0.99 5.71 72 72 75 90 0.28 1.07 0.45 1.47
�30�3000�1�100�8� 0.98 5.88 76 76 76 88 0.27 1.52 0.64 2.26
�30�3000�1�200�2� 0.97 9.64 43 48 59 87 0.31 0.41 0.21 0.57
�30�3000�1�200�4� 0.96 8.87 49 52 61 90 0.28 0.55 0.28 0.76
�30�3000�1�200�8� 0.98 4.52 77 77 81 92 0.28 0.81 0.36 1.11

Note. Percent deviation is 100���
1 �eijl �d

n�− ���
1 �eijl �d

n��/���
1 �eijl �d

n��, and we ignore the data points with ��
1 �eijl �d

n�=0.

for empty repositioning). We label our test problems by
�T �D�K�R�e�, where T is the length of the planning hori-
zon, D is the expected number of loads over the planning
horizon, K is the number of vehicle types, R is the number
of available vehicles, and e is the empty repositioning cost
applied on a “per-mile” basis.

Accuracy of the Policy Gradients with Respect to
Load Availabilities. We start by testing the accuracy of
the method proposed to compute *�

t �eijl�d�. Our exper-
imental setup is as follows. For each test problem, we
first obtain a “good” vehicle allocation policy � by
using the sampling-based method of Godfrey and Pow-
ell (2002a). Having obtained a policy �, we sample N
load realizations, say d1�����dN . For each load realiza-
tion dn, we approximate *�

1 �eijl�d
n� for all i�j ∈� , l∈

� by using (26). We let � �*�
1 �eijl�d

n�� i�j ∈�� l∈��n=
1�����N � be these approximations. Because the method
given in §2.2 requires simulating the behavior of policy �
under load realization dn, at this point we can also compute
F �
1 �r1�d

n
1 �d

n
2 �����d

n
T � as

∑
t∈� ct ·x�dnt . We then physically

increase the number of loads of type l on lane �i�j� at
time period 1 by 1 and compute F �

1 �r1�d
n
1+eijl�d

n
2 �����d

n
T �

by simulating the behavior of policy � under load real-
ization dn+eijl1. In this way, we can accurately compute
*�

1 �eijl�d
n� in a “brute force” fashion as F �

1 �r1�d
n
1+eijl�

dn
2 �����d

n
T �−F �

1 �r1�d
n
1 �d

n
2 �����d

n
T �. Our aim is to compare

the approximation �*�
1 �eijl�d

n� that is computed through
(26) with *�

1 �eijl�d
n� that is computed in a “brute force”

fashion.
Table 1 summarizes our findings. The first set of col-

umns give the average percent deviation and the coeffi-
cient of correlation between �*�

1 �eijl�d
n�� i�j ∈�� l∈��

n=1�����N � and � �*�
1 �eijl�d

n�� i�j ∈�� l∈��n=1�����N �.
The second set of columns give a histogram for the percent
deviations that shows what fraction of the percent devia-
tions is less than 2.5%, 5%, 10%, and 25%. The next col-
umn gives the average time to compute � �*�

1 �eijl�d
n�� i�j ∈

�� l∈�� for a particular load realization dn. This time

includes the time spent simulating the behavior of pol-
icy � under load realization dn. The last set of columns
give summary statistics for the coefficients of variation of
�*�

1 �eijl�D�� i�j ∈�� l∈��. We estimate the coefficient of
variation of *�

1 �eijl�D� as 4ijl/6ijl, where 4ijl and 6
2
ijl are

the sample mean and sample variance of �*�
1 �eijl�d

n�� n=
1�����N �. Using this estimate of coefficient of variation,
one can have an idea of how many load realizations are
needed to estimate Ɛ�*�

1 �eijl�D�� with a certain precision
(see Law and Kelton 2000). Because 4ijl/6ijl depends on
i�j ∈� , l∈�, we give the mean, and the 20th and 80th per-
centiles of �4ijl/6ijl� i�j ∈�� l∈��. We note that the coef-
ficient of variation estimates are highly problem-specific
and one should not draw general conclusions from them.
The high coefficient of correlation and the low average

percent deviation figures in Table 1 show that �*�
1 �eijl�d

n��

i�j ∈�� l∈��n=1�����N � and � �*�
1 �eijl�d

n��i�j ∈��l∈
��n=1�����N � are in close agreement. The histograms
show that, about 90% of the time, our approximations are
within 25% of the true value. If we were working on
problems with deterministic load arrivals, then *�

1 �eijl�d�
could also be approximated by using the optimal value of
the dual variable associated with the load availability con-
straint xijl1�dijl1 in the “state-time network” formulation
of the problem. Powell (1989) reports that, 10% of the
time, approximating *�

1 �eijl�d� by using the dual solution
brings an error of 50% or more. Therefore, our method
can approximate *�

1 �eijl�d� noticeably better than the dual
solution of the “state-time network” formulation.

Accuracy of the Policy Gradients with Respect to
Vehicle Availabilities. We now compare the approxima-
tions obtained through (29), say ��#�

1 �e
k
i �d

n�� i∈��k∈��
n=1�����N �, with the values of �#�

1 �e
k
i �d

n�� i∈��k∈��
n=1�����N � obtained in a “brute force” fashion by increas-
ing the number of vehicles of type k at location i by one
and simulating the behavior of policy � under load real-
ization dn. The results in Table 2 indicate that (29) yields
accurate results.
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Table 2. Accuracy of the policy gradients with respect to vehicle availabilities.

Histogram Coeff. of variation
Corr. Avg. Time

Problem coeff. % dev. 2.5% 5% 10% 25% (sec.) Avg. 20% 80%

�10�1000�20�100�2� 0.97 3.28 88 89 91 92 0.41 0.91 0.56 1.16
�10�1000�20�100�4� 0.99 2.37 88 90 93 96 0.41 0.93 0.56 1.19
�10�1000�20�100�8� 0.99 3.46 87 89 89 93 0.41 0.93 0.57 1.23
�10�1000�20�200�2� 0.99 1.63 91 92 94 98 0.31 1.35 0.87 1.78
�10�1000�20�200�4� 0.97 3.28 88 89 91 92 0.41 1.29 0.86 1.71
�10�1000�20�200�8� 0.99 2.30 88 89 91 97 0.31 1.26 0.77 1.74
�10�1000�40�100�2� 1.00 0.77 94 95 97 99 0.59 1.14 0.67 1.55
�10�1000�40�100�4� 1.00 1.25 95 95 95 98 0.56 0.97 0.62 1.28
�10�1000�40�100�8� 1.00 0.77 94 95 97 99 0.58 1.14 0.67 1.55
�10�1000�40�200�2� 0.99 1.38 93 93 94 99 0.61 1.29 0.80 1.72
�10�1000�40�200�4� 1.00 1.11 93 94 96 99 0.60 1.26 0.75 1.68
�10�1000�40�200�8� 1.00 0.94 96 96 97 98 0.59 1.22 0.68 1.79
�30�3000�20�100�2� 0.98 6.78 55 61 67 97 0.86 1.42 0.92 1.89
�30�3000�20�100�4� 0.99 2.43 77 83 92 99 0.86 1.38 0.91 1.84
�30�3000�20�100�8� 0.99 3.74 68 70 82 98 0.85 1.56 1.01 2.06
�30�3000�20�200�2� 0.99 3.26 78 83 84 99 0.90 1.83 1.30 2.41
�30�3000�20�200�4� 0.99 4.34 64 73 82 97 0.90 1.86 1.20 2.55
�30�3000�20�200�8� 0.98 2.73 80 82 90 98 0.89 1.75 1.19 2.37
�30�3000�40�100�2� 0.98 3.90 79 79 83 94 1.66 1.06 0.70 1.32
�30�3000�40�100�4� 0.99 2.49 82 84 89 98 1.66 0.95 0.63 1.23
�30�3000�40�100�8� 0.99 3.22 77 78 85 98 1.65 0.87 0.61 1.04
�30�3000�40�200�2� 0.99 2.38 82 88 89 99 1.70 1.25 0.84 1.60
�30�3000�40�200�4� 0.99 2.40 82 84 89 99 1.71 1.37 0.92 1.84
�30�3000�40�200�8� 0.99 2.02 85 88 90 100 1.71 1.26 0.83 1.63

5. Conclusions
We presented efficient methods to assess the sensitivity of
a stochastic dynamic fleet management model to fleet size
and load availability. Numerical experiments indicated that
these methods are accurate and computationally tractable.
Information about the cost impact of an additional vehicle
or an additional load can, in turn, be used when making
fleet sizing, load evaluation, and pricing decisions. Using
the method described in §2.2 for load pricing is the topic
of another paper (see Topaloglu and Powell 2005).

Appendix
This section presents the omitted proofs. The following
result is useful when proving Lemma 3.

Lemma 7. If 
�
t �−ei�ej �d�+cijlt�0, then we have

X�
t �r

�d
t �dt+eijl�=x�dt .

Proof of Lemma 7. Consider problem (21) and its net-
work representation in Figure 2. In this problem, dijlt acts
as an upper bound on the decision variable xijlt , and a
min-cost network flow problem with upper bounds can be
converted to an equivalent problem without upper bounds
by the transformation shown in Figure A.1 (see Vanderbei
1997). Therefore, if dijlt is increased by one, then the
change in the optimal solution of problem (21) is given
by a min-cost flow augmenting path from node j to node
�i�j�l� in Figure A.1(b). We denote this min-cost flow
augmenting path by 	′. Because node �i�j�l� has exactly
two inbound arcs, there are two possible cases to consider

for 	′: (1) Either 	′ includes only the bold arc that con-
nects node j to node �i�j�l�—in this case, the cost of 	′

is 0; or (2) 	′ connects node j to node i, and then node i
to node �i�j�l�. We let 
�

t �−ei�ej �d� be the cost of the
min-cost flow augmenting path from node j to node i in
Figure A.1(a). Then, the cost of the min-cost flow augment-
ing path from node j to node i in Figure A.1(b) is also

�

t �−ei�ej �d�. Hence, for the second case, the cost of 	′

is 
�
t �−ei�ej �d�+cijlt .

Because 	′ is the min-cost flow augmenting path, if

�

t �−ei�ej �d�+cijlt >0, then the first case must hold
for 	′. Thus, we have X�

t �r
�d
t �dt+eijl�=X�

t �r
�d
t �dt�.

We conclude by noting that the possibility of having

�

t �−ei�ej �d�+cijlt=0 is ruled out by the random per-
turbation of the costs so that problem (21) does not have
alternative optima. �

Proof of Lemma 3. To show the first part, we consider
two cases depending on the sign of 
�

t �−ei�ej �d�+cijlt:
(1) If 
�

t �−ei�ej �d�+cijlt�0, then by Lemma 7, an addi-
tional load of type l on lane �i�j� does not change the
solution of problem (21). Therefore, X�

t �r
�d
t �dt+eijl�=

x�dt and R�
t+1�r

�d
t �dt+eijl�=r�dt+1 hold. (2) Following an

argument similar to the proof of Lemma 7, if we introduce
an additional load of type l on lane �i�j�, then the change in
the solution of problem (21) is given by the min-cost flow
augmenting path from node j to �i�j�l� in Figure A.1(b).
Let this flow augmenting path be 	′. If 
�

t �−ei�ej �d�+
cijlt <0, then the second case in the proof of Lemma 7
holds. Therefore, 	′ first connects node j to node i, and
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Figure A.1. (a) The cost and the upper bound for the
bold arc that connects node i to node j
are cijlt and dijlt . (b) The min-cost network
flow problem in Figure A.1(a) can be con-
verted to one without the aforementioned
upper bound by a simple transformation.
We introduce an extra node �i�j�l� with
supply −dijlt and set the supply of node j
to +dijlt .

i

j

i

j

+dijlt

[0, ∞]

(a)

(b)

rj, t +1

rj, t +1

[cijlt , ∞]

–dijlt

(i, j, l )

[cijlt , dijlt]

then, node i to node �i�j�l�. This means that 	′ is equal to
the min-cost flow augmenting path 	�

t �−ei�ej �d� appended
by the arc that connects node i to node �i�j�l�. Then, the
result follows.
The second part holds because any acyclic path from

node j ∈� in the middle section of Figure A.1(a) (or Figure
A.1(b)) to node i∈� on the left side traverses either zero
or two of the arcs corresponding to the variables �rj�t+1� j ∈
��. If a path traverses two of these arcs, then one of these
arcs is a forward arc and the other is a backward arc in the
path. �

Proof of Lemma 5. We now show the second part. We
first note that any acyclic path from node �i�k�∈�×� on
the left side of Figure 3 to the sink node can only visit the
nodes ��i�k′�� k′ ∈��.
Assume that the result does not hold. This means that

(�t+1�e
k
i �d� cannot be written as a vector whose elements are+1, −1, or 0, and hence, there exist j ′ ∈� , k′ ∈� such that

�(�k′j ′�t+1�e
k
i �d���2. Assume that (�k

′
j ′�t+1�e

k
i �d��2. Because

we have

(�k
′

j ′�t+1�e
k
i �d�=

∑
ı∈�

∑
'∈�

$�k
′

ıj ′'t�e
k
i �d��

there exist i′�i′′ ∈� and l′�l′′ ∈� such that $�k
′

i′j ′l′t�e
k
i �d�=

+1 and $�k
′

i′′j ′l′′t�e
k
i �d�=+1. Because of our initial observa-

tion, we must have i′ = i′′ = i. But, having $�k
′

ij ′l′t�e
k
i �d�=+1

and $�k
′

ij ′l′′t�e
k
i �d�=+1 implies that, on the min-cost flow

augmenting path from node �i�k� to the sink node, there
are two forward arcs that leave node �i�k′�. This contra-
dicts the fact that the min-cost flow augmenting path is
acyclic. One can also reach a contradiction by assuming
that (�k

′
j ′�t+1�e

k
i �d��−2. �

Proofs of Propositions 4 and 6 use the following result.

Lemma 8. For a separable function G�·�� �n→�, we have

G

(
x+

n∑
i=1

9iei

)
−G�x�=

n∑
i=1
�G�x+9iei�−G�x���

where 9i∈� for all i=1�����n, and ei is the n-dimensional
unit vector with a one in the ith element.

Proof of Lemma 8. Letting G�x�=∑n
i=1gi�xi�, where

gi�·�� �→� for all i=1�����n, we have

G

(
x+

n∑
i=1

9iei

)
−G�x�

=
n∑
i=1
�gi�xi+9i�−gi�xi��

=
n∑
i=1

{[i−1∑
j=1

gj�xj�+gi�xi+9i�+
n∑

j=i+1
gj�xj�

]

−
n∑

j=1
gj�xj�

}
� �
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