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Extensive literature has evolved around the prob-
lem of managing a fleet of vehicles to serve the
loads occurring at different locations in a transporta-
tion network. Yet relatively little attention has been
directed to the problem of determining what prices to
charge. Due to the competitive nature of the freight
transportation industry, lower prices can increase the
number of loads over different traffic lanes (origin-
destination pairs), but the correct prices have to con-
sider not only the profit-maximization problem over
each traffic lane, but also the downstream effects that
arise when the vehicles become empty and have to be
repositioned to other locations.
In this paper, we address the question of how to

coordinate the decisions on pricing and fleet man-
agement of a freight carrier. Let �1� � � � � T � be the
set of time periods in the planning horizon and at
the beginning of time period 1, the carrier decides
what prices to charge over the next T time periods.
These prices vary by traffic lanes, and may or may
not vary by time. The objective is to find a set of
prices that maximize the total expected profit over
the planning horizon. We explicitly model the ran-
dom load arrivals and the price-demand interactions
by letting the number of loads over each traffic lane
be a random variable whose distribution depends on
the price. Assuming that the carrier makes its fleet
management decisions by using the stochastic fleet
management model previously developed by Godfrey
and Powell (2002), we provide a tractable algorithm

to obtain sample path-based directional derivatives
of the objective function with respect to the prices.
Starting from given prices, we use this information to
search for better ones.
Fleet management models have their roots in some

of the earliest applications of linear programming and
min-cost network-flow algorithms; see Dantzig and
Fulkerson (1954), Ferguson and Dantzig (1955), White
and Bomberault (1969) and White (1972). These early
models essentially formulate the problem over a state-
time network, where the nodes represent the supply of
vehicles at different locations at different time peri-
ods, the arcs represent the vehicle movements, and
where the load availabilities act as upper bounds on
the arcs. They are referred to as deterministic models
because they assume that the load arrivals over the
entire planning horizon are known in advance and
they incorporate the uncertain future load arrivals
only through their expected values.
A second class of fleet management models tries

to treat the randomness in the load arrivals explic-
itly by decomposing the problem into time periods
and assessing the impact of the current decisions on
the future through value functions. Due to the large
number of decision variables and possible load real-
izations, classical stochastic optimization techniques
are usually not practical for computing the value
functions. Therefore, most of the stochastic mod-
els require approximating the value functions in a
tractable manner; see Jordan and Turnquist (1983),
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Frantzeskakis and Powell (1990), Crainic, Gendreau,
and Dejax (1993), Carvalho and Powell (2000), God-
frey and Powell (2002), Kleywegt, Nori, and Savels-
bergh (2002), Adelman (2004) and Topaloglu and
Powell (2006). Of particular interest to us is the
model proposed by Godfrey and Powell (2002),
which approximates the value functions by sepa-
rable, piecewise-linear, concave functions. The pri-
mary appeal of this strategy is that it decomposes
the fleet management problem into a sequence of
min-cost network-flow problems. Recently, Topaloglu
and Powell (2006) exploit this min-cost network-flow
structure to propose a sensitivity analysis algorithm
that computes the profit impact of an additional load
introduced into the system. In this paper, we embed
their algorithm in a pricing mechanism that consid-
ers the interactions between the prices and the load
arrivals. We emphasize that the papers mentioned in
this paragraph do not consider pricing issues. Instead,
given fixed prices and a stochastic process that char-
acterizes the load arrivals, they focus on either mak-
ing the fleet management decisions or computing the
profit impact of an additional load introduced into the
system.
There has not been much work on pricing deci-

sions in the fleet management context. Several papers
address the problem of determining how much the
total profit would change if an additional load is
introduced into the system. If the underlying model
utilizes a deterministic state-time network represen-
tation, then this problem can be solved by using the
dual variables associated with the constraints that
represent load availabilities; see Powell (1985), Powell
et al. (1988), and Powell (1989). However, determining
the profit impact of an additional load becomes diffi-
cult in the presence of uncertainty, primarily because
the optimal fleet management policy is not known.
Topaloglu and Powell (2007) show how to compute
this profit impact when the fleet management deci-
sions are made according to a (suboptimal) policy
with a certain structure.
Gorman (2001) and King and Topaloglu (2006) are

two papers we are aware of that explicitly model the
interactions between the prices and the load arrivals.
They consider price determination assuming that the
number of loads over a traffic lane is a determinis-
tic function of the price. King and Topaloglu (2006)
point out that the total profit, when viewed as a func-
tion of the prices, is not concave, and one must be
content with locally optimal prices. Gorman (2001)
reports significant reductions in the empty reposition-
ing miles and attributes the reductions to the fact that
the correct prices balance the traffic over the trans-
portation network. An important point is that these

two papers and our paper assume that the price-
demand functions completely characterize the reac-
tions of the shippers to the prices and ignore the com-
petitor response. Gorman (2001) notes that one way to
partially address this shortcoming is to use a kinked
price-demand function, capturing the fact that ship-
pers strongly react to price increases by reducing vol-
umes, but not too much to price decreases because
these are likely to be matched by competitors. In addi-
tion, these two papers and our paper do not consider
possible shifts in the shipper-demand patterns. For
example, if the vehicle movements follow cycles and
the vehicle supply at a particular location tends to be
high on a particular day of the week, then the car-
rier may reduce the price for the loads outbound from
that location on that day of the week and the ship-
pers may try to take advantage of the reduced price.
Finally, Gorman (2001) and King and Topaloglu (2006)
assume that the load arrivals are deterministic func-
tions of the prices and do not address the difficulties
that arise when the load arrivals are random. When
the load arrivals are deterministic, the optimal fleet
management policy can be found by solving a linear
program, whereas it is practically impossible to find
the optimal fleet management policy when the load
arrivals are random.
Related models and solution methods also appear

in the revenue management literature; see Talluri and
van Ryzin (2004) for a comprehensive coverage. One
possible approach for revenue management prob-
lems is to establish booking limits that capture what
portion of the available product inventory should
be reserved for different customer classes. Recently,
Karaesmen and van Ryzin (2004), Bertsimas and
de Boer (2005), and van Ryzin and Vulcano (2006)
have proposed stochastic gradient algorithms that
are somewhat similar to our approach for establish-
ing the booking limits. Stochastic gradient algorithms
have been successfully applied in other settings as
well. For example, Fu (1994), Glasserman and Tayur
(1995), and Mahajan and van Ryzin (2001), respec-
tively, present applications in finding attractive �s� S	
policies in single-echelon inventory systems, com-
puting base-stock levels in capacitated multi-echelon
inventory systems and making stocking decisions for
substitutable products.
In this paper, we make the following research con-

tributions: (1) We present a model that coordinates
the pricing and fleet management decisions, assum-
ing that the fleet management decisions are made
according to the class of policies proposed by Godfrey
and Powell (2002). The interaction between the pric-
ing and fleet management decisions is rarely investi-
gated in the fleet management literature, and when
it is, the usual assumption is that the load arrivals
are deterministic functions of the prices. Our paper
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fills this gap. (2) We develop an efficient algorithm
to obtain sample path-based directional derivatives
of the profit function with respect to the prices and
show how to use this information to search for a good
set of prices. (3) Through extensive numerical exper-
iments, we show that the proposed pricing approach
yields high-quality prices and performs significantly
better than deterministic methods that assume that
the demand is a deterministic function of the price.
The organization of the paper is as follows. In §1,

we describe our notation and the class of fleet man-
agement policies we consider; we present a model of
how the load arrivals react to changes in the prices
and formulate the core pricing problem. In §2, we
show how to obtain sample path-based directional
derivatives of the objective function with respect to
the prices and give a pricing algorithm. This section
assumes that, for a given traffic lane, the carrier can
announce different prices for different time periods.
Section 3 modifies the results of §2 to address the
situation where the carrier has to announce a single
price for each traffic lane. In §4, we present numerical
experiments that test the quality of the prices obtained
through our pricing approach.

1. Problem Formulation
We have a homogeneous fleet of vehicles to serve
the loads occurring at different locations over a finite
planning horizon. At the beginning of the planning
horizon, we set the prices that will be charged over
each traffic lane and at each time period. At every
time period, depending on the prices charged, a ran-
dom number of loads enters the system, and we
have to decide which loads to cover and to which
locations we should reposition the empty vehicles.
We are interested in maximizing the total expected
profit. We assume that advance information about
the future loads is not available and that loads that
cannot be covered at a given time period are served
by an emergency subcontractor. These enable us to
assume that the uncovered loads immediately leave
the system. For notational brevity, we assume that it
takes one time period to move between any pair of
locations, but our analysis can be repeated verbatim
under multiperiod travel times by using the modeling
approach in Topaloglu and Powell (2006). We define
the following.

� = Set of time periods in the planning horizon.
We have � = �1� � � � � T � for a finite T .

� = Set of locations in the transportation network.
� = Set of traffic lanes in the transportation net-

work. Intuitively, a traffic lane represents an
arc, whereas a location represents a node in the
transportation network.

ol, dl = Origin and destination locations for traffic
lane l ∈�.

xlt = Decision variable representing the number of
vehicles dispatched over traffic lane l ∈ � at
time period t ∈� .

A traffic lane l represents a direct movement from
location ol to dl, which can be through empty reposi-
tioning or serving a load. We assume that � =� ∪�,
where � and � are the sets of traffic lanes that respec-
tively correspond to empty repositioning and loaded
movements. In this case, the decision variable xlt cap-
tures the empty repositioning movements from loca-
tion ol to dl when l ∈ � and it captures the loaded
movements from location ol to dl when l ∈�. We also
define the following.

clt = Cost of empty repositioning a vehicle over
traffic lane l ∈� at time period t ∈� .

plt = Decision variable representing the price
charged for serving one load over traffic lane
l ∈� at time period t ∈� .

�lt�plt	= Profit from serving one load over traffic lane
l ∈� at time period t ∈� given that the price
charged is plt . We assume that �lt�·	 is strictly
increasing and differentiable, and its deriva-
tive is finite everywhere.

Dlt�plt	= Random variable representing the number
of loads that need to be served over traffic
lane l ∈� at time period t ∈� given that the
price charged is plt .

Since the costs of the empty repositioning movements
are fixed, the decision variable plt is only defined for
l ∈�, t ∈� . For notational uniformity, we assume that
the decision variable plt is also defined for l ∈�, t ∈� ,
but we fix its value at plt =−clt and follow the conven-
tion that �lt�plt	= plt for all l ∈ �, t ∈ � . Furthermore,
since the empty repositioning movements are not
bounded, we let Dlt�plt	=� for all l ∈�, t ∈� . In this
way, we do not have to make a distinction between
the lanes in � and �. For example, we can succinctly
write the profit at time period t as

∑
l∈� �lt�plt	xlt .

Throughout the paper, we use �Dlt�plt	 to denote a
particular realization of Dlt�plt	. By suppressing some
of the indices in the variables above, we denote a
vector composed of the elements ranging over the
suppressed indices. For example, we have xt = �xlt�
l ∈��, pt = �plt� l ∈��, �t�pt	= ��lt�plt	� l ∈��, �Dt�pt	=
� �Dlt�plt	� l ∈��, and �D�p	= � �Dlt�plt	� l ∈�� t ∈� �.
In the remainder of this section, we review the fleet

management model of Godfrey and Powell (2002).
This allows us to define the cumulative profit func-
tion of a fleet management policy and to formulate
the pricing problem that we want to solve. We con-
clude this section by describing how we model the
load random variables �Dlt�plt	� plt ∈�� l ∈�� t ∈� �.
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1.1. Fleet Management Policies
The fleet management policies that we consider are
based on the model developed by Godfrey and
Powell (2002). This model formulates the fleet man-
agement problem as a dynamic program and uses
tractable approximations of the value functions.
To capture the state of the system, we define

rit = Number of vehicles that are available at location
i ∈� at time period t ∈� .

Clearly, the vector rt = �rit� i ∈ �� defines the state of
the vehicles at time period t. Given this state vector
and the realization of the loads at time period t, the
set of feasible decision vectors and the set of state
vectors generated by these decisions are defined by

��rt� �Dt�pt		=
{
�xt�rt+1	∈����+�� �

+ �

∑
l∈��ol=i

xlt=rit for all i∈�� (1)

∑
l∈��dl=i

xlt−ri�t+1=0 for all i∈�� (2)

xlt≤ �Dlt�plt	 for all l∈�
}
� (3)

Thus, �xt� rt+1	 ∈��rt� �Dt�pt		 means that the decisions
xt are feasible when the state of the system is rt and
the realization of the loads is �Dt�pt	, and applying
the decisions xt generates the state vector rt+1 for the
next time period. Constraints (3) represent the load
availability constraints and imply that each vehicle
can cover at most one load at a time. Constraints (1)
and (2) respectively represent the vehicle availability
and system dynamics constraints, and imply that the
loads have to be carried all the way to their destina-
tion locations once they are picked up.
For fixed prices �pt� t ∈ � �, the optimal fleet man-

agement policy �∗ can be found by computing the
value functions �Vt�·	� t ∈ � � through the backward
recursion

Vt�rt	= Ɛ

{
max

�xt� rt+1	∈��rt �Dt�pt 		
�t�pt	 · xt +Vt+1�rt+1	

}
� (4)

see Puterman (1994). For a given state vector rt and
load realizations �Dt�pt	 at time period t, this optimal
policy makes the decisions by solving the problem

max
�xt� rt+1	∈��rt � �Dt�pt 		

�t�pt	 · xt +Vt+1�rt+1	�

For almost all problem instances of practical signif-
icance, computing the value functions is intractable
due to the well-known curse of dimensionality. In-
stead, we focus on a class of policies obtained by re-
placing the value functions �Vt�·	� t ∈� �with tractable
approximations, say � �V �

t �·	� t ∈ � �. Consequently,

each set of value-function approximations � �V �
t �·	�

t ∈ � � characterize a policy �, which makes the deci-
sions by solving the problem

max
�xt� rt+1	∈��rt � �Dt�pt 		

�t�pt	 · xt + �V �
t+1�rt+1	� (5)

For computational tractability, we use separable value-
function approximations of the form

�V �
t �rt	=

∑
i∈�

�V �
it �rit	�

where each �V �
it �·	 is a one-dimensional, piecewise-

linear, concave function with points of nondifferentia-
bility being a subset of positive integers.
Godfrey and Powell (2002) show that problem (5)

is a min-cost network-flow problem under this value-
function approximation strategy and give an iterative
algorithm to obtain value-function approximations
that characterize a good fleet management policy. The
question of whether this class of policies yield high-
quality solutions is outside the scope of this paper
and we refer the reader to Godfrey and Powell (2002),
where the experimental work indicates that this class
of policies perform better than standard benchmarks.
In this paper, we assume that we already have a pol-
icy characterized by separable, piecewise-linear, con-
cave value-function approximations. In §§2 and 3, we
show how to find a good set of prices given that the
fleet management decisions are made according to
this policy. In §4, we note that whether a particular
fleet management policy is good actually depends on
the prices, and use an iterative improvement heuristic
to find a good fleet management policy and a good set
of prices simultaneously.

1.2. Cumulative Profit Function
A Markovian deterministic fleet management pol-
icy � can be characterized by a sequence of deci-
sion functions �X�

t �·� ·� ·	� t ∈ � �, such that X�
t �·� ·� ·	

maps the state vector rt , prices pt , and load real-
izations �Dt�pt	 for time period t to a decision vec-
tor xt . We can also define the state transition functions
�R�

t+1�·� ·� ·	� t ∈ � � of policy �, such that R�
t+1�·� ·� ·	

maps the state vector, prices, and load realizations
for time period t to a state vector for the next time
period. The decision and state transition functions for
the class of policies that we consider are

�X�
t �rt� pt� �Dt�pt		�R

�
t+1�rt� pt� �Dt�pt			

= argmax
�xt� rt+1	∈��rt � �Dt�pt 		

�t�pt	 · xt + �V �
t+1�rt+1	� (6)

Throughout the paper, we restrict our attention to the
prices pt that make the optimal solution to problem (6)
unique for all state vectors rt and all load realizations
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�Dt�pt	. In this case, the decision and state transition
functions are well defined. The next lemma and the
discussion that follows show that such an assumption
is satisfied almost everywhere. The proof is deferred
to the appendix.

Lemma 1. There exists a finite number of at most
���� − 1	-dimensional subspaces of ����, e.g., 
1t � � � � �


N
t ,

such that if we have �t�pt	 ∈����\⋃N
n=1


n
t , then the opti-

mal solution to problem �6	 is unique for all state vectors rt
and all load realizations �Dt�pt	.

Therefore, if we ignore the cases where the objec-
tive function coefficients are in the vacuous set⋃N

n=1

n
t , then problem (6) has a unique optimal solu-

tion for all state vectors rt and all load realizations
�Dt�pt	. Because the functions ��lt�·	� l ∈ �� t ∈ � � are
strictly increasing, there is a one-to-one correspon-
dence between the objective function coefficients and
the prices. In this case, the prices that we need to
ignore also lie in a vacuous set. In particular, letting

�t =
{
pt� �t�pt	 ∈����\

N⋃
n=1


n
t

}
�

�t differs from ���� by a set of measure zero and if
we have pt ∈ �t , then the optimal solution to prob-
lem (6) is unique for all state vectors rt and all load
realizations �Dt�pt	.
For a given state vector rt at time period t, and

prices p = �plt� l ∈ �� t ∈ � �, and load realizations
�D�p	= � �Dlt�plt	� l ∈�� t ∈ � � over the whole planning
horizon, we write the cumulative profit function for
policy � recursively as

F �
t �rt� p� �D�p		= �t�pt	 ·X�

t �rt� pt� �Dt�pt		

+ F �
t+1�R

�
t+1�rt� pt� �Dt�pt		� p� �D�p		� (7)

with F �
T+1�·� ·� ·	= 0. By repeated application of (7), it

is easy to see that

F �
1 �r1� p� �D�p		

= �1�p1	 ·X�
1 �r1� p1� �D1�p1		

+�2�p2	 ·X�
2 �R

�
2 �r1� p1� �D1�p1		� p2� �D2�p2		

+···+�T �pT 	·X�
T �R

�
T �����pT−1� �DT−1�pT−1		�pT � �DT �pT 		�

Thus, F �
1 �r1� p� �D�p		 is the profit obtained over the

whole planning horizon, if we use policy �, the ini-
tial state vector is r1, the prices are p, and the load
realizations are �D�p	. Letting � = �1 ×�2 × · · · ×�T ,
the quantity F �

1 �r1� p� �D�p		 is well defined whenever
we have p ∈�.

1.3. Pricing Problem
Let � be a fixed fleet management policy belonging
to the class of policies we consider, and the pricing
problem we want to solve is

sup
p

Ɛ�F �
1 �r1� p�D�p		�� (8)

Note the discussion following Lemma 1, and the ob-
jective function of problem (8) is almost everywhere
well defined. One way to approach this problem is
to use a method that resembles gradient search. Let
elt be the ����� �-dimensional unit vector with a 1 in
the element corresponding to l ∈ �, t ∈ � and � be
a scalar, and one can start with the prices �p ∈ � and
compute the directional derivatives

lim
�↑↓0

1
�
Ɛ�F �

1 �r1� �p+�elt�D��p+�elt		− F �
1 �r1� �p�D��p		��

(9)
where lim�↑↓0 denotes the left and right limits as
� approaches zero. The expression above gives the
change in the total expected profit of policy � with
respect to a change in the price charged over lane l at
time period t. This can be used as a step direction in
a quasi-gradient search method.
However, computing the expression in (9) can be

prohibitive due to the expectation operator. Instead,
we opt for using sample path-based directional
derivatives. In particular, letting �D��p	 be a fixed real-
ization of D��p	, we propose using the sample path-
based directional derivatives

lim
�↑↓0

1
�
Ɛ�F �

1 �r1� �p+�elt�D��p+�elt		

− F �
1 �r1� �p�D��p		 �D��p	= �D��p	�� (10)

For all �p ∈�, we have

Ɛ

{
lim
�↑↓0

1
�
Ɛ�F �

1 �r1� �p+�elt�D��p+�elt		

− F �
1 �r1� �p�D��p		 �D��p	�

}

= lim
�↑↓0

1
�
Ɛ�Ɛ�F �

1 �r1� �p+�elt�D��p+�elt		

− F �
1 �r1� �p�D��p		 �D��p	��

= lim
�↑↓0

1
�

Ɛ�F �
1 �r1� �p+�elt�D��p+�elt		

− F �
1 �r1� �p�D��p		�� (11)

which implies that (10) provides a valid sample path-
based directional derivative at �p. The next lemma
shows that the expression inside the limits in (10) is
uniformly bounded. Therefore, exchanging the order
of the expectation and the limits in (11) is justified
by appealing to the bounded convergence theorem;
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Nlt(s)

λlt(plt + α) λlt(plt – α)λlt(plt)

Figure 1 Construction of �Dlt �plt �� plt ∈�	 Through �Nlt �s�� s ∈�+	 and �lt �·�
Notes. The sign × denotes an arrival of �Nlt �s�� s ∈�+	. We have Dlt �plt �= 7 and Dlt �plt + 
�= 6 for the sample path above.

see Royden (1988). The proof of Lemma 2 uses results
that we derive in the proof of Proposition 1 and is
deferred to the appendix.

Lemma 2. Assume that �p ∈�. In this case, there exist
 > 0 and M < � such that if we have � ∈ $− �  %\�0�,
then ∣∣∣∣ 1�Ɛ�F �

1 �r1� �p+�elt�D��p+�elt		

− F �
1 �r1� �p�D��p		�D��p	�

∣∣∣∣≤M (12)

holds for all realizations of D��p	.
Our main contribution is to show that the limits

in (10) exist whenever we have �p ∈ � and to pro-
vide a tractable algorithm to compute them. This is
the subject of §§2 and 3. We conclude this section by
describing how we model the load random variables
�Dlt�plt	� plt ∈�� l ∈�� t ∈� �.

1.4. Load Random Variables
We assume that Dlt�plt	 has a Poisson distribution.
Furthermore, we want the family of random variables
�Dlt�plt	� plt ∈ �� to be decreasing in plt . In particular,
we want them to satisfy

Dlt�plt +�	≤Dlt�plt	≤Dlt�plt −�	 (13)

with probability 1 for all plt ∈ � and �≥ 0. To model
this kind of a relationship, we let �Nlt�s	� s ∈ �+� be
a Poisson process with unit arrival rate and &lt�·	
be a decreasing, differentiable, positive-valued func-
tion with a finite derivative everywhere. Then, we let
Dlt�plt	 be the number of arrivals of this Poisson pro-
cess over the time interval �0�&lt�plt	%; see Figure 1.
Due to this construction, Dlt�plt	 has a Poisson dis-
tribution with mean &lt�plt	 and (13) is satisfied. Fur-
thermore, for �≥ 0, the change in the load arrivals in
response to a decrease in the price is described by

��Dlt�plt −�	= �Dlt�plt	 �Dlt�plt	= �Dlt�plt	�

= 1−&lt�plt −�	+&lt�plt	+ o��	� (14)

��Dlt�plt −�	= �Dlt�plt	+ 1 �Dlt�plt	= �Dlt�plt	�

= &lt�plt −�	−&lt�plt	+ o��	� (15)

��Dlt�plt −�	 > �Dlt�plt	+ 1 �Dlt�plt	= �Dlt�plt	�

= o��	� (16)

where o�·	 stands for a function g�·	 satisfying
lim�→0 g��	/�= 0. Exact expressions for the probabil-
ities above can be given by using the probability mass
function of the Poisson distribution, but the way they
are expressed will be more convenient for proving our
results.
Similarly, the change in the load arrivals in response

to an increase in the price can be described by using
the fact that given times 0<u≤ v and that Nlt�v	= k,
Nlt�u	 has a binomial distribution with parameters k
and u/v. For example, we have

��Dlt�plt +�	= �Dlt�plt	− 1 �Dlt�plt	= �Dlt�plt	�

= �Dlt�plt	

[
1− &lt�plt +�	

&lt�plt	

][
&lt�plt +�	

&lt�plt	

] �Dlt�plt 	−1

for �≥ 0. Throughout the paper, we assume that the
processes �Nlt�s	� s ∈�+� and �Nl′t′�s	� s ∈�+� are inde-
pendent when l �= l′ or t �= t′ so that the load arrivals
over different lanes or at different time periods are
independent.

2. Characterizing the Directional
Derivatives

In this section, we provide a tractable method to com-
pute the limits in (10) and show how the informa-
tion provided by them can be used to make pricing
decisions.
We begin with the next lemma, which follows from

the fact that problem (6) has a unique optimal solu-
tion whenever we have pt ∈ �t . Its proof is in the
appendix. In this lemma and throughout the paper,
we let el be the ���-dimensional unit vector with a 1
in the element corresponding to l ∈�.

Lemma 3. Assume that pt ∈ �t . In this case, there
exists  > 0 such that, for all state vectors rt and all load
realizations �Dt�pt	, if we have � ∈ $− �  %, then the optimal
solution to the problem

max
�xt� rt+1	∈��rt � �Dt�pt 		

�t�pt +�el	 · xt + �V �
t+1�rt+1	

does not depend on �.

To compute the limits in (10), we fix prices �p ∈ �
and let �D��p	 be a fixed realization of D��p	. We let
�x̂t� t ∈� � and �r̂t� t ∈� � be the sequences of decision
and state vectors visited by policy � under prices �p
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and load realizations �D��p	. Specifically, �x̂t� t ∈� � and
�r̂t� t ∈ � � are recursively computed by starting with
r̂1 = r1, and letting x̂t = X�

t �r̂t� �pt� �Dt��pt		 and r̂t+1 =
R�

t+1�r̂t� �pt� �Dt��pt		 for all t ∈� . The next lemma shows
that, for the purpose of computing (10), we can con-
centrate on the system starting from time period t
with the state vector r̂t .

Lemma 4. For the fixed prices �p and load realizations
�D��p	, the limits in �10	 can be written as

lim
�↑↓0

1
�
Ɛ�F �

1 �r1� �p+�elt�D��p+�elt		

− F �
1 �r1� �p�D��p		 �D��p	= �D��p	�

= lim
�↑↓0

1
�
Ɛ�F �

t �r̂t� �p+�elt�D��p+�elt		

− F �
t �r̂t� �p�D��p		 �D��p	= �D��p	�� (17)

Proof. The result is a consequence of the fact that
the load realizations and decisions at time periods
�1� � � � � t − 1� do not depend on the prices at time
period t. To formalize, we fix � and let �D��p + �elt	
be a fixed realization of D��p+�elt	. We let �x̄t� t ∈ � �
and �r̄t� t ∈ � � be the sequences of decision and state
vectors visited by policy � under prices �p+ �elt and
load realizations �D��p+ �elt	. Since we have �p ∈ �, if
� is small enough, then �x̄t� t ∈ � � and �r̄t� t ∈ � �
are well defined by Lemma 3. The prices �p and �p +
�elt coincide at time periods �1� � � � � t − 1�. Note our
construction in §1.4 and this implies that the load
random variables D��p	 and D��p + �elt	 coincide at
time periods �1� � � � � t − 1� with probability 1. In this
case, given that D��p	 = �D��p	, we have x̄s = x̂s and
r̄s = r̂s for all s ∈ �1� � � � � t−1�� Furthermore, given that
D��p	 = �D��p	, we have r̄t = R�

t �r̄t−1� �pt−1� �Dt−1��pt−1		 =
R�

t �r̂t−1� �pt−1� �Dt−1��pt−1		= r̂t . Therefore, the result fol-
lows by noting that the conditional expectation on the
right side of (17) is

Ɛ

{t−1∑
s=1

�s��ps	 · x̄s + F �
t �r̄t� �p+�elt�D��p+�elt		

−
t−1∑
s=1

�s��ps	 · x̂s − F �
t �r̂t� �p�D��p		

∣∣∣ D��p	= �D��p	
}
� �

The next proposition gives our main result.

Proposition 1. For the fixed prices �p and load realiza-
tions �D��p	, we have

lim
�↑0

1
�
Ɛ�F �

1 �r1� �p+�elt�D��p+�elt		

− F �
1 �r1� �p�D��p		 �D��p	= �D��p	�

= �̇lt��plt	x̂lt + &̇lt��plt	�F
�
t �r̂t� �p� �D��p	+ elt	

−F �
t �r̂t� �p� �D��p		�� (18)

lim
�↓0

1
�
Ɛ�F �

1 �r1� �p+�elt�D��p+�elt		

− F �
1 �r1� �p�D��p		 �D��p	= �D��p	�

= �̇lt��plt	x̂lt + &̇lt��plt	
�Dlt��plt	

&lt��plt	

· �F �
t �r̂t� �p� �D��p		− F �

t �r̂t� �p� �D��p	− elt	�� (19)

where �̇lt��plt	 and &̇lt��plt	 are respectively the derivatives
of �lt�·	 and &lt�·	 evaluated at �plt . If we have �Dlt��plt	= 0,
then F �

t �r̂t� �p� �D��p	− elt	 is not well defined, and we let
F �
t �r̂t� �p� �D��p	 − elt	 = −� and use the convention that
0�= 0/0= 0.

Proof. We only show that (18) holds. Our proof is
in two parts, each of which shows that

lim
�↑0

1
�
Ɛ�F �

t �r̂t� �p+�elt�D��p+�elt		

− F �
t �r̂t� �p�D��p+�elt		 �D��p	= �D��p	�

= �̇lt�plt	x̂lt� (20)

lim
�↑0

1
�
Ɛ�F �

t �r̂t� �p�D��p+�elt		

− F �
t �r̂t� �p�D��p		 �D��p	= �D��p	�

= &̇lt��plt	�F
�
t �r̂t� �p� �D��p	+ elt	− F �

t �r̂t� �p� �D��p		�� (21)

In this case, the results follows by Lemma 4.
Part 1. Lemma 3 implies that there exists  > 0 such

that

X�
t �r̂t� �pt +�el�Dt��pt +�el		

=X�
t �r̂t� �pt�Dt��pt +�el		 (22)

R�
t+1�r̂t� �pt +�el�Dt��pt +�el		

=R�
t+1�r̂t� �pt�Dt��pt +�el		 (23)

for all � ∈ $− �  % and all realizations of Dt��pt +
�el	. Throughout the proof, we assume that � ∈
$− �  %. Once we know the state vector at time period
t + 1, the cumulative profit starting from this time
period depends on the prices only at time periods
�t+ 1� � � � � T �. Therefore, we have

F �
t+1�R

�
t+1�r̂t� �pt+�el�Dt��pt+�el		� �p+�elt�D��p+�elt		

= F �
t+1�R

�
t+1�r̂t� �pt +�el�Dt��pt +�el		� �p�D��p+�elt		

= F �
t+1�R

�
t+1�r̂t� �pt�Dt��pt +�el		� �p�D��p+�elt		� (24)

where the second equality follows from (23). Finally,
we can use (7) to write

F �
t �r̂t� �p+�elt�D��p+�elt		

= �t��pt +�el	 ·X�
t �r̂t� �pt +�el�Dt��pt +�el		

+ F �
t+1�R

�
t+1�r̂t� �pt +�el�Dt��pt +�el		� �p

+�elt�D��p+�elt		
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F �
t �r̂t� �p�D��p+�elt		

= �t��pt	 ·X�
t �r̂t� �pt�Dt��pt +�el		

+ F �
t+1�R

�
t+1�r̂t� �pt�Dt��pt +�el		� �p�D��p+�elt		�

Subtracting the two equalities above, (22) and (24)
imply that

F �
t �r̂t� �p+�elt�D��p+�elt		− F �

t �r̂t� �p�D��p+�elt		

= $�t��pt +�el	−�t��pt	% ·X�
t �r̂t� �pt�Dt��pt +�el		� (25)

Consequently, the limit in (20) is equal to

lim
�↑0

1
�
$�t��pt +�el	−�t��pt	%

· lim
�↑0

Ɛ�X�
t �r̂t� �pt�Dt��pt +�el		 �D��p	= �D��p	��

We conclude this part by showing that the second
limit above is equal to x̂t . Since the load random vari-
ables over different lanes or at different time periods
are independent, (14)–(16) imply that

��Dt��pt +�el	= �Dt��pt	 �D��p	= �D��p	�
= 1−&lt��plt +�	+&lt��plt	+ o��	� (26)

��Dt��pt +�el	= �Dt��pt	+ el �D��p	= �D��p	�
= &lt��plt +�	−&lt��plt	+ o��	 (27)

for �≤ 0. The total probability of the remaining events
is o��	. Therefore, we have

Ɛ�X�
t �r̂t� �pt�Dt��pt +�el		 �D��p	= �D��p	�

= $1−&lt��plt +�	+&lt��plt	%X
�
t �r̂t� �pt� �Dt��pt		

+ $&lt��plt +�	−&lt��plt	%X
�
t �r̂t� �pt� �Dt��pt	+ el	+ o��	�

Taking the limits of both sides as � ↑ 0 and noting
that X�

t �r̂t� �pt� �Dt��pt		= x̂t establishes Part 1.
Part 2. The load random variables D��p	 and D��p+

�elt	 coincide at time periods �1� � � � � t−1� t+1� � � � � T �
with probability 1. Therefore, (26) and (27) imply that

��D��p+�elt	= �D��p	 �D��p	= �D��p	�
= 1−&lt��plt +�	+&lt��plt	+ o��	

��D��p+�elt	= �D��p	+ elt �D��p	= �D��p	�
= &lt��plt +�	−&lt��plt	+ o��	

for � ≤ 0. In this case, the conditional expectation in
(21) is

$1−&lt��plt+�	+&lt��plt	%�F
�
t �r̂t� �p� �D��p		−F �

t �r̂t� �p� �D��p		�
+$&lt��plt+�	−&lt��plt	%�F

�
t �r̂t� �p� �D��p	+elt	

−F �
t �r̂t� �p� �D��p		�+o��	� (28)

The first term above is zero and Part 2 follows by
dividing the expression above by � and taking the
limit as � ↑ 0. �

Since the functions �lt�·	 and &lt�·	 are assumed to
be known, �̇lt��plt	 and &̇lt��plt	 in (18) and (19) are
readily available. The values of the decision variables
�x̂lt � l ∈�� t ∈� � are obtained from a single simulation
of policy � under prices �p and load realizations
�D��p	. Therefore, the only computationally problem-
atic terms in (18) and (19) are F �

t �r̂t� �p� �D��p	 ∓ elt	 −
F �
t �r̂t� �p� �D��p		. We propose three methods to compute
them, each with a different level of tractability and
accuracy.

2.1. Numerical Difference-Based Method
We simulate policy � two more times, once under
prices �p and load realizations �D��p	 + elt , and once
under prices �p and load realizations �D��p	− elt . This
method is clearly exact, but computing F �

t �r̂t� �p��D��p	∓elt	−F �
t �r̂t� �p� �D��p		 for all l ∈�� t ∈� requires

2����� � additional simulations.

2.2. Value Function Approximation-Based Method
This method rests on a heuristic argument, but it
is the most efficient of the three. The difference
F �
t �r̂t� �p� �D��p	∓ elt	− F �

t �r̂t� �p� �D��p		 characterizes how
much the profit obtained by policy � under prices
�p and load realizations �D��p	 changes in response to
a load introduced over or removed from lane l at
time period t. If x̂lt < �Dlt��plt	 holds, then we have
X�

t �r̂t� �pt� �Dt��pt		 = x̂lt = X�
t �r̂t� �pt� �Dt��pt	 ∓ elt	, which

implies that F �
t �r̂t� �p� �D��p	 ∓ elt	 − F �

t �r̂t� �p� �D��p		 = 0.
Therefore, we assume that x̂lt = �Dlt��plt	 for the rest of
the discussion.
Roughly speaking, F �

t �r̂t� �p� �D��p	 ∓ elt	 − F �
t �r̂t� �p��D��p		 is the profit impact of a load introduced over or

removed from lane l at time period t. Let

Ṽ �
t �r̂t� �pt� �Dt��pt		

= max
�xt� rt+1	∈��r̂t � �Dt��pt		

�t��pt	 · xt + �V �
t+1�rt+1	 (29)

and use e′i to denote the �� �-dimensional unit vec-
tor with a 1 in the element corresponding to i ∈ � .
The idea behind the value function approximation-
based method is to use Ṽ �

t �r̂t ∓ e′i� �pt� �Dt��pt		 −
Ṽ �

t �r̂t� �pt� �Dt��pt		 to approximate the profit impact of
a vehicle introduced at or removed from location i at
time period t.
Assume that we introduce an additional load over

lane l at time period t. If the additional load is not
covered, then its profit impact is zero. However, if the
additional load is covered, then it occupies a vehicle
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at location ol and makes the vehicle move to loca-
tion dl. Due to our single-period travel time assump-
tion, this movement is completed at time period t+1.
Consequently, we use

max�Ṽ �
t �r̂t−e′ol � �pt� �Dt��pt		−Ṽ �

t �r̂t� �pt� �Dt��pt		+�lt��plt	

+ Ṽ �
t+1�r̂t+1+ e′dl � �pt+1� �Dt+1��pt+1		

− Ṽ �
t+1�r̂t+1� �pt+1� �Dt+1��pt+1		�0�

as an approximation to F �
t �r̂t� �p� �D��p	+ elt	− F �

t �r̂t� �p��D��p		, where the two terms in the max operator above
respectively correspond to the cases where the addi-
tional load is and is not covered.
Assume that we remove a load from lane l at time

period t. Due to the assumption that x̂lt = �Dlt��plt	,
we stop covering the removed load and this makes a
vehicle available at location ol at time period t. Con-
sequently, we use

Ṽ �
t �r̂t + e′ol � �pt� �Dt��pt		− Ṽ �

t �r̂t� �pt� �Dt��pt		−�lt��plt	

+ Ṽ �
t+1�r̂t+1− e′dl � �pt+1� �Dt+1��pt+1		

− Ṽ �
t+1�r̂t+1� �pt+1� �Dt+1��pt+1		

as an approximation to F �
t �r̂t� �p� �D��p	− elt	− F �

t �r̂t� �p��D��p		. We note the similarity between the expressions
above and the computation of the dual variable asso-
ciated with an upper bound constraint in a min-cost
network-flow problem, which can be stated as −�i +
cij +�j , where �i is the dual variable associated with
the flow balance constraint of node i and cij is the cost
of arc �i� j	.
Since problem (29) is a min-cost network-flow prob-

lem, we can compute Ṽ �
t �r̂t ∓e′i� �pt� �Dt��pt		− Ṽ �

t �r̂t� �pt��Dt��pt		 for all i ∈ � through two shortest path
tree computations; see Powell (1989). Therefore, this
method requires 2�� � shortest path tree computations.
Although it lacks theoretical foundation, §4 shows
that this approach performs well in practice.

2.3. Perturbation Analysis-Based Method
For the class of policies we consider, Topaloglu and
Powell (2007) develop an algorithm that approximates
F �
t �r̂t� �p� �D��p	 ∓ elt	 − F �

t �r̂t� �p� �D��p		. Their approach
is based on tracing the impact of an additional load
on the future trajectory of policy � and it uses
ideas similar to those in infinitesimal perturbation
analysis; see Glasserman (1991). Their algorithm is
exact when F �

t+1�·� �p� �D��p		 is a separable function
and yields accurate approximations even when the
separability assumption does not hold. It computes
F �
t �r̂t� �p� �D��p	∓ elt	− F �

t �r̂t� �p� �D��p		 for all l ∈�� t ∈ �
through 2�� ��� � shortest path tree computations. We
refer the reader to Topaloglu and Powell (2007) for
the details.

Step 1. Initialization: Set iteration counter n= 1. Pick initial prices
p1 = �p1lt � l ∈�� t ∈� �.

Step 2. Sample the load realizations: Let �Dn = � �Dn
lt � l ∈ �� t ∈ � �

be a sample of D�pn	= �Dlt�p
n
lt	� l ∈�� t ∈� �.

Step 3. Simulate the behavior of policy � under prices pn and load
realizations �Dn: Set rn1 = r1, t = 1.

Step 3.(a) Set �xn
t � r

n
t+1	= argmax

�xt � rt+1	∈��rnt � �Dn
t 	

�t�p
n
t 	 · xt + �V �

t+1�rt+1	�

Step 3.(b) Increment t by 1. If t ≤ T , then go to Step 3.a.
Step 4. For all l ∈ �, t ∈ � , approximate F �

t �rnt � p
n� �Dn ∓ elt	 −

F �
t �rnt � p

n� �Dn	 by using one of the three methods described
in §2.

Step 5. For all l ∈�, t ∈� , set

g�−
lt �rnt � p

n� �Dn	

= �̇lt �p
n
lt	x

n
lt + &̇lt �p

n
lt	�F

�
t �rnt � p

n� �Dn + elt	− F �
t �rnt � p

n� �Dn	�

g�+
lt �rnt � p

n� �Dn	= �̇lt �p
n
lt	x

n
lt + &̇lt �p

n
lt	

�Dn
lt

&lt�p
n
lt	

�F �
t �rnt � p

n� �Dn	

− F �
t �rnt � p

n� �Dn − elt	��
Step 6. Update the prices: For all l ∈�, t ∈� , set

pn+1
lt =




pn
lt +-n

ltg
�−
lt �rnt � p

n� �Dn	

if g�−
lt �rnt � p

n� �Dn	 < 0 and
− g�−

lt �rnt � p
n� �Dn	 > g�+

lt �rnt � p
n� �Dn	

pn
lt +-n

ltg
�+
lt �rnt � p

n� �Dn	

if g�+
lt �rnt � p

n� �Dn	 > 0 and
g�+
lt �rnt � p

n� �Dn	≥−g�−
lt �rnt � p

n� �Dn	

pn
lt otherwise,

where -n
lt is a step-size parameter.

Step 7. If the stopping criterion is not met, then increase n by 1
and go to Step 2.

Figure 2 Description of Algorithm 1

Figure 2 describes Algorithm 1, which uses (18)
and (19) to find a good set of prices for a fixed fleet
management policy �. The objective function of prob-
lem (8) is not necessarily concave. Since the left and
right limits in (18) and (19) are not necessarily equal
to each other, this objective function is not continu-
ously differentiable either. Consequently, the standard
results in Ermoliev (1988) and Bertsekas and Tsitsiklis
(1996) that exploit the concavity or smoothness of
the objective function are not applicable to show the
convergence of Algorithm 1 and we do not have a
convergence result for Algorithm 1.
Standard convergence results require the step-size

parameters in Step 6 to be positive, and to satisfy∑�
n=1 -

n
lt = � and

∑�
n=1$-

n
lt%
2 < � for all l ∈ �, t ∈ � .

We experiment with numerous step-size parameters,
some of which do not satisfy these requirements.
We describe our final choice in §4.3. One may con-
sider perturbing g�∓

lt �rnt � p
n� �Dn	 in Step 5 by a ran-

dom variable that is uniformly distributed over the
small interval $−.�.%. Note the discussion that fol-
lows Lemma 1, since � differs from ������ � by a set of
measure zero, and this ensures that the prices pn+1 lie
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in � with probability 1. Step 6 assumes that the prices
are unconstrained, but lower- and upper-bound con-
straints of the form Llt ≤ plt ≤ Ult can be imposed by
modifying this step as

pn+1
lt =




max�Llt� p
n
lt +-n

ltg
�−
lt �rnt � p

n� �Dn	�

if g�−
lt �rnt � p

n� �Dn	 < 0 and

− g�−
lt �rnt � p

n� �Dn	 > g�+
lt �rnt � p

n� �Dn	

min�Ult� p
n
lt +-n

ltg
�+
lt �rnt � p

n� �Dn	�

if g�+
lt �rnt � p

n� �Dn	 > 0 and

g�+
lt �rnt � p

n� �Dn	≥−g�−
lt �rnt � p

n� �Dn	

pn
lt otherwise.

To ensure that the prices pn+1 lie in � with probabil-
ity 1, one may also consider perturbing Llt and Ult by
random variables that are uniformly distributed over
the small intervals $0�.% and $−.�0%. The stopping
criterion in Step 7 uses the pairwise t-test to compare
the performances of the prices obtained at different
iterations. We describe the stopping criterion in detail
in §4.3.

3. Charging Uniform Prices over the
Planning Horizon

Up to this point, we have assumed that the prices
charged over a particular lane at different time peri-
ods can be different. We now consider the situation
where the carrier has to announce a single price for
each lane that is valid over the whole planning hori-
zon. Therefore, we have to have pl1 = pl2 = · · · = plT for
all l ∈�. Consequently, if the price charged over lane l
at time period t is adjusted, then the price charged
over this lane for every time period has to be adjusted.
This implies that the sample path-based directional
derivatives we need are characterized by the limits

lim
�↑↓0

1
�
Ɛ

{
F �
1

(
r1� �p+�

∑
t∈�

elt�D

(
�p+�

∑
t∈�

elt

))

− F �
1 �r1� �p�D��p		 �D��p	= �D��p	

}
�

The next proposition, shown in the appendix, is a nat-
ural extension of Proposition 1.

Proposition 2. For the fixed prices �p and load realiza-
tions �D��p	, we have

lim
�↑0

1
�
Ɛ

{
F �
1

(
r1� �p+�

∑
t∈�

elt�D

(
�p+�

∑
t∈�

elt

))

− F �
1 �r1� �p�D��p		 �D��p	= �D��p	

}

=∑
t∈�

�̇lt��plt	x̂lt +
∑
t∈�

&̇lt��plt	�F
�
t �r̂t� �p� �D��p	+ elt	

− F �
t �r̂t� �p� �D��p		�� (30)

lim
�↓0

1
�
Ɛ

{
F �
1

(
r1� �p+�

∑
t∈�

elt�D

(
�p+�

∑
t∈�

elt

))

− F �
1 �r1� �p�D��p		 �D��p	= �D��p	

}

=∑
t∈�

�̇lt��plt	x̂lt +
∑
t∈�

&̇lt��plt	
�Dlt��plt	

&lt��plt	

· �F �
t �r̂t� �p� �D��p		− F �

t �r̂t� �p� �D��p	− elt	�� (31)

Using Proposition 2, we can modify Algorithm 1 to
find a good set of prices that are fixed over the planning
horizon. If we use h�−

l �r1� �p� �D��p		 and h�+
l �r1� �p� �D��p		

to respectively denote the right sides of (30) and (31),
then all we need is to compute h�−

l �rn1 � p
n� �Dn	 and

h�+
l �rn1 � p

n� �Dn	 for all l ∈ � in Step 5, and modify
Step 6 as

pn+1
lt =




pn
lt +-n

l h
�−
l �rn1 � p

n� �Dn	

if h�−
l �rn1 � p

n� �Dn	 < 0 and

−h�−
l �rn1 � p

n� �Dn	 > h�+
l �rn1 � p

n� �Dn	

pn
lt +-n

l h
�+
l �rn1 � p

n� �Dn	

if h�+
l �rn1 � p

n� �Dn	 > 0 and

h�+
l �rn1 � p

n� �Dn	≥−h�−
l �rn1 � p

n� �Dn	

pn
lt otherwise,

where -n
l is a step-size parameter. Therefore, if

we start the algorithm with prices satisfying p1l1 =
p1l2 = · · · = p1lT for all l ∈�, then the prices satisfy pn

l1 =
pn
l2 = · · · = pn

lT for all l ∈ � and for any intermediate
iteration n.
It is easy to see that Proposition 2 can be

extended to cover the case where the planning hori-
zon is partitioned into k disjoint time intervals, e.g.,
�1� � � � �n1�� �n1 + 1� � � � �n2�� � � � � �nk−1 + 1� � � � � T �, and
the price for a particular lane cannot vary during a
particular time interval. For example, this situation
occurs when the planning horizon is multiple weeks
and the carrier cannot announce different prices for
different days of a particular week.

4. Computational Experiments
The main objective of this section is to show that
Algorithm 1 yields high-quality prices. In §4.1, we
begin by describing our experimental setup. Sec-
tion 4.2 describes the iterative improvement heuristic
mentioned in §1.1 that one can use to find a good fleet
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management policy and a good set of prices simulta-
neously. In §4.3, we dwell on the step-size parameters
and the stopping criteria. Section 4.4 compares the
performances of the three methods that we propose to
approximate F �

t �r̂t� �p� �D��p	∓elt	−F �
t �r̂t� �p� �D��p		 in §2.

Sections 4.5 and 4.6 present the results of two sets
of experiments. In the first set of experiments, we
observe how the prices react to changes in certain
problem parameters and make sure that they comply
with our expectations. The second set of experiments
shows that the prices obtained through our pricing
approach perform well when compared with the ones
obtained through benchmark methods.

4.1. Experimental Setup
We use two transportation networks, both involving
locations somewhat uniformly spread over the United
States. The first network involves 20 locations and
the second one involves 40 locations. The initial loca-
tions of the vehicles are uniformly distributed over
the network. We use fleets consisting of 50, 100, and
250 vehicles. We use planning horizons consisting of 7
and 21 time periods.
We assume that the prices are set on a per-mile

basis. In particular, if lane l corresponds to serving
a load, then we let �lt�plt	 = 2�ol� dl	$plt − c%, where
2�ol� dl	 is the distance from location ol to dl, and
c is the per-mile empty repositioning cost. We let
�lt�plt	=−2�ol� dl	c when lane l corresponds to empty
repositioning.
We use two functional forms for &lt�·	. The first one

is linear and has the form

&lt�plt	=3lt

[
− 1
ql

(
plt

5l

)
+ 1+ ql

ql

]
� (32)

with ql > 0, 3lt ≥ 0, 5l > 0. In the expression above,
5l stands for the prevailing price charged over lane
l and 3lt stands for the forecasted number of loads
over lane l at time period t given that we continue
charging the prevailing price 5l. We note that &lt�·	
satisfies &lt�5l	=3lt . If we continue charging the pre-
vailing prices, then the expected number of loads over
each lane and at each time period is equal to the
forecast. We restrict plt to be in $0� �1+ ql	5l% so that
&lt�·	 does not take negative values. We generate the
parameters �5l� l ∈�� and �ql� l ∈�� from the uniform
distributions respectively over $0�7�1�7% and $0�5�1�5%.
Gorman (2001) uses linear price-demand functions
similar to (32). The second functional form we use for
&lt�·	 is nonlinear and can be written as

&lt�plt	=3lt

[
1+ ql − ql

(
plt

5l

)kl
]
� (33)

with ql > 0, kl > 1, 3lt ≥ 0, 5l > 0. We note that we
have &lt�5l	 = 3lt similar to (32). We restrict plt to be

in $0� ��1+ql	/ql	
1/kl5l% so that &lt�·	 does not take neg-

ative values. We generate the parameters �5l� l ∈ ��,
�ql� l ∈ �� and �kl� l ∈ �� from the uniform distribu-
tions respectively over $0�7�1�7%, $0�5�1�5%, and $1�3%.
We generate the parameters �3lt� l ∈�� t ∈� � in (32)

and (33) in such a way that we have
∑

l∈� 3lt = 100
for all t ∈ � . Consequently, if we continue charging
the prevailing prices, then the total expected number
of loads at each time period is 100 and we obtain
balanced problems when we use fleets consisting of
100 vehicles. The term balanced should be taken cau-
tiously here, because one can clearly change the total
expected number of loads by adjusting the prices.
Throughout this section, we use �x1�x2�x3�x4	 ∈

�l�n�× �20�40�× �7�21�× �50�100�250� to denote the
characteristics of our test problems, where the first
element describes whether the functions �&lt�·	� l ∈�,
t ∈ � � have a linear or nonlinear form, the second
element describes the number of locations in the net-
work, the third element describes the number of time
periods in the planning horizon, and the fourth ele-
ment describes the size of the fleet.

4.2. Iterative Improvement Heuristic
An important point in Algorithm 1 is that a fleet man-
agement policy, which performs well with the ini-
tial prices, may have room for improvement after the
prices have been adjusted considerably. Therefore, in
our numerical experiments, we iteratively attempt to
improve the fleet management policy. In this way, we
hope to reach a good fleet management policy and
a good set of prices simultaneously. Throughout this
section, we use 6��	 to denote the output of Algo-
rithm 1. Thus, 6�·	 can be understood as a function
that takes a fleet management policy and returns a
good set of prices for this fleet management policy. On
the other hand, in the appendix, we describe an algo-
rithm due to Godfrey and Powell (2002) that finds a
good fleet management policy for given prices p. We
use 7�p	 to denote the output of this algorithm, so
that 7�·	 can be understood as a function that takes
a set of prices and returns a set of value-function
approximations characterizing a good fleet manage-
ment policy for these prices. Algorithm 2, which is
described in Figure 3, summarizes our iterative pol-
icy improvement idea. In Step 2 of Algorithm 2, we
find a good set of prices for the current fleet manage-
ment policy, whereas we try to improve the current
fleet management policy in Step 3. We dwell on the
stopping criterion in Step 4 in the next section.

4.3. Step-Size Parameters and Stopping Criteria
This section describes the step-size parameters and
the stopping criteria used in Algorithms 1 and 2.



Topaloglu and Powell: Incorporating Pricing Decisions
292 Transportation Science 41(3), pp. 281–301, © 2007 INFORMS

Step 1. Initialization: Set policy improvement iteration counter
n= 1. Pick initial prices p1. Pick an initial good fleet
management policy �1 by setting �1 =7�p1	.

Step 2. Find a good set of prices for the current fleet management
policy by using Algorithm 1: Set pn+1 =6��n	.

Step 3. Improve the current fleet management policy: Set
�n+1 =7�pn+1	.

Step 4. If the stopping criterion is not met, then increase n by 1
and go to Step 2.

Figure 3 Description of Algorithm 2

4.3.1. Step-Size Parameters. The step-size param-
eter that we use in Algorithm 1 is of the form -n

lt =
a/�b + n	, but we modify it to remedy its two short-
comings. First, depending on the values of a and b,
this step-size parameter may decline too quickly,
causing the prices to stall early, or may decline too
slowly, causing the prices to oscillate from one itera-
tion to the next. To remedy this, we use the step-size
parameter -n

lt = a/�b+:n
lt	, where :n

lt is the number of
times that the price over lane l at time period t oscil-
lates during the first n iterations; see Kesten (1958).
That is, we have :n

lt =
∑n−2

k=1 1�$p
k+1
lt − pk

lt%$p
k+2
lt − pk+1

lt %
< 0	 and 1�·	 is the indicator function. The idea is
that if the price starts oscillating from one iteration to
the next, then the step-size parameter should quickly
be made smaller. We find that the behavior of Algo-
rithm 1 is relatively insensitive to the choice of b and
we let b= 3.
Second, the magnitudes of the sample path-based

directional derivatives g�∓
lt �rnt � p

n� �Dn	 and the price
pn
lt can be quite different. Clearly, this becomes
problematic when letting pn+1

lt = pn
lt + �a/�3 + :n

lt		
g�∓
lt �rnt � p

n� �Dn	 in Step 6 of Algorithm 1. To remedy
this, we choose a in such a way that the magnitudes
of pn

lt and �a/�3+:n
lt		g

�∓
lt �rnt � p

n� �Dn	 are comparable.
In particular, since the prices range roughly over the
interval $0�2% with the midpoint 1, we let

a= 1

$�g�+
lt �rnt � p

n� �Dn	� + �g�−
lt �rnt � p

n� �Dn	�%/2 �

In this case, Step 6 of Algorithm 1 can be written as

pn+1
lt = pn

lt +
2

3+:n
lt

g�∓
lt �rnt � p

n� �Dn	

�g�+
lt �rnt � p

n� �Dn	� + �g�−
lt �rnt � p

n� �Dn	�
and our choice of a amounts to normalizing the
sample path-based directional derivatives. A similar
normalization idea for subgradient optimization is
described in Nemhauser and Wolsey (1988).

4.3.2. Stopping Criteria. The stopping criterion
that we use for Algorithm 2 requires keeping incum-
bent prices and an incumbent policy, e.g., p; and �;,
throughout the algorithm. Initially, we let p; = p1 and
�; = �1. Every < iterations of Algorithm 2, we use

the pairwise t-test to check if the prices and the pol-
icy obtained at the current iteration provide a bet-
ter objective value than the incumbent prices and the
incumbent policy; see Law and Kelton (2000). In par-
ticular, letting pn+1 and �n+1 respectively be the prices
and the policy obtained at iteration n, we generate N
samples of F �n+1

1 �r1� p
n+1�D�pn+1		− F �;

1 �r1� p
;�D�p;		

and test the null hypothesis

E�F �n+1
1 �r1� p

n+1�D�pn+1		�− Ɛ�F �;

1 �r1� p
;�D�p;		�≤ 0

at 5% significance level. If we fail to reject the null
hypothesis in = consecutive tests, then we conclude
that no significant improvement has been made dur-
ing the last <= iterations, and we stop and return
the incumbent prices and the incumbent policy. If
we reject the null hypothesis, then we update the
incumbent prices and the incumbent policy by letting
p; = pn+1 and �; = �n+1, and continue with the new
incumbent prices and the new incumbent policy. For
all of our test problems, choosing N around 100–150
yields reasonable Type II error probabilities.
We note that it is important to choose < and

= carefully. A small value for < causes the pair-
wise t-tests to be carried out too frequently and
wastes computational effort. Furthermore, the prices
should be allowed to improve between the successive
tests to avoid premature termination. On the other
hand, a large value for < also wastes computational
effort by unnecessarily delaying termination. After
some experimentation, we let < = 5 and = = 20. To
illustrate the behavior of our stopping criterion, the
solid data series in Figure 4 show the estimates of
Ɛ�F �n

1 �r1� p
n�D�pn		� for test problem �n�20�7�50	 as

a function of the iteration counter n in Algorithm 2.
The circles show the estimates of Ɛ�F �;

1 �r1� p
;�D�p;		�

for the iterations at which the incumbent prices and
the incumbent policy are updated. For given prices p
and policy �, we estimate Ɛ�F �

1 �r1� p�D�p		� by sim-
ulating the behavior of policy � under prices p and
under different realizations of D�p	. The square shows
the iteration at which our stopping criterion suggests
termination.
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We emphasize that our stopping criterion does not
guarantee the termination of Algorithm 2 within a
finite number of iterations. To address this shortcom-
ing, we put a prespecified limit on the total num-
ber of iterations in Algorithm 2. Such hard iteration
limits are not ideal, but they are often used due to
the lack of good stopping criteria for stochastic quasi-
gradient algorithms. We use a similar stopping crite-
rion for Algorithm 1 and also impose a hard iteration
limit. The only difference is that because Algorithm 1
assumes that the policy is fixed, we only keep incum-
bent prices.
It is important to note that when we use Algo-

rithm 1 as a subroutine in Step 2 of Algorithm 2, it is
not necessary or clear that Algorithm 1 should be run
until termination. In particular, we may consider run-
ning Algorithm 1 only for a few iterations rather than
running it until our stopping criterion suggests termi-
nation or until we reach the hard iteration limit. This
way, we simply try to improve the prices in Step 2 of
Algorithm 2 rather than try to find the best prices that
can be obtained by Algorithm 1. For all of our test
problems, running Algorithm 1 only for a few itera-
tions in Step 2 of Algorithm 2 provides essentially the
same results as running it until termination. The com-
putational results in the subsequent sections are for
the case where we run Algorithm 1 until termination
in Step 2 of Algorithm 2.
Following the discussion at the end of §2, to ensure

that the prices that we obtain at each iteration of
Algorithm 1 lie in �, we also try perturbing the
sample path-based directional derivatives by ran-
dom variables that are uniformly distributed over
the small interval $−.�.%. Because the magnitudes
of the sample path-based directional derivatives can
be as large as several hundreds and the prices range
roughly over the interval $0�2%, we let . = 10−4. For
all of our test problems, using these perturbations
provides essentially the same results as completely
omitting them. Admittedly, given the finite granular-
ity of computer arithmetic, one can argue about the
plausibility of these perturbations. Nevertheless, it is
comforting to see that our pricing approach is robust
to small perturbations of the sample path-based direc-
tional derivatives. The computational results in the
subsequent sections are for the case where we do not
explicitly perturb the sample path-based directional
derivatives.

4.4. Computing the Profit Impact of an Additional
Load

In §2, we propose three methods that can be used to
approximate F �

t �r̂t� �p� �D��p	∓ elt	− F �
t �r̂t� �p� �D��p		. The

numerical difference-based method requires 2����� �
additional simulations, where each additional simula-
tion requires solving �� � min-cost network-flow prob-
lems. Because the number of lanes is on the order

Table 1 Comparison of the Value Function
Approximation-Based and Perturbation
Analysis-Based Methods

Problem 
 ��v � pv � CPUv 
 ��a� pa� CPUa

�l�40�21�50� 6�94 32 6�94 94
�l�40�21�100� 9�67 44 9�67 117
�l�40�21�250� 11�86 52 11�87 142

�n�40�21�50� 3�49 32 3�47 88
�n�40�21�100� 4�77 39 4�75 106
�n�40�21�250� 6�00 46 5�99 121

Notes. 
 ��� p� = Ɛ�F �
1 �r1� p�D�p��	. All profits are in

$100�000.

of hundreds for our test problems, this method is
clearly not practical. To see the trade-off between
the other two methods, we apply Algorithm 2 twice
to six test problems—once using the value func-
tion approximation-based method and once using the
perturbation analysis-based method. We let �pv��v	
and �pa��a	 respectively be the pairs of the prices
and the policy obtained by Algorithm 2 by using
the value function approximation-based method and
the perturbation analysis-based method. The first
two columns in Table 1 show the estimates of
Ɛ�F �v

1 �r1� p
v�D�pv		� and the CPU seconds per itera-

tion for Algorithm 2 when it uses the value function
approximation-based method, whereas the last two
columns show the estimates of Ɛ�F �a

1 �r1� p
a�D�pa		�

and the CPU seconds per iteration for Algorithm 2
when it uses the perturbation analysis-based method.
Table 1 indicates that the performances of the two
methods are essentially the same, but the perturbation
analysis-based method takes considerably more time.
Nevertheless because it has some theoretical founda-
tion, we use the perturbation analysis-based method
in our computational experiments.

4.5. General Behavior
In this section, we observe our pricing approach from
a qualitative viewpoint and ensure that its behav-
ior complies with our expectations. In particular, we
show that the prices have a tendency to decline as the
vehicles become more abundant and to become more
uniform as the differences in the regional market con-
ditions diminish. We also demonstrate that when we
apply our pricing approach starting from different ini-
tial prices, the performances of the final prices we
obtain are similar.

4.5.1. Price Reactions to Increasing Vehicle
Availability. To show that the prices obtained
through our pricing approach decline as the fleet
size increases, we apply Algorithm 2 to problems
with varying fleet sizes. Table 2 shows the sum-
mary statistics for the prices obtained by Algo-
rithm 2. The entries of the table are the mean, and



Topaloglu and Powell: Incorporating Pricing Decisions
294 Transportation Science 41(3), pp. 281–301, © 2007 INFORMS

Table 2 Prices Obtained by Algorithm 2 Tend to Decrease as the Fleet Size Increases

Problem Mean 20th perc. 80th perc. Problem Mean 20th perc. 80th perc.

�l�20�21�50� 1�84 1�36 2�26 �l�40�21�50� 2�03 1�51 2�43
�l�20�21�100� 1�78 1�38 2�14 �l�40�21�100� 1�95 1�51 2�31
�l�20�21�250� 1�72 1�38 2�05 �l�40�21�250� 1�90 1�51 2�22

�n�20�21�50� 1�40 1�04 1�75 �n�40�21�50� 1�60 1�20 1�96
�n�20�21�100� 1�37 1�01 1�70 �n�40�21�100� 1�59 1�23 1�91
�n�20�21�250� 1�36 1�01 1�69 �n�40�21�250� 1�55 1�18 1�86

�l�20�7�50� 1�85 1�42 2�23 �l�40�7�50� 2�01 1�51 2�40
�l�20�7�100� 1�80 1�46 2�15 �l�40�7�100� 1�96 1�56 2�30
�l�20�7�250� 1�75 1�43 2�06 �l�40�7�250� 1�90 1�52 2�23

�n�20�7�50� 1�40 1�06 1�76 �n�40�7�50� 1�56 1�19 1�94
�n�20�7�100� 1�37 1�01 1�71 �n�40�7�100� 1�52 1�13 1�85
�n�20�7�250� 1�34 1�00 1�66 �n�40�7�250� 1�48 1�10 1�84

the 20th and 80th percentiles of the prices �po
lt� l ∈

�� t ∈ � � obtained by Algorithm 2. That is, for
example, the mean is computed as �1/��� ����		 ·∑

t∈�
∑

l∈� po
lt and the 20th percentile is computed

as the 20th percentile of the data �po
lt� l ∈ ��

t ∈� �. Table 2 confirms our expectation that the prices
should decline as the fleet size increases.

4.5.2. Price Reactions to Diminishing Differ-
ences in Regional Market Conditions. We now con-
sider problems where we have &lt�·	 ≈ &l′t′�·	 and
�lt�·	 ≈ �l′t′�·	 for all l, l′ ∈ �, t, t′ ∈ � . In this case,
since the load realizations and the per-load profits
react to price changes in the same manner for all l ∈�,
t ∈ � , we should expect the prices charged over dif-
ferent lanes and at different time periods to be similar.
Table 3 shows the standard deviation, and the 20th
and 80-th percentiles of the prices obtained through
our pricing approach when applied to problems with
these characteristics. For every test problem, the ini-
tial prices over different lanes and at different time
periods range over the interval $0�2�40%, with a stan-
dard deviation of 0.73, and 20th and 80th percentiles
of 0.48 and 1.69, respectively. Table 3 indicates that
the 20th and 80th percentiles of the final prices are

Table 3 When �lt �·� ≈ �l′ t′ �·� and �lt �·� ≈ �l′ t′ �·� for All l� l ′ ∈�� t� t ′ ∈ � , the Prices over Different Lanes
and at Different Time Periods Are Close to Each Other

Problem St. dv. 20th perc. 80th perc. Problem St. dv. 20th perc. 80th perc.

�l�20�21�50� 0�12 1�93 2�09 �l�40�21�50� 0�16 1�80 2�03
�l�20�21�100� 0�13 1�67 1�85 �l�40�21�100� 0�17 1�63 1�78
�l�20�21�250� 0�16 1�22 1�39 �l�40�21�250� 0�27 1�26 1�48

�n�20�21�50� 0�07 1�48 1�58 �n�40�21�50� 0�09 1�40 1�52
�n�20�21�100� 0�06 1�38 1�47 �n�40�21�100� 0�10 1�32 1�41
�n�20�21�250� 0�08 1�12 1�20 �n�40�21�250� 0�13 1�09 1�23

�l�20�7�50� 0�13 1�89 2�07 �l�40�7�50� 0�18 1�78 2�01
�l�20�7�100� 0�13 1�66 1�83 �l�40�7�100� 0�17 1�63 1�81
�l�20�7�250� 0�14 1�22 1�38 �l�40�7�250� 0�24 1�26 1�44

�n�20�7�50� 0�06 1�49 1�56 �n�40�7�50� 0�10 1�39 1�52
�n�20�7�100� 0�06 1�38 1�45 �n�40�7�100� 0�09 1�30 1�41
�n�20�7�250� 0�07 1�10 1�18 �n�40�7�250� 0�13 1�09 1�22

close to each other and the standard deviations are
quite small, which implies that the final prices over
different lanes and at different time periods are close
to each other.

4.5.3. Price Reactions to Different Initial Prices.
Our pricing approach does not have a convergence
guarantee. Furthermore, the objective function of
problem (8) is not necessarily concave. Therefore, if
we apply our pricing approach starting from different
initial prices, then the performances of the final prices
we obtain can be different. To ensure that this is not
a major issue, we apply our pricing approach starting
from three different initial prices, say p̃1, �p1 and p̄1.
The coefficients of correlation among �p̃1lt � l ∈ ��
t ∈ � �, ��p1lt � l ∈ �� t ∈ � �, and �p̄1lt � l ∈ �� t ∈ � � are
−0�96, −0�36, and 0�36. We let �p̃o� ��o	, ��po� ��o	, and
�p̄o� ��o	 respectively be the pairs of the prices and
the policy obtained by Algorithm 2 starting from
the initial prices p̃1, �p1, and p̄1. Table 4 shows the
estimates of Ɛ�F ��o

1 �r1� p̃
o�D�p̃o		�, Ɛ�F ��o

1 �r1� �po�D��po		�,
and Ɛ�F ��o

1 �r1� p̄
o�D�p̄o		�, and indicates that the perfor-

mances of the final prices that are obtained by start-
ing from different initial prices are close to each other.
Furthermore, Figure 5 gives plots of ���p1lt� p̄1lt	� l ∈��
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Table 4 Even Though We Start Algorithm 2 with Different Initial Prices, the Performances of the Final Prices
Are in Close Agreement

Problem 
 � ��o� p̃o� 
 � ��o� �po� 
 � ��o� p̄o� Problem 
 � ��o� p̃o� 
 � ��o� �po� 
 � ��o� p̄o�

�l�20�21�50� 9�55 9�53 9�51 �l�40�21�50� 6�94 6�95 6�94
�l�20�21�100) 12�87 12�84 12�83 �l�40�21�100� 9�67 9�65 9�63
�l�20�21�250� 15�07 14�99 15�02 �l�40�21�250� 11�87 11�87 11�87

�n�20�21�50� 4�74 4�73 4�74 �n�40�21�50� 3�47 3�46 3�46
�n�20�21�100� 5�77 5�70 5�72 �n�40�21�100� 4�75 4�75 4�75
�n�20�21�250� 6�75 6�75 6�78 �n�40�21�250� 5�99 5�96 5�97

�l�20�7�50� 3�26 3�24 3�23 �l�40�7�50� 2�28 2�27 2�28
�l�20�7�100� 4�43 4�42 4�41 �l�40�7�100� 3�31 3�30 3�31
�l�20�7�250� 5�69 5�69 5�66 �l�40�7�250� 4�49 4�49 4�48

�n�20�7�50� 1�68 1�67 1�68 �n�40�7�50� 1�17 1�16 1�17
�n�20�7�100� 2�17 2�16 2�16 �n�40�7�100� 1�79 1�79 1�80
�n�20�7�250� 2�88 2�88 2�89 �n�40�7�250� 2�49 2�48 2�49

t ∈ � � and ���po
lt� p̄

o
lt	� l ∈ �� t ∈ � � for test problem

�l�20�21�250	, and indicates that �po and p̄o are in close
agreement, although �p1 and p̄1 are not.

4.6. Solution Quality
This section tests the quality of the prices obtained by
Algorithm 2. We present two sets of experiments. The
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Figure 5 Comparison of ���p1
lt � p̄

1
lt �� l ∈�� t ∈� 	 and

���po
lt � p̄

o
lt �� l ∈�� t ∈� 	 for Test Problem �l�20�21�250�

first set of experiments compares the performance of
our pricing approach with that of a deterministic non-
linear program. In the second set of experiments, we
assume that the price over every lane is fixed, except
for three lanes. We carry out an exhaustive numeri-
cal search to find the best prices to charge over these
three lanes.

4.6.1. Comparisons Against Deterministic Non-
linear Program. When dealing with a problem that
involves uncertainty, a common engineering prac-
tice is to assume that all random variables take on
their expected values and to formulate a determinis-
tic approximation to the original problem. Noting that
Ɛ�Dlt�plt	�= &lt�plt	, a deterministic pricing model can
be formulated as

max
∑
t∈�

∑
l∈�

�lt�plt	xlt

subject to
∑

l∈�� ol=i

xl1 = ri1 for all i ∈�

∑
l∈��dl=i

xl� t−1−
∑

l∈�� ol=i

xlt = 0

for all i ∈�� t = 2� � � � � T

xlt ≤ &lt�plt	 for all l ∈�� t ∈�

plt� xlt ≥ 0 for all l ∈�� t ∈� �

(34)

The objective function accounts for the total profit
over the whole planning horizon. The first two sets
of constraints are the flow balance constraints sim-
ilar to (1) and (2), whereas the third set of con-
straints consists of the demand availability constraints
similar to (3). One can consider imposing integral-
ity constraints on the variables �xlt� l ∈�� t ∈ � �, but
this would make the problem intractable. Due to our
choice of the parameters in (32) and (33), &lt�·	 is con-
cave, and hence, the feasible region of the problem
above is convex. However, because the objective func-
tion is not necessarily concave, we solve problem (34)
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Table 5 Comparison of the Prices Obtained by Algorithm 2 and
Problem (34)

% CPU on
Problem 
 ��o� po� 
 ��b� pb� No. itns. CPU stopping

�l�20�21�50� 9�55 9�18 260 11�332 20
�l�20�21�100� 12�87 12�60 245 13�355 22
�l�20�21�250� 15�07 12�43 245 15�089 23

�n�20�21�50� 4�74 4�30 270 11�109 20
�n�20�21�100� 5�77 4�81 265 13�474 21
�n�20�21�250� 6�75 5�42 270 14�650 23

�l�20�7�50� 3�26 3�12 270 3�557 20
�l�20�7�100� 4�43 4�33 255 3�853 20
�l�20�7�250� 5�69 5�51 255 3�959 22

�n�20�7�50� 1�68 1�58 270 3�265 19
�n�20�7�100� 2�17 1�91 265 3�469 20
�n�20�7�250� 2�88 2�28 200 2�859 22

�l�40�21�50� 6�94 6�58 235 25�126 14
�l�40�21�100� 9�67 9�02 230 30�659 15
�l�40�21�250� 11�87 11�03 425 70�975 15

�n�40�21�50� 3�47 3�16 440 44�917 14
�n�40�21�100� 4�75 3�85 425 53�891 16
�n�40�21�250� 5�99 4�56 425 60�721 16

�l�40�7�50� 2�28 2�16 200 6�387 13
�l�40�7�100� 3�31 3�21 235 8�886 14
�l�40�7�250� 4�49 4�37 245 10�655 15

�n�40�7�50� 1�17 1�05 445 13�180 13
�n�40�7�100� 1�79 1�64 415 14�314 13
�n�40�7�250� 2�49 2�03 175 6�583 14

by starting a nonlinear programming package from 30
different initial solutions. We let pd = �pd

lt� l ∈�� t ∈� �
be the prices obtained through this deterministic
benchmark method.
Letting 2d be the optimal objective value of prob-

lem (34) and �V d
t �·	� t ∈ � � be the value functions

obtained by applying the backward recursion in (4)
under the prices pd, it is well known that we have
Ɛ�F �

1 �r1� p
d�D�pd		� ≤ V d

1 �r1	 ≤ 2d for any fleet man-
agement policy �; see Birge and Louveaux (1997).
However, there does not exist a relationship between
2d and supp Ɛ�F

�
1 �r1� p�D�p		�, which is the optimal

objective value of the problem we want to solve. Con-
sequently, we use problem (34) only to obtain the
prices pd.
To test the quality of the prices pd, we find a good

policy �d for these prices and evaluate the perfor-
mance of the policy �d under the prices pd. That is,
we set �d = 7�pd	 and estimate Ɛ�F �d

1 �r1� p
d�D�pd		�.

Table 5 shows our findings. Letting �po��o	 be the
prices and the policy obtained by Algorithm 2, the
first and second column of this table show the esti-
mates of Ɛ�F �o

1 �r1� p
o�D�po		� and Ɛ�F �d

1 �r1� p
d�D�pd		�.

The third and fourth column show the number of iter-
ations and the CPU seconds required for Algorithm 2
to terminate. Finally, the fifth column shows what
percent of the CPU seconds is spent on checking the
stopping criteria. The results indicate that the prices

obtained by Algorithm 2 perform significantly better
than the ones obtained by problem (34). The num-
ber of iterations required for termination seems to
increase slightly as the number of locations increases.
A significant portion of the CPU seconds is spent on
checking the stopping criteria. This is a well-known
difficulty for stochastic gradient algorithms. In par-
ticular, checking the quality of a solution may some-
times take longer than obtaining the solution in the
first place; see Higle and Zhao (2004).

4.6.2. Comparisons Against Exhaustive Numeri-
cal Search. In this set of experiments, we choose three
lanes, e.g., l1, l2, and l3, and assume that the prices
charged over only these lanes are decision variables.
The prices charged over the remaining lanes are fixed
at predetermined values, e.g., p̃ = �p̃lt � l ∈ �� t ∈ � �.
We also assume that the prices charged over these
lanes cannot vary over the planning horizon, so that
the number of price decision variables is only three.
For a given mesh size �> 0, our exhaustive numer-

ical search tests the performances of the prices

p̃+�

[
k1

∑
t∈�

el1t + k2
∑
t∈�

el2t + k3
∑
t∈�

el3t

]

for different values of �k1� k2� k3	 ∈ �3. We test every
value of �k1� k2� k3	 in �1×�2×�3, where

�i = �ki ∈�� p̃lit
+�ki ≥ 0�

&lit
�p̃lit

+�ki	≥ 0 for all t ∈� ��

Letting >l =
∑

t∈� elt for notational brevity, to assess
the quality of the prices p̃ + �$k1>l1

+ k2>l2
+ k3>l3

%,
we first find a good policy ��k1� k2� k3	 by setting
��k1� k2� k3	=7�p̃+�$k1>l1

+k2>l2
+k3>l3

%	. Then, we
evaluate the performance of this policy by estimating

Ɛ
{
F

��k1� k2� k3	
1 �r1� p̃+�$k1>l1

+ k2>l2
+ k3>l3

%�

D�p̃+�$k1>l1
+ k2>l2

+ k3>l3
%		

}
�

By testing every value of �k1� k2� k3	 in �1 ×�2 ×�3,
we find �k∗1� k

∗
2� k

∗
3	 that maximizes the quantity above.

This is the maximum profit that can be attained by the
numerical search. Letting �po��o	 be the prices and
the policy obtained by Algorithm 2, Table 6 shows
the ratio of the estimate of Ɛ�F �o

1 �r1� p
o�D�po		� to the

maximum profit that can be attained by the numerical
search. The results indicate that the prices obtained
through our pricing approach perform as well as the
ones obtained through the numerical search.

5. Conclusions
In this paper, we showed how to coordinate the
pricing and fleet management decisions of a freight
carrier assuming that a particular type of model is
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Table 6 Comparison of the Prices Obtained by
Algorithm 2 and the Exhaustive Numerical
Search

Problem Profit ratio

�l�40�21�50� 0�99
�l�40�21�100� 1�00
�l�40�21�250� 1�00

�n�40�21�50� 1�00
�n�40�21�100� 0�99
�n�40�21�250� 1�00

responsible from making the fleet management deci-
sions. We developed an algorithm to obtain sample
path-based directional derivatives of the objective
function with respect to the prices and used this infor-
mation to search for a good set of prices. Numer-
ical experiments showed that the proposed pricing
approach yields high-quality prices.
Our main results, Propositions 1 and 2, only

assume that the underlying fleet management pol-
icy is Markovian, and the results of the decision
and state transition functions do not change with
infinitesimal perturbations in the prices. Therefore,
(18), (19), (30), and (31) continue to hold for an
arbitrary fleet management policy as long as it sat-
isfies these assumptions. Nevertheless, computing
F �
t �r̂t� �p� �D��p	 ∓ elt	 − F �

t �r̂t� �p� �D��p		 may be difficult
for arbitrary fleet management policies, whereas this
is relatively easy for the class of policies proposed by
Godfrey and Powell (2002).
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Appendix A. Omitted Proofs
The next result is useful for proving Lemma 1.

Lemma A.1. For fixed W ∈ �m×n and b ∈ �m, consider the
linear-programming problem max�qT y� Wy ≤ b� y ≥ 0� with a
bounded and nonempty set of feasible solutions. In this case, there
exists a finite number of at most �n− 1	-dimensional subspaces
of �n such that if the linear-programming problem has multiple
optimal solutions for some q ∈�n, then q must lie in one of these
subspaces.

Proof of Lemma A.1. Defining the necessary slack deci-
sion variables, and augmenting the constraint matrix and
the objective function coefficients appropriately, we write
the problem max�qT y� Wy ≤ b�y ≥ 0� as max�cT x� Ax = b�
x ≥ 0�, where A ∈ �m×�n+m	 and c ∈ �n+m. Assume that the
latter problem has multiple optimal solutions for some c ∈
�n+m. In this case, we can find a basis B with the follow-
ing properties. (1) The basic feasible solution correspond-
ing to the basis B is an optimal solution to the problem

max�cT x� Ax = b� x ≥ 0�. (2) If we let x∗ be the basic feasi-
ble solution corresponding to the basis B and partition x∗

as $x∗
B� x

∗
N %, where x∗

B and x∗
N respectively correspond to the

basic and nonbasic parts, then the reduced cost correspond-
ing to one of the elements of x∗

N is zero. (3) This element of
x∗
N corresponds to one of the original decision variables y

(rather than one of the slack decision variables).
We partition the matrix A as $B�N %, where B is the basis

above and N is the remaining portion. We also partition the
vector c as $cB� cN %, where cB and cN respectively correspond
to x∗

B and x∗
N . The second property above implies that one

element of the vector �B−1N	T cB − cN is equal to zero. The
third property above implies that this element corresponds
to one of the original decision variables. Therefore, one ele-
ment of the vector q can be written as a linear combination
of the other elements. The result follows by noting that there
are only a finite number of possible bases. �

Proof of Lemma 1. To prove the result, we show that
there exists a finite number of at most ����−1	-dimensional
subspaces of ���� such that if problem (6) has multiple opti-
mal solutions for some state vector rt and load realizations�Dt�pt	, then �t�pt	 must lie in one of these subspaces.
Since the number of vehicles is finite, there are only a

finite number of possible state vectors. Furthermore, letting
K be the number of vehicles, it is enough to concentrate on
the load realizations �Dt�pt	 that satisfy �Dlt�plt	 ≤ K for all
l ∈ �. Whenever we have �Dlt�plt	 > K for some l ∈ �, we
can assume that �Dlt�plt	= K without changing the optimal
solution to problem (6). Therefore, there are only a finite
number of possible load realizations that are of interest.
For fixed state vector rt and load realizations �Dt�pt	,

we assume that problem (6) has multiple optimal solu-
tions. Since problem (6) is a min-cost network-flow problem
as mentioned in §1.1, Lemma A.1, with little extra work,
implies that �t�pt	 must lie in one of the finite number of at
most ����−1	-dimensional subspaces of ����. The result fol-
lows by noting that there are only a finite number of state
vectors and load realizations that are of interest. �

Because the proofs of Lemmas 1 and 3 are related, we
prefer to prove Lemma 3 before Lemma 2.

Proof of Lemma 3. We fix state vector rt and load real-
izations �Dt�pt	. Since pt ∈ �t , the optimal solution to prob-
lem (6) is unique. Furthermore, because the number of
vehicles is finite and we have the integrality constraints,
there is only a finite number of feasible solutions to prob-
lem (6). Therefore, the objective value obtained by the opti-
mal solution to problem (6) is larger than the objective value
obtained by all other feasible solutions by a strictly posi-
tive quantity. Since problem (6) is a min-cost network-flow
problem and �t�pt	 is a continuous function of pt , the opti-
mal objective value of problem (6) is a continuous func-
tion of the prices. All of these observations imply that we
can change the prices by a small amount  �pt� rt� �Dt�pt		 > 0
without changing the optimal solution to problem (6). We
use the arguments pt , rt , and �Dt�pt	 to emphasize the depen-
dence of  �pt� rt� �Dt�pt		 on these quantities. The result fol-
lows by noting that there is only a finite number of state
vectors and load realizations that is of interest. �
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Proof of Lemma 2. We let  > 0 be such that (22) and (23)
hold for all � ∈ $− �  % and all realizations of Dt��pt + �el	.
For � ∈ $− �0	, (25) implies that∣∣∣∣ 1��F �

t �r̂t� �p+�elt�D��p+�elt		− F �
t �r̂t� �p�D��p+�elt		�

∣∣∣∣
≤
∣∣∣∣K� $�lt��plt +�	−�lt��plt	%

∣∣∣∣
for all realizations of D��p + �elt	, where K is the number
of vehicles. Letting g1��	= ��K/�	$�lt��plt +�	−�lt��plt	%� and
using the fact that �lt�·	 is an increasing function, we have
lim�↑0 g1��	=K�̇lt��plt	, which is finite. Furthermore, g1�− 	
is also finite and g1�·	 is a continuous function over $− �0	.
By using the last three facts, it is easy to see that there exists
M1 such that g1��	≤M1 <� for all � ∈ $− �0	. This implies
that we have∣∣∣∣ 1�Ɛ�F �

t �r̂t� �p+�elt�D��p+�elt		

− F �
t �r̂t� �p�D��p+�elt		 �D��p	�

∣∣∣∣≤M1 (A1)

for all � ∈ $− �0	 and all realizations of D��p	.
Letting M2 be such that ��lt��plt	� ≤ M2 < � for all l ∈ �,

t ∈ � , the cumulative profit over the whole planning hori-
zon under prices �p is bounded by KM2�� �. Therefore, we
have �F �

t �r̂t� �p�D��p	+ nelt	� ≤ KM2�� � for all n= 0�1� � � � . In
this case, the same argument used to obtain (28) yields∣∣∣∣ 1�Ɛ�F �

t �r̂t� �p�D��p+�elt		− F �
t �r̂t� �p�D��p		 �D��p	�

∣∣∣∣
=
∣∣∣∣ 1�$&lt��plt +�	−&lt��plt	%�F �

t �r̂t� �p�D��p	+ elt	

− F �
t �r̂t� �p�D��p		�+ o��	

�

∣∣∣∣�
≤
∣∣∣∣2KM2�� �

�
$&lt��plt +�	−&lt��plt	%

∣∣∣∣+
∣∣∣∣g2��	�

∣∣∣∣�
where g2�·	 is a finite-valued, continuous function that
satisfies lim�↑0 g2��	/� = 0. Letting g3��	 = ��2KM2�� �/�	
$&lt��plt + �	 − &lt��plt	%� + �g2��	/�� and using the fact that
&lt�·	 is a decreasing function, we have lim�↑0 g3��	 =
−2KM2�� �&̇lt��plt	, which is finite. Furthermore, g3�− 	 is
also finite and g3�·	 is a continuous function over $− �0	.
Therefore, there exists M3 such that g3��	≤M3 <� for all
� ∈ $− �0	. Noting (A1), this implies that if we letM =M1+
M3, then (12) holds for all � ∈ $− �0	 and all realizations of
D��p	.
Using the same argument, we can find M4 <� such that

if we let M = M4, then (12) holds for all � ∈ �0�  % and all
realizations of D��p	. Consequently, letting M = max�M1 +
M3�M4� suffices. �

Proof of Proposition 2. We only show that (30) holds.
For notational brevity, we let >lt =

∑T
s=t els , with >l�T+1 = 0.

The conditional expectation on the left side of (30) can be
written as

Ɛ�F �
1 �r1� �p+�>l1�D��p+�>l1		−F �

1 �r1� �p�D��p		 �D��p	= �D��p	�
=∑

t∈�
Ɛ�F �

1 �r1� �p+�>lt�D��p+�>lt		

− F �
1 �r1� �p+�>l� t+1�D��p+�>l� t+1		 �D��p	= �D��p	��

For each one of the terms in the summation on the right
side above, Lemma A.2 below shows that

Ɛ�F �
1 �r1� �p+�>lt�D��p+�>lt		

− F �
1 �r1� �p+�>l� t+1�D��p+�>l� t+1		 �D��p	= �D��p	�

= Ɛ�F �
t �r̂t� �p+�>lt�D��p+�>lt		

− F �
t �r̂t� �p+�>l� t+1�D��p+�>l� t+1		 �D��p	= �D��p	��

(A2)
We write the expression on the right side above as

Ɛ�F �
t �r̂t� �p+�>lt�D��p+�>lt		

− F �
t �r̂t� �p+�>l� t+1�D��p+�>lt		 �D��p	= �D��p	�

+ Ɛ�F �
t �r̂t� �p+�>l� t+1�D��p+�>lt		

− F �
t �r̂t� �p+�>l� t+1�D��p+�>l� t+1		 �D��p	= �D��p	��

For the first term above, Lemma A.3 below shows that

lim
�↑0

1
�
Ɛ�F �

t �r̂t� �p+�>lt�D��p+�>lt		

− F �
t �r̂t� �p+�>l� t+1�D��p+�>lt		 �D��p	= �D��p	�

= �̇lt��plt	x̂lt� (A3)

whereas, for the second term, Lemma A.4 below shows that

lim
�↑0

1
�
Ɛ�F �

t �r̂t� �p+�>l� t+1�D��p+�>lt		

− F �
t �r̂t� �p+�>l� t+1�D��p+�>l� t+1		 �D��p	= �D��p	�

= &̇lt��plt	�F �
t �r̂t� �p� �D��p	+ elt	− F �

t �r̂t� �p� �D��p		�� (A4)

This establishes the result. �

Lemma A.2. For �p ∈�, the equality in �A2	 holds.

Proof of Lemma A.2. We fix �, and let �D��p+�>lt	 and�D��p + �>l� t+1	 respectively be fixed realizations of D��p +
�>lt	 and D��p+�>l� t+1	. We let �x̄t � t ∈� � and �r̄t � t ∈� � be
the sequences of decision and state vectors visited by policy
� under prices �p + �>lt and load realizations �D��p + �>lt	.
We let �x̃t � t ∈� � and �r̃t � t ∈� � be the sequences of decision
and state vectors visited by policy � under prices �p+�>l� t+1
and load realizations �D��p+ �>l� t+1	. The prices �p, �p+ �>lt

and �p + �>l�t+1 coincide at time periods �1� � � � � t − 1�. In
this case, given that D��p	 = �D��p	, we can follow the same
argument as in the proof of Lemma 4 to obtain x̂s = x̄s = x̃s

for all s ∈ �1� � � � � t − 1� and r̂s = r̄s = r̃s for all s ∈ �1� � � � � t�.
Therefore, the result follows by noting that the conditional
expectation on the left side of (A2) is equal to

Ɛ

{t−1∑
s=1

�s��ps	 · x̄s + F �
t �r̄t� �p+�>lt�D��p+�>lt		−

t−1∑
s=1

�s��ps	 · x̃s

− F �
t �r̃t� �p+�>l� t+1�D��p+�>l� t+1		 �D��p	= �D��p	

}
� �

Lemma A.3. For �p ∈�, the equality in �A3	 holds.

Proof of Lemma A.3. The proof follows from the same
argument as in Part 1 of Proposition 1. We let � be
small enough so that (22) and (23) hold for all realizations
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of Dt��pt + �el	. Since the cumulative profit starting from
time period t + 1 depends on the prices at time periods
�t+ 1� � � � � T �, we have

F �
t+1�R

�
t+1�r̂t� �pt +�el�Dt��pt +�el		� �p+�>lt�D��p+�>lt		

=F �
t+1�R

�
t+1�r̂t� �pt+�el�Dt��pt+�el		� �p+�>l�t+1�D��p+�>lt		

=F �
t+1�R

�
t+1�r̂t� �pt�Dt��pt+�el		� �p+�>l�t+1�D��p+�>lt		� (A5)

where we use (23) in the second equality. Using (7) to
expand the terms in the conditional expectation in (A3) and
applying (A5) in the resulting expression, we obtain

F �
t �r̂t� �p+�>lt�D��p+�>lt		−F �

t �r̂t� �p+�>l�t+1�D��p+�>lt		

= �t��pt +�el	 ·X�
t �r̂t� �pt +�el�Dt��pt +�el		

−�t��pt	 ·X�
t �r̂t� �pt�Dt��pt +�el		

= $�t��pt +�el	−�t��pt	% ·X�
t �r̂t� �pt�Dt��pt +�el		�

where we use (22) in the second equality. The result follows
from the same argument as in Part 1 of Proposition 1. �

Lemma A.4. For �p ∈�, the equality in �A4	 holds.

Proof of Lemma A.4. The prices �p+�>lt and �p+�>l� t+1
coincide at time periods �1� � � � � t − 1� t + 1� � � � � T �. There-
fore, the load random variables D��p + �>lt	 and D��p +
�>l� t+1	 coincide at time periods �1� � � � � t − 1� t + 1� � � � � T �
with probability 1. Also, the load random variables over
different lanes or at different time periods are independent.
These observations and (14) imply that

��D��p+�>lt	=D��p+�>l� t+1	 �D��p	= �D��p	�
= 1−&lt��plt +�	+&lt��plt	+ o��	 (A6)

for �≤ 0. Similarly, the prices �p and �p+�>l� t+1 coincide at
time periods �1� � � � � t�. Therefore, the load random variables
D��p	 and D��p+ �>l� t+1	 coincide at time periods �1� � � � � t�
with probability 1. In this case, (14) and (15) imply that

��D��p+�>lt	=D��p+�>l� t+1	+ elt�D��p+�>l� t+1	

=D��p	 �D��p	= �D��p	�

= $&lt��plt +�	−&lt��plt	%
( T∏

s=t+1
$1−&ls��pls +�	+&ls��pls	%

)

+ o��	 (A7)

for �≤ 0. The total probability of the events not covered by
(A6) or (A7) is o��	, because

1−
{
1−&lt��plt +�	+&lt��plt	+ $&lt��plt +�	

−&lt��plt	%
( T∏

s=t+1
$1−&ls��pls +�	+&ls��pls	%

)}

is o��	. Using (A6) and (A7), the conditional expectation in
(A4) can be written as

Ɛ�F �
t �r̂t� �p+�>l� t+1�D��p+�>lt		

− F �
t �r̂t� �p+�>l� t+1�D��p+�>l� t+1		 �D��p	= �D��p	�

= $1−&lt��plt +�	+&lt��plt	%

× Ɛ�F �
t �r̂t� �p+�>l� t+1�D��p+�>lt		

− F �
t �r̂t� �p+�>l� t+1�D��p+�>l� t+1		 �

D��p	= �D��p	�D��p+�>lt	=D��p+�>l� t+1	�

+$&lt��plt+�	−&lt��plt	%
( T∏

s=t+1
$1−&ls��pls+�	+&ls��pls	%

)

× �F �
t �r̂t� �p+�>l� t+1� �D��p	+ elt	

− F �
t �r̂t� �p+�>l� t+1� �D��p		�+ o��	�

The conditional expectation on the right side above is zero
because of the condition D��p+�>lt	=D��p+�>l� t+1	. There-
fore, the limit in (A4) is equal to

lim
�↑0

{
1
�
$&lt��plt+�	−&lt��plt	%

( T∏
s=t+1

$1−&ls��pls+�	+&ls��pls	%
)}

× lim
�↑0

{
F �
t �r̂t� �p+�>l� t+1� �D��p	+ elt	

− F �
t �r̂t� �p+�>l� t+1� �D��p		}

= &̇lt��plt	 lim
�↑0

{
F �
t �r̂t� �p+�>l� t+1� �D��p	+ elt	

− F �
t �r̂t� �p+�>l� t+1� �D��p		}�

Since we have �p ∈ �, the results of the decision and state
transition functions do not change with infinitesimal per-
turbations in the prices by Lemma 3, which implies that

lim
�↑0

�F �
t �r̂t� �p+�>l�t+1� �D��p	+elt	−F �

t �r̂t� �p+�>l�t+1� �D��p		�

= F �
t �r̂t� �p� �D��p	+ elt	− F �

t �r̂t� �p� �D��p		� �

Appendix B. Obtaining a Good Fleet Management
Policy for Given Prices
Throughout the paper, we use 7�p	 to denote the output

of an algorithm that finds a good fleet management policy
for given prices p. Godfrey and Powell (2002) give an iter-
ative, sampling-based algorithm to obtain a set of value-
function approximations � �V �

t �·	� t ∈ � � that characterize a
good fleet management policy �. In this section, we present
a variant of their algorithm, which differs in the value func-
tion updating procedure employed in Step 4 below. This
new updating procedure is due to Powell, Ruszczynski, and
Topaloglu (2004).
Step 1. Initialize the value-function approximations: Set

iteration counter n= 1. Pick an initial set of value-function
approximations � �V 1

t �·	� t ∈ � � such that each �V 1
t �·	 is of the

form �V 1
t �rt	=

∑
i∈� �V 1

it �rit	, where each �V 1
it �·	 is a piecewise-

linear, concave function with points of nondifferentiability
being a subset of positive integers. Letting K be the num-
ber of vehicles, the relevant domain of �V 1

it �·	 is �0�1� � � � �K�.
So, �V 1

it �·	 can be characterized by a sequence of numbers
�v1it�k	� k = 1� � � � �K�, where v1it�k	 = �V 1

it �k	− �V 1
it �k− 1	. The

intercept of �V 1
it �·	 is not crucial since the value-function

approximations are embedded in optimization problems.
Step 2. Sample load realizations under given prices: Let

�Dn = � �Dn
lt� l ∈�� t ∈� � be a sample of D�p	= �Dlt�plt	� l ∈��

t ∈� �.
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Step 3. Simulate the behavior of the current policy under
load realizations �Dn: Set rn1 = r1, t = 1.

Step 3a. Let

Ṽ n
t �r

n
t � pt� �Dn

t 	= max
�xt � rt+1	∈��rnt �

�Dn
t 	
�t�pt	 · xt + �V n

t+1�rt+1	

Ṽ n
t �r

n
t ∓ e′i� pt� �Dn

t 	= max
�xt � rt+1	∈��rnt ∓e′i� �Dn

t 	
�t�pt	 · xt + �V n

t+1�rt+1	�

Let �xn
t � r

n
t+1	 be the optimal solution to the first problem

above. Also, let

En
t �∓e′i	= Ṽ n

t �r
n
t ∓ e′i� pt� �Dn

t 	− Ṽ n
t �r

n
t � pt� �Dn

t 	�

Step 3b. Increment t by 1. If t ≤ T , then go to Step 3a.
Step 4. Update the value-function approximations: For

all i ∈� , t ∈� , and k= 1� � � � �K, set

zn+1it �k	=




$1−-n
it%v

n
it�k	+-n

it�−En
t �−e′i		 if k= rnit

$1−-n
it%v

n
it�k	+-n

itE
n
t �e

′
i	 if k= rnit + 1

vn
it�k	 otherwise,

where -n
it is a step-size parameter. Letting vn+1

it be the vector
�vn+1

it �k	� k= 1� � � � �K� for all i ∈� and t ∈� , set

vn+1
it = argmin

K∑
k=1

�w�k	− zn+1it �k		2

subject to w�k− 1	≥w�k	 k= 2� � � � �K� (B1)

For all i ∈ � and t ∈ � , let �V n+1
it �·	 be the piecewise-linear,

concave function whose slope over �k − 1� k	 is given by
vn+1
it �k	. (Concavity of V n+1

it �·	 is ensured by constraints
(B1).) For all t ∈� , let �V n+1

t �rt	=
∑

i∈� �V n+1
it �rit	.

Step 5. If n = M , where M is a predetermined itera-
tion number, then stop and return the fleet management
policy characterized by the value-function approximations
� �V n+1

t �·	� t ∈ � �. Otherwise, increment n by 1 and go to
Step 2.
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