
Articles in Advance, pp. 1–20
issn 0041-1655 �eissn 1526-5447

informs ®

doi 10.1287/trsc.1080.0238
© 2008 INFORMS

An Approximate Dynamic Programming
Algorithm for Large-Scale Fleet Management:

A Case Application

Hugo P. Simão
Department of Operations Research and Financial Engineering, Princeton University,

Princeton, New Jersey 08544, hpsimao@princeton.edu

Jeff Day
Schneider National, Green Bay, Wisconsin 54306, dayj@schneider.com

Abraham P. George
Department of Operations Research and Financial Engineering, Princeton University,

Princeton, New Jersey 08544, ageorge@princeton.edu

Ted Gifford, John Nienow
Schneider National, Green Bay, Wisconsin 54306 {giffordt@schneider.com, nienowj@schneider.com}

Warren B. Powell
Department of Operations Research and Financial Engineering, Princeton University,

Princeton, New Jersey 08544, powell@princeton.edu

We addressed the problem of developing a model to simulate at a high level of detail the movements of over
6,000 drivers for Schneider National, the largest truckload motor carrier in the United States. The goal of

the model was not to obtain a better solution but rather to closely match a number of operational statistics. In
addition to the need to capture a wide range of operational issues, the model had to match the performance of
a highly skilled group of dispatchers while also returning the marginal value of drivers domiciled at different
locations. These requirements dictated that it was not enough to optimize at each point in time (something
that could be easily handled by a simulation model) but also over time. The project required bringing together
years of research in approximate dynamic programming, merging math programming with machine learning,
to solve dynamic programs with extremely high-dimensional state variables. The result was a model that closely
calibrated against real-world operations and produced accurate estimates of the marginal value of 300 different
types of drivers.

Key words : fleet management; truckload trucking; approximate dynamic programming; driver management
History : Received: February 2007; revision received: August 2007; accepted: April 2008. Published online in
Articles in Advance.

In 2003, Schneider National, the largest truck-
load motor carrier in the United States, contracted
with CASTLE Laboratory at Princeton University,
Princeton, New Jersey, to develop a model that would
simulate its long-haul truckload operations to per-
form analyses to answer questions ranging from the
size and mix of its driver pool to questions about
valuing contracts and getting drivers home. The
requirements for the simulator seemed quite simple:
it had to capture the dynamics of the real problem,
producing behaviors that closely matched corporate
performance along several dimensions, and it had to
provide estimates of the marginal value of different
types of drivers. If the model accurately matched his-

torical performance, the company would be able to
use the system to test changes in the mix of drivers,
the mix of freight, and other operating policies.

The major challenge we faced was that these
requirements meant that we had to do much more
than just develop a classical simulator. It was not
enough to optimize decisions (in the form of match-
ing drivers to loads) at a point in time. The model had
to optimize decisions over time to take into account
downstream impacts. Formulating the problem as a
deterministic, time-space network problem was both
computationally intractable (the problem is huge) and
too limiting (we needed to model different forms of
uncertainty as well as a high degree of realism that

1

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.
 Published online ahead of print August 15, 2008

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
2 Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS

was beyond the capabilities of classical math pro-
grams). Classical techniques from Markov decision
processes applied to this setting are limited to prob-
lems with only a small number of identical trucks
moving between a few locations (see Powell 1988 or
Kleywegt, Nori, and Savelsbergh 2004). Our problem
involved modeling thousands of drivers at a high
level of detail.

We solved the problem using approximate dynamic
programming (ADP), but even classical ADP tech-
niques (Bertsekas and Tsitsiklis 1996; Sutton and
Barto 1998) would not handle the requirements of
this project. Three years of development produced
a model that closely matches a range of historical
metrics. Achieving this goal required drawing on the
research of three Ph.D. dissertations (Spivey 2001;
Marar 2002; George 2005) and depended on the exten-
sive participation of the sponsor to produce a model
that accurately simulated operations. The model is
able to handle a host of engineering details to allow
the sponsor to run a broad range of simulations. To
establish credibility, the model had to match the his-
torical performance of a dozen major operating statis-
tics. Two of particular importance to our presentation
included matching the average length of haul for dif-
ferent types of drivers and getting drivers home with
the same frequency as the company. A central hypoth-
esis of the research, which is supported by the evi-
dence we present in this paper, was that the behavior
of a group of dispatchers could be described by an
optimization model using a suitably designed objec-
tive function.

The contributions of this paper include:
(1) We show, for the first time in a production set-

ting for a truckload motor carrier, that approximate
dynamic programming can provide high-quality solu-
tions while capturing operational issues at a high
level of detail, including all business rules such as
hours of service, returning drivers home, and opera-
tional restrictions on the use of specific driver types.
This appears to be the first optimization model of any
form that captures the complex dynamics of a truck-
load motor carrier where decisions produce behavior
that optimizes over time.

(2) We demonstrate that the framework of approx-
imate dynamic programming, with methods adapted
to this problem class, produces a model that accu-
rately captures the performance of a well-run com-
pany based on comparisons with historical metrics.
This appears to be the first demonstrated calibration
of an optimization model for truckload trucking for
planning purposes.

(3) We show that the value function approxima-
tions used in the dynamic programming formula-
tion produce accurate estimates of the marginal value
of particular driver types (for example, the value of

adding additional team drivers domiciled in a par-
ticular region) over the entire simulation when com-
pared against brute-force derivatives computed using
the model (adding additional drivers and running
the simulation again). These marginal values would
not be available from a traditional simulator (which
does not use the framework of dynamic program-
ming to capture the value of a driver over the entire
simulation). They mimic dual variables from a linear
program (which is not able to handle the complex
dynamics of this system).

The presentation begins in §1 with a general
description of the problem. Section 2 provides a for-
mal model of the problem. Section 3 describes the
algorithmic strategies that are used, focusing primar-
ily on the use of approximate dynamic programming
to solve the problem of optimizing over time. Sec-
tion 4 describes the results of calibration experiments
that show that the model closely matches historical
performance, which required using recent research
describing how to make cost-based models match
rule-based patterns. Then, §5 shows that the model
can be used to estimate the value of particular types
of drivers, which is then used to change the mix of
drivers. The value of a particular type of driver, which
requires estimating a derivative of the simulation, can
only be achieved using the approximate dynamic pro-
gramming strategies that were used to optimize over
time. Section 6 concludes the paper.

1. Problem Description and
Literature Review

On the surface, truckload trucking can appear to be
a relatively simple operational problem. At any point
in time, there will be a set of drivers available to be
dispatched and a set of loads that need to be moved
(typically from one city to another). The loads in this
industry are typically quite long, generally requiring
anywhere from one to four days to complete. As a
result, at a point in time we will assign a driver to
at most one load. This can easily be modeled as an
assignment problem, where the cost of assigning a
driver to a load includes both the cost of moving
empty to pick up the load and the net revenue from
moving the load.

In real applications, the problem is much richer.
Whereas dispatchers do their best to minimize the
empty miles and move the most profitable loads,
real decisions have to balance profits now and in the
future as well as accomplish objectives such as get-
ting drivers home in a reasonable amount of time. An
important issue in this project was matching histori-
cal behavior in terms of the average length of loads
handled by different types of drivers. We modeled
three “capacity types” (using the terminology of the

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS 3

carrier): teams (two drivers in the same tractor who
could trade off driving and resting), solos (a single
driver who had to rest according to a schedule deter-
mined by federal law), and ICs (independent contrac-
tors who owned the tractors they drove). Drivers in
each of these three fleets had different expectations
regarding the lengths of the loads to which they were
assigned. Teams were generally given the longest
loads so that their total revenue per week would rea-
sonably compensate two people. Solos exhibited the
shortest average length of haul. Getting the model to
match historical performance for length of haul for
each of the three driver classes required special algo-
rithmic measures.

The standard approach for modeling such large-
scale problems (we worked with over 6,000 drivers)
at a high level of detail would be to simply simulate
decisions over time. In this setting, this would involve
solving a series of network problems to assign drivers
to loads at a point in time. Whereas such an approach
would handle a high level of detail, the decisions
would not be able to reflect the future impact of deci-
sions made now. For example, this logic would not
take into account that sending a driver whose home
is in Dallas on loads to Chicago is a good way of
getting him home. It is also unable to realize that
a long (and high revenue) load from Maryland to
Idaho is not as good as a shorter load from Maryland
to Cleveland (which offers more opportunities for
drivers once they unload).

In addition to producing an accurate simulation of
the company, we also wanted to produce estimates of
the marginal value of different types of drivers dis-
tinguished by their home domicile and capacity type.
For example, we would like to know the marginal
value of adding 10 teams with home domiciles in cen-
tral Illinois. It is not practical to run a simulation, add
10 drivers of a particular type (there were 300 types),
and simulate again. If this were repeated 10 times (to
reduce statistical error), we would have to run 3,000
simulations.

There is fairly extensive literature on models and
algorithms for the full truckload problem and, in par-
ticular, dynamic versions of the problem. Much of this
work has solved sequences of deterministic problems
that reflect only what is known at a point in time (for
reviews, see Psaraftis 1995; Powell, Jaillet, and Odoni
1995; Gendreau and Potvin 1998; Larsen, Madsen, and
Solomon 2002). This work has often focused on the
algorithmic challenge of solving problems in real time
(e.g., Gendreau et al. 1999; Taylor et al. 1999). A num-
ber of papers simulated dynamic operations to study
questions such as the value of real time information or
other dynamic operating policies (Tjokroamidjojo and
Kutanoglu 2001; Regan, Mahmassani, and Jaillet 1998;

Chiu and Mahmassani 2002; Yang, Jaillet, and Mah-
massani 2004). Ichoua, Gendreau, and Potvin (2006)
also propose a policy for dynamically routing vehicles
with the intent of optimizing over time. Their research
focuses on myopic policies that adjust behavior now
based on probabilistic estimates of future demands.
Secomandi (2000, 2001) provides a more formal treat-
ment of policies for solving stochastic vehicle routing
problems. This line of research, however, is limited to
single-vehicle routing problems.

The general problem of routing drivers so they
return home on time has received very little atten-
tion. Caliskan and Hall (2003) propose a deterministic
model for routing drivers in trucking, but this model
does not capture either the complexity of drivers or
the challenge of getting drivers home in the presence
of the type of uncertainty that characterizes truckload
trucking. There is a rich literature on planning pilot
schedules capturing all the attributes of a pilot and
a full set of work rules (see Desrosiers, Solomon,
and Soumis 1995; Desaulniers et al. 1998). However,
these problems are deterministic and benefit from the
highly scheduled nature of airline operations. Also,
these problems are much smaller than the problem
we address here.

A separate line of research has focused on develop-
ing models that produce solutions that optimize over
an entire planning horizon. A summary of different
modeling and algorithmic strategies for dynamic fleet
management problems is given in Powell (1988) and
Powell, Jaillet, and Odoni (1995). Early work in this
area focused on managing large fleets of relatively
similar vehicles such as would arise in the optimiza-
tion of empty freight cars for railroads or in aggregate
models of fleets for truckload motor carriers. Such
problems could be formulated as space-time models
(where each node represented a point in space and
time) and solved as a network problem if there was
a single vehicle type (see, for example, White 1972)
or as a multicommodity flow problem if there were
multiple vehicle types and substitution (Tapiero and
Soliman 1972; Crainic, Ferland, and Rousseau 1984).
These models do not allow us to model drivers with
any of the richness needed for our project.

The research closest to this project is given in
Spivey and Powell (2004), which provides a formal
model of the stochastic dynamic driver management
problem. We build on this model but introduce a
number of new strategies to overcome challenges that
arose when we made the transition from a laboratory
experiment to a production application.

2. Problem Formulation
We model the problem using the language of dynamic
resource management (see Powell, Shapiro, and

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
4 Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS

Simão 2001), where drivers are “resources” and loads
are “tasks.” The state of a single resource is defined by
an attribute vector a, composed of multiple attributes
that may be numerical or categorical. For our model,
we used

a=




a1

a2

a3

a4

a5

a6

a7

a8

a9

a10




=




Location

Domicile

Capacity type

Scheduled time at home

Days away from home

Available time

Geographical constraints

DOT road hours

DOT duty hours

Eight-day duty hours




�= Set of all possible driver attribute vectors a.

A brief discussion of the driver attributes (and the
load attributes below) provides an appreciation of
some of the complexities in an industrial strength
system. Driver locations were captured at a level
that produced 400 locations around the country.
Driver domiciles were also captured at a level that
divided the country into 100 regions. As discussed
earlier, there were three capacity types: team, solo,
and IC (independent contractor). The three attributes
(location, domicile, and capacity type) were particu-
larly important and will play a major role throughout
our analysis. Field a4 is the time by which we would
like to get the driver back home (e.g., next Saturday),
but the cost of not doing this is also influenced by
the number of days the driver has been away from
home (a5). Our ability to get drivers home on time
was one of the major metrics to which we had to
calibrate.

The remaining attributes were needed to produce
an accurate simulation. For example, a6 (available
time) captured the fact that a driver might be headed
to Chicago (a1 = Chicago) but would not arrive until
3:17 p.m. tomorrow (all activities were modeled in
continuous time). Field a7 captured constraints such
as the fact that Canadian drivers in the United States
had to return to Canada, or that other drivers had to
stay within 500 miles of their homes. Fields a8 and a9

(Department of Transportation (DOT) road hours and
DOT duty hours) captured how many hours a driver
had been behind the wheel (road hours) or on duty
(duty hours) on a given day. Field a10 is actually an
eight-element vector, capturing the number of hours
a driver had worked on each of the last eight days.

Similarly, we let b be the vector of attributes of a
load, including elements such as origin, destination,
appointment time and type, priority, revenue, and
delivery window. Some windows are tight but many
are fairly loose, providing some flexibility in when a
load is served. We let � be the space of all load types.

We can think of at , the attribute vector of a driver
at time t, as the state of the driver. We model the
state of all the drivers using the resource state vector,
which is defined using

Rta = The number of resources with attribute vector a
at time t.

Rt = The resource state vector at time t.
= �Rta�a∈�.

We then let Dtb be the number of loads with
attribute b, and let Dt = �Dtb�b∈�. Our system state vec-
tor is then given by

St = �Rt	Dt�

We measure the state St just before we make a deci-
sion. These decision epochs are modeled in discrete
time t = 0	1	2	

 	 T , but the physical process occurs
in continuous time. For example, the available time of
a driver a6 and the “ready time” (time at which it is
available for pickup) of a load b6 are both continuous.

There are two types of exogenous information pro-
cesses: updates to the attributes of a driver and new
customer demands. We let

�Rta = The change in the number of drivers with
attribute a due to information arriving between
time t− 1 and t.

�Dtb = The number of new loads that first became
known to the system with attribute b between
time t− 1 and t.

For example, �Dtb = +1 if we have a new customer
order with attribute vector b. If a driver attribute ran-
domly changed from a to a′ (arising, for example,
from a delay), we would have �Rta =−1 and �Rta′ = +1.
We let Wt = � �Rt	 �Dt� be our generic variable for new
information. We view information as arriving con-
tinuously in time, where the interval between time
instant t − 1 and t is labeled as time interval t. Thus,
W1 is the information that arrives between now (t = 0)
and the first decision epoch (t = 1).

The major decision classes for this problem include
whether a truck is to be used to move a load to a par-
ticular destination or whether it needs to move empty
to another location in the anticipation of future loads
with better rewards. When a decision is applied to a
resource, it produces a contribution. A loaded move
would generate revenue, whereas an empty move
would incur some cost. Decisions are described using

d = An elementary decision,

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS 5

�L = The set of all decisions to cover a type of load,
where an element d ∈�L represents a decision
to cover a load of type bd ∈�,

d� = The decision to hold a driver,
�= �L ∪ d�,

xtad = The number of times decision d is applied to
resource with attribute vector a at time t,

xt = �xtad�a∈�	d∈�.

The decision variables xtad have to satisfy the follow-
ing constraints: ∑

d∈�
xtad =Rta ∀a ∈�	 (1)

∑
a∈�

xtad ≤Dtbd
∀d ∈�L	 (2)

xtad ≥ 0 a ∈�	d ∈�
 (3)

Equation (1) captures flow conservation for drivers
(we cannot assign more than we have of a particular
type) and Equation (2) is flow conservation on loads
(we cannot assign more drivers to loads of type bd

than there are loads of this type). We let �t be the
set of all xt that satisfy Equations (1)–(3). The feasible
region �t depends on St . Rather than write ��St�, we
let the subscript t in �t indicate the dependence on
the information available at time t. Finally, we assume
that decisions are determined by a decision function
denoted

X��St�= A function that determines xt ∈�t given St ,
where � ∈�,

�= A set of decision functions (or policies).

We next need to model the dynamics of the system.
Both Rt and Dt evolve over time, but for the moment
we focus purely on the evolution of Rt . If we act on a
driver with attribute a using decision d, we represent
the change in the attribute vector using

a′ = aM�a	d�

We model the transition function deterministically,
which means that a′ is the attribute vector that we
think results from a decision but before any new
information has arrived. So, if we decide to move
a truck from Dallas to Chicago leaving at time 12.2
with an expected travel time of 17.5, then immedi-
ately after the assignment, this would be a truck with
the attribute that we expect it to be in Chicago at time
29.7 (later information may change this). For algebraic
purposes, define

�a′�a	d� =
{

1	 if aM�a	d�= a′,

0	 otherwise.

We now define the post-decision resource vector, which
is the resource vector after we make a decision but

before any new information arrives. This can be
written as:

Rx
ta′ =

∑
a∈�

∑
d∈�

�a′�a	d�xtad
 (4)

Finally, our next predecision resource vector would be
given by

Rt+1	 a =Rx
ta + �Rt+1	 a
 (5)

It is more conventional in stochastic dynamic sys-
tems to write the transition from Rt to Rt+1. Explicitly
capturing the post-decision resource vector provides
significant computational advantages, as we illustrate
later.

The transition function for the demands is symmet-
rical. In addition to the state variable Dt , we would
define the post-decision demand vector Dx

t along with
an indicator function similar to � to describe how
decisions change the attributes of a load. In the sim-
plest model, a demand is either moved (in which case
it leaves the system) or it waits until the next time
period. In our project, it was possible to have a driver
move to pick up a load, move the load to an interme-
diate location, and then drop it off so that a different
driver could finish the move (this is known as a relay).
Whereas such strategies are used for only a small per-
centage of the total demand, trucking companies will
use such strategies to help get drivers home. A driver
may pick up a load that takes him too far from his
home. Instead, he may move the load part way so that
a different driver can pick up the load and complete
the trip.

We define the objective function using

ctad = The contribution generated by applying deci-
sion d to resource with attribute vector a at
time t.

The contributions were divided between “hard dol-
lar” and “soft dollar” contributions. Hard dollar
contributions include the revenue generated from
moving a load minus the cost of actually moving the
truck (first moving empty to pick up the load, fol-
lowed by the actual cost of moving the load). The
soft dollar costs capture bonuses for getting the driver
home, penalties for early or late pick-up of a load, and
penalties for getting a driver home before or after the
time that he was scheduled to get home.

If we assume that the contributions are linear, the
contribution function for period t would be given by

Ct�St	 xt�=
∑
a∈�

∑
d∈�

ctadxtad
 (6)

The optimal policy maximizes the expected sum of
contributions, discounted by a factor �, over all the
time periods:

F ∗
0 �S0�=max

�∈�
Ɛ

{ T∑
t=0

�tC�St	X
�
t �St��

∣∣∣∣S0

}

 (7)

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
6 Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS

One policy for solving this problem is the myopic pol-
icy, given by

XM
t �St�= arg max

xt∈�t

∑
a∈�

∑
d∈�

ctadxtad	

which involves assigning known drivers to known
loads at each point in time. This is a straightfor-
ward assignment problem, involving the assigning of
drivers (that is, attributes a where Rta > 0) to loads
(attributes b where Dtb > 0). One of the biggest chal-
lenges we faced was the sheer size of this prob-
lem, which involved over 2,000 available drivers and
loads at each time period. Using careful engineering,
we limited the number of links per driver (or load)
to approximately 10, which still required generating
about 20,000 links for each time period (the costing of
each link required considerable calculations to enforce
driver work rules and to handle the service con-
straints on each load). Given a solution xt =XM

t �St�,
we would then use our transition functions to com-
pute �Rx

t 	D
x
t � and then find �Rt+1	Dt+1� by sampling

�Rt+1��� and �Dt+1���.
A central hypothesis of this research is that an algo-

rithm that does a better job of solving Equation (7)
will do a better job of matching the historical per-
formance of the company. Although we use approxi-
mations, our strategy works from a formal statement
of the objective function (something that is typically
missing from most simulation papers) rather than
heuristic policies. As we show, a by-product of this
strategy is that we also obtain estimates of the deriva-
tive of F ∗

0 �S0� with respect to R0a (for a at some level
of aggregation) that would tell us the value of hiring
additional drivers in a particular domicile.

In the next section, we describe the strategies we
tested for solving Equation (7).

3. Algorithmic Strategies
In dynamic programming, instead of solving Equa-
tion (7) in its entirety, we divide the problem into time
stages. At each time period depending on our current
state, we can search over the set of available actions
to identify a subset that is optimal. The value associ-
ated with each state can be computed using Bellman’s
optimality equations, which are typically written as

Vt�St�=max
xt∈�t

(
Ct�St	xt�+�

∑
s′∈�

p�s′ �St	xt�Vt+1�s
′�
)
	 (8)

where p�s′ � St	 xt� is the one-step transition matrix giv-
ing the probability that St+1 = s′, and � is the state
space. Solving Equation (8) encounters three curses of
dimensionality: the state vector St (with dimensional-
ity ��� + ���, which can be extremely large), the out-
come space (the expectation is over a vector of ran-
dom variables measuring ��� + ���), and the action
space (the vector xt is dimensioned ��� × ���).

Section 3.1 provides a sketch of a basic approx-
imate dynamic programming algorithm for approx-
imating the solution of Equation (7). Section 3.2
describes how we update the value function. Sec-
tion 3.3 shows how we solve the statistical prob-
lem of estimating the value of drivers with hundreds
of thousands of attribute vectors. Section 3.4 briefly
describes research on stepsizes that was motivated by
this project. In §3.5, we describe how we implemented
a backward pass to accelerate the rate of convergence.
Finally, §3.6 reports on a series of comparisons of dif-
ferent algorithmic choices we had to make.

3.1. An Approximate Dynamic
Programming Algorithm

Approximate dynamic programming has been emerg-
ing as a powerful technique for solving dynamic
programs that would otherwise be computationally
intractable. Our approach requires merging math pro-
gramming with the techniques of machine learning
used within approximate dynamic programming. Our
algorithmic strategy differs markedly from what is
presented in classic texts on approximate dynamic
programming, particularly in our use of the post-
decision state variable. A comprehensive treatment of
our algorithmic strategy is contained in Powell (2007).

We solve Equation (7) by breaking the dynamic pro-
gramming recursions into two steps:

V x
t−1�S

x
t−1�= Ɛ�Vt�St� � Sx

t−1 	 (9)

Vt�St�=max
xt∈�t

�C�St	 xt�+�V x
t �Sx

t ��	 (10)

where St = SM	W �Sx
t−1	Wt� and Sx

t = SM	x�St	 xt�. The
basic algorithmic strategy works as follows: At itera-
tion n, assume we are following sample path �n and
that we find ourselves at the post-decision state Sx	n

t−1
after making the decision xn

t−1. Now, compute the next
predecision state Sn

t using

Sn
t = SM	W �Sx	n

t−1	Wt��
n��

From state Sn
t , we compute our feasible region �n

t

(which depends on information such as �Rn
t and �Dn

t).
Next, solve the optimization problem:

�vn
t =max

xt∈�n
t

(
Ct�S

n
t 	 xt�+� �V n−1

t �SM	x�Sn
t 	 xt��

)
(11)

and assume that xn
t is the value of xt that solves Equa-

tion (18). We then compute the post-decision state
Sx	n

t = SM	x�Sn
t 	 xt� to continue the process.

We next wish to use the solution of Equation (18) to
update our value function approximation. With tradi-
tional approximate dynamic programming (Bertsekas
and Tsitsiklis 1996; Sutton and Barto 1998), we
would use �vn to update a value function approxima-
tion around Sn

t . Using the post-decision state variable,

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS 7

we use �vn
t update �V n−1

t−1 �Sx	n
t−1 � around Sx	n

t−1 . The updat-
ing strategy depends on the specific structure of
�V n−1

t−1 �Sx
t−1�.

To design our value function approximation, we
took advantage of two properties of our problem.
First, most loads are served at a given point in time.
If we were to define a post-decision demand vec-
tor Dx

t (comparable to the post-decision resource vec-
tor Rx

t) that gives the number of loads left over after
assignment decisions have been made, we would find
that most of the elements of Dx

t were zero. Second,
given the complexity of the attribute vector, Rta was
typically zero or one. For this reason, we used a
value function approximation that was linear in Rta,
given by

�V n−1
t �Sx

t � = �V n−1
t �Rx

t �

= ∑
a′∈�

v̄ta′R
x
ta′
 (12)

We have worked extensively with nonlinear (piece-
wise linear) approximations of the value function to
capture nonlinear behavior such as “the fifth truck in
a region is not as useful as the first” (see Topaloglu
and Powell 2006, for example), but in this project the
focus was less on determining how many drivers to
move and more on what type of driver to use.

It is easy to rewrite Equation (12) using

�Vt�R
x
t �=

∑
a′∈�

v̄ta′
∑
a∈�

∑
d∈�

�a′�a	d�xtad	 (13)

where Equation (13) is obtained by using the state
transition equation (4). This enables us to write the
problem of finding the optimal decision function
using

X�
t �St� = arg max

xt∈�t

(∑
a∈�

∑
d∈�

ctadxtad +�
∑
a′∈�

v̄ta′

·∑
a∈�

∑
d∈�

�a′�a	d�xtad

)

= arg max
xt∈�t ���

∑
a∈�

∑
d∈�

(
ctad +�

∑
a′∈�

v̄ta′�a′�a	d�

)
xtad

(14)

Recognizing that
∑

a′∈� �a′�a	d� = �aM�at	dt �
�a	d� = 1,

we can write Equation (14) as

X�
t �St�= arg max

xt∈�t ���

∑
a∈�

∑
d∈�

(
ctad +�v̄n−1

t	 aM �a	d�

)
xtad
 (15)

Clearly, Equation (15) is no more difficult than solv-
ing the original myopic problem, with the only differ-
ence being that we have to solve it iteratively in order
to estimate the value function approximation. Fortu-
nately, it is neither necessary nor desirable to reesti-
mate the value functions each time we undertake a
policy study.

Drivers Loads

a1

a2

a3

a4

a5

Future attributes

aM (a3, d1)

aM (a3, d2)

aM (a3, d3)

aM (a3, d4)

aM (a3, d5)

Figure 1 Driver Assignment Problem, Illustrating the Different Future
Driver Attributes that Have to be Evaluated

We face two challenges at this stage. First, we
have to find a way to update the values of v̄n−1

t−1	 a
using information derived from solving the decision
problems. Section 3.2 describes a Monte Carlo-based
approach, but this introduces a statistical problem. As
illustrated in Figure 1, in order to decide which load
a driver should move, we have to know the value of
the driver at the end of each load. This means it is not
enough to know the value of drivers with attributes
that actually occur (that is, Rta > 0); we must also
know the value of attributes that we might visit.

3.2. Value Function Updates
Once we have settled on a value function approxi-
mation, we face the challenge of estimating it. The
general idea in approximate dynamic programming
is that we iteratively simulate the system forward in
time. At iteration n, we follow a sample path �n that
determines �Rn

t = �Rt��
n� and �Dn

t = �Dt��
n�. The decision

function in Equation (15) is computed using value
functions v̄n−1

ta′ , computed using information from iter-
ation n − 1. We then use information from itera-
tion n to update v̄n−1

t−1	 a, giving us v̄n
t−1	 a. This section

describes how the updating is accomplished.
Assume that our previous decision (at time t− 1)

left us in the post-decision state Sx	n
t−1 . Following

the sample path �n then puts us in state Sn
t =

SM	W �Sx	n
t−1	Wt��

n��, which determines our feasible
region �n

t . We then make decisions at time t by
solving

Ft�S
n
t � = max

xt∈�n
t

(
Ct�S

n
t 	 xt�+� �V n−1

t �Sx
t �
)
	 (16)

where Sx
t = SM	x�Sn

t 	 xt�. We let xn
t be the value of xt

that solves Equation (16). Note that Rx	n
t−1 affects Equa-

tion (16) through the flow conservation constraint (1).

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
8 Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS

Keep in mind that Rn
ta = Rx	n

t−1	 a + �Rta��
n�. �Rta may be

the random arrival of a new driver but, for our work,
it primarily captures random changes in the status of
a driver (e.g., travel delays or equipment failures). If
these transitions change the status of a driver from
a to a′, then we would have �Rta = −1 and �Rta′ = +1.
If there are no random changes of this sort (which
means that �Rta = 0), then it is easy to see that

�vn
t−1	 a =

#F �St�

#Rx
t−1	 a

= #F �St�

#Rt	a

= �$n
ta	 (17)

where �$n
ta is the dual variable for the flow conserva-

tion constraint (1). If we do allow random changes
(say, from a to a′), we would use �$n

ta′ to update �vn
t−1	 a.

We want to use information from Equation (16) to
update the value functions used at time t − 1, given
by v̄n−1

t−1	 a. Keeping in mind that these are estimates
of slopes, what we need is the derivative of Ft�S

n
t �

with respect to each Rx	n
t−1	 a, where a= ax

t−1, which we
compute using

�vn
t−1	 a =

#F �St�

#Rx
t−1	 a

= ∑
a′∈�

#F �St�

#Rta′

#Rta′

#Rx
t−1	 a

∣∣∣∣
�=�n

 (18)

#F �St�/#Rta′ is just the dual of the optimization prob-
lem (15) associated with the flow conservation con-
straint (1), which we denote by $n

ta′ . For the second
part of the derivative, we have

#Rta′

#Rx
t−1	 a

=



1 if a′ = aM	W �ax
t−1	Wt��

n��,

0 otherwise.

This simply means that if we had a truck with
attribute ax

t−1, which then evolves (due to exogenous
information) into a truck with attribute a′ = at =
aM	W �ax

t−1	Wt��
n��, then

�vn
t−1	 a = $n

ta′

We do not have to execute the summation in Equa-
tion (18). We just need to keep track of the transition
from ax

t−1 to at . We note, however, that we are unable
to compute $n

ta′ for each attribute a′ ∈� (the attribute
space is too large). Instead, for each at−1 where
Rx	n

t−1	 at−1
> 0, we found a′ = at = aM	W �at−1	Wt��

n��
and computed $ta′ . We then found �vn

t−1	 at−1
from

Equation (18).
Once we have computed �vn

t−1	 a, we update the
value function approximation using

v̄n
t−1	 at−1

= �1−&n−1�v̄
n−1
t−1	 at−1

+&n−1 �vn
t−1	 a	 (19)

where &n−1 is a stepsize between zero and one (dis-
cussed in greater detail in §3.4).

Step 0: Initialization:
Step 0a: Initialize �V 0

t 	 t ∈� .
Step 0b: Initialize the state S1

0 .
Step 0c: Set n= 1.

Step 1: Choose a sample path �n.
Step 2: Do for t = 0	1	

 	 T :

Step 2a: Solve the optimization problem:

max
xt∈�n

t

(
Ct�S

n
t 	 xt�+� �V n−1

t �SM	x�Sn
t 	 xt��

)

 �20�

Let xn
t be the value of xt that solves Equation (20),

and let $tat
be the dualcorresponding to the

resource conservation constraint for each Rtat

where Rtat
> 0.

Step 2b: Update the value function using

v̄n
t−1	 a = �1−&n−1�v̄

n−1
t−1	 a +&n−1 �$n

ta.

Do this for each attribute a for which we have
computed �$n

ta.
Step 2c: Update the state:

Sx	n
t = SM	x�Sn

t 	 x
n
t �

Sn
t = SM	W �Sx	n

t−1 	Wt��
n��.

Step 3: Increment n. If n≤N , then set Sx	n
0 = Sx	n−1

T and go to
Step 1.

Step 4: Return the value functions, �v̄n
ta	 t = 1	

 	 T 	 a ∈� .

Figure 2 An Approximate Dynamic Programming Algorithm to Solve
the Driver Assignment Problem

We outline the steps of a typical approximate
dynamic programming algorithm for solving the fleet
management problem in Figure 2. This algorithm uses
a single pass to simulate a sample trajectory using the
current estimates of the value functions. We start from
an initial state S1

0 = �R0	D0� of drivers and loads with
a value function approximation �V 0

t �Sx
t �. From this, we

determine an assignment of drivers to loads x1
0. We

then find the post-decision state Sx	1
0 and simulate our

way to the next state S1 = SM	W �Sx	1
0 	W1��

1��. This
simulation includes new customer orders as well as
random changes to the status of the drivers. All of
the complexity of the physics of the problem is cap-
tured in the transition functions, which impose virtu-
ally no limits on our ability to handle the realism of
the problem.

At an early stage of the project, the company
expressed concern that the results might be overfitted
to a particular set of drivers (input to the model as Rx

0)
and loads. We took two steps in response to this
concern. First, we randomized the loads, choosing a
subset from a larger set of loads at each iteration. Sec-
ond, we took the final resource state vector (Rx

T) and
used this as the new initial resource state vector (see
Step 3).

A major technical challenge in the algorithm is com-
puting the value function approximation �Vt = �v̄ta�a∈�.
Even if the attribute vector a has only a few dimen-
sions, the attribute space is too large to update using
Equation (19). Furthermore, we only obtain updates
�vn
ta for a subset of attributes a at each iteration.

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS 9

In principle, we could have solved our decision prob-
lem for a resource vector Rta using all the attributes
in �. This is completely impractical. For our simula-
tion, we only generated nodes for attributes a where
Rn

ta > 0 (as a rule, we generated a unique node for
each driver), which means we obtain �vn

ta only for a
subset of attributes. We need an estimate v̄ta not just
for where we have drivers (that is, Rta > 0) but where
we might want to send drivers. We address this prob-
lem in the next section.

3.3. Approximating the Value Function
The full-attribute vector a that is needed to completely
capture the important characteristics of the driver
produces an attribute space that is far too large to
enumerate. Fortunately, it is not necessary to use all
these attributes for the purpose of approximating the
value function. In addition to time (we have a finite
horizon model, so all value functions are indexed
by time), three attributes were considered essential:
the location of the driver, the home domicile of the
driver, and his capacity type (team, solo, or indepen-
dent contractor). The company divided the country
into 100 regions for the purpose of representing loca-
tion and domicile (this is only for the value function).
Combined with three capacity types and 20 time peri-
ods, this produced a total of 600,000 attributes for
which we would need an estimated value. Although
dramatically smaller than the original attribute space,
this is still extremely large. Most of these attributes
will never be visited, and many will be visited only
a few times. As a result, we have serious statistical
issues in our ability to estimate v̄ta.

The standard approach to overcoming large state
spaces is to use aggregation. We can use aggrega-
tion to create a hierarchy of state spaces ���g�	 g =
0	1	2	

 	 ��� with successively fewer elements. We
illustrate four levels of aggregations in Table 1. At
level 0, we have 20 time periods, 100 regions for loca-
tion and domicile, and 3 capacity types, producing
600,000 attributes. At aggregation level 1, we ignored
the driver domicile; at aggregation level 2, we ignored
the capacity type; and at aggregation level 3, we rep-
resented location as one of 10 areas, which had the
effect of insuring that we always had some type of
estimate for any attribute.

Table 1 Levels of Aggregation Used to Approximate Value Functions

g Time Location Domicile Capacity type ���
0 ∗ Region Region ∗ 600�000
1 ∗ Region — ∗ 6�000
2 ∗ Region — — 2�000
3 ∗ Area — — 200

Note. A “∗” corresponding to a particular attribute indicates that the attribute
is included in the attribute vector, and a “—” indicates that it is aggre-
gated out.

Choosing the right level of aggregation to approxi-
mate the value functions involves a trade-off between
statistical and structural errors. If �v̄

�g�
ta 	 g ∈� denotes

estimates of a value vta at different levels of aggre-
gation, we can compute an improved estimate as
a weighted combination of estimates of the values
at different levels of aggregation using

v̄ta =
∑
g∈�

w
�g�
ta · v̄�g�

ta 	 (21)

where �w
�g�
ta g∈� is a set of appropriately chosen

weights. George, Powell, and Kulkarni (2005) show
that good results can be achieved using a simple
formula, called WIMSE, that weights the estimates
at different levels of aggregation by the inverse of the
estimates of their mean squared deviations (obtained
as the sum of the variances and the biases) from the
true value. These weights are easily computed from
a series of simple calculations. We briefly summarize
the equations without derivation. We first compute

*̄
�g	n�
ta = Estimate of bias due to smoothing a transient

data series,

= �1−+n−1�*̄
�g	n−1�
ta ++n−1��vn − v̄

�g	n−1�
ta �
 (22)

,̄
�g	n�
ta = Estimate of bias due to aggregation error,

= v̄
�g	n�
ta − v̄

�0	n�
ta
¯̄*�g	n�

ta = Estimate of total squared variation,
= �1−+n−1�

¯̄*�g	n−1�
ta ++n−1��vn

ta − v̄
�g	n−1�
ta �2

We are using two stepsize formulas here. &
�g	n−1�
ta is

the stepsize used in Equation (19) to update v̄n−1
ta . This

is discussed in more detail in §3.4. +n is typically a
deterministic stepsize that might be a constant such
as 0.1, although we used McClain’s stepsize rule:

+n =
+n−1

1++n−1 − +̄
	 (23)

where +̄ = 0
10 has been found to be very robust
(George, Powell, and Kulkarni 2005).

We estimate the variance of the observations at a
particular level of aggregation using

�s2
ta�

�g	n� =
¯̄*�g	n�
ta − �*̄

�g	n�
ta �2

1+-
�g	n�
ta

	 (24)

where -
�g	n�
ta is computed using

-
�g	n�
ta =



(
&

�g	n−1�
ta

)2
n= 1

(
1−&

�g	n−1�
ta

)2
-

�g	n−1�
ta + (

&
�g	n−1�
ta

)2
n > 1

This allows us to compute an estimate of the variance
of v̄

�g	n�
ta using

� �.2
ta�

�g	n� = Var/v̄�g	n�
ta 0

= -
�g	n�
ta �s2

a�
�g	n�
 (25)

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
10 Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350 400 450

A
ve

ra
ge

 w
ei

gh
t

Level

1

0

2
3

Iterations

Figure 3 Average Weight Put on Each Level of Aggregation by Iteration

The weight to be used at each level of aggregation is
given by

w
�g	n�
ta ∝ (

� �.2
ta�

�g	n� + �,̄
�g	n�
ta �2

)−1
	 (26)

where the weights are normalized so they sum to
one. This formula is easy to compute even for very
large-scale applications such as this. All the statistics
have to be computed for each attribute a, for all levels
of aggregation, that is actually visited. From this, we
can compute an estimate of the value of any attribute
regardless of whether we visited it or not. Figure 3
shows the average weight put on each level of aggre-
gation from one run of the model. As is apparent from
the figure, higher weights are put on the more aggre-
gate estimates, with the weight shifting to the more
disaggregate estimates as the algorithm progresses. It
is very important that the weights be adjusted as the
algorithm progresses; using the final set of weights
at the beginning produces very poor results.

3.4. Stepsizes
Stepsizes are often treated as the soft science of ap-
proximate dynamic programming, with people using
simple formulas such as a constant (0.1 or 0.05 is typ-
ical) or a declining stepsize rule such as a/�a+n� for
some a. A popular rule is McClain’s formula, given by
Equation (23), which provides 1/n behavior initially
and quickly converges to the constant �& (we used 0.10,
which is typical).

We genuinely struggled with stepsizes for this
problem. If the stepsize was too small, the rate of con-
vergence was much too slow. If the stepsize was too
large, the performance was unstable and the variance
of the estimates v̄ta was too large (later, we show that
we use v̄ta in our policy studies).

As a by-product of this research, we developed a
new stepsize formula that significantly improved the
performance of the algorithm (faster initial conver-
gence, with better stability in the limit). The stepsize
rule is developed in George and Powell (2006), where

it was named the optimal stepsize algorithm (OSA)
and is given by

&n = 1− � �.2�n

�1+ -̄n−1�� �.2�n + �*̄n�2
	 (27)

where � �.2�n is computed using Equation (25) and
*̄n is given by Equation (22) (we have dropped the
indexing by aggregation level g and attribute a for
simplicity). The stepsize rule balances the estimate of
the noise � �.2�n and the estimate of the bias *̄n that is
attributable to the transient nature of the data. If the
data are found to be relatively stationary (low bias),
then we want a smaller stepsize; as the estimate of the
noise variance decreases, we want a larger stepsize.

3.5. ADP Using a Double-Pass Algorithm
The steps in Figure 2 describe the simplest imple-
mentation of an approximate dynamic programming
algorithm that steps forward in time, updating value
functions as we proceed. This is also known as
a TD(0) algorithm (Bertsekas and Tsitsiklis 1996).
Although easy to implement, this algorithm can suffer
from slow convergence because �vn

ta depends on v̄n−1
ta ,

which is typically initialized to zero and slowly rises,
producing a downward bias in all the value func-
tion estimates. This does not necessarily produce poor
decisions, but it does mean that v̄n

ta underestimates
the value of a driver with attribute a at time t.

A strategy for overcoming this slow convergence,
which proved to be particularly valuable for this
project, involves using a two-pass procedure (also
known as TD(1)). In this procedure, we simulate deci-
sions forward in time without updating the value
functions. The derivative �vn

ta is then computed in
a backward pass. In the forward pass implementa-
tion, �vn

ta depends on v̄n−1
ta . With the backward pass,

�vn
ta depends on �vn

t+1	 a.
In classical discrete dynamic programs, implement-

ing a backward pass (or backward traversal, as it
is often referred to) is fairly straightforward (see
Bertsekas and Tsitsiklis 1996; Sutton and Barto 1998).
If we are in state Sn

t , we choose an action xn
t accord-

ing to some policy, compute a contribution C�Sn
t 	 x

n
t �,

then observe information Wt+1��
n�, which leads us to

state Sn
t+1. After following a path Sn

t 	 x
n
t 	 S

n
t+1	x

n
t+1	

 ,

we can compute �vn
t = C�Sn

t 	 x
n
t � + �vn

t+1 recursively by
stepping backward through time.

This logic is completely intractable for the prob-
lem class that we are considering. Instead, we per-
form a numerical derivative for each driver, which
means that after solving the original assignment prob-
lem (at time t), we loop over all the drivers (that
is, all the attributes a where Rta > 0) and set Rta = 0
and reoptimize. The process is illustrated in Fig-
ure 4, where 4(a) shows the initial assignment of four

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS 11

at,1

at, 2

at, 3

at, 4

at,1

at, 2

at, 3

at, 4

at,1

at, 2

at, 3

at, 4

+1

–1

–1

+1

+1

+1∆Ct

∆Rt
x

0
0

0

0

0

0

v(at +1, 12)′′

v(at +1, 23)′′

v(at +1, 34)′′

v(at +1, 45)′′

v(at +1, 22)′′

v(at +1, 33)′′

v(at +1, 45)′′

(a) Initial solution (c) Difference(b) Without driver a1

Figure 4 Illustration of Numerical Derivative
Note. (a) The base solution with four drivers, (b) the solution with driver a1 dropped out, and (c) the difference in assignment costs and post-decision resource
vector are shown.

drivers. Because the downstream value from assign-
ing a driver to a load in the future depends on the
driver-load combination, we have duplicated each
load for each driver, using an ellipse to indicate which
driver-load combinations represent the same load. If
the driver with attribute at1 is assigned to the sec-
ond load, then this creates a driver in the future with
attribute a′′t+1	12 and value v�a′′t+1	12�.

In Figure 4(b), we show the solution without
driver a1. Because driver a2 shifts up to cover load 2,
we no longer have a driver in the future with attribute
a′′t+1	12 but instead we have a driver with attribute
a′′t+1	22. Figure 4(c) shows the difference, where we
are interested in the change in the immediate contri-
bution, and the change in the future availability of
drivers. To represent these quantities, let Xt�Rt� be the
initial driver-load assignments and let Xt�Rt − ea� be
the perturbed solution, where ea is a vector of 0s with
a 1 in the element corresponding to Rta. Now let

2Ct�a�=C�St	Xt�Rt��−C�St	Xt�Rt − ea��

be the change in costs due to changes in flows over
the driver to load assignment arcs as a result of the
perturbation. Next, let Rx

t �Rt� be the post-decision
resource vector given Rt and let

2Rx
t �a�=Rx

t �Rt�−Rx
t �Rt − ea�

be the change in the post-decision state vector due to
the perturbation. Figure 4(c) indicates the change in
flows that drive 2Ct�a�, and the vector 2Rx

t �a�, where
2Rx

ta′�a�= 1 if including a driver with attribute a pro-
duces an additional driver of type a′, or 2Rx

ta′�a�=−1
if the change takes away a driver of type a′.

In the double-pass algorithm, we compute 2Ct�a�
(which is a scalar) and 2Rx

t �a� (which is a vector of

+1s and −1s) for each attribute a (which we have cho-
sen to represent). After we have completed the for-
ward pass, we obtain �vn

ta in a backward pass using

�vn
ta =2Ct�a�+

∑
a′∈�

2Rx
ta′�a��vn

t+1	 a′	

where we have made a slight notational simplification
by assuming that ax

t = at+1 (that is, there is no noise
in the attribute transition function), which means that
Rx

t =Rt+1.

3.6. Comparisons
This section has produced a number of algorithmic
choices: Should we use the forward pass (Figure 2) or
backward pass (§3.5)? Should we compute �vn using
numerical derivatives or dual variables? And should
we perform smoothing using the OSA stepsize (Equa-
tion (27)) or a deterministic formula such as McClain
(Equation (23))?

Figure 5 compares all of these strategies. We can
draw several conclusions from this figure. First, it
is apparent that the value functions computed from
the backward pass show much faster convergence in
the early iterations than those computed from using
a forward pass. This is a well-known property of
dynamic programming when we start with initial
value function approximations equal to zero. How-
ever, the difference between these approaches disap-
pears after 50 iterations. We also have to consider that
the backward pass is much harder to implement. The
real value of the backward pass is that we appear
to be obtaining good value functions after as few
as 25 iterations (a result supported by other exper-
iments reported below). For very large-scale appli-
cations such as this (where each iteration requires
almost 10 minutes of CPU time on a 3 GHz Pentium
processor), reducing the number of iterations needed
from 50 to 25 is a significant benefit.

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
12 Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS

0

1,000

2,000

3,000

4,000

5,000

0 50 100

OSA stepsize

McClain stepsize

Forward pass

Backward pass

Iterations

A
ve

ra
ge

 v
al

ue
 f

un
ct

io
n

Forward pass duals (OSA stepsize)

Numerical derivatives

Figure 5 Average Value Function When We Use Forward and Backward Passes, Numerical Derivatives and Dual Variables, and the OSA Stepsize or
the McClain Stepsize

The figure also compares value functions computed
using the OSA stepsize versus the McClain stepsize.
The OSA stepsize produces faster convergence (this is
particularly noticeable when using a forward pass) as
well as more stable estimates (this is primarily appar-
ent when using gradients computed using a back-
ward pass).

Finally, we also see that there is a significant differ-
ence between value functions computed using dual
variables versus numerical derivatives. It is easy to
verify that the numerical derivative is greater than or
equal to the dual variable, but it is not at all obvious
that the difference would be as large as that shown
in Figure 5. Of course, this comes at a significant
price computationally. Run times using numerical
derivatives are 30%–40% greater than if we used dual
variables. We have found, however, that although
numerical derivatives produce much more accurate
value functions (important in our study), they do not
produce better dispatching decisions. If the interest is
in a realistic simulation of the fleet (and not the value
functions themselves), then we have found that dual
variables work fine. In this paper, we wish to use the
value functions to estimate the value of different types
of drivers.

4. Model Calibration
Before the model could be used for policy analy-
ses, the company insisted that it closely replicate a
number of operating statistics including the average
length of haul (the length of a load to which a driver
is assigned), the average revenue per truck per day,
equipment utilization (miles per day), and the per-
centage of drivers who were sent home on a weekend.
These statistics had to fall between historical mini-
mums and maximums for each of the three capacity

types. Model calibration meant matching the perfor-
mance of the collective decisions made by the com-
pany’s dispatchers (see Figure 6). Perhaps one of the
surprising (and significant) outcomes of the research
is that a properly calibrated optimization model was
required to closely match the performance of an expe-
rienced group of dispatchers.

Average length of haul is particularly important
because drivers are only paid while they are driving
and longer loads mean less idle time. For this applica-
tion, it was important to match the average length of
haul for each of the three types of drivers (known as
“capacity types”). Of the three capacity types, teams
(drivers that work in pairs) prefer the longest loads
because they pay the most. The company was not
willing to consider the results of a simulation that
produced an average length of haul that was signifi-
cantly different (for each capacity type) from histori-
cal performance. This could have an impact on driver
turnover, which was not captured in the objective
function.

When we look at the historical pattern of loads
for a particular driver class, we obtain a distribution
such as that shown in Table 2. Thus, whereas this
driver class may have an 800-mile average length of
haul, this average will include a number of loads that
are significantly longer or shorter. Using penalties to
discourage assignments to loads that differ from the
average would seriously distort the model.

Section 4.1 describes an algorithmic strategy to
produce assignments that match historical patterns
of behavior. Section 4.2 then describes how well
the model matched the historical metrics, where we
depend on both the contribution of the value func-
tions as well as the pattern-matching logic described

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS 13

Figure 6 The Schneider Dispatch Center in Green Bay, Wisconsin

in the next section. Section 4.3 compares the contribu-
tion of value functions against the pattern-matching
logic.

4.1. Pattern Matching
The problem of matching historical averages for
length of haul (LOH) by capacity type can be viewed
as an example where the results of a model need to
match exogenous patterns of behavior. Our presenta-
tion follows the work in Marar, Powell, and Kulkarni
(2006) and Marar and Powell (2004). In this work, we
assume that we are given a pattern vector 3, where

3e = �3e
ād̄
�ā∈�	 d̄∈�,

3e
ād̄
= The exogenous pattern, representing the per-

centage of time that resources with attribute ā

Table 2 Illustrative Length-of-Haul (LOH)
Distribution for a Single Driver Type

LOH (miles) Relative frequency (%)

0–390 8�3
390–689 33�9
690–1,089 36�6
1,090–1,589 15�6
1,590– 5�4

are acted on by decisions of type d̄ based on
historical data.

We refer to 3e as an exogenous pattern because it
describes desired behaviors rather than a specific cost
for a decision. In most applications, the indices ā and
d̄ for 3e

ād̄
are aggregations of the original attribute a

and decision d. For the purpose of matching the
length of haul, ā consists only of the capacity type and
d̄ represents a decision to assign a driver of type ā to
a load whose length is within some range.

We next have to determine the degree to which
the model is matching the exogenous pattern. Let
3ād̄�x� be the average pattern flow from a solution
X�R� of the model corresponding to the attribute-
decision pair �ā	 d̄�. Also, let Rā be the total number
of resources with attribute ā over the entire horizon.
The goal is for the model pattern flow 3ād̄�x� to closely
match the desired exogenous pattern flows 3e

ād̄
.

The deviation from the desired frequency is cap-
tured in the objective function using a penalty
function. The actual term included in the objective
function for each pattern is denoted as H�3�x�	3e�
where we used the square of the difference of

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
14 Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS

the two, given by

H�3�x�	3e�=∑
ā

∑
d̄

Rā�3ād̄�x�−3e
ād̄
�2
 (28)

The aim is to penalize the square of the deviations
of the observed frequencies from the desired frequen-
cies. In practice, a quadratic approximation of H is
used. The pattern matching term H is multiplied by a
weighting parameter 5 and subtracted from the stan-
dard net revenue function. The objective function that
incorporates the patterns is written as follows:

xt�5�= arg max
xt∈�t

[∑
a∈�

∑
d∈�

ctadxtad − 5H�3�x�	3e�

]

 (29)

5 permits control over how much emphasis is put on
the patterns relative to the remainder of the objective
function. Setting 5 to zero turns the patterns off.

We use an algorithm proposed by Marar and Powell
(2004) (and modified by Powell, Wu, and Whisman
2004) that incorporates this feature.

4.2. Comparison to History
We are finally ready to compare the model to histor-
ical measures. We have 4 types of statistics that are
measured for each of the 3 capacity types, giving us
12 statistics altogether. The company derived what it
considered to be acceptable ranges for each statistic.
Figures 7(a) to 7(d) give the length of haul, revenue
per driver, utilization (miles per driver per day), and
the percentage of drivers who are sent home on a

Type 1 Type 2 Type 3

Capacity category

L
O

H

Type 1 Type 2 Type 3

Capacity category

Type 1 Type 2 Type 3

Capacity category

%
 d

ri
ve

rs
 h

om
e

on
 w

ee
ke

nd
s

Hstorical minimum
Simulation
Historical maximum

Type 1 Type 2 Type 3

Capacity category

U
til

iz
at

io
n

(a) (b)

(c) (d)

R
ev

en
ue

 p
er

 d
ri

ve
r

Figure 7 Simulation Results Compared Against Historical Extremes for Various Patterns

weekend. The last statistic reflects the ability of the
model to get drivers home on weekends, which was
viewed as being important to the drivers.

All the results of the model closely matched his-
torical averages. The units of the vertical axis have
been eliminated due to the confidentiality of the data,
but the graphs accurately show the relative error (the
bottom of the vertical axis is zero in all the plots).
The bands were developed by company management
before the model was run. It is easy to see that three
of the four sets of max/min bands are quite tight. We
also note that although we used specific pattern logic
to match the length of haul statistics, the other statis-
tics were a natural output of the model, calibrated
through the use of cost-based rules.

At this point, company management felt comfort-
able concluding that the model was well calibrated
and could be used for policy studies. Although the
model has many applications, in §5 we focus specifi-
cally on the ability of the model to evaluate the value
of drivers by capacity type and domicile. This study
required that the value functions do more than simply
produce good driver assignment decisions; the value
functions themselves had to accurately estimate the
value of each driver type.

4.3. Value Function Approximations vs. Patterns
We have introduced two major algorithmic strate-
gies for improving the performance of the model:
value function approximations (VFAs), which produce
the behavior of optimizing over time, and pattern

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS 15

matching, which is specifically designed to help the
model match the length of haul for each driver class.
These strategies introduce two questions: How do
value function approximations and patterns each con-
tribute to the ability of the model to match historical
performance? And how do they individually affect
the quality of the solution as measured by the objec-
tive function?

Figure 8 shows the average length of haul as a func-
tion of the number of iterations (a) with patterns and
VFAs, (b) with patterns and without VFAs, (c) without

UB

LB

130

120

110

100

90

80

M
ile

s

Iterations

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Iterations
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

130

120

110

100

90

80

M
ile

s

(a) Driver type 1

(b) Driver type 2

Patterns only

Both patterns and VFAs

VFAs only

No patterns or VFAs

Figure 8 Length of Haul for Two Driver Classes With Patterns and VFAs, With Patterns and Without VFAs, Without Patterns and With VFAs, and
Without Patterns or VFAs

Note. Upper and lower bounds (UB and LB, respectively) represent the acceptable range set by management.

patterns and with VFAs, and (d) without patterns
or VFAs. We show the results for two different driver
classes because the behavior is somewhat different.
In both figures, we show upper and lower bounds
specified by management as the limit of what they
consider acceptable (the middle of this range is con-
sidered the best). Both figures show that we obtain
the worst results when we do not use VFAs or pat-
terns, and we obtain the best results with patterns
and VFAs. Of interest is the individual contribution of
VFAs versus patterns. In Figure 8(a), the use of VFAs

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
16 Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS

Optimization objective function

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

40,000,000

45,000,000

50,000,000

1 6 11 16 21 26 31 36 41 46

O
bj

ec
tiv

e
fu

nc
tio

n

Iterations

Both patterns and VFAs

Patterns only
VFAs only

No patterns or VFAs

Figure 9 Objective Function Without Patterns and VFAs, With Patterns and Without VFAs, Without Patterns and With VFAs, and With Patterns
and VFAs

alone improves the ability of the model to match his-
tory, whereas in Figure 8(b) VFAs actually make the
match worse. Even in Figure 8(b), VFAs and patterns
together outperform either alone.

We next examine the effect of VFAs and patterns
on the objective function. We define the objective
function as the total contribution earned by follow-
ing the policy determined by using patterns and
value functions. The contributions include the rev-
enues from covering loads minus the cost of mov-
ing the truck and any penalties for activities such as
arriving late to a service appointment or allowing a
driver to be away from home for too long (the “soft
costs”). Figure 9 shows the objective function for the
same four combinations (with and without patterns,
with and without value functions). The figure shows
that the results using the value functions significantly
outperform the results without the value functions.
Including the patterns with the value function does
not seem to change the objective function (although
it obviously improves our ability to match historic
performance measures). Interestingly, using patterns
without the value functions produces a noticeable
improvement over the results without the patterns (or
value functions), suggesting that the patterns do, in
fact, contribute to the overall objective function. How-
ever, the point of the patterns is to achieve goals that
are not captured by the objective function, so this ben-
efit appears to be incidental.

5. Fleet Mix Studies
All truckload motor carriers are continuously hir-
ing drivers just to maintain their fleet size. It is
not unusual for companies to experience over 100%
turnover (that is, if the fleet has 1,000 drivers, they

have to hire 1,000 drivers a year to maintain the fleet).
Because companies are constantly advertising and
processing applications, it is necessary to decide each
week how many jobs to offer drivers based on their
home domicile and which of the three capacity types
they would belong to. We studied the ability of the
model to help guide the driver hiring process.

We divided the study into two parts. In §5.1, we
assessed our ability to estimate the marginal value
of a driver type (defined by the driver domicile and
capacity type) using the value function approxima-
tions. Then, we report in §5.2 on the results of simula-
tions where we used the value functions to change the
mix of drivers (while holding the fleet size constant).

5.1. Driver Valuations
For our project, the 100 domicile regions and 3 capac-
ity types produced 300 driver types. If this were a
traditional simulator, we could estimate the value of
each of these driver types by starting from a single
base run, then incrementing the number of drivers of
a particular type and running the simulation again.
There is a fair amount of noise inherent in the results
of a single simulation run, so it might be reasonable
to replicate this 10 times and take an average. With
300 driver types, this implies 3,000 runs of the simu-
lation model.

We can avoid this by simply using the value func-
tions. If we run N iterations of our ADP algorithm,
we might expect that the final value functions for time
t = 0, given by v̄N

0 = �v̄N
0a�a∈�, could be used to estimate

the value of each driver type. The value functions are
indexed by three attributes (location, domicile, and
capacity type); however, we only need values indexed
by domicile and capacity type. The value indexed

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS 17

by domicile and capacity type is nothing more than
an aggregation on location and was estimated using
the same methods we used to estimate the value
functions at different levels of aggregation. For the
remainder of this section, we use the attribute a to
represent driver domicile and capacity type only. In
addition, we will let v̄0a = v̄N

0a be our final estimate
of the marginal value of a driver (at time zero) with
attribute a.

Whereas it is certainly reasonable to expect v̄0a to be
the marginal value of a driver of type a, we needed to
verify that this was, in fact, an accurate estimate. We
ran experiments adding 10, 20, 30, 40, and 50 drivers
for four different driver classes. These experiments
convinced us that the model produced relatively lin-
ear behavior when we add up to 20 drivers.

We then estimated the value of adding 20 differ-
ent types of drivers (different domiciles and capac-
ity types) by adding 20 drivers and averaging the
marginal value over 10 repetitions of the experiment.
In each case, we computed a 95% confidence interval
for the slope (based on the estimated mean and stan-
dard deviation of both the base case and the results
of the 10 iterations with 20 additional drivers). Fig-
ure 10 shows the confidence intervals for the slope
estimated from adding 20 additional drivers and the
point estimate from the value function for the 20 dif-
ferent driver types. For 18 driver types, the value
function estimate fell within the confidence interval
(with a 95% confidence interval, we would expect

–500

0

500

1,000

1,500

2,000

2,500

3,000

1 2 3 4 5 6 7 8 9 11 12 15 16 17 18 19 20

Attribute vector (driver type)

M
ar

gi
na

l v
al

ue
 o

f
a

dr
iv

er

13 1410

Figure 10 Predicted Values Compared Against Observed Values from Actual Scenarios
Note. The columns represent the approximations of the marginal values for different driver types. The error bars denote a 95% confidence interval around the
mean marginal value, computed from observed scenarios.

19 of the driver types to fall within the confidence
interval).

5.2. Driver Remix Experiments
In this section, we attempt to optimize the number
of drivers belonging to each class so that there is an
increase in the objective function. The method that we
adopt for this purpose is to redistribute the drivers
between the various driver types such that there are
more drivers of types with higher marginal values as
compared with the ones with lower values.

To find the number of drivers to be added or
removed from each class, we apply a stochastic gra-
dient algorithm where we use a correction term to
smooth the original number of drivers of each class.
The correction term is a function of the difference in
the marginal value from the mean marginal value of
all the driver classes. We define the following:

v̄n
a = The marginal value of a driver with attribute a

at iteration n.
Rn

a = The number of drivers with attribute a at
iteration n.

v̄∗ = v̄n
a averaged over all attribute vectors a.

The algorithm for computing the new number of
drivers of class a consists of the following step:

Rn+1
a = max�0	Rn

a +*�v̄n
a − v̄n

∗� 	 (30)

where * is a scaling factor that we set, after some
experimentation, to 0.10. After the update, we then
rescale Rn+1 so that

∑
a R

n+1
a =∑

a R
n
a .

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
18 Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS

0

2

4

6

8

10

12

14

16

18

600 700 800 900 1,000

Pe
rc

en
ta

ge
 o

f d
ri

ve
rs

 n
ot

 g
et

tin
g

ho
m

e

Original

Remix

1.5

1.6

1.7

1.8

1.9

2.0

200 250 300 350 400 450 500 550 600

Number of iterations

Number of iterations

O
bj

ec
tiv

e
fu

nc
tio

n
(m

ill
io

ns
)

(b) Percent not getting home

(a) Objective function

Figure 11 Result of Driver Remix Experiments
Note. (a) The change in the objective function, and (b) change in the per-
centage of drivers not getting home are shown.

In Figure 11, we show the effect of shifting to a
new mix of drivers. Figure 11(a) shows the improve-
ment in the objective function when we used value
functions to adjust the mix of drivers. We did not
adjust the driver mix until iteration 400 so that the
value functions had a chance to stabilize. Figure 11(b)
shows the percentage of drivers who did not get
home within the simulation. This figure shows a
significant improvement in our ability to get drivers
home when we shift the fleet based on the value func-
tion approximations.

6. Conclusions
This paper has demonstrated that approximate dy-
namic programming allows us to produce an accu-
rate simulation of a large-scale fleet that (a) allowed
us to capture real-world operations at a very high
level of detail, (b) produced operating statistics that
closely matched historical performance, and (c) pro-
vided accurate estimates of the marginal value of 300
different driver types from a single simulation. The
technology of approximate dynamic programming
allows us to capture all the relevant features of drivers
and loads to produce a very realistic simulation,

including decisions that balance immediate contribu-
tions against downstream impacts. The logic is able
to handle different types of uncertainty including ran-
dom customer demands and travel times. Value func-
tion approximations produced not only more realistic
behaviors (measured in terms of our ability to match
historical performance) but also the marginal value
of different types of drivers from a single run of the
model.

This project motivated other important results.
Although the value functions were approximated
in terms of only four driver attributes (location,
driver type, domicile, and time), this still produced
600,000 parameters to be estimated, creating a sig-
nificant statistical problem. A new approach for
estimating parameters using a weighted average
of estimates at different levels of aggregation was
developed specifically for this project. This method
was shown to produce better, more stable estimates.
This project also motivated the development of a
new stepsize formula that eliminated the need to
constantly tune parameters in deterministic formu-
las. Finally, we used novel pattern-matching logic
to produce behaviors (the average length of a load
for different driver types) that matched historical
performance.

The simulation has been adopted at Schneider
National as a planning tool that, as of this writing,
is used continually to perform studies of policies that
affect the performance of the network. A partial list
of benefits from studies that have been undertaken
using the simulation are:

• Getting drivers home—A major component for
retaining drivers in a long-haul carrier is the ability
to return them home in a predictable way. Schnei-
der had developed a plan to make stronger commit-
ments to drivers, but the simulation showed that the
plan would have cost the company $30 million per
year. Using the model, an alternative strategy was
developed that provided 93% of the proposed self-
scheduling flexibility for only $6 million per year.

• Quantifying the cost of hours-of-service rules—
Using the model, Schneider has been able to quan-
tify the cost of changes in the hours-of-service rules
set by the Department of Transportation. With this
information, we are able to effectively negotiate
adjustments in customer billing rates and freight
tendering/handling procedures, leading to margin
improvements of 2% to 3%.

• Setting appointments—The model has been used
to evaluate the value of new policies for setting
appointments. Preliminary results suggest margin
impacts from improved utilization are in the range
of 4%–10%, and the number of late deliveries was
reduced by half.

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS 19

• Cross-border driver management—With recent
changes in security and border policies, it is necessary
to maintain a pool of drivers who are trained with
these policies. Using the model, Schneider was able
to reduce the number of drivers engaged in border
crossing by 91% and restrict relays to three designated
points. This has resulted in an initial avoidance of $3.8
million in training/identification/certification costs
and ongoing annual cost avoidance of $2.3 million.

• Hiring drivers—The home location of long-haul
truck drivers has a significant impact on network
operating efficiency. Schneider is continually hiring
drivers and can control the number of drivers hired in
each region. Using the model, Schneider has been able
to quantify the marginal contribution of changes in
regional driver populations, leading to an estimated
annual profit improvement of $5 million.

The next step with the model is to focus on the
loads. The model currently does not model the dif-
ference between tendered loads (loads offered to the
company that may be refused), committed loads (ten-
dered loads that the carrier has made a commitment
to move), and contracted loads (loads that are offered
to the carrier under a standing contract). Our goal
is to use the model to identify good policies for mak-
ing commitments to loads as they are tendered, taking
into consideration the state of the system. Once this
policy is in place, the next goal would be to determine
how to evaluate customer contracts as a foundation
for determining contractual commitments. We are not
aware of any existing technology that can evaluate
loads in the presence of driver management issues.

This project has offered an important insight into
the process of implementing optimization models
for operational problems. The research community
has traditionally focused on developing optimization
models that produce the best possible solutions, pre-
sumably better than what can be achieved by a com-
pany. Our experience with this and other similar
projects is that the first and most important goal is
to produce a model that calibrates against history. Of
particular importance was the ability of the model
to handle a high level of detail, allowing the model
to accurately represent hours-of-service rules, detailed
service commitments, and complex rules governing
driver relays and foreign drivers. Only after the model
proved to be realistic did the carrier begin to believe
the results. Perhaps the most remarkable conclusion
was that an optimization model that used optimal
solutions at a point in time and near-optimal solu-
tions over time accurately reproduced (at an aggregate
level) the performance of a well-run company.

References
Bertsekas, D., J. Tsitsiklis. 1996. Neuro-Dynamic Programming.

Athena Scientific, Belmont, MA.

Caliskan, C., R. W. Hall. 2003. A dynamic empty equipment and
crew allocation model for long-haul networks. Transportation
Res. Part A 5 405–418.

Chiu, Y., H. S. Mahmassani. 2002. Hybrid real-time dynamic traffic
assignment approach for robust network performance. Trans-
portation Res. Record 1783 89–97.

Crainic, T., J. Ferland, J.-M. Rousseau. 1984. A tactical planning
model for rail freight transportation. Transportation Sci. 18
165–184.

Desaulniers, G., J. Desrosiers, M. Gamache, F. Soumis. 1998. Crew
scheduling in air transportation. T. G. Crainic, G. Laporte, eds.
Fleet Management and Logistics. Kluwer Academic Publishers,
Norwell, MA, 169–185.

Desrosiers, J., M. Solomon, F. Soumis. 1995. Time constrained
routing and scheduling. C. Monma, T. Magnanti, M. Ball,
eds. Handbook in Operations Research and Management Science,
Volume on Networks. North Holland, Amsterdam, 35–139.

Gendreau, M., J. Y. Potvin. 1998. Dynamic vehicle routing and
dispatching. T. Crainic, G. Laporte, eds. Fleet Management
and Logistics. Kluwer Academic Publishers, Norwell, MA,
115–126.

Gendreau, M., F. Guertin, J. Potvin, E. Taillard. 1999. Parallel tabu
search for real-time vehicle routing and dispatching. Trans-
portation Sci. 33 381–390.

George, A. 2005. Optimal learning strategies for multi-attribute
resource allocation problems. Ph.D. thesis, Princeton Univer-
sity, Princeton, NJ.

George, A., W. B. Powell. 2006. Adaptive stepsizes for recursive
estimation with applications in approximate dynamic pro-
gramming. Machine Learn. 65 167–198.

George, A., W. B. Powell, S. Kulkarni. 2005. Value func-
tion approximation using hierarchical aggregation for multi-
attribute resource management. Technical report, Department
of Operations Research and Financial Engineering, Princeton
University, Princeton, NJ.

Ichoua, S., M. Gendreau, J.-Y. Potvin. 2006. Exploiting knowledge
about future demands for real-time vehicle dispatching. Trans-
portation Sci. 40 211–225.

Kleywegt, A., V. S. Nori, M. W. P. Savelsbergh. 2004. Dynamic pro-
gramming approximations for a stochastic inventory routing
problem. Transporation Sci. 38 42–70.

Larsen, A., O. B. G. Madsen, M. M. Solomon. 2002. Partially
dynamic vehicle routing—Models and algorithms. J. Oper. Res.
Soc. 53 637–646.

Marar, A. 2002. Information representation in large-scale resource
allocation problems: Theory, algorithms and applications.
Ph.D. thesis, Princeton University, Princeton, NJ.

Marar, A., W. B. Powell. 2004. Using static flow patterns in
time-staged resource allocation problems. Technical report,
Department of Operations Research and Financial Engineering,
Princeton University, Princeton, NJ.

Marar, A., W. B. Powell, S. Kulkarni. 2006. Capturing expert knowl-
edge in resource allocation problems through low-dimensional
patterns. IIE Trans. 38 159–172.

Powell, W. B. 1988. A comparative review of alternative algo-
rithms for the dynamic vehicle allocation problem. B. Golden,
A. Assad, eds. Vehicle Routing6 Methods and Studies. North
Holland, Amsterdam, 249–292.

Powell, W. B. 2007. Approximate Dynamic Programming6 Solving the
Curses of Dimensionality. John Wiley & Sons, New York.

Powell, W. B., P. Jaillet, A. Odoni. 1995. Stochastic and dynamic net-
works and routing. C. Monma, T. Magnanti, M. Ball, eds. Hand-
book in Operations Research and Management Science, Volume on
Networks. North Holland, Amsterdam, 141–295.

Powell, W. B., J. A. Shapiro, H. P. Simão. 2001. A representational
paradigm for dynamic resource transformation problems.

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

Simão et al.: An Approximate Dynamic Programming Algorithm for Large-Scale Fleet Management
20 Transportation Science, Articles in Advance, pp. 1–20, © 2008 INFORMS

R. F. C. Coullard, J. H. Owens, eds. Annals of Operations
Research. J. C. Baltzer AG, Basel, Switzerland, 231–279.

Powell, W. B., T. T. Wu, A. Whisman. 2004. Using low dimensional
patterns in optimizing simulators: An illustration for the airlift
mobility problem. Math. Comput. Model. 29 657–2004.

Psaraftis, H. 1995. Dynamic vehicle routing: Status and prospects.
Ann. Oper. Res. 61 143–164.

Regan, A., H. S. Mahmassani, P. Jaillet. 1998. Evaluation of dynamic
fleet management systems—Simulation framework. Transporta-
tion Res. Record 1648 176–184.

Secomandi, N. 2000. Comparing neuro-dynamic programming
algorithms for the vehicle routing problem with stochastic
demands. Comput. Oper. Res. 27 1201–1225.

Secomandi, N. 2001. A rollout policy for the vehicle routing prob-
lem with stochastic demands. Oper. Res. 49 796–802.

Spivey, M. J. 2001. The dynamic assignment problem. Ph.D. thesis,
Princeton University, Princeton, NJ.

Spivey, M., W. B. Powell. 2004. The dynamic assignment problem.
Transportation Sci. 38 399–419.

Sutton, R., A. Barto. 1998. Reinforcement Learning. The MIT Press,
Cambridge, MA.

Tapiero, C., M. Soliman. 1972. Multicommodities transportation
schedules over time. Networks 2 311–327.

Taylor, G., T. S. Meinert, R. C. Killian, G. L. Whicker. 1999. Develop-
ment and analysis of alternative dispatching methods in truck-
load trucking. Transportation Res. Part E 35 191–205.

Tjokroamidjojo, E., G. T. Kutanoglu. 2001. Quantifying the value
of advance load information in truckload trucking. Technical
report, University of Arkansas, Fayetteville.

Topaloglu, H., W. B. Powell. 2006. Dynamic programming approx-
imations for stochastic, time-staged integer multicommodity
flow problems. INFORMS J. Comput. 18 31–42.

White, W. 1972. Dynamic transshipment networks: An algorithm
and its application to the distribution of empty containers.
Networks 2 211–236.

Yang, J., P. Jaillet, H. Mahmassani. 2004. Real-time multivehicle
truckload pick-up and delivery problems. Transportation Sci. 38
135–148.

C
o
p
yr
ig
h
t:

IN
F

O
R

M
S

ho
ld

s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs

io
n,

w
hi

ch
is

m
ad

e
av

ai
la

bl
e

to
in

st
itu

tio
na

ls
ub

sc
rib

er
s.

T
he

fil
e

m
ay

no
tb

e
po

st
ed

on
an

y
ot

he
r

w
eb

si
te

,i
nc

lu
di

ng
th

e
au

th
or

’s
si

te
.

P
le

as
e

se
nd

an
y

qu
es

tio
ns

re
ga

rd
in

g
th

is
po

lic
y

to
pe

rm
is

si
on

s@
in

fo
rm

s.
or

g.

