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a b s t r a c t

In this paper, we study a dynamic fleet management problem with uncertain demands and customer
chosen service levels. We first show that the problem can be transformed into a dynamic network with
partially dependent random arc capacities, and then develop a structural decomposition approach which
decomposes the network recourse problem into a series of tree recourse problems (TRPs). As each TRP
can be solved by an efficient algorithm, the decomposition approach can solve the problem very
efficiently. We conduct numerical experiments to compare its performance with two alternative
methods. Numerical experiments show that the performance of our method is quite encouraging.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem faced by a carrier who needs to
manage a fleet of homogeneous vehicles over space and time to
serve a number of transportation requests. Each transportation
request is defined by an origin–destination pair. The service for the
request must start at a specific instant in time or be lost. The
carrier may provide customers a portfolio of service levels that
vary in travel time (24 h, 48 h or 3 days). For example, when
customers place orders from E-commercial companies (such as
amazon.com, 360buy.com, Taobao.com), they can choose delivery
service level ranged from 3 days, 2 days and 1 day with different
rates. Carriers, given orders with various service level and demand,
need to allocate their fleets to fulfill the tasks. If customer
demands a service level with shorter travel time, the carrier may
need to pay additional transportation cost and ask for a higher
rate. Customers select one service level when they place the order.
This problem belongs to a class of dynamic fleet management
problems (DFMPs), which can be viewed as a type of spatial,
dynamic inventory management problem with reusable vehicles.
At any point in space and time, a vehicle may be assigned to satisfy
a revenue generating activity. It may be repositioned empty to
another point in space and time or held in inventory.

The DFMP has received a lot of attention from the research
community. Comprehensive reviews can be found in Dejax and

Crainic (1987), Crainic and Laporte (1998), Powell and Topaloglu
(2005) and Flatberg et al. (2007). We focus on the most relevant
literature. Early fleet management models are deterministic
and appear as the first applications of linear programming and
min-cost network flow algorithms (see Dantzig and Fulkerson,
1954; White, 1972). These models formulate the problem over
a time-space network (also called a dynamic network, or a time-
staged network). A number of authors have studied the problem of
random demands. The first to explicitly incorporate uncertainty in
demands is Jordan and Turnquist (1983) in the context of the
allocation of rail freight cars. Powell (1986) formulates the pro-
blem with random demands as a dynamic network with random
arc capacities. Powell (1988) provides an overview of alternative
modeling and algorithmic strategies for the stochastic fleet man-
agement problem. This model has been applied to dynamic truck
allocation (Powell, 1987; Powell et al., 1988), empty container
repositioning (Crainic et al., 1993; Chu, 1995) and transportation
planning (Barbarosoglu and Arda, 2004). Godfrey and Powell
(2002) and Topaloglu and Powell (2006) introduce the idea of
adaptively estimating piecewise-linear approximations of the
value of vehicles in the future.

All of this literature assumes that the time for completing the
transportation request is fixed. In our motivating application, the
time is not fixed but determined by the service level chosen by
the customer. Therefore, the service time for a particular demand can
be regarded as a random variable, and it becomes known as soon
as the demand is known. But for orders moving in the future, we do
not yet know the customer's choice, and for this reason the travel
time is stochastic. We note that this type of randomness in the time
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to complete a service contrasts with randomness resulting from
delays due to weather, congestion and equipment failures. In these
settings, the service completion time only becomes known after the
demand has been served.

A few authors have considered the problem of random travel
times. Cheung et al. (2005) proposes a labeling method to handle
uncertain service times. This method is able to handle a number of
operational constraints, but does not scale to larger problems.
Glockner and Nemhauser (2000) use scenario trees in a stochastic
programming model to handle uncertainty. Simao et al. (2009) use
approximate dynamic programming to model truckload opera-
tions which includes random travel times which become known
only after a trip is completed.

There is a separate literature that includes customer choice. For
example, Zhang and Adelman (2009) incorporate customer choice
in airline revenue management. However, customer choice has not
been considered in the fleet management literature.

Our solution strategy extends a line of research in stochastic
vehicle allocation using separable approximations. This problem
class has been most widely studied using the framework of two-
stage stochastic programs with network recourse (Wallace, 1986,
1987; Birge and Wallace, 1988). Wallace (1986) introduces a
piecewise linear upper bound for networks and provides a result
that is generalized in Birge and Wallace (1988) for stochastic
programs. Independently, separable, piecewise linear approxima-
tions have been proposed for discrete vehicle allocation problems
that arise in the context of fleet management (Powell, 1986).
Frantzeskakis and Powell (1990) presents a method called the
Successive Linear Approximation Procedure (SLAP) for approximating
the expected recourse function. It is generalized by the Successive
Convex Approximation Method (SCAM) in Cheung and Powell
(1996). Similar to SLAP, SCAM decomposes the network into a
series of trees and expresses the expected recourse function in
terms of trees in the network. Furthermore, SCAM generalizes
SLAP by using convex, instead of linear, approximations of the
expected recourse function. The advantage of the SCAM is that it
works quite well even with problems with huge sample space
of random outcomes. SCAM and SLAP both estimate piecewise
linear functions in a preprocessor. Godfrey and Powell (2002)
and Topaloglu and Powell (2006) propose adaptive approximation
procedures to estimate piecewise linear, separable approximations.

In this paper, we show that the problem of managing a fleet of
vehicles where customers can choose the service level for orders
can be formulated as a multistage dynamic network model with
partially dependent random variables by an arc transformation.
The contributions of this paper are:

1. We formulate for the first time the fleet management problem
with customer-chosen service levels. We formulate it as a
dynamic network model with partially dependent random arc
capacities. As this model retains the network structure, it
enables us to apply structural decomposition techniques.
Unlike previous dynamic fleet management models where
random variables are usually assumed independent, our model
allow random variables representing the customer selection of

service level be partially dependent. It enables us to consider
customer behaviors, which usually introduce a dependency in
random demands, in fleet management field.

2. We show that with slight modifications, SCAM works for DFMP
with customer chosen service levels. We present a new
structural decomposition approach: the Successive REsource
directive Decomposition Method (SREDM). This approach
provides a search mechanism which takes the advantage of
the efficiency of solving the sub-problems. Both decomposition
methods explicitly take the advantage of the network structure.

3. We evaluate the efficiency of the decomposition method
numerically. The results demonstrate that our approach is
superior to the modified SCAM, and the gaps between the
results of our approach and the lower bound are very tight.

The rest of this paper is organized as follows. Section 2
introduces how to transform the problem to a dynamic network
model with partially dependent random arc capacities. Then it
provides a multistage stochastic programming formulation. Next,
Section 3 presents the structural decomposition approach that
formulates the problem as a Discrete Resource Allocation Model
(DRAM) and decomposes the problem into a number of stochastic
tree recourse problems. Section 4 compares this approach with the
alternative methods on a set of test problems. The results in
Section 4 show the superiority of the new method over the
alternative methods. Finally, Section 5 gives some concluding
remarks.

2. Problem formulation

In this section, we first introduce an arc transformation. By this
transformation, any arc with a random travel time can be trans-
formed into a set of arcs with deterministic travel times and
dependent random arc capacities. Then, the problem is formulated
as a dynamic network model with dependent arc capacities.

2.1. Arc transformation

The left part of Fig. 1 is a typical time-space network. The
vertical dimension represents the geographical locations and the
horizonal dimension represents the discrete times. In the example
on the left of Fig. 1, there are two locations i and j, and there are
three time periods. Let us define,

L the set of locations
Γ the set of discrete time periods
uijt the demand, in terms of the number of movements, from

location i to location j starting at time t

We use it to denote a node representing a location i at time t.
Accordingly, ðit ; jt′Þ denotes the arc from it to jt′.

Now we are ready to illustrate the transformation by Fig. 1.
Assume that the arc ðit ; jt′Þ, where t′¼ tþτijt , represents the
movement from location i to location j starting at time t, where

Fig. 1. Transformation of an arc with random travel time and random capacity to a set of arcs with deterministic travel times and random arc capacities.
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τijt is the travel time from location i to location j starting at time t.
If the travel time is deterministic, the destination of this move-
ment can be represented by the node jt′. When τijt is a random
variable, such a destination cannot be presented by a single node
in the time-space network. Suppose that τijt is a discrete random
variable with V possible integer values taken from the set
T ijt ¼ fτijtt1 ;…; τijttv ;…; τijttV g. Each realization of the travel time
corresponds to a service level.

Let

δijttv ¼
1 if the realization of τijt is τijttv ;
0 otherwise:

�

Since the indicator depends on τijt, it is a random variable.
When the travel time is random, corresponding to the arc ðit ; jt′Þ,
we generate a node set Nj½i; t� ¼ fjtv ; vA ½1;V �g and an arc set
Aj½i; t� ¼ fðit ; jtv Þ; vA ½1;V �g. Each element in this arc set can now
represent one possible movement from i to j for the realized travel
time τijtv . For the deterministic case, jAj½i; t�j ¼ 1. Similarly, we
define Oi½j; t� ¼ fit 1 ;…; it v ;…; it V ′ g as the set of nodes which can
reach location j at time t, where V ′ is the total number of such kind
of nodes. Accordingly, the arc set Di½j; t� ¼ fðit ; jtÞ : it AOi½j; t�g.

The travel time for arc ðit ; jtv Þ is fixed at τijtv , and the arc capacity
of ðit ; jtv Þ, denoted by ξijttv , is defined as

ξijttv ¼ uijt � δijttv : ð1Þ

From (1), we can see that when an arc ðit ; jt′Þ, jt′ANj½i; t�, has a
positive arc capacity, then the rest of the arcs in Aj½i; t� must have a
capacity of 0. This dependency leads to

∑
jt′ ANj ½i;t�

ξijtt′ ¼ uijt : ð2Þ

By this transformation, a transportation request with an uncer-
tain demand and an uncertain travel time can be represented by a
bundle of arcs with dependent arc capacities. The dynamic fleet
management problem with uncertain demands and uncertain
travel times, thus, can be modeled by dynamic network with
partially dependent arc capacities. In this paper, we assume that
the travel time of empty move, τijte is deterministic.

To facilitate the presentation, in the remaining part of this
paper, we define the set of outgoing arcs from node it as
A½i; t� ¼⋃jAL; ja iAj½i; t�. Correspondingly, we define the end nodes
of the arcs in A½i; t� as N½i; t� ¼⋃jAL;ja iNj½i; t�. Similarly, we
define the set of arcs entering node jt as D½j; t� ¼⋃iAL;ia jDi½j; t�.
And, we define the origin nodes of the arcs in D½j; t� as
O½j; t� ¼⋃iAL;ia jOi½j; t�.

2.2. Formulation

Let ðΩ;F ; PÞ be a probability space and ωAΩ an outcome. For
outcome ω, the vector of the realized arc capacities is ξðωÞ. Define:

N t the set of nodes from stage t to the end stage
ξt the realized capacities up to stage t
Rit the total supply at location i at time t
xijtt′ flow of loaded vehicles in the arc ðit ; jt′Þ
yijt flow of empty vehicles from location i to location j at

time t
rijtt′ net profit per loaded vehicle in the arc ðit ; jt′Þ
cijt cost per vehicle for empty moving from location i to

location j at time t

We also define a state variable that can significantly simplify
our presentation:

Stjt′ internal supply to location j at time t′ resulting from
decisions up to stage t

Let the vector St ¼ fStjt′ : 8 jt′AN tg summarize the states of the
system just after stage t, t ¼ 1;2;…; T . It is used to communicate
the decisions in stage t with the decisions in later stages. The
complete information of the total supply at one location j at time t,
i.e., Rjt, is known at stage t (that is, it is only incompletely known
before stage t) and can be obtained by

Rjt ¼ Sðt�1Þjt : ð3Þ
We assume that the values of Rj1, jAL are given.

The problem can now be formulated as the following stochastic
optimization problem:

min ∑
iAL

∑
jt AN½i;1�

�rij1txij1tþ ∑
iA AL

cij1yij1þE½Q2ðS1; ξ2Þ� ð4Þ

subject to

∑
jt AN½i;1�

ðxij1tþyij1Þ ¼ Ri1 8 iAL; ð5Þ

∑
i1 AO½j;t�

xij1tþyij1 ¼ S1jt 8 jtAN½i;1�;1þτeij1 ¼ t; ð6Þ

∑
i1 AO½j;t�

xij1t ¼ S1jt 8 jtAN½i;1�;1þτeij1at; ð7Þ

0rxij1trξij1t 8 iAL; 8 jtAN½i;1�; ð8Þ

∑
jt AN½i;1�

ξij1t ¼ uij1 8 jtAN½i;1�; ð9Þ

where for a given supply vector S and a particular realization ξtðωÞ,
QtðSt�1; ξtÞ is the value of a minimization problem which is
defined recursively as follows:

QtðSt�1; ξtðωÞÞ ¼min ∑
iAL

∑
jt′ AN½i;t�

�rijtt′xijtt′

þ ∑
iAL

∑
jAL

cijtyijtþE½Qtþ1ðSt ; ξtþ1Þ� ð10Þ

subject to

∑
jt′ AN½i;t�

ðxijtt′þyijtÞ ¼ Rit 8 iAL; ð11Þ

Sðt�1Þjt′þ ∑
it AO½j;t′�

xijtt′þyijt ¼ Stjt′ 8 jtAN½i; t�; tþτeijt ¼ t′ ð12Þ

Sðt�1Þjt′þ ∑
it AO½j;t′�

xijtt′ ¼ Stjt′ 8 jt̂ AN½i; t�; tþτeijtat′ ð13Þ

0rxijtt′rξijtt′ 8 iAL; 8 jt′AN½i; t�; ð14Þ

∑
jt′ AN½i;t�

ξijtt′ ¼ uijt 8 jt′AN½i; t�; ð15Þ

where t ¼ 2;3;…; T and QTþ1ð�; �Þ ¼ 0.
The assumption QTþ1ð�; �Þ ¼ 0 means that all vehicles arriving at

a time beyond the planning horizon are considered to have a
salvage value of 0. The study of the end effects is beyond the scope
of this study. Also, the decision variables xijtt′ and yijt are integer
variables.

The problem defined by (4)–(15) is a typical multistage sto-
chastic program with network recourse where (4)–(9) are called
the first stage problem and (10)–(15) are called the stage t recourse
problem. Eq. (5) shows that the flow out of each node i1, iAL
should be equal to the supply at this node. Eqs. (6) and (7) show
that the flow out of the nodes in stage 1 into any node jt′AN 1 is
recorded as S1ðj; t′Þ. Eq. (8) shows that the flow on each revenue
arc is bounded by its capacity. Eq. (9) comes from the definition of
the arc capacities and show the dependency of the random arc
capacities.
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The expectation function E½Qtþ1ðSt ; ξtþ1Þ� is called the stage
tþ1 expected recourse function. The nested expectation functions
which appear in the objective functions make the problem
extremely complicated. In order to solve the first stage problem,
we need to determine the expected recourse function E½Q2ðS1; ξ2Þ�
as a function of S1. However, in stage 2, we again need to evaluate
the function E½Q3ðS2; ξ3Þ� and so forth. Except for a few special
cases, the exact calculation of the expected recourse functions is
numerically intractable, even for moderate problems with a small
number of stages. Therefore, we rely on approximation methods.
An overview of various approximation schemes for general
stochastic programs can be found in Birge and Louveaux (1997)
and Kall and Mayer (2005) and the references cited there. In our
problem, we have a very special structure in each stage, namely a
transportation problem with random arc capacities where no
specific amount of flow must be shipped to the demand points.
The special structure allows the development of specialized
method to approximate the expectation functions using some
simpler functions. Both the SLAP algorithm in Frantzeskakis and
Powell (1990) and the SCAM algorithm in Cheung and Powell
(1996) are successful approximation approaches. However, one
important assumption of SLAP and SCAM is that all arc capacities
are independent. Therefore, both SLAP and SCAM cannot solve the
problem directly. Glockner and Nemhauser (2000) attempt to
tackle the problems where the dependency of arc capacities is
defined by a set of scenarios. Then they propose a scenario
aggregation approach. The efficiency of this approach depends
on the number of scenarios.

3. Successive resource-directive decomposition method

Recently, Shi et al. (2007) introduce a new specialized algorithm
to solve the problemwhere the network has a directed tree structure
with partially dependent arc capacities. Our ability to solve tree
problems motivates us to solve problems with general network
structure. In this section, we introduce a new decomposition
approach: the Successive REsource-Directive Decomposition Method
(SREDM). Similar to SCAM in Cheung and Powell (1996), SREDM also
uses a backward recursion framework to successively provide convex
approximations of the expected recourse functions at each stage. At
each stage, the approximation can be achieved by structurally
decomposing the underlying network into tree problems. Then, each
tree problem can be solved by the algorithm in Shi et al. (2007). The
tree problem here is much more difficult than that in Cheung and
Powell (1996), SREDM uses a different decomposition approach to
decompose the network into tree problems. The decomposition
approach in SCAM falls into the category of Price-directive decom-
position that penalizes the violation of the bundle constraints (it will
be introduced in detail later) and obtains a lower bound of the
recourse function, while SREDM belongs to Resource-directive decom-
position approach that re-formulates the problem as a Discrete
Resource Allocation Model (DRAM) and achieves an upper bound of
the recourse function.

SREDM successively generates a sequence of functions starting
from the last stage, that is,

Q̂ T ðST�1Þ;…; Q̂ tþ1ðStÞ; Q̂ tðSt�1Þ;…; Q̂ 2ðS1Þ;

where the function Q̂ tðSt�1Þ is used to approximate the expected
total cost for stages from t to T as a parametric function of St.

Furthermore, each function Q̂ tðSt�1Þ is convex and has a separable
form of

Q̂ tðSt�1Þ ¼ ∑
jt′ AN t

Q̂ j;t′ðSðt�1Þjt′Þ ð16Þ

where Q̂ j;t′ðSðt�1Þjt′Þ is piecewise linear and convex. This separable
form is very important to SREDM. The physical meaning of the

function Q̂ j;t′ðSðt�1Þjt′Þ will be introduced in Section 3.1.
Below, we summarize the major steps of SREDM.

Step1: Initialization
Set t ¼ T . Q̂ tþ1ðSðtÞÞ ¼ 0.

Step2: Network augmentation and the modified stage t problem
Approximate the stage t problem by replacing E½Qtþ1

ðSðtÞ; ξtþ1Þ� with the approximation Q̂ tþ1ðSðtÞÞ. Let us
denote the modified stage t problem as ½MPt �. Represent
Q̂ tþ1ðSðtÞÞ by a set of links such that ½MPt � is a network with
random arc capacities (that is, augment the original stage t
network with additional links).

Step3: Re-formulate as a multi-commodity flow problem
Reformulate ½MPt � as a multi-commodity flow problem
with bundle constraints.

Step4: Re-formulate as a DRAM
To tackle the bundle constraints, we re-formulate the
problem further as a DRAM.

Step5: Solve DRAM by Local Search Procedure
We solve the DRAM by a local search procedure that is
implemented by an Arc-Switch Procedure. By solving a
series of tree recourse problems, the method produces a
function, denoted by Q̂ tðSðt�1ÞÞ, that approximates the
exact objective value of ½MPt � as a function of Sðt�1Þ.

Step6: Termination
Set t ¼ t�1. If t¼0, terminate the algorithm. Otherwise,
repeat Step 2 to Step 5.

We describe the network augmentation and the modified stage
t problem (Step 2), the multi-commodity flow formulation (Step 3)
and DRAM (Step 4) in the following. The local search procedure for
solving the DRAM model and the Arc-Switch Procedure are put in
the appendix. Note that, in the local search procedure, we need to
solve a number of tree recourse problems. The tree recourse
problem itself is a very difficult problem and a summary can be
found in the appendix.

3.1. Network augmentation and the modified stage t problem

By replacing E½Qtþ1ðSðtÞ; ξtþ1Þ� with the approximation

Q̂ tþ1ðSðtÞÞ in (10), the stage t problem is modified as

½MPt � Q̂ tðSðt�1ÞÞ ¼ Eð ~Q tðSðt�1Þ; ξtÞÞ ð17Þ

where

~Q tðSðt�1Þ; ξtÞ

¼min �rtxtþctytþ ∑
jt′ AN t þ 1

Q̂ j;t′ðSj;t′ðtÞÞ: subject to : ð11Þ–ð15Þ
( )

ð18Þ

Let Sj;t′ðtÞ ¼ s. From this formulation, we see that Q̂ j;t′ðsÞ has an
intuitive interpretation: it approximates the expected marginal
value of having s vehicles in location j at time t′. Suppose these
vehicles are ordered such that the first one takes the most
profitable movement, the second takes the second best, and so
forth. Let qkjt′ be the expected marginal contribution of the kth

vehicle. Then Q̂ j;t′ðsÞ can be written as

Q̂ j;t′ðsÞ ¼ ∑
s

k ¼ 1
qkjt′: ð19Þ
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As shown in Cheung and Powell (1996), the functions Q̂ j;t′ðsÞ are
convex piecewise linear on s, that is,

qkjt′rqk′jt′ if kZk′: ð20Þ

This inequality reflects the diminishing return of the incre-
mental unit of supply. In other words, the first vehicle available in
location j should have a higher expected marginal value (or lower
expected marginal cost) than the second one.

Since each function Q̂ j;t′ðsÞ is convex and piecewise linear, it can
be represented by a set of deterministic links, which we call
“recourse links” (see Fig. 2). The kth recourse link out of the source
node has an arc capacity of 1 and an arc cost of qkjt′. The last

recourse link has infinite arc capacity with zero cost. This link is
used to represent the “holding” option in case where a large
number of vehicles are being sent to node j. We call this link
“feasibility link”.

As a result, the impacts of current decisions are captured by the
recourse links. Mathematically speaking, we let,

zkjt′ the flow on the kth recourse link out of node j for a
realization ξt

Ljt′ the set of recourse links out of node jt′, and
L′
jt′ the set of recourse links out of node jt′ excluding the

feasibility link

Therefore ~Q tðSðt�1Þ; ξtÞ can be reformulated as

~Q tðSðt�1Þ; ξtðωÞÞ ¼min ∑
iAL

∑
jt′ AN½i;t�

�rijtt′xijtt′þcijtyijtþ ∑
kALjt′

qkjt′z
k
jt′

 !

ð21Þ

subject to

∑
jt′ AN½i;t�

xijtt′þ ∑
jAL

yijt ¼ Rit 8 iAL; ð22Þ

∑
it AO½j;t′�

xijtt′þyijt� ∑
kALjt′

zkjt′ ¼ 0 8 jt′AN½i; t�; tþτeij1 ¼ t′ ð23Þ

∑
it AO½j;t′�

xijtt′� ∑
kALjt′

zkjt′ ¼ 0 8 jt′AN½i; t�; tþτeij1at′ ð24Þ

0rxijtt′rξijtt′ 8 iAL; jt′AN½i; t�; ð25Þ

0rzkjt′r1 8 jt′AN½i; t�; kAL′
jt′; ð26Þ

∑
jt′ AN½i;t�

ξijtt′ ¼ uijt 8 iAL: ð27Þ

Clearly, Problem (21)–(27) is an acyclic network. Such a net-
work consists of a number of two-level trees as the first-level arcs
have partially dependent arc capacities and the second-level arcs
represent the recourse links.

3.2. Multi-commodity flow problem formulation (MCPF)

To approximate the expected value of problem (21)–(27) as a
separable function of the supply (meaning the number of vehicles
available in each location), we can decompose the network by
the origins. By reviewing any flow originating from one origin as
one commodity, we can re-formulate the problem as a multi-
commodity flows problem with dependent random arc capacities.
Taking the example in Fig. 3(a) for instance, the flow entering node
1 is considered as commodity 1 and the flow entering node 2 is
considered as commodity 2. It suggests that we should differenti-
ate the flows by their origins. Let

zkijtt′: the flow of commodity i on the kth recourse link out of

node jðt′Þ.
Therefore, the multi-commodity formulation of problems

(21)–(27) can be written as

~Q tðSðt�1Þ; ξtÞ ¼min ∑
iAL

∑
jt′ ANði;tÞ

�rijtt′xijtt′þcijtyijtþ ∑
kALjt′

qkj;t′z
k
ijtt′

 !

ð28Þ
subject to

∑
jt′ AN½i;t�

xijtt′þyijt ¼ Rit 8 iAL; ð29Þ

xijtt′þyijt� ∑
kALjt′

zkijtt′ ¼ 0 8 iAL; jt′AN½i; t�; tþτeij1 ¼ t′ ð30Þ

xijtt′� ∑
kALjt′

zkijtt′ ¼ 0 8 iAL; jt′AN½i; t�; tþτeij1at′ ð31Þ

0rxijtt′rξijtt′ 8 iAL; jt′AN½i; t�; ð32ÞFig. 2. Piecewise linear approximation and recourse links.

Fig. 3. Two stage network. (a) Two level trees. (b) Price-directive decomposition. (c) Resource-directive decomposition.
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∑
jt′ AN½i;t�

ξijtt′ ¼ uijt 8 iAL; ð33Þ

0r∑
i
zkijtt′r1 8 iAL; jt′AN½i; t�; kAL′

jt′: ð34Þ

In this formulation, if we relax the constraint (34), then this
problem becomes separable by commodity. Furthermore,
constraints (28)–(33) indicate that each commodity i follows a
two-level tree which is rooted at supply node i. Note that the links
in the second-level of these trees may be shared by different trees
(see Fig. 3(a)), inducing the bundle constraints (34). To tackle these
bundle constraints, the SCAM in Cheung and Powell (1996) relaxes
these constraints by using a set of deterministic multipliers λkjt′.
Then, the network is decomposed into trees with overlapped arcs.
If the flows in one arc exceed the capacity (namely, the constraint
(34) is violated), a penalty price will be added to that arc. Then, the
Lagrangian relaxation of the problems (21)–(27) , is

LðS; λÞ ¼min ∑
iAL

∑
jt′ ANði;tÞ

�rijtt′xijtt′þcijtyijtþ ∑
kALjt′

qkjt′z
k
ijtt′

 !

þ ∑
jt′ ANði;tÞ

∑
kAL′jt′

λkjt′ ∑
i
zkijtt′�1

 ! !

By relaxing the constraints (34), a lower bound of Eð ~Q tðSðt�1Þ; ξtÞÞ
can be achieved. By updating the vector of λ, the bound can be
tightened. Different rules of updating λ have been discussed in
Cheung and Powell (1996). Using the algorithm in Shi et al. (2007),
the SCAM can work for dynamic networks with partially random
arc capacities as well. This modified SCAM will be served as a
benchmark in Section 4.

To tackle the bundle constraints, in this paper, we propose a
new decomposition approach that falls into the category of
Resource-directive decomposition approach. This new approach
re-formulates the problem as a DRAM that is solved by an Arc-
Switch Procedure. The objective function achieved by the new
approach is an upper bound of the exact recourse function.

One can also derive the MCPF's equivalent deterministic
formulation (Glockner and Nemhauser, 2000) which can be
directly solved by commercial solver as CPLEX. However as the
problem size increases exponentially with the number of random
variables, it is not practical to solve the MCPF by CPLEX.

3.3. Discrete resource allocation model

In this subsection, because we are only concerned with the
stage t problem, without introducing ambiguity, we suppress the

time index t by writing: Q̂ t as Q̂ , Sðt�1Þ as S, ξt as ξ. To ease the
presentation burden, we suppress the time index t′ from jt′ such
that zkijtt′ is simplified as zijk, qkjt′ as qj

k. In other words, the notation j

represents one node in N½i; t�. By interpreting the empty move-
ment as a special load movement, the notation yijt is eliminated.

By regarding each recourse link as one vehicle, the bundle
constraints can be interpreted as “each vehicle can only be
allocated to one commodity”. Thus, we can define a binary
variable:

bkij ¼
1 if recourse link ðj; kÞ is assigned to commodity i;

0 otherwise:

�

By definition, we know that,

∑
i
bkij ¼ 1 8 jAN½i; t�: ð35Þ

Let b¼ fbkij : 8 iAL; 8 jAN½i; t�g be one feasible allocation and Λ
be the set of all feasible allocations. Given one allocation b, the

bundle constraints (34) can be replaced by the following con-
straint:

0rzkijrbkij 8 iAL; jAN½i; t�; kAL′
j: ð36Þ

The new constraint (36) together with the constraints (29)–(33)
now are all separable for the commodity. Therefore, we can define
the problem with a given vector b as

~Q ðS;b; ξÞ ¼ min ∑
iAL

∑
jANði;tÞ

�rijxijþ ∑
kALj

qkj z
k
ij

 !
: subject to constraints ð29Þ–ð33Þ

( )

Therefore, the expected value of ~Q ðS;b; ξÞ can be written as

Q̂ ðS;b; ξÞ ¼ E½ ~Q ðS;b; ξÞ�:
We further define the feasible set for commodity i for a given b

as

TiðbÞ ¼ fxij; zkijjconstraints ð29Þ–ð36Þ are satisfiedg:
Now let,

Q̂ iðSi;bÞ ¼ E min
ðxij ;zkijÞATiðbÞ

∑
jANði;tÞ

�rijxijþ ∑
kALj

qkj z
k
ij

 ! !( )
: ð37Þ

Since for any given b, constraints (29)–(36) are separable, we
can see that,

Q̂ ðS;bÞ ¼ ∑
iAL

Q̂ iðSi;bÞ: ð38Þ

The embedded minimization problem in (37) is a directed tree
with partially dependent random arc capacities. As shown in Shi

et al. (2007), the function Q̂ ðS;bÞ is piecewise linear and convex in
the scalar supply S, and the function can be computed by a
pseudo-polynomial algorithm parametrically. Then according to

(38), we can obtain Q̂ ðS;bÞ easily. Therefore, the problem of ½MPt �
defined in (17) now is equivalent to find a best “b” from all feasible
ones. That is,

Q̂ ðSÞ ¼min
bAΛ

E½Q ðS;b; ξÞ�: ð39Þ

Note that by definition, any bAΛ needs to satisfy the constraints
defined in (35). This constraint is a typical “budget constraint” that
appears in a DRAM (Federgruen and Groenevelt, 1986). The DRAM is
in general difficult to solve. There are several polynomial solvable
DRAM problems in literature. When the objective function is separable
in terms of the “resource”, Hochbaum and Shanthikumar (1990) prove
that a greedy algorithm can obtain the optimal solution. Federgruen
and Groenevelt (1986) propose the necessary and sufficient conditions
for the optimality of the greedy algorithm for DRAM. These conditions
do not require the objective functions to be separable. Recently,
Murota (1998) generalizes a group of non-separable solvable
problems. The objective function of these problems has to be “M-
Convex”. Unfortunately, in general our problem does not fall into any
category of these solvable problems. Therefore, in this paper, we turn
to a local search approach that achieves a local optimal solution. Also,
it is straightforward to see that the approximation achieved by such an
approach is an upper bound of the exact expected recourse function.
Therefore, in this paper, we provide an arc-switch procedure to search
an optimal arc allocation. The technical details are put in the appendix.

3.4. Algorithm

In summary, the pseudo algorithm for SRIEM is as follows,
SRIEM

Step1: Compute the approximations in stage N, Q̂ NðSNÞ
Step2: Augmenting stage N�1 problem by recourse links corre-

sponding to Q̂ NðSNÞ.
Step3: For t ¼N�1 down to 2,
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Step3a: Set n¼0 and bn. Decompose the augmented stage t
problem by origins.

Step3b: Produce and solve tree subproblems Q̂ iðSi;bnÞ.
Step3c : Update n¼ nþ1,

bn ¼ arg min
bn ANðbn� 1Þ

fQ̂ ðbÞg:

Step3d : Repeat Step 3c until Q̂ ðbnÞ�Q̂ ðbn�1Þrε.
Step3e : Augment stage t�1 problem by the recourse

links corresponding to Q̂ ðbnÞ.
Step4 : Solve the augmented first stage problem.

To have a clearer picture of this method, we illustrate a step of
it using Fig. 4. Fig. 4(a) shows the t�1, t and tþ1 recourse
problems. Approximate functions for stage tþ1 are shown in
Fig. 4(b) and they can be represented by a number of recourse
links in Fig. 4(c). The augmented stage t problem can be decom-
posed by a number of tree problems by allocating recourse links to
different trees as shown in Fig. 4(d). Each tree problem can be
solved by algorithm in Shi et al. (2007). By an arc-switch step, a
better approximation can be achieved, shown in Fig. 4(e). With the
approximation for stage t problem, we can get the augmented t�1
problem shown in Fig. 4(f).

4. Numerical experiments

In this section, we evaluate the SREDM algorithm by comparing
it with the alternative methods. We conduct two sets of experi-
ments. In the first set, the demands are deterministic and we
compare the SREDM algorithm with a labeling algorithm. In the
second set, both demands and service levels are random variables,

and we compare the SREDM algorithm with the modified SCAM
algorithm. We first introduce the design of the experiment and
then report the numerical results.

4.1. Experimental design

The algorithms are implemented in Java and the experiments
are conducted on a PC with 2.4 GHz and 1.0 G memory. In our
results, we use a posterior lower bound by optimizing the problem
after all information becomes known.

4.2. Comparison between SREDM and a labeling algorithm

We generate a set of test problems based on some real
experience from a Chinese logistics company and use a planning
horizon of 36 periods (representing 36 days with 24-h intervals).
There are 10 locations whose positions are randomly located in a
100-by-100 unit square. The origin and the destination of a task
are randomly located in those locations. The starting time of a
request is uniformly generated in the period [0, 36]. The empty
moving cost is set as 15 per unit distance. The holding cost is set to
8 per unit time. The profit for each task is set as a linear function of
distance and service level: rij ¼ 70dij�10τij where dij is the
distance from location i to j. Customers have two possible service
levels to choose for each task. One service level is set as two
periods (2 days) and the other is set as four periods(four days). The
customers choose the first service level with a probability p1 that
is drawn from a uniform distribution between 0 and 1. The second
service level is chosen with a probability p2 ¼ 1�p1.

The labeling algorithm in Cheung et al. (2005) is the first
attempt to solve DFMP with uncertain service times. It can be
easily modified to solve the problem here. The labeling algorithm

Fig. 4. A step in SRIEM. (a) Recourse problems in stage t�1, t and tþ1. (b) Approximations for stage tþ1 problem. (c) Augmented stage t problem. (d) Decomposition by
origins, producing trees. (e) Arc-switch for better approximation. (f) Augmented t�1 problem.
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approximates the expected recourse function by generating a set
of virtual routes and labels. The advantage of the labeling algo-
rithm is the capability and flexibility of dealing with complex work
rules including task time window, drivers' working hours and
preferences, etc. However, the labeling algorithm assumes that the
demands are deterministic. Due to this limitation, in this set of
experiments, we set the demands as deterministic. We fix the
number of locations as 10 and the number of vehicles is 20. We
considers 8 instances where the number of tasks (in each stage) is
increased from 20 to 1000. For each instance, we run 2000
samples and achieved the sample means of poster-bounds, solu-
tions of SREDM and solutions of the labeling algorithm.

The comparison result is listed in Table 1. Column 1 shows the
problem size (denoted by NT). Column 2 records the poster-bound (PB).
Column 3 records the solutions achieved by the labeling algorithm
and Column 4 records its computational time. Column 5 records
the solutions achieved by the SREDM algorithm and column
6 records its computational time. It demonstrates that the SREDM
algorithm can achieve much better solution quality than the
labeling algorithm. Especially for large scale problems (400 tasks
and 1000 tasks), the labeling algorithm cannot achieve a satisfac-
tory solution in 2 h while the SREDM algorithm can obtain one
good solution in less than 5 min.

4.3. Comparison between SREDM and a modified SCAM

To evaluate the performance of the SREDM algorithm under
uncertainty, we use the similar test problems similar to those used
in Cheung and Powell (1996). The problem generator creates the
locations in a 100-by-200 rectangle. We simply use the Euclidean
distance between each pair of locations as the corresponding
travel distance. The net profit for each loaded tractor movement
is 70 cents per mile, while the cost of an empty movement is 40
cents per mile. The holding cost is set to 10 cents per time unit.
The demand uij

t between location i and location j is assumed to

follow a Poisson distribution with mean mij
t which is calculated by

mt
ij ¼ αi � βj � vt

where,

αi inbound potential for location i
βj outbound potential for location i
vt an exponential random variable

The inbound potential and outbound potential for each location
capture the location's ability to attract the inbound flows or
generate the outbound flows. The inbound potential for a location
i, αi, is drawn uniformly between 0.2 and 1.8. The corresponding

outbound potential βi is obtained by βi ¼ 2�αi. Therefore, these
two potentials are negatively correlated. The motivation for this
setting is partly because regions with large inbound flows often
have small outbound flows in real world applications. More
importantly, under this setting, a myopic algorithm may produce a
poor solution since a vehicle may be sent to a location with high
inbound potential but with very low outbound demand. (The myopic
algorithm simply solves a static deterministic assignment problem at
the current stage.) Finally, to capture the randomness in demand, we
also include an exponentially distributed random number vt with
mean 1.5, which is the typical daily demand between each pair of
locations.

We consider in total 12 periods. Each period represents one
day. For each task, the customers have three service levels to
choose: 1 periods (one day), 2 periods (two days) and 4 periods
(four days). The customer chooses service level 1, service level 2,
and service level 3 with probability p1, p2 and p3 respectively. The
values of p1 and p2 are randomly drawn from a uniform distribu-
tion in the range [0, 0.5]. And p3 ¼ 1�p1�p2.

The results are shown in Table 2. Column 1 and Column 2 show
the problem size (NL represents the number of locations and NR

represents the number of resources). Column 3 records the PB
bound. Columns 4, 5 and 6 record the solutions achieved by the
myopic algorithm, the modified SCAM and the SREDM respec-
tively. Columns 7, 8 and 9 record the gap of the solutions to the PB.
An interesting observation is that when the service level is
uncertain, the myopic method has a significant gap with PB. It
clearly demonstrates that both the SREDM algorithm and the
modified SCAM algorithm significantly outperform the myopic
algorithm, and the SREDM algorithm performs slightly better than
the modified SCAM.

5. Conclusion

In this paper, we propose the first model and algorithm for the
dynamic fleet management problem with uncertain demand and
customer chosen service levels. Then, we develop the SREDM
algorithm for the resulting stochastic networks, which structurally

Table 1
Comparison between SREDM and labeling algorithm.

NT PB Labeling algorithm SREDM

Solution Gap
(%)

CPU
(s)

Solution Gap
(%)

CPU
(s)

20 �70 184 �54 919 21.75 3.7 �59 951 14.58 3.1
40 �148 887 �113 154 24.00 9.2 �124 470 16.40 6.1
60 �217 507 �169 112 22.25 31.7 �180 966 16.80 8.2
80 �252 516 �205 800 18.50 32.9 �212 618 15.80 8.2

100 �370 599 �293 699 20.75 49.8 �317 233 14.40 18.1
200 �712 004 �582 063 18.25 1491.2 �612 323 14.00 33.4
400 �133 8236 * * * �1118 765 16.40 68.3

1000 �1 846 001 * * * �1 524 797 17.40 214.1

Table 2
Comparison between the SREDM and the modified SCAM.

NL NR Net contribution Gap to PB

PB Myopic SCAM SREDM Myopic (%) SCAM (%) SREDM (%)

10 50 �1 432 137 �471780 �899 382 �928 024 67.06 37.20 35.20
15 75 �2 235 212 �1188 201 �1 439 477 �1 546 767 46.84 35.60 30.80
20 100 �3 647 817 �1 247 668 �2 320 012 �2 451 333 65.80 36.40 32.80
30 150 �6 584 076 �2 391 967 �4 477 172 �4 319 154 63.67 32.00 31.40
35 175 �7 906 730 �2 634 798 �5 186 815 �5 781743 66.68 34.40 26.88
40 200 �9 641711 �3 373 945 �6 479 229 �6 845 614 65.36 32.80 29.00
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decomposes the network into trees, whose expected recourse
functions are obtained by a pseudo-polynomial algorithm in Shi
et al. (2007). Numerical experiments show that the use of the
SREDM methodology is very encouraging. In future, it is interest-
ing to investigate the pricing issues for difference service levels
and the impacts of other customer behaviors.
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Appendix A. Local search procedure

In this section, we regard the supply S as given, thus we

suppress it from the functions by writing Q̂ ðS;bÞ as Q̂ ðbÞ, Q̂ iðS;bÞ
as Q̂ iðbÞ.

Let us associate an indicator vector eijk with each variable bij
k. In

the vector eijk, only the element representing bij
k is equal to 1 and

all the others are 0. We define the set of its neighbors as

NðbÞ ¼ fbþekij�ekuj : b
k
uj ¼ 0;bkij ¼ 1g:

To obtain a neighbor of b, we can remove one arc that is
previously allocated to tree i (i.e., the arc is in tree i), to another
tree. From each tree, let us define the arcs that can be re-allocated
as supply arcs of this tree. Mathematically, it is defined as

Gi ¼ fðj; kÞ : bkij ¼ 1 8 jALg:

The supply arcs from the same branch node j of tree i will be
grouped in Gi;j

Gi;j ¼ fðj; kÞ : bkij ¼ 1g:

Now, we are ready to present the local search procedure. Let ε
be a small solution tolerance.

Local Search Procedure

Step1: Set n¼0 and bn.
Step2: Update n¼ nþ1,

bn ¼ arg min
bn ANðbn� 1Þ

fQ̂ ðbÞg:

Step3: If Q̂ ðbnÞ�Q̂ ðbn�1Þrε, stop. Otherwise, go to Step 2.

Let bþekuj�ekij be one neighbor of b. It can be obtained by

removing the supply arc (j, k) in Gi;j to the tree u that shares the arc
ði; jÞ with tree i (let us call such a movement arc-switch). We define

Q̂ uðbþekujÞ as the objective value of tree u after adding one arc

ðj; kÞ; Q̂ iðb�ekijÞ as the objective value of tree i after removing the

arc ðj; kÞ from the tree; δkþuj ðbÞ as the difference between Q̂ uðbþekujÞ
and Q̂ uðbÞ; and δk�ij ðbÞ the difference between Q̂ iðb�ekijÞ and Q̂ iðbÞ.
In this following, we regard b as given, thus we suppress it from

the functions by writing δkþuj ðbÞ as δkþuj , δk�ij ðbÞ as δk�ij . Step 2 of the
local search procedure can be implemented by the following
procedure.

The efficiency of this step depends on two factors: (1) The size
of the neighborhood and (2) the efficiency of performing each
switch. The size of the neighborhood depends on how many arcs
are shared by different trees. Let jLj be the number of trees, and K

be the maximum number of supply arcs in one tree. In the worst
case, there will be KjLj2 switches.

To facilitate the search process, we develop an Arc-Switch
Procedure that can search the local optimal solution in less
than KjLj steps. This procedure will be described later. We

first introduce some propositions of the functions Q̂ ðbþekuj�ekijÞ,
Q̂ uðb; þekujÞ, and Q̂ iðb; �ekijÞ. With these propositions, we can

design an Arc-Switch Procedure which significantly reduces the
computational effort of Step 2 in the local search procedure.

Proposition 1. The objective function of Q̂ ðbþekuj�ekijÞ can be
calculated by

Q̂ ðbþekuj�ekijÞ�Q̂ ðbÞ ¼ δk�ij þδkþuj :

This proposition reflects the fact that each arc-switch involves
only two trees and the benefit of an arc-switch is the summation
of the “gain” of adding one arc and the “loss” of removing that arc.
With this proposition, to evaluate all KjLj2 arc switches, we only
need to compute all KjLj “gains” and “losses”.

To further reduce the computational burden, we develop both
lower and upper bound for the “gains” and “losses” such that some
arc switches can be excluded from the candidates of the “best”
without calculating their benefits.

Suppose the supply arcs in each Gi;j are ranked in ascending
costs and all the arcs' costs are non-positive since they measure
the future marginal “profits”. We consider two arcs ðj; kÞ and ðj; k′Þ,
in Gi;j, and kok′.

Proposition 2. The values of δkþuj and δk�ij satisfy, δk′þuj rδkþuj ,
δk′�ij rδk�ij .

This is a direct result of the convexity of the objective function.
It is intuitive that adding the arc with higher profit results in more
“gain” and removing the arc with higher profit results in more
“loss”.

Note that the only difference from adding the arc ðj; k′Þ and the
arc ðj; kÞ is the difference in their costs. Thus, adding the arc ðj; k′Þ to
tree u is equivalent to adding the arc ðj; kÞ to tree u first and then
change the arc's cost from qj

k to qk′j . It leads to Proposition 3.

Proposition 3. The difference between δk′þuj and δkþuj is bounded by

δk′þuj �δkþuj r f ðb; þekujÞðqk′j �qkj Þ;

where the f ðb; þekujÞ represents the expected flows in the arc ðj; kÞ
when it is added to the tree u. The computation of f ðb; þekujÞ and the
proof of this proposition is stated as follows.

Proof. According to the definition, we have,

Δ ~Q uðb; þek′uj;ωÞ�Δ ~Q uðb; þekuj;ωÞ
¼ ~Q uðbþek′uj; ξðωÞÞ� ~Q uðbþekuj;ωÞ:

According to (2.38), we know that ~Q uðbþek′uj;ωÞ can be rewritten
as

~Q uðbþek′uj;ωÞ ¼ ∑
Np

n ¼ 1
cnf nðs;ωÞ:

Let f ðj; v;ωÞ denote the flow through the second-level arc (j, v) in
the tree u after the arc ðj; k′Þ is added. Since each second-level arc
corresponds to one path, the function ~Q uðbþek′uj;ωÞ can be
rewritten as

~Q uðbþek′uj;ωÞ ¼ ∑
ðj;vÞAGu

qvj f ðj; v;ωÞ;
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where Gu is the set of second-level arcs in tree u after the arc ðj; k′Þ
is added.
Accordingly, let f̂ ðj; v;ωÞ denote the flow through the second-

level arc ðjvÞ in the tree u after the arc ðj; kÞ is added. The function
~Q uðbþekuj;ωÞ can be rewritten as

~Q uðbþekuj;ωÞ ¼ ∑
ðj;vÞAGu

qvj f̂ ðj; v;ωÞ

where G′u is the set of second-level arcs in tree u after the arc ðj; kÞ
is added.
Note that the only difference between these two functions is

that the arc ðj; kÞ may have a different cost compared to the arc
ðj; k′Þ. Thus the optimal flows for the function ~Q uðbþekuj;ωÞ will be
feasible for the function ~Q uðbþek′uj;ωÞ. Therefore, we have,

~Q uðbþek′uj;ωÞr ∑
ðj;vÞAGu

qvj f̂ ðj; v;ωÞ;

and,

~Q uðbþek′uj;ωÞ� ~Q uðbþekuj;ωÞ ¼ ∑
ðj;vÞAG′u

f ðj; v;ωÞqvj � ∑
ðj;vÞAGu

f̂ ðj; v;ωÞqvj

r ∑
ðj;vÞAG′u ;vak′

f̂ ðj; v;ωÞqvj � ∑
ðj;vÞAGu ; vak

f̂ ðj; v;ωÞqvj

þ f̂ ðj; k;ωÞqk′j � f̂ ðj; k;ωÞqkj
¼ f̂ ðj; k;ωÞðqk′j �qkj Þ:

By taking the expectation on all samples, we have

ΔQ̂ uðb; þek′ujÞ�ΔQ̂ uðb; þekujÞ ¼ EωAΩðQuðbþek′uj;ωÞ�Quðbþekuj;ωÞÞ

rEωAΩðf̂ ðj; k;ωÞðqk′j �qkj ÞÞ
¼ f ðb; ekujÞðqk′j �qkj Þ: □

Since the arc ðj; kÞ has lower cost than the arc ðj; k′Þ, we have the
following proposition:

Proposition 4. The expected flow in the arc ðj; kÞ is monotone
decreasing with the cost of the arc ðj; kÞ. That is,
f ðb; þek′ujÞr f ðb; þekujÞ; kok′:

Similarly, adding the arc ðj; kÞ to the tree u is equivalent to
adding the arc ðj; k′Þ to the tree u first and then change its cost from
qk′j to qj

k. This results in the following proposition:

Proposition 5. The difference between δkþuj and δk′þuj is bounded
from below.

δkþuj �δk′þuj r f ðb; þek′ujÞðqkj �qk′j Þ: ð40Þ

As a summary of the above propositions, we have that,

Proposition 6. The difference between δkþuj and δk′þuj is bounded by

f ðb; þek′ujÞðqk′j �qkj Þrδk′þuj �δkþuj r f ðb; þekujÞðqk′j �qkj Þ:

This proposition shows that the difference in the “gains” by
adding two different arcs of the same Gi;j to tree u is actually
bounded both from above and from below.

Similarly, we can show that the difference of the “losses” by
removing two different arcs in the same Gi;j is also bounded both

from above and from below. Let f ðb; �ekijÞ be the expected flow of

the arc ðj; kÞ in tree i before the arc is removed.

Proposition 7. The difference between two “losses” is bounded by

� f ðb; �ekijÞðqk′j �qkj Þrδk′�uj �δk�uj r� f ðb; �ek′ij Þðqk′j �qkj Þ:

These bounds can help us exclude the switches that cannot
achieve enough cost improvement, and we can perform a recur-
sive procedure to search the best switch. For each tree i and each
set of supply arcs in Gi;j, let Tði; jÞ be the set of trees that share the
arcs from node j with tree i. Let I be the index of supply arcs that
have not been tested so far. For any tree uATði; jÞ, we perform the
following recursive procedure.

Arc-Switch Procedure ði;u; IÞ

Step1: Initialization
Let s¼1, ℓ¼ jGi;jj. Let Δmin be the best cost improvement
achieved so far.

Step2: Evaluate the arc-switch for the first and the last arcs
For each set of supply arcs in Gi;j, obtain the first arc ðj; sÞ and
the last arc ðj;ℓÞ. Compute δs�ij , δsþuj , δ

ℓ�
ij , δℓþuj , f ðb; �esijÞ and

f ðb; �eℓijÞ, f ðb; þesujÞ and f ðb; þeℓujÞ. Let Δmin ¼minfδℓþuj þ
δℓ�uj ; δsþuj þδs�uj g

Step3: Evaluate the arc-switch for the supply arc k
Let k¼ ½ðsþℓÞ=2�, compute δkþuj . If f ðb; þekujÞ� f ðb; �esijÞZ0,
remove the indices in the ½s; k� from I. If
f ðb; þekujÞ� f ðb; �eℓijÞZ0, remove the indices in the ½k;ℓ�
from I. Otherwise, go to Step 4.

Step4: Compare the bounds
Let LB1 ¼ ðf ðb; þekujÞ� f ðb; �esijÞÞðqkj �qsj Þ and LB2 ¼ ðf ðb; þ
ekujÞ� f ðb; �eℓijÞÞðqkj �qℓj Þ. If LB1þQ̂ ðb; þesuj�esijÞ�Q̂ ðbÞ4
Δmin, remove the indices in ½s; k� from I. Otherwise, compute
δk�ij , δkþij , and set Δmin ¼minfδk�ij þδkþij ;Δming, set I′¼ ½s; k�,
and perform Arc Switch Procedure (i, u, I′). If
LB2þQ̂ ðb; þeℓuj�eℓijÞ�Q̂ ðbÞ4Δmin, remove the indices in
½k;ℓ� from I. Otherwise, set I″¼ ½k;ℓ�, and perform Arc
Switch Procedure (i, u, I″Þ.

Explanation: In Step 3, if f ðb; þekujÞ� f ðb; �esijÞZ0, according to

Proposition 1, Q̂ ðb; þekij�ekujÞ�Q̂ ðb; þesij�esujÞZ0. Thus the switch

ði;u; sÞ is better than the switch ði;u; kÞ. According to Proposition 4,
we know that for any k′ok, f ðb; þek′ujÞ� f ðb; �esijÞZ0, that implies

that the switch ði;u; sÞ is the best one for all switches ði;u; k′Þ,
k′A ½s; k�, and the switches ði;u; k′Þ, k′A ½s; k�1�, can be excluded.

Similarly, by examining whether f ðb; þekujÞ� f ðb; �eℓijÞZ0, we

can judge whether the switch ði;u;ℓÞ is the best switch in all
switches ði;u; k′Þ, k′A ½k;ℓ�.

According to Proposition 4, LB1 and LB2 are two lower bounds

of the function Q̂ ðb; þekuj�ekijÞ�Q̂ ðbÞ. By comparing with LB1 with

Δmin, we can judge whether the switch ði;u; kÞ is the best one
among all ði;u; k′Þ, k′A ½s; k�. Similarly, by comparing with LB2 with
Δmin, we can judge whether the ði;u; kÞ is the best one among all
ði;u; k′Þ, k′A ½k;ℓ�.

The critical step of the arc-switch procedure is to solve the

subproblems Q̂ uðbÞ, Q̂ iðbÞ and to compute the cost changes

Q̂ uðb; þekujÞ and Q̂ iðb; �ekijÞ. To solve the subproblems, one can

apply the tree algorithm in Shi et al. (2007). This algorithm can
compute the exact optimal objective value of the subproblems

Q̂ uðbÞ efficiently. The essential of this algorithm is to compute a
number of dispatch probabilities. A summary of this algorithm can
be found in Appendix B.
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Appendix B. Propositions and algorithm for the modified TRP

In this appendix, we first provide a summary of the main
results in Shi et al. (2007) and then describe the algorithm for the
modified TRP.

Given a two-level tree with random arc capacities and deter-
ministic arc costs, our objective is to calculate the expected cost
function in terms of the supply s at the root node. Let ðΩ; P;F Þ be a
probability space and ωAΩ an outcome. For outcome ω, the
vector of realized arc capacities is ξðωÞ. Suppose that the paths,
each consisting of two arcs (from it to a branch node and then to a
leaf node), are ranked in an ascending order according to their
costs. We call the nth ranked path as path n and define

Np the number of paths in the tree
cn the cost of path n
f nðs; ξðωÞÞ the flow on path n when the supply is s and the

realized set of arc capacities is ξðωÞ.

Then, the problem can be stated as determining

Q ðsÞ ¼ EωAΩQ ðs;ξðωÞÞ;

where Q ðs; ξðωÞÞ is defined as

Q ðs; ξðωÞÞ ¼min ∑
Np

n ¼ 1
cnf nðs; ξðωÞÞ; ð41Þ

To obtain Q ðsÞ ¼ EωAΩQ ðs; ξðωÞÞ, let us begin by defining the
dispatch probabilities and the expected path flow as

ϕðk;nÞ the probability that the kth unit of flow entering node i(t)
takes path n

f nðsÞ the expected flow on path n when the supply to the root
node is s.

From the definitions, we can see that

f nðsÞ ¼ ∑
s

k ¼ 1
ϕðk;nÞ ð42Þ

and the total expected cost for a given s is

Q iðsÞ ¼ EωAΩQiðs; ξðωÞÞ ¼ ∑
Np

n ¼ 1
cnf nðsÞ ¼ ∑

Np

n ¼ 1
∑
s

k ¼ 1
cnϕðk;nÞ: ð43Þ

Thus, Q ðsÞ can be obtained by calculating ϕðk;nÞ for k¼ 1;2…; s
and n¼ 1;…;Np. In the following sections, we provide an algo-
rithm to calculate ϕðk;nÞ for n¼ 1;…;Np�1. For n¼Np,

ϕðk;NpÞ ¼ 1� ∑
Np �1

n ¼ 1
ϕðk;nÞ: ð44Þ

Let us define

snjt′ the maximum possible outgoing flow from branch node
jt′.

bnjt′ the number of paths covering the branch node jt′ in T n.
χn
j the maximum possible outgoing flow from the set of

branch nodes in Nj½i; t�.

The amount of snjt′ is limited by the maximum amount of

inbound flow to node jt′. Furthermore, this amount cannot exceed
the number of paths passing through jt′ since we can have at most
one unit of flow per path. Therefore, snjt′ can be written as

snjt′ ¼minfbnjt′; ξijtt′g: ð45Þ

On the other hand, the random variable χjn is the sum of snjt′, i.e.,

χn
j ¼ ∑

jðt′ÞANj ½i;t�
snjt′: ð46Þ

Due to the dependency of ξijtt′, finding the distributions of χjn is not
trivial. However, if they are found, then finding the distribution of
ϕðk;nÞ is straightforward.

Let us call χjn the bundle capacity as it measures the maximum
possible flow through a bundle of nodes representing a particular
location j in the graph. Their distributions, as shown later,
determine the values of ϕðk;nÞ. To establish their relationship,
we assume that the ranked path n covers arc ðit ; jt′Þ and consider
the kth unit of flow entering the root node it.

Theorem 1. Suppose that path n covers arc ðit ; jt′Þ, the dispatch
probability ϕðk;nÞ can be calculated as

ϕðk;nÞ ¼ Prðsnjt′ ¼ bnjt′ÞPr ∑
wAL; wa j

χn
w ¼ k�bnjt′

 !
: ð47Þ

Proof. See Theorem 1 in Shi et al. (2007). □

Theorem 2. Suppose that path n covers arc ðit ; jt′ÞAAj½i; t�. Then

(a) for any jt′a jt′ and ðit ; jt′ÞAAj½i; t�, snjt̂′ has the same distribution as
sn�1
jt̂′ ,

(b) for any wa j, χwn has the same distribution as χn�1
w ,

(c) for w¼ j, and for y¼ 0;1;…; s, we have

Prðχn
w ¼ yÞ ¼

Prðχn�1
w ¼ yÞ�Prðξijt′4bn�1

jt′ Þ if y¼ bn�1
jt′ ;

Prðχn�1
w ¼ yÞþPrðξijt′4bn�1

jt′ Þ if y¼ bnjt′;

Prðχn�1
w ¼ yÞ otherwise:

8>><
>>:

Proof. See Theorem 2 in Shi et al. (2007). □

The recursive relationship provided in Theorem 2 allows us to
compute the distribution of χjn without explicitly knowing the
distributions of snjt′, thereby reducing the computational effort.

Using Theorems 1 and 2, we can compute the expected cost
function for the modified TRP as follows.

Step1: Initialization
Set n¼ 0; k¼ 0, ϕð0;0Þ ¼ 0 and Prðχ0

j ¼ 0Þ ¼ 1 for i¼ 1;
…;M.

Step2: Obtain the distributions for the bundle capacities
Set n¼ nþ1. Obtain the distribution of χjn by Theorem 2 for
all jAL.

Step3: Compute the dispatch probabilities
If noNp, calculate ϕðk;nÞ according to (47) of Theorem 1,
for all k¼ 1;…; s. If n¼Np, calculate ϕðk;nÞ according
to (44).

Step4: Test for termination
If noNp, go to Step 2; otherwise, go to Step 5.

Step5: Compute the expected total cost function
Calculate Q ðsÞ by (43) and then terminate.

The algorithm is actually a pseudo-polynomial time algorithm.
The computational effort depends on several parameters. The first
is the amount of supplies at the root node which bounds the
possible realizations of χjn in ½0; s� and limits the breadth of the
third-level arcs (for each branch node, we only need s outward
second-level arcs). The second is the total number of locations, M.
The third is the number of possible realizations of the travel time, V.
The second and third parameters together determine the size of
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the tree. All three parameters together determine the total number of
paths, that is, Np ¼MVs. Thus, the total number of steps to obtain the

distributions of all χin for n¼ 1;2;…;MVs is bounded by OðMVs2Þ. In
the future research, we expect that this approach can be used to
study more customer behaviors (besides customer chosen service
level) in the context of fleet management.
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