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1. Introduction

We consider a class of optimal learning problems in which sequential measurements are used to
gradually improve estimates of unknown quantities. In each time step, we choose one of finitely
many alternatives and observe a random reward whose expected value is the unknown quantity
corresponding to that alternative. The rewards are independent of each other and follow a Gaussian
distribution with known variance. We maximize the total expected reward collected over time,
a problem class often addressed under the umbrella of multi-armed bandit problems. We allow
several variations of this basic setup: the rewards may be discounted over time, the time horizon
may be finite or infinite, and our beliefs about the unknown rewards may be correlated. Correlated
beliefs are not handled by the traditional bandit literature, but are significant in practice.

Applications arise in many fields where we need to sequentially allocate measurements to alter-
natives in order to eliminate less valuable alternatives as we go. We deal with online learning in
this paper, so we consider applications in which we are interested not only in finding the best
alternative, but in maximizing the total expected reward collected over the entire time horizon.
Several situations where this distinction is important are:

1. Clinical trials. Experimental drug treatments are tested on groups of human patients. Each
treatment has a different, unknown expected effectiveness (Gittins and Jones 1979, Berry and
Pearson 1985). We are interested in the well-being of the patients as well as in finding the best
treatment, so the problem is online. If the treatments consist of overlapping sets of drugs, our
beliefs about them will be correlated.

2. Energy management. We are applying sets of energy-saving technologies (e.g. insulation,
computer-controlled thermostats, tinted windows) to identical industrial buildings. Different tech-
nologies interact in an unknown way which can only be measured by actually implementing port-
folios of technologies and measuring their combined performance. We maximize total performance
over all buildings.
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3. Sensor management. In this area, a sensor (airport inspector, radiation detector, medical
clinic) is used to collect information about the environment. We often have the ability to control
the use of a sensor which allows us to not only better learn the state of the system, but also to
learn relationships among different variables. See Mahajan and Teneketzis (2008) and Washburn
(2008) for more on applications.

The dimension of correlated beliefs generalizes the well-known multi-armed bandit problem,
which assumes that our beliefs about the rewards are independent of each other. Much of the
literature on multi-armed bandits has focused on the development of index policies. An index
policy decomposes the problem by considering each alternative separately from the others, and
computing a value for each alternative that depends only on our beliefs about that alternative,
and not on our beliefs about other alternatives. The most famous of these is the policy based on
Gittins indices (Gittins and Jones 1974), which is optimal for the classic infinite-horizon bandit
problem. Alternatives to Gittins indices include upper confidence bounding (Lai 1987) and interval
estimation (Kaelbling 1993). These methods construct an interval around our current estimate of
the value of an alternative such that the true value is in the interval with high probability, and
then measure the alternative whose interval has the highest upper bound.

One problem with Gittins indices is that they are hard to compute exactly when the space
of possible beliefs is infinite. The computation of Gittins indices is discussed by Katehakis and
Veinott (1987) and Duff (1995). An LP-based computational method was developed by Bertsimas
and Nino-Mora (2000), but it is founded on a Markov decision process framework (see also Goel
et al. 2009, for more work in this setting), where the prior beliefs are limited to a finite set of
values, whereas the Gaussian beliefs in our problem are characterized by continuous parameters.
There have been several studies on approximating Gittins indices for the continuous case (Brezzi
and Lai 2002, Yao 2006, Chick and Gans 2009), but such approximations rely on a continuous-time
analogy that is subject to errors in the discrete-time bandit model. In addition to the optimality of
the Gittins policy, there is also a body of work on theoretical performance guarantees for certain
classes of index policies. General bounds on the performance of upper confidence bound policies
are presented by Lai and Robbins (1985), and by Auer et al. (2002) for the case of rewards with
bounded support. The upper confidence bound approach has also been extended to more complex
optimal learning problems, such as Markov decision processes with unknown transition functions
(Tewari and Bartlett 2007) and response-surface bandits (Ginebra and Clayton 1995).

There are also many general heuristics, described e.g. in Sutton and Barto (1998) or Powell
(2007), that can be applied to broad classes of optimal learning problems, including multi-armed
bandits. Examples include Boltzmann exploration, pure exploitation, and the equal-allocation pol-
icy. Empirical comparisons of some policies in certain settings are available in Vermorel and Mohri
(2005).

Our approach applies to the classic bandit problem, but is also able to handle problems where our
prior belief about the reward of one alternative is correlated with our beliefs about other rewards.
For example, the first two applications considered above are instances of the subset selection
problem: we have to investigate a medical treatment (consisting of one or more drugs) or an
energy portfolio (of multiple energy-efficient technologies). Correlated beliefs allow us to learn about
many subsets with common elements by measuring only a single one. It is logical to suppose that
implementing a particular energy portfolio teaches us about the value of other portfolios containing
the same technologies. If our beliefs are highly correlated, we can consider problems where the
number of choices is much larger than the measurement budget, because a single measurement can
now provide information about many or even all the alternatives.

The classical literature on index policies generally does not handle correlated beliefs. Gittins
indices are no longer optimal in this setting. Some studies such as Feldman (1962) and Keener
(1985) have considered correlated beliefs in a simple setting with only two possible values for a
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single unknown parameter. Recent work has considered more complex correlated problems under
various structural assumptions. For example, the study by Pandey et al. (2007) considers correlated
binomial rewards. An important step forward in the study of correlated bandits was made by
Mersereau et al. (2008) and Mersereau et al. (2009). These studies assume a particular structure
in which the rewards are linear functions of random variables, and the correlations come from a
single random variable shared by every reward. In this case, a greedy policy that always chooses
the alternative that we believe to be the best, with no regard for the uncertainty in this belief, can
be shown to perform very well. Our work, however, considers a more general correlation structure
in the form of a multivariate Gaussian prior.

Our analysis is motivated by the knowledge gradient (KG) concept, developed by Gupta and
Miescke (1994) and further analyzed by Frazier et al. (2008) and Chick et al. (2010) for the ranking
and selection problem. This problem is the offline version of the multi-armed bandit problem: we
must find the best out of M alternatives with unknown rewards, given N chances to learn about
them first. The KG policy for ranking and selection chooses the measurement that yields the
greatest expected single-period improvement in the estimate of the best reward, a quantity that
can be computed exactly. More recently, the KG concept was extended by Frazier et al. (2009) to
the ranking and selection problem with correlated priors, and by Chick et al. (2010) to the case of
unknown measurement noise.

The knowledge gradient offers an important practical advantage: it is easily computable, in con-
trast with the far more difficult calculations required for Gittins indices. We present experimental
evidence that our KG policy is competitive against the best available Gittins index approximation,
given by Chick and Gans (2009). Furthermore, the knowledge gradient methodology can be applied
to other distributions, although these require the development of different computational formulas.

This paper makes the following contributions: 1) We propose a new type of online learning policy,
based on the knowledge gradient concept. This policy is not an index policy, but rather a one-step
look-ahead that computes the marginal value of a single measurement. This quantity is much easier
to compute than Gittins indices, with a natural derivation that is easy to understand. 2) We show
how this method can handle important variations, such as both finite and infinite time horizons
and discount factors. 3) We show that, as the discount factor becomes large, the infinite-horizon
KG policy achieves the best possible estimate of the value of the best alternative. Furthermore,
only one alternative can be measured infinitely often by the policy, and the probability that it will
be the true best alternative converges to 1 as the discount factor becomes large. 4) We conduct a
thorough experimental study of the performance of KG for problems with both independent and
correlated beliefs. We find that KG is competitive against the best known Gittins approximation
on classic bandit problems, and outperforms other index policies and heuristics on problems with
correlated beliefs, without any tunable parameters.

We proceed as follows. In Section 2, we lay out a dynamic programming-based model of the
problem. In Section 3, we derive the KG measurement policy for problems with independent beliefs,
with both discounted and undiscounted, finite- and infinite-horizon variations. In Section 4, we
derive convergence results for the infinite-horizon discounted KG policy as the discount factor
increases to 1. In Section 5, we extend KG to problems with correlated beliefs. Finally, we present
numerical results comparing online KG to existing policies. We emphasize KG as a general approach
to different kinds of optimal learning problems that can be extended to more complicated problem
classes; for one example of such an extension, see Ryzhov and Powell (2011).

2. Mathematical model for learning

Suppose that there are M objects or alternatives. In every time step, we can choose any alternative
to measure. If we measure alternative x, we will observe a random reward µ̂x that follows a Gaussian
distribution with mean µx and variance σ2

ε . The measurement error σ2
ε is known, and we use the



Ryzhov, Powell, and Frazier: Knowledge Gradient for Online Learning
4 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

notation βε = σ−2ε to refer to the measurement precision. Although µx is unknown, we assume that

µx ∼N
(
µ0
x, (σ

0
x)

2
)

, where µ0
x and σ0

x represent our prior beliefs about µx. We also assume that the

rewards of the objects are mutually independent, conditioned on µx, x= 1, ...,M .
We use the random observations we make while measuring to improve our beliefs about the

rewards of the alternatives. Let Fn be the sigma-algebra generated by our choices of the first n
objects to measure, as well as the random observations we made of their rewards. We say that
something happens “at time n” if it happens after we have made exactly n observations. Then,

µnx = IEn (µx) ,

where IEn (·) = IE ( · |Fn), represents our beliefs about µx after making n measurements. Then, (σnx )
2

represents the conditional variance of µx given Fn, which can be viewed as a measure of how
confident we are about the accuracy of µnx. We also use the notation βnx = (σnx )

−2
to denote the

conditional precision of µx. Thus, at time n, we believe that µx ∼N
(
µnx, (σ

n
x )

2
)

, and our beliefs

are updated after each measurement using Bayes’ rule:

µn+1
x =

{
βnxµ

n
x+βεµ̂

n+1
x

βnx+βε
if x is the (n+ 1)st object measured

µnx otherwise.
(1)

The rewards of the objects are independent, so we update only one set of beliefs about the object
we have chosen. The precision of our beliefs is updated as follows:

βn+1
x =

{
βnx +βε if x is the (n+ 1)st object measured
βnx otherwise.

(2)

We use the notation µn = (µn1 , ..., µ
n
M) and βn = (βn1 , ..., β

n
M). We also let

(σ̃nx )
2

= V arnx
(
µn+1
x

)
= V arnx

(
µn+1
x

)
−V ar (µnx|Fn)

be the reduction in the variance of our beliefs about x that we achieve by measuring x at time
n. The notation V arnx denotes the conditional variance given Fn and given that x is the (n+ 1)st
alternative measured. The quantity µnx is Fn-measurable, and hence V ar (µnx|Fn) = 0. It can be
shown that

σ̃nx =

√
(σnx )

2− (σn+1
x )

2
=

√
1

βnx
− 1

βnx +βε
.

It is known, e.g. from DeGroot (1970), that the conditional distribution of µn+1
x given Fn is

N
(
µnx, (σ̃

n
x )

2
)

. In other words, given Fn, we can write

µn+1
x = µnx + σ̃nx ·Z (3)

where Z is a standard Gaussian random variable.
We can define a knowledge state

sn = (µn, βn)

to represent our beliefs about the alternatives after n measurements. If we choose to measure an
object xn at time n, we write

sn+1 =KM
(
sn, xn, µ̂n+1

xn

)
where the transition function KM is described by (1) and (2). For notational convenience, we often
suppress the dependence on µ̂n+1

xn when we write KM . The term “knowledge state” has numerous
analogues in other communities. The stochastic control literature uses the term “information state”
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to denote the same concept, whereas the reinforcement learning community often uses the term
“belief state.”

We assume that we collect rewards as we measure them. For the time being, we also assume
that the rewards are not discounted over time. Thus, if we have N measurements to make, followed
by one final chance to collect a reward, our objective is to choose a measurement policy π that
achieves

sup
π

IEπ
N∑
n=0

µXπ,n(sn), (4)

where Xπ,n (sn) is the alternative chosen by policy π at time n given a knowledge state sn. The
value of following a measurement policy π, starting at time n in knowledge state sn, is given by
Bellman’s equation for dynamic programming (applied to optimal learning by DeGroot 1970):

V π,n (sn) = µnXπ,n(sn) + IEnV π,n+1
(
KM (sn,Xπ,n (sn))

)
(5)

V π,N
(
sN
)

= max
x
µNx . (6)

At time N , we can collect only one more reward. Therefore, we should simply choose the alternative
that looks the best given everything we have learned, because there are no longer any future
decisions that might benefit from learning. At time n<N , we collect an immediate reward for the
object we choose to measure, plus an expected downstream reward for future measurements. The
optimal policy satisfies a similar equation

V ∗,n (sn) = max
x

[
µnx + IEnV ∗,n+1

(
KM (sn, x)

)]
(7)

V ∗,N
(
sN
)

= max
x
µNx (8)

with the only difference being that the optimal policy always chooses the best possible measure-
ment, the one that maximizes the sum of the immediate and downstream rewards. By the dynamic
programming principle, the function V ∗,n represents the optimal value that can be collected from
time n onward, and only depends on the past through the starting state sn. Thus, the expectation
of V ∗,n+1 given Fn is over the single random transition from sn to sn+1.

3. The online knowledge gradient policy

We derive an easily computable online decision rule for an undiscounted, finite-horizon online
problem using the KG principle. We then show that it is always better to measure under this policy
than to not measure at all. Finally, we derive KG decision rules for discounted and infinite-horizon
problems.

3.1. Derivation

Suppose that we have made n measurements, reached the knowledge state sn, and then stopped
learning entirely. That is, we would still collect rewards after time n, but we would not be able to
use those rewards to update our beliefs. Then, we should follow the “stop-learning” (SL) policy
of always choosing the alternative that looks the best based on the most recent information. The
expected total reward obtained after time n under these conditions is

V SL,n (sn) = (N −n+ 1)max
x
µnx. (9)

This quantity is somewhat analogous to the “retirement reward” of Whittle (1980), as it represents
a fixed reward that we collect after retiring from the learning problem.
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The knowledge gradient concept, first described by Gupta and Miescke (1994, 1996) and later
developed by Frazier et al. (2008), can be stated as “choosing the measurement that would be
optimal if it were the last measurement we were allowed to make.” Suppose we are at time n, with
N −n+1 more rewards to collect, but only the (n+ 1)st reward will be used to update our beliefs.
Then, we need to make an optimal decision at time n, under the assumption that we will switch
to the SL policy starting at time n+ 1. The KG decision rule that follows from this assumption is

XKG,n (sn) = arg max
x

µnx + IEnV SL,n+1
(
KM (sn, x)

)
. (10)

If ties occur, they can be broken by randomly choosing one of the alternatives that achieve the
maximum.

The expectation on the right-hand side of (10) can be written as

IEnV SL,n+1
(
KM (sn, x)

)
= (N −n) IEnmax

x′
µn+1
x′

= (N −n) IEmax

{
max
x′ 6=x

µnx′ , µ
n
x + σ̃nx ·Z

}
= (N −n)

(
max
x′

µnx′

)
+ (N −n)νKG,nx (11)

where the computation of IEnmaxx′ µ
n+1
x′ comes from Frazier et al. (2008). The quantity νKG,nx is

called the knowledge gradient of alternative x at time n, and is defined by

νKG,nx = IEnx

[(
max
x′

µn+1
x′

)
−
(

max
x′

µnx′

)]
, (12)

where IEnx is a conditional expectation given Fn and given that x is the (n+ 1)st alternative
measured. The knowledge gradient can be computed exactly using the formula

νKG,nx = σ̃nx · f
(
−
∣∣∣∣µnx −maxx′ 6=x µ

n
x′

σ̃nx

∣∣∣∣) (13)

where f (z) = zΦ(z)+φ (z) and φ,Φ are the pdf and cdf of the standard Gaussian distribution. We
know from Gupta and Miescke (1994) and Frazier et al. (2008) that (12) and (13) are equivalent
in this problem, and that νKG is always positive. The term “knowledge gradient” arises from (12),
where the quantity νKG,nx is the marginal value of the information gained by measuring x.

It is easy to see that (10) can be rewritten as

XKG,n (sn) = arg max
x

µnx + (N −n)νKG,nx . (14)

The term (N −n)maxx′ µ
n
x′ in (11) is dropped because it does not depend on the choice of x and

thus does not affect which x achieves the maximum in (10). The value of this policy follows from
(5) and is given by

V KG,n (sn) = µnXKG,n(sn) + IEnV KG,n+1
(
KM

(
sn,XKG,n (sn)

))
. (15)

Instead of choosing the alternative that looks the best, the KG policy adds an uncertainty bonus
of (N −n)νKG,nx to the most recent beliefs µnx, and chooses the alternative that maximizes this
sum. In this way, the KG policy finds a balance between exploitation (measuring alternatives that
are known to be good) and exploration (measuring alternatives that might be good), with the
uncertainty bonus representing the value of exploration.
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Remark 1. Like the KG policy for ranking and selection, the online KG policy is optimal for
N = 1. This follows from (7) and (8), because

V ∗,N−1
(
sN−1

)
= max

x

[
µN−1x + IEN−1V ∗,N

(
KM

(
sN−1, x

)])
= max

x
µN−1x + IEN−1

(
max
x′

µNx′

)
= µN−1

XKG,N−1(sN−1)
+ IEN−1V SL,N

(
KM

(
sN−1,XKG,N−1 (sN−1)))

= µN−1
XKG,N−1(sN−1)

+ IEN−1V KG,N
(
KM

(
sN−1,XKG,N−1 (sN−1)))

= V KG,N−1 (sN−1) .

The last measurement is chosen optimally, so if there is only one measurement in the problem,
then the online KG algorithm is optimal.

The KG policy is analogous to a class of algorithms in the stochastic control literature known as
roll-out policies. These methods choose an action by approximating the value obtained by following
some policy after taking the action. For example, the work by Tesauro and Galperin (1996) uses
Monte Carlo simulation to approximate the value of the policy in a discrete-state Markov decision
process setting. The KG policy can be viewed as a one-step roll-out algorithm in which we take a
single action and then follow the SL policy for the rest of the time horizon. Although the state space
(the space of all knowledge states) is multi-dimensional and continuous, a one-step look-ahead
can be computed exactly, yielding a closed-form decision rule, with no need for simulation-based
approximation. This is a strength of the KG approach, in a setting that would otherwise be difficult
to handle (because of the continuous state space) using classical dynamic programming techniques.

Much of the traditional bandit literature, such as the work on upper confidence bound policies
by Lai and Robbins (1985) and Lai (1987), has focused on index policies, with decision rules of the
form Xπ,n (sn) = arg maxx I

π
x (µnx, σ

n
x ). In an index policy, the index Iπx used to determine the value

of measuring x can only depend on our beliefs µnx, σ
n
x about x, and not on our beliefs about any

other alternatives. The KG policy, however, is not an index policy, because the formula for νKG,nx

in (13) depends on maxx′ 6=x µ
n
x′ as well as on µnx. Thus, the theoretical advantages of index policies

do not apply to KG; however, in Section 5 we consider an important problem class where index
policies are not well-suited, but the KG reasoning still holds.

An expected structural result is that it is better to measure under the KG policy than to not
measure at all. More formally, the value obtained by the KG policy is greater than the SL value
of (9). The proof is given in the Appendix.

Proposition 1. For any s and any n,

V KG,n (s)≥ V SL,n (s) .

3.2. Discounted problems

Let us now replace the objective function in (4) with the discounted objective function

sup
π

IEπ
N∑
n=0

γnµXπ,n(sn)

where γ ∈ (0,1) is a given parameter and IEπ denotes an expectation over the outcomes of the
N measurements, given that the measurement decisions are made according to policy π. In this
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section, we show the KG decision rule for the discounted problem, for both finite- and infinite-
horizon settings. We show that the infinite-horizon KG policy is guaranteed to eventually find the
true best alternative in the limit as γ↗ 1.

The knowledge gradient policy for this problem is derived the same way as in Section 3. First,
in the discounted setting,

V SL,n (sn) =
1− γN−n+1

1− γ
max
x
µnx.

Then, (10) is computed as

XKG,n (sn) = arg max
x

µnx + γ · IEnV SL,n+1
(
KM (sn, x)

)
= arg max

x
µnx + γ

1− γN−n

1− γ
νKG,nx (16)

where νKG,nx is as in (13). Taking N →∞, we obtain the infinite-horizon KG rule

XKG,n (sn) = arg max
x

µnx +
γ

1− γ
νKG,nx . (17)

Both (16) and (17) look similar to (14), with a different multiplier in front of the knowledge
gradient.

This discussion illustrates the flexibility of the KG approach. We can derive a KG decision rule
for both finite and infinite horizons, in both discounted and undiscounted problems. As the discount
factor γ increases to 1, we can obtain certain convergence results for the online KG policy. These
results are discussed in the next section.

Our paper focuses on a Gaussian learning model because of its generality. In Section 5, we show
how KG can be used in problems with multivariate Gaussian priors, allowing us to learn about
multiple alternatives from a single measurement. However, it is important to note that the KG
approach is not limited to Gaussian models, and in fact represents a general methodology that is
applicable to many broad classes of learning problems. To streamline our presentation, we maintain
a focus on Gaussian models in the main body of our paper. However, interested readers can see
the Appendix for a discussion of how KG can be used in a non-Gaussian setup.

4. Convergence properties of infinite-horizon KG

Our asymptotic analysis of the KG rule in (17) depends on the concept of convergence. We begin
by showing that only one alternative can be measured infinitely often by infinite-horizon KG. Thus,
we can say that KG converges to x if it measures x infinitely often. All proofs in this section are
given in the Appendix.

Proposition 2. For almost every sample path, only one alternative will be measured infinitely
often by the infinite-horizon discounted KG policy.

The particular alternative to which KG converges depends on the sample path, and is not
guaranteed to be the true best alternative arg maxx µx. However, even the Gittins index policy,
which is known to be optimal, is not guaranteed to converge to the best alternative either (Brezzi
and Lai 2000). The Gittins policy is optimal in the sense that it learns efficiently, but it is not
certain to find the true best alternative.

However, we can establish theoretical guarantees for the KG policy in the limiting case as γ↗ 1.
The remainder of this section presents two key results. First, KG achieves an optimal estimate of
the true best reward in the limit as γ↗ 1. Second, the probability that KG converges to the true
best alternative arg maxx µx converges to 1 as γ↗ 1. That is, the convergence behaviour of KG
becomes optimal in the limiting case.
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Our argument is based on a connection to the ranking and selection problem and the offline KG
policy (Gupta and Miescke 1996), given by

XOff,n (sn) = arg max
x

IEnx

[(
max
x′

µn+1
x′

)
−
(

max
x′

µnx′

)]
= arg max

x
νKG,nx , (18)

where νKG,nx is as in (13). Observe that, for large γ, the infinite-horizon online KG rule in (17)
becomes similar to (18). If γ is large enough, the effect of µnx in (17) becomes negligible, and the
choice of measurement comes to be determined by the KG factor, just as in the offline KG rule.
However, the work by Frazier et al. (2008) shows that offline KG is guaranteed to find the true
best alternative in an infinite horizon. It stands to reason that online KG should have the same
property if γ→ 1.

Denote by KG (γ) the infinite-horizon online KG policy for a fixed discount factor γ. We define
the stopping time

Nγ = min
{
n≥ 0 |XOff,n (sn) 6=XKG(γ),n (sn)

}
to be the first time when the offline and online KG policies choose different alternatives to measure
(“disagree”). This time is allowed to be zero, in the event that they choose different alternatives
in the very first time step. In our analysis, we assume without loss of generality that no two
alternatives will ever be tied under either policy. This is because the outcome of each measurement
is continuous, so the probability that two KG factors or sets of beliefs will be equal as a result
of a measurement is zero. Ties can only occur in the early stages, if those particular alternatives
are tied under the prior s0. However, in that case, the ties will disappear after a finite number of
measurements, with no effect on the asymptotic behaviour.

Proposition 3. Under the probability measure induced by the distribution of µ and µ̂n+1
x for all

n≥ 0 and all x,

lim
γ↗1

Nγ =∞ a.s.

We next show that, by measuring infinitely many times under the KG policy, we will obtain
a better estimate of the value of the best alternative than the estimate at time Nγ . This is an
intuitive idea. We already know that we expect our time-(n+ 1) estimate to be better than our
time-n estimate; the next proposition allows us to replace n with the stopping time Nγ .

Proposition 4. limn→∞ IEKG(γ) (maxx µ
n
x)≥ IEKG(γ)

(
maxx µ

Nγ
x

)
.

The next step shows that our estimate of the best value at time Nγ becomes accurate in expec-
tation as γ↗ 1. By definition, the online and offline KG policies agree on all measurements up to
time Nγ . The proof uses the connection to the offline KG policy.

Proposition 5. limγ↗1 IE
KG(γ)

(
maxx µ

Nγ
x

)
= IE (maxx µx).

We can now state our first key result. As γ↗ 1, the infinite-horizon limit of our estimate of the
best value under the KG policy converges to the true value of the best alternative.

Theorem 1. limγ↗1 limn→∞ IEKG(γ) (maxx µ
n
x) = IE (maxx µx).

In general, the result of Theorem 1 does not require convergence to the true best alternative.
However, in the specific case of the online KG policy, it can be shown that the probability of the
policy converging to a suboptimal alternative vanishes as γ↗ 1. The remainder of this section is
dedicated to showing this result.



Ryzhov, Powell, and Frazier: Knowledge Gradient for Online Learning
10 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Let B be the event that arg maxx µx is measured infinitely often and denote PKG(γ) (B) =
IEKG(γ)1B. For notational convenience, let x∗ = arg maxx µx and xγ∗ = arg maxx µ

Nγ
x . As before, we

assume without loss of generality that no ties will occur. Observe that, for fixed γ,

PKG(γ) (B) = PKG(γ)

(
∞∑
n=0

1{xn=x∗} =∞

)

≥ PKG(γ)

(
∞∑
n=0

1{xn=x∗} =∞, x∗ = xγ∗

)
.

We will continue to place lower bounds on PKG(γ) (B), in order to eventually arrive at a lower
bound that converges to 1 as γ↗ 1. The next result is one step in this process.

Proposition 6. For fixed γ,

PKG(γ)

(
∞∑
n=0

1{xn=x∗} =∞, x∗ = xγ∗

)
≥ PKG(γ)

(
x∗ = xγ∗ , arg max

x
µnx = xγ∗ ∀n≥Nγ

)
.

Now, for every alternative x, define a process Bx as follows. Given FNγ , Bx is a Brownian
motion with volatility σ

Nγ
x and initial value Bx

0 = µ
Nγ
x . Furthermore, for any x 6= y, Bx and By

are conditionally independent of each other given FNγ . We interpret Bx as an interpolation of the
values of µ

Nγ+n
x that we would observe by making n= 0,1, ... measurements of x starting from time

Nγ . In particular, µ
Nγ+n
x has the same distribution as Bx

tn where

tn =
V ar

(
µ
Nγ+n
x |FNγ

)
(
σ
Nγ
x

)2 .

Observe that the conditional distribution of µ
Nγ+(n+1)
x , given FNγ and µ

Nγ+n
x , is Gaussian with mean

µ
Nγ+n
x and variance

(
σ̃
Nγ+n
x

)2

. This is precisely the distribution of Bx
tn+1 given Bx

tn . Furthermore,

µ
Nγ+(n+1)
x is conditionally independent of µNγ+n

′
for n′ < n, given FNγ and µNγ+n. Thus, the

processes (Bx
tn)
∞
n=0 and

(
µ
Nγ+n
x

)∞
n=0

are both Markov processes with the same distribution given

FNγ . By the continuity of Brownian motion, limn→∞ µ
n
x = µx corresponds to Bx

1 .

Proposition 7. Let Lx = min0≤t≤1B
x
t and Ux = max0≤t≤1B

x
t . Then,

PKG(γ)

(
x∗ = xγ∗ , arg max

x
µnx = xγ∗ ∀n≥Nγ

)
≥ PKG(γ)

(
Lxγ∗ >max

x 6=xγ∗
Ux

)
.

For each x, we can write Bx
t =Bx

0 + σ
Nγ
x W x

t , where W x is a Wiener process. A standard result
from stochastic analysis (see e.g. Steele 2000) tells us that max0≤t≤1W

x
t has the same distribution

as |W x
1 |. Analogously, min0≤t≤1W

x
t has the same distribution as −|W x

1 |. Consequently, Lx has the
same distribution as Bx

0 − σ
Nγ
x |W x

1 |, and Ux has the same distribution as Bx
0 + σ

Nγ
x |W x

1 |. We use
these facts to derive the next lower bound.

Proposition 8. Define

h
(
µNγ , σNγ

)
= PKG(γ)

(
Lxγ∗ >max

x 6=x∗
Ux |FNγ

)
,
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where h depends only on µNγ and σNγ . Then,

h
(
µNγ , σNγ

)
≥ g

(
µ
Nγ

x
γ
∗
−maxx 6=xγ∗ µ

Nγ
x

2
, σNγ

)

where g :R++×RM+ is defined to be

g (a, b) =
∏

{x:bx>0}

[
2Φ

(
a

bx

)
− 1

]
and g (a,0) = 1.

Recall that B is the event that arg maxx µx is measured infinitely often. All the elements are
now in place to show our second key result, namely that the probability that B occurs under the
KG (γ) policy converges to 1 as γ↗ 1.

Theorem 2. limγ↗1P
KG(γ) (B) = 1.

Together, Theorems 1 and 2 add an important detail to our understanding of the online KG
policy. From Brezzi and Lai (2000), we know that even the optimal Gittins index policy has a
positive probability of converging to a suboptimal alternative for any γ < 1. However, under the
KG policy, this probability vanishes to zero in the limit as γ ↗ 1, and our estimate of the best
value under KG converges to the true best value.

5. Problems with correlated normal priors

Let us return to the undiscounted setting, and the objective function from (4). However, we now
assume a covariance structure on our prior beliefs about the different alternatives. We now have
a multivariate normal prior distribution on the vector µ = (µ1, ..., µM) of true rewards. Initially,
we assume that µ∼N (µ0,Σ0), where µ0 = (µ0

1, ..., µ
0
M) is a vector of our beliefs about the mean

rewards, and Σ0 is an M ×M matrix representing the covariance structure of our beliefs about the
true mean rewards. As before, if we choose to measure alternative x at time n, we observe a random
reward µ̂n+1

x ∼ N (µx, σ
2
ε). Conditioned on µ1, ..., µM , the rewards we collect are independent of

each other. After n measurements, our beliefs sn about the mean rewards are expressed by a vector
µn and a matrix Σn, representing the conditional expectation and conditional covariance matrix
of the true rewards given Fn.

The updating equations, given by (1) and (2) in the uncorrelated case, now become

µn+1 = µn +
µ̂n+1
xn −µnxn
σ2
ε + Σn

xnxn
Σnexn (19)

Σn+1 = Σn− Σnexne
T
xnΣn

σ2
ε + Σn

xnxn
(20)

where xn ∈ {1, ...,M} is the alternative chosen at time n, and exn is a vector with 1 at index xn,
and zeros everywhere else. Note that a single measurement now leads us to update the entire vector
µn, not just one component as in the uncorrelated case. Furthermore, (3) now becomes a vector
equation

µn+1 = µn + σ̃corr,n (xn) ·Z

where Z is standard Gaussian and

σ̃corr,n (xn) =
Σnexn√
σ2
ε + Σn

xnxn

.
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The SL policy, which we follow if we are unable to continue learning after time n, is still given by
(9). The derivation of the online KG policy remains the same. However, the formula for computing
νKG,n in (13) no longer applies. In the correlated setting, we have

IEnx max
x′

µn+1
x′ = IEn

[
max
x′

(µnx′ + σ̃corr,nx′ (x) ·Z)

]
.

We are computing the expected value of the maximum of a finite number of piecewise linear
functions of Z. Let

νKGC,nx = IEnx

[(
max
x′

µn+1
x′

)
−
(

max
x′

µnx′

)]
be the analog of (12) in the correlated setting. From the work by Frazier et al. (2009), it is known
that

νKGC,nx =
∑
y∈A

(
σ̃corr,ny+1 (x)− σ̃corr,ny (x)

)
f (−|cy|) (21)

where A is the set of all alternatives y for which we can find numbers cy−1 < cy for which y =
arg maxx′ µ

n
x′ + σ̃corr,nx′ (x) · z for z ∈ (cy−1, cy), with ties broken by the largest-index rule. These

quantities cy are also used in (21). We number the alternatives in the set A in order of increasing
σ̃corr,ny . The function f is as in (13).

The online KG decision rule for the correlated case is given by

XKGC,n (sn) = arg max
x

µnx + (N −n)νKGC,nx . (22)

If we introduce a discount factor into the problem, the decision rule becomes as in (16) or (17),
using νKGC instead of νKG. An algorithm for computing νKGC exactly is presented in Frazier
et al. (2009), and can be used to solve this decision problem. The computational complexity of the
algorithm is O (M 2 logM), but the following result (see the Appendix for the proof) allows us to
reduce the computation time.

Proposition 9. Let sn be the knowledge state at time n. If alternative x satisfies the inequality

µnx + (N −n)
1

2π
max
x′

σ̃corr,nx′ (x)<max
x′

µnx′, (23)

then alternative x will not be chosen by the KG policy at time n.

The significance of Proposition 9 is practical. We require O (M 2) operations to ascertain whether
or not (23) holds for every alternative. Let x1, ..., xK represent the alternatives for which (23) does
not hold at time n (where K is the total number of such alternatives). Then we can define a matrix
An of size M ×K by

An = [ex1 ... exK ] .

The time-n marginal distribution of (µx1 , ..., µxK ) is Gaussian with mean vector (An)
T
µn and

covariance matrix (An)
T

ΣnAn. As a consequence of Proposition 9, the KG decision rule in (22)
can be rewritten as

XKGC,n (sn) = arg max
k

µnxk + (N −n)νKGC,nxk

where νKGC,n can be computed by running the correlated KG algorithm from Frazier et al. (2009)
on the reduced choice set {x1, ..., xK} with the marginal mean vector and covariance matrix given
above. Typically, in practice, K is close to M for small values of n, but becomes dramatically
smaller as n increases. Consequently, we only need to compute KG factors for a choice set whose
size can be much smaller than M .
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6. Computational experiments: independent beliefs

Our experimental study presents evidence that online KG is competitive against the best known
approximation to the optimal Gittins policy on classic multi-armed bandit problems (no corre-
lations). At the same time, we single out key parameters that may cause KG to perform less
efficiently for certain values. In Section 7, we also consider the correlated case, and show that KG
outperforms many well-known index policies in that setting.

The performance measure that we use to evaluate a policy is the opportunity cost. For a learning
policy π, the opportunity cost for a discounted problem is given by

Cπ =
N∑
n=0

γn
[(

max
x
µx

)
−µXπ,n(sn)

]
.

To obtain an accurate assessment of the quality of a policy, we calculate opportunity costs using
the true values µ. However, in order to do this, we must know what the true values are. Thus, we
test a policy by first fixing a particular truth µ, then evaluating the ability of the policy to find
that truth. For this reason, the starting data for all our experiments were randomly generated.

For two policies π1 and π2, the difference

Cπ2 −Cπ1 =
N∑
n=0

γn
(
µXπ1,n(sn)−µXπ2,n(sn)

)
(24)

gives us the amount by which π1 outperformed (or was outperformed by) π2. For a given set of
initial data, we run each policy 104 times, thus obtaining 104 samples of the opportunity cost.
We then divide the 104 sample paths into groups of 500 in order to obtain approximately normal
samples of opportunity cost and the standard errors of those averages. The standard error of the
difference in (24) is the square root of the sum of the squared standard errors of Cπ1 , Cπ2 .

In the classic multi-armed bandit problem, with N →∞ and 0< γ < 1, there is a clear, natural
competitor for KG in the form of the optimal Gittins policy (Gittins 1989). The Gittins decision
rule is given by

XGitt,n (sn) = arg max
x

Γ(µnx, σ
n
x , σε, γ) (25)

where Γ(µnx, σ
n
x , σε, γ) is the Gittins index based on our current beliefs about an alternative, the

measurement error, and the discount factor γ. To simplify the computation of Gittins indices, we
use the identity

Γ(µnx, σ
n
x , σε, γ) = µnx +σε ·Γ

(
0,
σnx
σε
,1, γ

)
.

From Brezzi and Lai (2002), we know that

Γ(0, s,1, γ) =
√
− logγ · b

(
− s2

logγ

)
where the function b must be approximated. The current state of the art in Gittins approximation
is the work by Chick and Gans (2009), which builds on Brezzi and Lai (2002) and Yao (2006). It
is shown that b≈ b̃ where

b̃ (s) =


s√
2

s≤ 1
7

e−0.02645(log s)
2+0.89106 log s−0.4873 1

7
< s≤ 100

√
s (2 log s− log log s− log 16π)

1
2 s > 100.
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(a) (b)

Figure 1 Histograms of the sampled difference in opportunity cost between KG and Gittins across (a) 100 truth-
from-prior experiments, and (b) 100 equal-prior experiments.

Thus, the approximation to (25) is given by

XGitt,n (sn)≈ arg max
x

µnx +σε
√
− logγ · b̃

(
− (σnx )

2

σ2
ε logγ

)
. (26)

For many learning problems, it is more difficult to approximate Gittins indices when γ is close
to 1. However, the particular approximation b̃ given above uses a better fit for the range 1

7
< s≤

100 compared to previous approximations. As the posterior variance decreases, this range will be
exercised further on in the time horizon when γ is large.

We compared the infinite-horizon discounted online KG rule from (17) against the Gittins
approximation in (26). The remainder of this section describes the methodology and results of this
comparison.

6.1. Effect of prior structure on KG performance

We first consider a set of experiments where our modeling assumption µx ∼N
(
µ0
x, (σ

0
x)

2
)

is satis-

fied. These experiments are referred to as truth-from-prior experiments. We generated 100 problems
with M = 100, where σ0

x = 10 for all x and each µ0
x is a random sample from the distribution

N (0,100). We followed Vermorel and Mohri (2005) in using centered Gaussian distributions to
generate the initial data. The measurement noise was chosen to be σε = 10, and the discount factor
was chosen to be γ = 0.9.

For every experiment, we ran the KG and Gittins policies on 104 different sample paths. In every
sample path, the truths µx are generated from the prior distribution corresponding to the given
experiment. The outcomes of the measurements are then generated from those truths. Thus, for
each problem out of our set of 100, we have a sample of the difference CGitt−CKG, averaged over
104 different truths. Figure 1(a) shows the distribution of these differences across 100 problems.
Bars to the right of zero indicate that KG outperformed the Gittins approximation, and bars to the
left of zero indicate the converse. KG outperformed the Gittins approximation on every problem.
The average margin of victory was 3.6849, with average standard error 0.7215.

The victory of KG in Figure 1(a) is due to the fact that we are using an approximation of Gittins
indices. While the margin of victory is small, it indicates that the approximation is not completely
accurate. We can see from these results that KG is a worthwhile alternative to the best known
approximation of the optimal policy.
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Figure 2 Effect of the measurement noise σ2
ε on the performance of KG relative to Gittins.

We also consider a situation in which the main modeling assumptions do not hold. In the equal-
prior experiments, we let µ0

x = 0 and σ0
x = 10 for every x. The true values µx come from a uniform

distribution on the interval [−30,30]. A new set of truths is generated for each experiment, but
not for each sample path. Each equal-prior problem has a fixed truth, and we run the KG and
Gittins policies on 104 outcomes of the measurements. This represents a situation that is common
in real-world applications: we do not have much information about the true values, and our prior
only gives us a general range of values for the truths, without telling us anything about which
alternative is better. Figure 1(b) shows the results of the comparison. The average margin of victory
of KG is 6.7885, with average standard error 0.8368.

Since µ does not come from the prior distribution in the equal-prior experiments, the Gittins
policy loses its optimality properties. While there are no theoretical guarantees in a situation where
the main modeling assumption is violated, Figure 1(b) suggests that the KG heuristic may retain
its practical usefulness in situations where we are not certain that the truths really do come from
the prior distribution.

6.2. Effect of σ2
ε and γ on KG performance

Two key parameters in the online problem are the measurement noise σ2
ε and the discount factor

γ. We varied these parameters in ten randomly chosen truth-from-prior problems, that is, we
considered ten different sets of initial priors. For each parameter value in each problem, we simulated
KG and Gittins across 104 truths generated from the initial prior (as in Figure 1(a)).

Figure 2 shows the effect of measurement noise on performance. We varied σ2
ε relative to the

fixed prior variance (σ0)
2

= 100. For instance, the point 100 on the horizontal axis of Figure 2
indicates that σ2

ε = (σ0)
2
, the point 10−1 indicates that σ2

ε = 0.1 · (σ0)
2
, and so on. Points to the

left of 100 represent situations in which the measurement noise is smaller than the prior variance,
enabling us to come close to the true value of an alternative in relatively few measurements. Each
line in Figure 2 corresponds to one of the ten truth-from-prior problems considered; we do not
label the individual lines, since they all exhibit the same behaviour.

We see that the Gittins approximation performs poorly compared to KG for low measurement
noise. As σ2

ε increases, the KG policy’s margin of victory shrinks. However, the Gittins policy also
becomes less effective when the measurement noise gets too high. We see that, for very large values
of σ2

ε , the difference CGitt−CKG goes to zero for all ten problems under consideration.
A different relationship holds for the discount factor. For large values of γ, we see a distinction

between the short-term and long-term performance of KG. Figure 3(a) compares KG to Gittins
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(a) (b)

Figure 3 Effect of the discount factor γ on the performance of KG relative to Gittins for (a) N = 150 and (b) an
infinite horizon.

with a time horizon of N = 150, and Figure 3(b) shows the results with the time horizon chosen to
be large enough for γN < 10−3. We see that, in both cases, KG and Gittins perform comparably well
for γ = 0.9, and KG begins to significantly outperform Gittins for values of γ up to 0.99. This lead
of KG over Gittins is preserved in the infinite-horizon case. However, for larger values (γ = 0.999),
we see that Gittins catches up and significantly outperforms KG in the long run, although KG
does much better in the first 150 iterations. This result suggests that the KG policy may perform
especially well in problems with relatively short time horizons, where the budget is too small for
Gittins to overtake KG. Our study of correlated problems in the next section explores this issue
further.

Our analysis reveals some of the strengths and weaknesses of the KG policy. First, KG does much
better than approximate Gittins if σ2

ε is low, and continues to match Gittins as the measurement
noise increases. Second, KG is significantly outperformed by Gittins for γ = 0.999, for the set of
parameters we chose. However, for moderately high values of the discount factor such as 0.99,
KG achieves a significant lead over approximate Gittins. For many instances of the classic bandit
problem, KG is competitive against the best known Gittins approximation.

7. Computational experiments: correlated beliefs

This section describes the experiments we conducted on problems with correlated beliefs. In Section
7.1, we explain the setup of the experiments and present the main results. The remainder of
the section studies particular aspects of correlated problems, such as the effect of correlation on
performance and the benefits obtained from incorporating correlations into the KG decision rule.

7.1. Setup and main results

The class of correlated online problems is very large. We tested KG on a subset of these problems,
in which the prior covariances are given by the power-exponential rule:

Σ0
ij = 100 · e−λ(i−j)

2

, (27)

where λ is a constant. An example of a problem where this covariance structure can be used is the
problem of learning a scalar function, where the covariance between i and j is smaller when i and j
are farther apart. We used this covariance structure together with the values of µ0 generated for the
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truth-from-prior experiments in Section 6. The true values were taken from the prior distribution
N (µ0,Σ0). In every problem, a new truth was generated in each of 104 sample paths, allowing us
to compare learning policies in expectation over the entire prior distribution. The parameter λ was
set to 0.01.

Because there is no known optimal policy for correlated bandit problems (to our knowledge, KG
is the first policy to be proposed for this problem), our experiments for the correlated case assume
a finite horizon of N = 50 with γ = 1. In this setting, a convenient measure of performance is the
difference in average opportunity cost

Cπ2 −Cπ1 =
1

N + 1

N∑
n=0

µXπ1,n(sn)−µXπ2,n(sn), (28)

which represents the amount by which π1 outperformed or was outperformed by π2 on average in
each time step. We compared the correlated KG rule given in (22) to several representative index
policies, as well as an approximate two-step look-ahead. We briefly describe the implementation of
the competing policies.

Approximate two-step look-ahead (2Step). A natural choice of competition for the KG policy,
which looks ahead one time step into the future, is a multi-step look-ahead. Such a policy, however,
is much more difficult to implement and compute than the KG policy. The decision rule for the
one-step look-ahead can be computed exactly using (22), whereas there is no known closed-form
expression for a multi-step look-ahead rule.

We approximated a two-step look-ahead policy in the following manner. The outcome of the
measurement in the first step was discretized into K branches by dividing the conditional distribu-
tion of the measurement into K + 1 intervals of equal probability. In the second step, KG factors
were computed based on the new beliefs resulting from the outcome on each branch. Thus, in order
to make a single decision at time n, we must compute a total of K ·M correlated KG factors. The
computational complexity of this procedure is O (KM2 logM), which is already noticeably costly
for M = 100 alternatives. More generally, an approximate d-step look-ahead would have complexity
O (Kd−1M 2 logM) per decision, making it prohibitive to roll out for more than two time steps.

In our experiments, we used K = 10. The accuracy of the approximation can be improved by
increasing K, however this adds greatly to the computational cost. By contrast, the KG policy can
be computed exactly, given extremely precise approximations of the Gaussian cdf.

Approximate Gittins (Gitt). We use the Gittins approximation from (26) with σnx =
√

Σn
xx. Gittins

indices do not retain their optimality properties in the correlated setting. We use this policy as
a heuristic and treat γ as a tunable parameter. In our experiments, γ = 0.9 yielded the best
performance.

Interval estimation (IE). The IE decision rule by Kaelbling (1993) is given by

XIE,n (sn) = arg max
x

µnx + zα/2 ·σnx ,

where zα/2 is a tunable parameter. We found that zα/2 = 1.5 yielded the best performance on
average across 100 problems. However, the IE policy is sensitive to the choice of tuning parameter.
We discuss this issue in Section 7.3.

Upper confidence bound (UCB). The UCB decision rule by Lai (1987) is given by

XUCB,n (sn) = µnx +

√
2

Nn
x

g

(
Nn
x

N

)
where Nn

x is the number of times x has been measured up to and including time n, and

g (t) = log
1

t
− 1

2
log log

1

t
− 1

2
log 16π.
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UCB1-Normal (UCB1). The study by Auer et al. (2002) proposes a different UCB-style policy
for problems with Gaussian rewards. The UCB1 decision rule is given by

XUCB1,n (sn) = µnx + 4σε

√
logn

Nn
x

. (29)

The original presentation of the policy uses a frequentist estimate of the measurement noise σε.
Because we assume that this quantity is known, we can simplify the decision rule, resulting in an
interesting parallel to (26), where the uncertainty bonus also has σε out in front. We can improve
performance by treating the coefficient 4 in the UCB1 decision rule as a tunable parameter; we
found that a value of 0.5 produced the best results for the problems we considered.

Note also that the quantity σε√
Nnx

in (29) can be viewed as a frequentist analog of the posterior

variance σnx . In fact, if we begin with a non-informative prior on x (with σ0
x =∞), then σnx = σε√

Nnx

exactly. We considered a version of the policy with the decision rule XUCB1,n (sn) = arg maxx µ
n
x +

4σnx
√

logn, but found that this modification did not substantially change the policy’s performance.
Pure exploitation (Exp). This decision rule is given by XExp,n (sn) = arg maxx µ

n
x. It has no

uncertainty bonus and no tunable parameters.
Table 1 gives the means and average standard errors of our estimates of (28) for each relevant

comparison. As before, positive numbers indicate that KG outperformed the other policy in the
comparison, and negative numbers indicate the converse. We see that, on average, KG outper-
formed approximate Gittins indices, UCB, UCB1, and pure exploitation by a statistically significant
amount. The 2Step policy yielded virtually the same results as KG. Interval estimation slightly
outperformed KG on average, but the margin of victory was not statistically significant. In Section
7.3, we address the issue of the sensitivity of IE to its tunable parameter.

Figure 4 shows the distribution of the sampled differences in opportunity cost across 100 truth-
from-prior problems. We see that KG outperforms IE 23/100 times, and usually loses by a small
margin when zα/2 is carefully tuned. The 2Step policy outperformed KG 14/100 times, and was
outperformed by KG the remaining times. However, the differences are not statistically significant
in most cases. The reason why we do not see a significant advantage to using the 2Step policy is
because we are required to approximate the two-step look-ahead, whereas the one-step look-ahead
used by the KG policy can be computed exactly.

All other policies are outperformed by KG in every experiment. In particular, the UCB policy
displays a very large positive tail. This policy suffers especially, compared to the other index policies,
because it does not have any tunable parameters, and cannot be tweaked to yield better results
in the correlated case. The UCB1 policy yields better performance once tuned, but is nonetheless
outperformed by both KG and interval estimation. In the case of IE, the tunable parameter zα/2 can
be adjusted to make the policy yield good performance. However, we observed that the performance
of IE was very sensitive to the choice of tuning parameter (discussed further down in Section 7.3).
In a large problem where the distribution of the rewards is not obvious, it may be difficult to tune
this policy sufficiently.

7.2. Effect of correlation on KG performance

We varied the correlation parameter λ for a single randomly chosen problem out of the truth-
from-prior set. Figure 5 shows the effect of λ on the performance of different measurement policies.

KG-2Step KG-Gitt KG-IE KG-UCB KG-UCB1 KGC-Exp
Mean 0.0599 0.7076 -0.0912 44.4305 1.2091 5.5413
Avg. SE 0.0375 0.0997 0.0857 0.6324 0.1020 0.1511

Table 1 Means and standard errors for the correlated experiments.
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Figure 4 Histograms of the sampled difference in opportunity cost between KG and other policies across 100
correlated truth-from-prior problems.

Pure exploitation and UCB are omitted from the figure, because they were found to significantly
underperform all other policies for each value of λ considered. We see that the relative performance
of the remaining policies stays roughly the same as before as λ is varied. The 2Step policy continues
to yield virtually the same performance as KG. The tuned IE policy performs comparably to KG
overall, yielding slightly better results for low λ.

Generally, all policies tend to do better when all the alternatives are heavily correlated (this
occurs for low values of λ). In this case, a single measurement will reveal a great deal of information
about all the alternatives, which means that we can quickly get a sense of the best value by
measuring almost any alternative. However, even in this setting, KG and IE are able to learn more
efficiently than approximate Gittins or UCB1.

7.3. Sensitivity of interval estimation

Our experiments show that a properly tuned interval estimation policy can work quite well, even for
problems with correlated beliefs. Since IE is particularly easy to implement, it is worth addressing
the robustness of the tuning parameter zα/2. We find that the process of tuning seems to capture
quite a bit of information about the function.

Figure 6 shows how the performance of IE varies for different values of zα/2 in the same truth-
from-prior problem that we examined in Section 7.2. The best value of zα/2 is about 1.7, but the
performance is quite sensitive to this parameter and deteriorates quickly as we move away from
the optimal value. Furthermore, the best value of zα/2 is highly problem-dependent. Figure 7 gives
two examples of problems where the best value of the tuning parameter is very different from
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Figure 5 Opportunity cost as a function of the correlation parameter λ.

the truth-from-prior example. Figure 7(a) shows the sensitivity of IE on one of the equal-prior
problems from Section 6, with the addition of a power-exponential covariance structure. We see
that the best value of zα/2 is 0.6; a value of 1.7 yields much worse performance.

Figure 7(b) shows the sensitivity of IE in the sine-truth problem, where µx =−35 sin
(
0.3
π
x
)

for
x ∈ {1,2, ...,100}. In this problem, the true values have a single peak with a value of 35 around
x = 50, two smaller local maxima at 0 and 100, and two minima with values of −35. The prior
means are set to 0 for all alternatives, halfway between the smallest and largest truths, and Σ0

is given by a power-exponential structure with λ= 0.01 and Σ0
xx = 25 for all x. The measurement

noise is set to σ2
ε = 25. The smallest and largest truth are very far apart in this problem, and the

prior does not provide any information about the structure of the truth. In this situation, we see
that there is a range of values of zα/2 that provide comparable performance to KG, with the best

Figure 6 Sensitivity of IE to the tuning parameter zα/2 in a truth-from-prior problem.
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(a) Equal-prior problem. (b) Sine-truth problem.

Figure 7 Sensitivity of IE to the tuning parameter zα/2 in other problems.

value being 4.5. However, the value 1.7 is not in this range, and causes IE to be outperformed by
KG. Furthermore, the range of zα/2 values for which IE performs well can be shifted to the right
by increasing the amplitude of the sine wave, making it even more difficult to tune IE when the
truth is unknown.

The literature contains other examples of problems with different optimal values of zα/2. In
the offline problem studied by Frazier et al. (2008), the best value is 3.1. In the particular online
problems considered by Ryzhov and Powell (2009a) and Ryzhov and Powell (2009b), the best
values of zα/2 are 1 and 0.75, respectively. Clearly, there is no one value of zα/2 that always works
well.

The sensitivity of IE to the choice of zα/2 is a weakness of the IE policy. Although it can
be tuned to perform equivalently to correlated KG, the range of values of zα/2 that yield good
performance is relatively small. Furthermore, the optimal range may change drastically depending
on the problem. We have presented examples of problems where the best values of zα/2 are 0.6,
1.7, and 4.5 respectively. Each of these values yields good performance in one problem and poor
performance in the other two. In light of this issue, we can conclude that correlated KG has one
attractive advantage over IE: it requires no tuning at all, while yielding comparable performance
to a finely-tuned IE policy.

7.4. Comparison to independent KG decision rule

Finally, we consider the question of whether the correlated KG decision rule given in (22) is able
to offer substantial improvement, in a correlated problem, over the independent KG decision rule
given in (14), with (13) used to compute the KG factor. In other words, this is the issue of how
much KG gains by incorporating covariances directly into the decision rule. Table 2 shows the
average difference in opportunity cost between the correlated and independent KG policies for four
distinct problem settings: the truth-from-prior problem considered in Section 7.2, the equal-prior
and sine-truth problems considered in Section 7.3, and the quadratic-truth problem, where µx =
−x2 +101x−100 for x∈ {1,2, ...,100}. Like the other three problems, the quadratic-truth problem
uses a power-exponential covariance structure with λ = 0.01 and Σn

xx = 5002. The measurement
noise is σ2

ε = 3002.
We see that correlated KG outperforms independent KG in all four settings. However, the margin

of victory in the truth-from-prior problem is not statistically significant (meaning that correlated
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Truth-from-prior Equal-prior Sine-truth Quadratic-truth
Mean 0.0517 0.6124 1.2161 258.5264
Avg. SE 0.0914 0.0719 0.0233 4.3547

Table 2 Difference between correlated and independent KG decision rules for different problem settings.

and independent KG yield similar performance). When the priors start out equal, however, cor-
related KG offers significant improvement. When the truth has a specific structure, as in the
sine-truth and quadratic-truth problems, the improvement offered by correlated KG becomes even
more dramatic.

We conclude that the value added by the correlated KG decision rule over regular KG is problem-
dependent. Recall that the independent KG rule is itself a non-index policy that considers the
estimates µnx relative to each other when making a decision. In a truth-from-prior setting, where
the prior is fairly accurate from the very beginning, this examination of the relative magnitudes of
µnx can capture enough information about the relationships between the alternatives to allow us to
obtain reasonably good performance with the independent KG policy (at a lower computational
cost than correlated KG). However, if the prior contains less information about the truth, as in the
equal-prior setting, it becomes more important to consider covariances when making a decision.
Furthermore, if the truth happens to have more structure (e.g. if we are trying to find the maximum
of a continuous function), it is worth paying the additional computational cost required to use the
correlated KG rule.

8. Conclusion

We have proposed a new type of decision rule for online learning problems, which can be used for
finite or infinite horizons. In contrast with the Gittins index policy, which looks at one alternative
at a time over an infinite horizon, the knowledge gradient considers all alternatives at once, but only
looks one time period into the future. There is an explicit expression for the value of information
gained in a single time step, resulting in an easily computable decision rule for the KG policy.
In the classic bandit setting (infinite-horizon discounted), the probability that KG finds the best
alternative converges to 1 as the discount factor approaches 1. Experiments show that KG performs
competitively against the best known approximation to the optimal Gittins index policy.

One major advantage of the KG method is its ability to handle problems with correlated beliefs.
Index policies are inherently unable to do this, because they depend on the ability to consider each
alternative separately from the others. The non-index nature of KG allows it to incorporate the
effects of correlation into the computation of the KG factor. Experiments show that KG outper-
forms or is competitive against a number of index policies from the traditional bandit literature
on problems with correlations. To our knowledge, KG is the first learning policy that is able to
consider a multivariate Gaussian prior while making decisions. We believe that KG represents an
important step in the study of problems with correlated beliefs, while remaining a worthwhile
alternative to the index policy approach in the traditional multi-armed bandit setting.

The empirical conclusions regarding the performance of different policies reflect, of course, the
specific experiments we chose to run. It is not possible to generate every variation, and further
research is needed to compare these policies in the context of different problems. However, we feel
that the experiments reported here are encouraging, and suggest that other researchers should
consider using the knowledge gradient as a potential alternative to Gittins indices and other index
policies.
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Online Companion for: The Knowledge Gradient Algorithm
for a General Class of Online Learning Problems

Section EC.1 presents mathematical proofs for the results given in the main body of the paper.
Section EC.2 discusses the applicability of the knowledge gradient concept in learning problems
with non-Gaussian rewards. As an example, we derive a KG policy for a bandit problem with
Bernoulli rewards and beta priors. We also survey several possible extensions of the KG technique
to broader classes of stochastic optimization problems with an optimal learning aspect.

EC.1. Mathematical proofs

EC.1.1. Proof of Proposition 3.1

For any n and any alternative x′,

µnx′ ≤ µnx′ + (N −n)νKG,nx′

≤ max
x

(
µnx + (N −n)νKG,nx

)
= µnXKG,n(s) + (N −n)νKG,n

XKG,n(s)
. (EC.1)

The first inequality holds because νKG,nx′ ≥ 0 for any n and any x′, and the last line follows from
(14). In particular, we can let n=N − 1 and x′ = arg maxx µ

N−1
x . Combined with (9), this yields

V SL,N−1 (s) = 2 max
x
µN−1x

≤
(

max
x
µN−1x

)
+µN−1

XKG,N−1(s)
+ νKG,N−1

XKG,N−1(s)

= V KG,N−1 (s) .

Suppose now that V KG,n′ (s)≥ V SL,n′ (s) for all s and all n′ >n. Then,

V KG,n (s) = µnXKG,n(s) + IEnV KG,n+1
(
KM

(
s,XKG,n (s)

))
≥ µnXKG,n(s) + IEnV SL,n+1

(
KM

(
s,XKG,n (s)

))
= µnXKG,n(s) + (N −n)

(
max
x′

µnx

)
+ (N −n)νKG,n

XKG,n(s)

≥ (N −n+ 1)max
x′

µnx′

= V SL,n (s) .

The first inequality is due to the monotonicity of conditional expectation and the inductive hypoth-
esis for n′ = n+ 1. The second inequality follows from (EC.1). Q.E.D.

EC.1.2. Proof of Proposition 4.1

Let A be the set of all sample paths ω for which the KG policy measures at least two distinct
alternatives infinitely often. By the strong law of large numbers, if we measure an alternative x
infinitely often, we have µnx → µx almost surely. Furthermore, σ̃nx → 0 and νKG,nx → 0 in n almost
surely. Lastly, under the normal prior, we have µx 6= µy for any x 6= y, almost surely. If we let A′

be the subset of A for which all of these properties hold, we have P (A′) = P (A).
Let ω ∈A′, and suppose that alternatives x and y are measured infinitely often by the KG policy

on ω. Then, if we define

Qn
x′ (ω) = µnx′ (ω) +

γ

1− γ
νKG,nx′ (ω)
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to be the quantity computed by the KG policy for alternative x′ at time n on this sample path, it
follows that Qn

x (ω)→ µx (ω) and Qn
y (ω)→ µy (ω) in n. Then, letting ε= |µx (ω)−µy (ω)|, we can

find an integer Kω such that, for all n>Kω,

|Qn
x (ω)−µx (ω)| ,

∣∣Qn
y (ω)−µy (ω)

∣∣< ε

2
.

Consequently, at all times after time Kω, the KG policy will prefer one of these alternatives to
the other, namely the one with the higher true reward. This contradicts the assumption that
both x and y are measured infinitely often on the sample path ω. It follows that A′ = ∅, whence
P (A′) = P (A) = 0, meaning that the KG policy will measure only one alternative infinitely often
on almost every sample path. Q.E.D.

EC.1.3. Proof of Proposition 4.2

The proof has two parts. First, we fix γ and K > 0, and choose an outcome ω such that Nγ (ω)>K.
Now, we show that Nγ′ (ω)>K for all γ′ >γ. If this is not the case, then there is some n≤K for
which we can find γ′ >γ and some alternative y such that, for x= arg maxx ν

KG,n
x (ω),

µnx (ω) +
1

1− γ′
νKG,nx (ω)<µny (ω) +

1

1− γ′
νKG,ny (ω)

which means that
1

1− γ′
<

µny (ω)−µnx (ω)

νKG,nx (ω)− νKG,ny (ω)

where the sign of the inequality does not change because νKG,nx (ω) > νKG,ny (ω) by assumption.
However, we know that 1

1−γ <
1

1−γ′ because γ < γ′, hence it follows that

1

1− γ
<

µny (ω)−µnx (ω)

νKG,nx (ω)− νKG,ny (ω)
,

implying that y is preferred to x by online KG under the discount factor γ, which is not the case
because n <Nγ (ω) by assumption. Thus, if offline and online KG agree under γ, they also agree
under any γ′ >γ. It follows that Nγ is increasing in γ.

We now show that for any ω and any γ, we can find γ′ such that Nγ (ω) < Nγ′ (ω). Let x =

arg maxx′ ν
KG,Nγ(ω)

x′ (ω). Then, taking

γ′ > 1−

(
max
y

µ
Nγ(ω)
y (ω)−µNγ(ω)x (ω)

ν
KG,Nγ(ω)
x (ω)− νKG,Nγ(ω)y (ω)

)−1
we obtain

1

1− γ′
>max

y

µ
Nγ(ω)
y (ω)−µNγ(ω)x (ω)

ν
KG,Nγ(ω)
x (ω)− νKG,Nγ(ω)y (ω)

.

We can assume that the maximum is strictly positive, so γ′ < 1. The denominator of each term
of the maximum is strictly positive because x has the highest KG factor by assumption. At least
one term must have a positive numerator because there must be at least one alternative y that is
preferred to x by online KG under γ, hence µ

Nγ(ω)
y (ω)>µ

Nγ(ω)
x (ω). It follows that

µNγ(ω)x (ω) +
1

1− γ′
νKG,Nγ(ω)x (ω)>µNγ(ω)y (ω) +

1

1− γ′
νKG,Nγ(ω)y (ω) .

We have already found that increasing γ′ will not change the alternatives chosen by online KG
before time Nγ (ω), so it follows that Nγ′ (ω)>Nγ (ω). Consequently, Nγ (ω)↗∞ as γ↗ 1. Since
Nγ is integer-valued, it follows that Nγ↗∞ almost surely for γ↗ 1. Q.E.D.
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EC.1.4. Proof of Proposition 4.3

From Frazier et al. (2008), we know that the process Mn = maxx µ
n
x is uniformly integrable.

Because (µnx)n∈N is a martingale, it follows that Mn is a submartingale. Therefore, Mn converges
almost surely and in L1, and

lim
n→∞

IEMn = IE
(

lim
n→∞

Mn

)
≥ IEMT

for any stopping time T . Thus, we can write

lim
n→∞

IEKG(γ)
(

max
x
µnx

)
= IEKG(γ) lim

n→∞

(
max
x
µnx

)
≥ IEKG(γ)

(
max
x
µNγx

)
because Nγ is a stopping time. Q.E.D.

EC.1.5. Proof of Proposition 4.4

Because offline and online KG agree on all measurements before Nγ , we have

lim
γ↗1

IEKG(γ)
(

max
x
µNγx

)
= lim

γ↗1
IEOff

(
max
x
µNγx

)
= lim

n→∞
IEOff

(
max
x
µnx

)
= IE

(
max
x
µx

)
.

The second line is due to Proposition 3 together with the uniform integrability of (maxx µ
n
x)n∈N.

The last line is due to the asymptotic optimality of offline KG, shown in Frazier et al. (2008).
Q.E.D.

EC.1.6. Proof of Theorem 4.1

We can obtain one direction of the inequality by writing

lim
γ↗1

lim
n→∞

IEKG(γ)
(

max
x
µnx

)
= lim

γ↗1
lim
n→∞

IEKG(γ)
(

max
x

IEnµx
)

≤ lim
γ↗1

lim
n→∞

IEKG(γ)IEn
(

max
x
µx

)
= IE

(
max
x
µx

)
.

The first line follows by the tower property of conditional expectation. The second line is due to
Jensen’s inequality, and the last line is due to the tower property and the fact that µ does not
depend on the policy chosen.

For the other direction, we write

lim
γ↗1

lim
n→∞

IEKG(γ)
(

max
x
µnx

)
≥ lim

γ↗1
IEKG(γ)

(
max
x
µNγx

)
= IE

(
max
x
µx

)
.

The inequality follows by Proposition 4 and the second line follows by Proposition 5. Q.E.D.
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EC.1.7. Proof of Proposition 4.5

Suppose that, under the KG (γ) policy, for some ω we have arg maxx µ
n
x (ω) = xγ∗ (ω) = x∗ (ω) for

all n≥Nγ (ω), and yet x∗ (ω) is not measured infinitely often. By Proposition 2, the KG (γ) policy
must converge to some alternative almost surely, so we can assume without loss of generality that
the policy converges to some y (ω) 6= x∗ (ω) on the sample path ω. As in the proof of Proposition
2, limn→∞ µ

n
y(ω) + γ

1−γν
KG,n
y(ω) = µy(ω).

Let T (ω) be the last time when the KG (γ) policy measures any alternative z 6= y (ω) on the
sample path ω. Because y (ω) is measured infinitely often, it must follow that

µy(ω) (ω)≥ µT (ω)

x∗(ω)
(ω) +

γ

1− γ
ν
KG,T (ω)

x∗(ω)
(ω)≥ µT (ω)

x∗(ω)
(ω) . (EC.2)

The first inequality is due to the fact that the KG (γ) policy prefers y (ω) to x∗ (ω) for all n> T (ω).
The second inequality is due to the positivity of the KG factor.

At the same time, we have by assumption that µnx∗(ω) (ω)≥ µny(ω) (ω) for all n≥Nγ (ω). Letting
n→∞ on both sides, we obtain

µ
T (ω)

x∗(ω)
(ω)≥ µy(ω) (ω) . (EC.3)

Combining (EC.2) and (EC.3) yields µy(ω) (ω) = µ
T (ω)

x∗(ω)
(ω). Since µ is continuous, the set of ω for

which this holds has measure zero. We conclude that, for almost every ω for which arg maxx µ
n
x (ω) =

xγ∗ (ω) = x∗ (ω) for all n≥Nγ (ω), the alternative x∗ (ω) is measured infinitely often by the KG (γ)
policy. Q.E.D.

EC.1.8. Proof of Proposition 4.6

Let A1 denote the event that, for any y 6= xγ∗ , we have B
x
γ
∗

0 > By
0 and B

x
γ
∗

1 > By
1 . Also let A2

denote the event that, for any y 6= xγ0 , we have B
x
γ
∗
tn > By

tn
′ for all n,n′. Clearly, the event that

Lxγ∗ >maxx 6=xγ∗ Ux implies both A1 and A2. However,

P (A1 ∩A2)≤ PKG(γ)

(
x∗ = xγ∗ , arg max

x
µNγ+nx = xγ∗ ∀n≥ 0

)
because event A1 is analogous to having x∗ = xγ∗ , and A2 ensures (due to the independence of the
alternatives) that µ

Nγ+n

x
γ
∗

>µ
Nγ+n
y for all y 6= xγ∗ and all n≥ 0, regardless of how measurements are

allocated after time Nγ . Q.E.D.

EC.1.9. Proof of Proposition 4.7

First, observe that

h
(
µNγ , σNγ

)
= PKG(γ)

(
µ
Nγ

x
γ
∗
−σNγ

x
γ
∗

∣∣∣W x
γ
∗

1

∣∣∣>max
x 6=xγ∗

(
µNγx +σNγx |W x

1 |
)
|FNγ

)
= PKG(γ)

(
µ
Nγ

x
γ
∗
−σNγ

x
γ
∗

∣∣∣W x
γ
∗

1

∣∣∣>µNγx +σNγx |W x
1 | ∀x 6= xγ∗ |FNγ

)
. (EC.4)

Now, if

σNγx |W x
1 |<

1

2

(
µ
Nγ

x
γ
∗
− max
x′ 6=xγ∗

µ
Nγ
x′

)
(EC.5)

for all x (including xγ∗), then

σNγx |W x
1 |+σ

Nγ

x
γ
∗

∣∣∣W x
γ
∗

1

∣∣∣<µNγ
x
γ
∗
− max
x′ 6=xγ∗

µ
Nγ
x′ ≤ µ

Nγ

x
γ
∗
−µNγx
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for any x 6= xγ∗ and the event in (EC.4) occurs. The probability of the event in (EC.5) is given by

PKG(γ)

(
|W x

1 |<
µ
Nγ

x
γ
∗
−maxx 6=xγ∗ µ

Nγ
x

2σ
Nγ
x

∀x |FNγ
)

= g

(
µ
Nγ

x
γ
∗
−maxx′ 6=xγ∗ µ

Nγ
x′

2
, σNγ

)
. (EC.6)

The quantity µ
Nγ

x
γ
∗
−maxx′ 6=xγ∗ µ

Nγ
x′ is a.s. strictly positive by the definition of xγ∗ , so the right-hand

side of (EC.6) is well-defined. Q.E.D.

EC.1.10. Proof of Theorem 4.2

Combining Propositions 6 and 7 yields

PKG(γ) (B)≥ PKG(γ)

(
Lxγ∗ >max

x 6=xγ∗
Ux

)
Next, we write

PKG(γ)

(
Lxγ∗ >max

x 6=xγ∗
Ux

)
= IEKG(γ)h

(
µNγ , σNγ

)
= IEOffh

(
µNγ , σNγ

)
≥ IEOffg

(
µ
Nγ

x
γ
∗
−maxx6=xγ∗ µ

Nγ
x

2
, σNγ

)
.

The first line is due to the tower property of conditional expectation. The second line follows
because the offline KG policy agrees with the KG (γ) policy up to the stopping time Nγ , and the
quantity f (µNγ , σNγ ) depends only on our beliefs at that time. The last line comes from Proposition
8.

It follows that

lim
γ↗1

PKG(γ) (B) ≥ lim
γ↗1

IEOffg

(
µ
Nγ

x
γ
∗
−maxx 6=xγ∗ µ

Nγ
x

2
, σNγ

)

= IEOff lim
γ↗1

g

(
µ
Nγ

x
γ
∗
−maxx6=xγ∗ µ

Nγ
x

2
, σNγ

)
,

where we can pass the limit inside the expectation because |g| ≤ 1, and so the dominated conver-
gence theorem applies. Observe now that g is a continuous function due to the continuity of Φ and
the fact that Φ

(
a
b

)
→ 1 as b→ 0. Therefore,

IEOff lim
γ↗1

g

(
µ
Nγ

x
γ
∗
−maxx 6=xγ∗ µ

Nγ
x

2
, σNγ

)
= IEOffg

(
lim
γ↗1

µ
Nγ

x
γ
∗
−maxx 6=xγ∗ µ

Nγ
x

2
, lim
γ↗1

σNγ

)

= IEOffg

(
µx∗ −maxx6=x∗ µx

2
,0

)
= 1,

because limγ↗1Nγ =∞ a.s. by Proposition 3, and therefore, under the offline KG policy, µNγ → µ
and σNγ → 0 almost surely as γ ↗ 1. The quantity µx∗ − maxx 6=x∗ µx is almost surely strictly
positive, so g evaluated at the limit is almost surely equal to 1. Since probabilities are bounded
above by 1, we conclude that

lim
γ↗1

PKG(γ) (B) = 1,

as required. Q.E.D.
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EC.1.11. Proof of Proposition 5.1

Because f is increasing, (21) yields

µnx + (N −n)νKGC,nx ≤ µnx + (N −n)
1

2π
max
x′

σ̃corr,nx′ (x) .

Since maxx′ µ
n
x′ ≤maxx′ µ

n
x + (N −n)νKGC,nx′ by the positivity of the KG factor, (23) implies that

x will not be chosen by the KG decision rule. Q.E.D.

EC.2. A discussion of a non-Gaussian model

Throughout our paper, we have focused on a Gaussian belief model with Gaussian measurements.
This framework provides us with a powerful and general way to handle correlated beliefs using
multivariate Gaussian priors. However, the knowledge gradient concept is not limited to the Gaus-
sian model, and can be used for many other types of belief structures. In this section, we briefly
discuss one such problem, in which the measurements have 0/1 outcomes. We argue that KG is
not limited to a single method for Gaussian beliefs, but rather is a general methodology that can
be applied to many broad classes of learning problems.

Consider an online learning problem with M alternatives. Alternative x has an unknown success
probability ρx ∼Beta (α0

x, β
0
x), where the parameters α0

x and β0
x represent our beliefs. For example,

ρx may represent the probability of success for a particular medical treatment in curing a disease.
This application has motivated many classic studies of bandit problems, such as Gittins and Jones
(1979).

If we choose to measure alternative x at time n, we make an observation W n+1
x ∼Bernoulli (ρx)

denoting success or failure. The posterior distribution of ρx is also beta, and the updating equations
are given by (DeGroot 1970)

αn+1
x = αnx +W n+1

x

βn+1
x = βnx +

(
1−W n+1

x

)
.

We assume that the alternatives are independent in this example. If we measure x at time n, we
update our beliefs about ρx, but not about the other success probabilities. As before, Fn denotes
the sigma-algebra generated by the first n measurement decisions as well as the outcomes of those
decisions.

Our objective is to choose a measurement policy that maximizes the total number of successes
across all trials. In an infinite-horizon setting, this can be stated as

sup
π

IEπ
∞∑
n=0

γnρXπ,n(sn),

where sn = (αn, βn). The KG logic from Section 3.2 still applies. The KG policy yields the decision
rule

XKG,n (sn) = arg max
x

αnx
αnx +βnx

+
γ

1− γ
νKG,nx ,

where

νKG,nx = IEnx

[(
max
x′

αn+1
x′

αn+1
x′ +βn+1

x′

)
−
(

max
x′

αnx′

αnx′ +βnx′

)]
.

Just as in the Gaussian case, the KG factor can be computed explicitly. We now present this
computational result.
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Proposition EC.1. The KG factor in the beta-Bernoulli model can be computed as

νKG,nx =


αnx

αnx+β
n
x

(
αnx+1

αnx+β
n
x+1
−Cn

x

)
if αnx

αnx+β
n
x
≤Cn

x <
αnx+1

αnx+β
n
x+1

βnx
αnx+β

n
x

(
Cn
x −

αnx
αnx+β

n
x+1

)
if αnx

αnx+β
n
x+1
≤Cn

x <
αnx

αnx+β
n
x

0 otherwise,

where Cn
x = maxx′ 6=x

αn
x′

αn
x′+β

n
x′

.

Proof: The first step is to compute the predictive distribution of W n+1
x given Fn. Since there are

only two possible values that W n+1
x can take on, it suffices to consider each outcome individually.

We can write

P n
(
W n+1
x = 1

)
= IEnP n

(
W n+1
x = 1 |ρx

)
= IEnρx

=
αnx

αnx +βnx
.

Therefore, P n (W n+1
x = 0) = βnx

αnx+β
n
x

. Furthermore, αn+1
x + βn+1

x = αnx + βnx + 1 regardless of which
outcome occurs. It follows that

IEnx

(
max
x′

αn+1
x′

αn+1
x′ +βn+1

x′

)
=

αnx
αnx +βnx

max

{
Cn
x ,

αnx + 1

αnx +βnx + 1

}
+

βnx
αnx +βnx

max

{
Cn
x ,

αnx
αnx +βnx + 1

}
. (EC.7)

Observe that
αnx

αnx +βnx + 1
<

αnx
αnx +βnx

<
αnx + 1

αnx +βnx + 1

for any αnx , β
n
x > 0. Therefore, if Cn

x <
αnx

αnx+β
n
x+1

, it follows that maxx′
αn
x′

αn
x′+β

n
x′

= αnx
αnx+β

n
x

and (EC.7)

becomes

IEnx

(
max
x′

αn+1
x′

αn+1
x′ +βn+1

x′

)
=

αnx
αnx +βnx

αnx + 1

αnx +βnx + 1
+

βnx
αnx +βnx

αnx
αnx +βnx + 1

=
αnx (αnx +βnx + 1)

(αnx +βnx ) (αnx +βnx + 1)

=
αnx

αnx +βnx

and νKG,nx = 0.
In the second case, when αnx

αnx+β
n
x+1
≤Cn

x <
αnx

αnx+β
n
x

, we compute (EC.7) as

IEnx

(
max
x′

αn+1
x′

αn+1
x′ +βn+1

x′

)
=

αnx
αnx +βnx

αnx + 1

αnx +βnx + 1
+

βnx
αnx +βnx

Cn
x . (EC.8)

Subtracting αnx
αnx+β

n
x

yields

νKG,nx =
αnx

αnx +βnx

(
αnx + 1

αnx +βnx + 1
− 1

)
+

βnx
αnx +βnx

Cn
x

=
βnx

αnx +βnx

(
Cn
x −

αnx
αnx +βnx + 1

)
,
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as required.

In the third case, when αnx
αnx+β

n
x
≤Cn

x <
αnx+1

αnx+β
n
x+1

, we have maxx′
αn
x′

αn
x′+β

n
x′

=Cn
x , whence (EC.8) still

holds, and

νKG,nx =
αnx

αnx +βnx

αnx + 1

αnx +βnx + 1
+Cn

x

(
βnx

αnx +βnx
− 1

)
=

αnx
αnx +βnx

(
αnx + 1

αnx +βnx + 1
−Cn

x

)
.

Finally, when Cn
x ≥

αnx+1

αnx+β
n
x+1

, the right-hand side of (EC.7) is equal to Cn
x , and νKG,nx = 0. Q.E.D.

The KG policy has an intuitive interpretation. In the beta-Bernoulli model, a single measurement
of x can only change our beliefs about the best alternative if αnx

αnx+β
n
x

and Cn
x are sufficiently close

together. If these quantities are far enough apart, that is, Cn
x <

αnx
αnx+β

n
x+1

or Cn
x ≥

αnx+1

αnx+β
n
x+1

, then
neither outcome of the measurement will bring about any improvement in our understanding of the
best alternative, and the measurement has no value. We did not see this property in the Gaussian
model because Gaussian measurements are continuous, and there is always a possibility that we
will observe a sufficiently large or small outcome to change our beliefs.

As in Section 6, we tested the KG policy on 100 randomly generated truth-from-prior problems
where the initial prior parameters α0

x, β
0
x were generated from uniform distributions on [0,5]. We

ran 104 sample paths on each problem, with a new set of truths ρx ∼Beta (α0
x, β

0
x) for every sample

path. All problems were infinite-horizon problems with a discount factor of 0.9.
In the beta-Bernoulli model, Gittins indices can be approximated using a computationally expen-

sive dynamic programming procedure. Analytic approximations of the Gittins index policy are not
as advanced as those available for the Gaussian model. However, the seminal work by Brezzi and
Lai (2002) uses a central limit argument to recommend using the Gaussian approximation (the
one used throughout this paper), with

µnx ≈
αnx

αnx +βnx
,

(σnx )
2 ≈ αnx

αnx +βnx

βnx
αnx +βnx

1

αnx +βnx + 1
,

σ2
ε ≈

αnx
αnx +βnx

βnx
αnx +βnx

used to stand in for the Gaussian parameters at time n. We followed this recommendation, but
again used the most advanced Gaussian approximation derived by Chick and Gans (2009).

Furthermore, we also compared against the pure exploitation policy

XExp,n (sn) = arg max
x

αnx
αnx +βnx

and the UCB1 policy of Auer et al. (2002) for rewards in [0,1], given by

XUCB1,n (sn) = arg max
x

αnx
αnx +βnx

+

√
2 logn

Nn
x

.

As before, we can estimate the difference in opportunity cost for KG and other policies, aver-
aged over 104 sample paths, in each problem. The means and standard errors for these estimated
differences are given in Table EC.1.

We see that KG significantly outperforms both the Gittins and UCB1 policies, and is competitive
against pure exploitation (beating it by a small margin). Furthermore, KG outperformed Gittins
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KG-Gitt KG-UCB1 KGC-Exp
Mean 0.5250 1.3463 0.0045
Avg. SE 0.0052 0.0036 0.0031

Table EC.1 Means and standard errors for the beta-Bernoulli experiments.

and UCB1 on all 100 problems. KG outperformed pure exploitation on 58/100 problems. These
results suggest that the online KG policy is also competitive in the beta-Bernoulli setting.

Our goal in this discussion has been to illustrate the applicability of knowledge gradient methods
to a variety of learning problems. In fact, the idea of computing the expected value of information
may apply to more complex resource allocation problems where Gittins indices are no longer
applicable. Such problems are outside the scope of this paper, but work in this area is ongoing.
For example, Ryzhov and Powell (2011) considers a stochastic shortest-path problem on a graph
where the mean arc lengths are unknown, and sequential sampling can be used to adaptively
estimate them. This problem moves beyond the multi-armed bandit setting by creating a distinction
between measurement and implementation decisions: while we measure individual arcs, we are
not interested in finding the shortest arc. Rather, an arc is only valuable as long as it provides
information about the shortest path. While no analogue of Gittins indices (or interval estimation
or other index policies) exists for this problem, it is possible to apply value of information concepts
and derive a KG-type policy that computes the expected value of a single measurement exactly.
Other work along these lines includes Ryzhov et al. (2010), which considers the problem of learning
uncertain transition probabilities in a Markov decision process, and Ryzhov and Powell (2010),
where the online KG concept put forth in this paper is used to create a decision-making strategy for
approximate dynamic programming. We believe that, while the bandit problem with multivariate
Gaussian priors is itself a general class of online learning problems, the KG concept reaches beyond
this setting.
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