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The stochastic vehicle allocation problem addresses the movement of vehicles between locations over
a given planning horizon. The demand for vehicles to carry loads between locations is uncertain,
and vehicles are assumed to be able to handle several loads over the course of the planning horizon.
This requires tracking the movement of both loaded and empty vehicles, resulting in a network
with stochastic flows. The methodology represents the flows of vehicles over the network explicitly
as random variables, taking advantage of the acyclic structure of the time space network. The
decision variables are formulated in terms of sending a certain fraction of the supply of vehicles at
a node (which is random) over each of the outbound links. The result is a nonseparable objective
function with a very simple constraint structure which lends itself readily to the Frank-Wolfe
algorithm. Numerical experiments suggest very good computational efficiency.

INTRODUCTION

The stochastic vehicle allocation problem arises
when a carrier must allocate vehicles over space and
time in an effort to anticipate uncertain demands.
Examples are railroads, which must distribute empty
freight cars, and truckload motor carriers, which must
supply empty trucks to different cities. The carrier
may know where its vehicles are now and may even
know with some certainty what the demands for those
vehicles are today. Efficient allocation of vehicles,
however, requires trying to anticipate future demands
which must therefore be forecast, usually with consid-
erable uncertainty.

The current approach for solving the vehicle allo-
cation problem incorporates future demands by set-
ting up a multitime period network with links that
move forward in time as they go from one node to the
next. By assuming that demands are known with
certainty, the problem can be easily formulated as a
capacitated transshipment problem and solved using
a network simplex code. The assumption of determin-
istic demands, however, can potentially introduce sig-
nificant errors into the model and, more seriously from
a planning perspective, eliminates the possibility of
analyzing strategies directed specifically at handling
uncertainty in demand. For example, a railroad or
motor carrier might wish to offer price discounts to
shippers who place orders more than 4 days in ad-
vance. To implement such a strategy, the carrier would
first have to know the cost benefits accruing from a
reduction in the uncertainty in demand.
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A deterministic model will in addition do a partic-
ularly poor job of estimating stockout and holding
costs, and is often relatively insensitive to these pa-
rameters. It is normal, for example, to assume that
the actual demand for vehicles is equal to the median
demand, in which case the model will return a solution
which provides too few vehicles 50% of the time. If
the traffic is particularly lucrative, it is possible to
estimate the demand at the 90th percentile rather
than the 50th, but the marginal revenue should then
be adjusted downward to reflect the probability of
filling the last vehicle. If the carrier wishes to send a
vehicle only if there is a demand for the vehicle, then
the flows themselves become stochastic, a fact that
cannot be captured even by a nonlinear deterministic
model.

Previous research in the area of stochastic trans-
shipment problems is relatively sparse. COOPER AND
LEBLANC™ considered the stochastic transportation
problem where the flows from supply to demand are
deterministic and with linear transportation costs.
Demands are assumed to be stochastic with stockout
and holding costs provided as inputs to the model.
The objective is to minimize transportation costs and
expected stockout and holding costs, producing a sim-
ple convex, nonlinear objective function which is eas-
ily solved. The simplicity of the model arises from the
fact that flows must be sent before the demands are
known and only one time period is considered.

The first, and apparently the only, effort at directly
solving the multiple time period vehicle allocation
problem under random demands is the recent work by
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JORDAN!Z and JORDAN AND TURNQUIST."! The prob-
lem addressed in this research is the empty freight car
distribution problem, where known supplies of cars
must be allocated to different classification yards over
time to meet uncertain demands. The following as-
sumptions are made in this research:

1. Supplies of and demands for empty cars are as-
sumed random and are represented using a normal
distribution. Demands are assumed to occur at the
nodes of the network.

2. Travel times between terminals are random and
described using a negative binomial distribution.

3. Once an empty car is sent from one yard to another,
it cannot be reallocated to a third yard at a later
point in time.

4. Once a car is sent to a shipper, it is lost from the
system.

5. Demands that are not satisfied in one time period
are carried forward to the next time period.

Assumption 4 arises because the model does not
track loaded movements. Since the loaded cycle of a
freight car would normally exceed a typical 7-10-day
planning horizon, it is unlikely that an allocation
decision would have to be made twice for the same car
within the planning period. This assumption fails,
however, in other applications such as trucking, where
a truck may be loaded two or three times within a
7-day planning horizon. For this problem, loaded
movements must be considered explicitly as well as
the empties. Other limitations of this research include
the use of the normal distribution, which breaks down
when the mean is small relative to the variance, and
the assumption that empty vehicles cannot be sent
more than ence within the planning period. Again,
these assumptions represent reasonable approxima-
tions for empty freight car distribution but would not
necessarily apply in other applications.

The purpose of this paper is to present a model that
in some respects is more general than the formulation
presented in [3]. The particular features of the model
are motivated primarily by the truck allocation prob-
lem for truckload motor carriers. The major assump-
tions that are made relative to five listed earlier used
by Jordan and Turnquist are as follows:

1. Supplies of and demands for trucks are assumed to
be random and described by an Erlang distribution.
Demands are assumed to occur on the links of the
network.

. Travel times are assumed to be deterministic.

3. An empty truck may be moved repeatedly over the

planning horizon.

4. When a trailer is moved full from one city to the

next, it becomes empty and must again be reallo-
cated to handle a new demand.

[\

5. Demands not satisfied in one time period are as-
sumed lost from the system.

Assumptions 1, 3, and 4 represent extensions to the
Jordan and Turnquist formulation. Assumptions 2
and 5, on the other hand, are more restrictive but are
realistic in the context of trucking.

The organization of the paper is as follows. Section
1 presents the basic formulation of the problem and
Section 2 describes how to calculate the flows of full
and empty trucks on each link in the network over
the planning horizon. Section 3 outlines an efficient
solution algorithm, and Section 4 describes a series of
numerical experiments designed to test the accuracy
of certain approximations required and the efficiency
of the algorithm. Also included are comparisons be-
tween deterministic and stochastic formulations of the
same problem.

1. PROBLEM FORMULATION

THE STOCHASTIC vehicle allocation problem takes as
given initial supplies of empty vehicles and then must
route these vehicles to other nodes in the system at
future points in time. The network depicting all pos-
sible movements is shown in Figure 1. Any movement
to another city can be made full, if there is sufficient
demand, or empty. Links representing a vehicle being
held at a city until the next day are modeled as empty
movements. The problem is to decide a) how many
vehicles to send empty from city i to a different city j
at a future point in time, b) how many vehicles should
be held at node i another day, and ¢) how many
vehicles should be allowed to handle demands from
1to .

The set of all possible movements is represented
using a space-time network where each node i repre-
sents a region at a specific point in time. This network
can be represented as a directed graph G = (N, L)
where N is the set of all possible nodes within a
specified planning horizon and L is the set of all links.
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Fig. 1. Schematic of network for vehicle allocations problems.



Further define the subsets:

L' = set of all loaded movement links

L¢ = set of all empty movement links

L"* = set of links representing vehicles held in the
same region from one period to the next

where L = L' U L° U L". To capture the temporal
structure of the network define:

1 = node representing the same city as ; but in the
next time period (the link (i, ; € L").
1 = node representing the same city as i but in the
previous time period (the link (i, i) € L*).
A;=|k|(k i) €L UL
B:=|k|(i, k) € L'}.

Note in the definitions of the sets A; and B; that
1€ A;but i €& B;.
Next define the following:

F;; = flow of full vehicles from node i to j.

E;; = flow of empty vehicles from i to j.

S; = supply of vehicles at node i.

R; = new arrivals of vehicles to node j which were
sent prior to the beginning of the planning
horizon. R;,j=1,. .., N¢, represent the initial
supplies of vehicles; however, it is possible to
have R; > 0 for all j € N.

s;; = a “stockout cost” for not meeting demands.

ri; =net revenue received from a full movement
from i to j.

¢;; = cost of an empty movement from i to j.

D;; = demand for vehicles from i to j.
Nc¢ = number of cities in the system.

Throughout the paper we will use the convention that
F=E[F]and F = Var[F].

Given that the supplies of vehicles, {S}, are poten-
tially random, it is not possible to formulate the de-
cision variables in terms of flows of vehicles, as is
done in deterministic network models. To deal with
this difficulty in a manageable way, the decision vari-
ables are defined as follows:

;= fraction of the supply of vehicles at node
allocated for a full movement to node j.

a;; = fraction of the supply at node ¢ to be sent
empty to node j.

A variety of assumptions and modeling approxima-
tions, in addition to those listed in the introduction,
are employed to develop a formal optimization prob-
lem. These include:

1. Vehicles are treated as continuous variables.

2. Exogenous supplies of vehicles, R;, are continuous
random variables described by an Erlang density
function with known parameters.
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3. The demands for vehicles D;; are continuous ran-
dom variables described by an Erlang density func-
tion with known parameters. Since the nodes { and
J represent both regions and time periods, the pa-
rameters of the distribution of D;; are allowed to
vary over time.

4. The supplies S; are necessarily continuous random
variables where the parameters of the distribution
of S; are determined endogenously by the model.
The distribution itself will be approximated by an
Erlang distribution.

5. The problem is modeled over a finite planning
horizon which is implicitly defined by the nodes
included in the set N. No special steps were taken
to handle the end effects due to truncating the
planning horizon.

6. Vehicles allocated to move loaded from i to j but
which cannot do so due to insufficient demand are
assumed to be held over in the same region until
the next time period.

7. The random variables {R;},j=1,..., N and {D;;},
i,j € L, are all assumed to be independent. Other
independence assumptions are also required to sim-
ply certain derivations; these assumptions are best
introduced as needed.

Assumption 6 above is central to the model both for
the added realism it introduces as well as the limita-
tion it imposes on the model. An alternative assump-
tion would have defined a single set of decision vari-
ables {#} where §;; is the fraction moved from i to j,
where as many of these would be moved loaded as
possible. This approach was used by POWELL et al.l®
and has the result that if the external supplies {R,}
are deterministic then so are the flows over the net-
work. In reality, a truck will usually only be moved
from i to j if it can be moved full, implying that the
model in [6] will generate considerably more empty
miles than is necessary. Assumption 6 avoids this
particular limitation but imposes a different, although
lesser, restriction. Specifically, while it allows trucks
to be moved only when full, it forces a truck allocated
to move full over a particular link (i, j ) to be held over
from i to ¢ if the demand on the link is too low. The
model does not allow this truck to be moved over
another link which may have excess demand. The
assumptions being made here do represent an exten-
sion of previous research and allows us to investigate
the problem of a network with stochastic flows.

Given the vectors {6} and {«a}, the flows of fulls and
empties are given by

F,~,-=min{0i,-S,-,D,~j} Vl, jEB, (1)

Eij = aijSi V i, ]EB, (2)
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The flow of empties on the holdover link must include
the overflow from other links, and hence is written:

Ei = ;Si + Xjen, 08 — Fy;). 3)

Note that Equations 1-3 imply that it is possible that
if o;; > 0 and 6;; > 0, empties may be sent from i to j
at the same time that the demands exceed the number
of vehicles being sent full. Such an anomaly is unlikely
to have any significant affect since the model will
generally tend to increase 6; and decrease «;; until
most of the demands are being satisfied. However, this
possibility does serve to highlight a drawback of the
structure of the model.

Having defined the basic variables required, the
objective function is simply to maximize the expected
net revenue minus stockout costs over the planning
horizon, as follows:

max w(f, ) = Y ien
— _ _ _ @)
[T jes, (rijFij — ci;Eij — si;(Dy; — F;)) — CigEig]
subject to
Yjen; (0 + aij) + ay = 1. (5)

Equation 4 represents a nonlinear, nonseparable
objective function with a very simple set of con-
straints. Unfortunately, it has not been possible to
establish concavity of 7 (8, @) and hence we must
satisfy ourselves at this time that we may only find a
local optimum.

The next section presents the relationships needed
to calculate (4) given vectors {#} and {«].

2. CALCULATING THE OBJECTIVE FUNCTION

TO CALCULATE = (6, o) given {8} and {«a} the initial
supplies of vehicles at each city are assumed given (or
alternatively, the means and variances of the supplies
are assumed known). It is then necessary to find the
means and variances of the supplies of vehicles at each
node in the network for all future points in time.
Flows into node j consist of the external supply of
vehicles sent prior to the beginning of the planning
horizon, the flow of fulls and empties from nodes in
the set A;, empty vehicles that were held at j and the

overflow of vehicles at j that were allocated to move

full to the nodes in B; but were held over as a result
of insufficient demand. Stating this relationship
mathematically gives

Sj = Yiea; [Fij + Ej] + R;
= ZieA,- [aijS; + Fij] (6)
+ Zkegz [Oj;kS,_- — Fyl + RB;.

The first term on the right hand side of (6) is the flow
of fulls and empties on all links leading into node j
where «;;S; is the flow of empties and F}; is the flow
of fulls as given by (1). Included in this term is the
holdover link (j, j) where F;; = 0. The second term
in (6) is the vehicles that could not be filled from j to
nodes in B; (which excludes j) and hence had to be

held over. The moments of R; are assumed known and
are exogenous to the model.

Taking expectations of both sides of (6) gives the
expected supply of empty vehicles at j:

S; = Yiea, [0i;Si + Fj]
+ ZheB{- [HZhgz - Flk] + R;.

(7)

To find the variance of S;, the (assumed) independ-
ence between the supplies of S;, i € A;, implies that
flows from different points into j are independent.
The flow of empties and fulls on the same link, how-
ever, will not be independent. A more difficult problem
is the variance of the flow on the overflow link (j, j)
as these flows are all related to the supply S;. In

addition, the overflows, represented by the second
term in (7), will be correlated with the vehicles being
held over from j to j, represented by ) S j in the first
term in (7). In view of these relationships, the variance
of S; is found to be

§j = Yiea, [axzj§i + fij + 2¢;;Cov(S;, Fij)]
+ Zkij COV(CZ{'_,'S_!, BJ_kS{ - F‘{k)
+ ZkEB]— [0§k§{ + ﬁj_k — 20{kCOV(S{', Flk)]

+ Zkij zzefj Cov(ﬁijj - ij, 0j[Sj - Fjl) + ﬁ,
) ARG A A A

Equations 7 and 8, together with Equations 1 and
2, are the governing relationships for the model in the
sense that, given the decision variables {#} and {«},
and the initial supplies of vehicles, all the flows over
the network can be determined. To carry out some of
the steps the assumption that demands are described
by an Erlang distribution is used. If d;;(¢) is the density
function of D;;, then d;;(¢) is assumed to be given by

dij (8) = pij(ut) v e/ (1; — 1)! 9

where u;; and [;; are assumed known. The distributions
of the supplies of empties, S;, are approximated using
an Erlang distribution, where if s;(¢) is the density
function of S;, then

Sj(t) = )\j()\jt)xj—le—-xjt/(Kj - 1)' (10)

For the initial time periods, A\; and «; are assumed
known, or the supply may be known deterministically.




For future time periods, the mean and variance of S;
are calculated using (7) and (8), from which «; and A
are found using

x; = max{1, [S?/5;]} (11)
Aj= Kj/»gj (12)

where [x] in (11) denotes the nearest integer to x.

The calculation of the parameters « and A in this
way guarantees that the need to keep « integer does
not affect the mean of the distribution of S;. Keeping
«; integer is not entirely necessary but allows all the
calculations to be done in closed form. Note that the
use of an Erlang distribution for the random variables
S; is purely a modeling approximation required to
calculate the moments of the flow of full vehicles
outbound from node j. No formal experiments have
been conducted to test the accuracy of this fit, but
simulation results presented in Section 4 suggest it
provides a very good approximation for the purposes
of calculating the expected flows of fulls and empties.

The only difficult calculations required to calculate
Equations 1, 7 and 8 are the expressions for F};, F;;,
Cov(S;, F;;) and Cov(Fj,, Fj;), where the last expres-
sion is needed to calculate the covariances in the last
term of (8). After a considerable amount of algebra,
the equations for F, F and Cov(S;, F;;) are found to
be (dropping the subscripts i and j ):

A Kn-1(k—n)
(13)
-<K+l_ln—1>r(l,x—n)]
F—__02K(K+1) 1_““ l-n(2«+1—n)
T2 Zik(k+1)(k—n+1)
(14)
.('<-'-ll_n>r(l,:<—n+1)]—F2
_Ok(k+1) _ 1 3 n
CoviS, F)= A? [1 k+1,1k—n+1
(15)
-<K+ll_n>r(l,x—n+1)]—§F
where
a\  al
(b)’b!(a—b)! (16)
a b
and r(a,b)=—M (17

(n+N/8)+8"
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The expression for Cov(Fj., Fj) was derived but
proved to be significantly more complex than Equa-
tions 13-15. In the interests of computational effi-
ciency, the overflow from different links is assumed
to be independent. After a few manipulations, this
produces the following approximate expression for

S;:
§j = ZiEAj [a,21§, + ﬁ,‘j + 20(,'1'COV(S,‘, F[j)]

+ a,_-j(§{- Y res; 0jx — Lren; Cov(S;, Fjx))

(18)
+ ZkEB{- [0?k‘§{ + F{k - 20{'kCOV(S{‘, F{k)]
+R;
which further reduces to
§j = Yiea, [a?j§i + fij + 20;;Cov(S;, Fi;)]
+Zk€B{[FZk+0{'kSZ‘(a{'j+aj_'k) (19)

- (a]_-j + 20{k)Cov(S{,Flk)]

+R;.

All the terms in (19) are easily calculated using Equa-
tions 13-15.

The relationships in this section can be efficiently
applied using standard network list processing tech-
niques. To calculate all the flows over the network,
the algorithm would loop over all the nodes starting
with those on the first time period and moving forward

in time. For each node i, S; and S; would already be
known, either because they were input to the model
(if i falls in the initial time period) or because all the
calculations needed to find them would have already
been completed. Given S; and S;, an Erlang distribu-
tion for S; is fitted using (11) and (12). Next, looping
over all the links (i, j ) emanating from i, the procedure
finds F;;, F;; and Cov(S;, F;;) which are then accu-
mulated at each node j, j € B;, in such a way as would
allow calculating S; and S; when these nodes are
encountered later. At the same time, the expected
flows of fulls, F;;, and empties, E;; = «;;S;, are stored
for each link, to be used later when actually calculating
the objective function.

The next section addresses the problem of devel-
oping a solution algorithm to maximize the expected
net revenue.

3. SOLUTION ALGORITHM

THE STRUCTURE of the objective function (4) and the
constraint set (5) suggests the use of the Frank-Wolfe
algorithm, which has proven useful particularly in the
area of stochastic network problems.™® The principal
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reason for its ease of application is that the linearized
objective function decomposes into a set of trivial
subproblems, one for each node in the network.

The linearized objective function is given simply by:

. o (6°, a°) aw(8°, a°)
A R TE P
1‘1011'1,1 EI: [jga,- ( 00;; ! day; %
(20)
+67r(0,a ) -y
aa,‘,__‘ =
subject to
e B + a;) + ay =1V i (21)
where {0°, «°} is the current solution. Let (67, ar) be

the optimal solution of (20). This problem decomposes
into separate subproblems for each node. After calcu-
lating the set of derivatives dw/36;;, V j € B; and
On/da;;, ¥V jE B; ﬂj the solution of (20) simply finds

the largest derivative and sets the corresponding 6% or
ok, depending on which derivative is largest, equal to
1, with all the rest set equal to zero. This “all or
nothing” solution guarantees convergence but can be
relatively slow. It has been shown® that methods
which divide the flow among competing “good” paths
can significantly enhance convergence. For this rea-
son, the following scheme is proposed. Let U; and V;
be the sets of nodes where a small increase in 6;; or
ayj, respectively, would show an increase in net reve-
nue. In other words,

. am(6°, a°)
= i, >
U, {] |{J € B 0; 0}

. . ow(6° af
Vi={j|]e3im,l@—f‘——)>o}.
= alxij
Next define weights u;; and v;; where
an(0°, o) je
Y T — i
U;; = a6, (22)
0 otherwise
an(0°, «®) .
Y —F —J€E
v;j = aaii (23)
0 otherwise

where v is a predetermined scaling factor. Finally,
determine 6% and o using the following logit func-
tion:

aij — ]I(e)uij/(ZkGU,-euik + EkEVievik)y ]E Ui (24)

otherwise

afj= {QUij/(ZkEUieU"’*” Lreve™) JEVi (95
0 otherwise.

The advantage of this approach is that most of the
flow is concentrated along the path showing the great-
est increase in net revenue. The extent of this concen-
tration is governed by the size of the parameter 7.
Note that in applying (24) and (25), if the sets U; and
V; are empty, then the algorithm would revert back to
an all or nothing approach.

Finding the Derivatives

The solution algorithm requires an efficient method
for calculating the derivatives d=(8°, «°)/d6;; and
07 (#°, «°)/da;;. These derivatives must reflect the
impact of a small change in 6;; or «;; will have both on
revenues on the link (i, j) as well as on the rest of the
network. The derivatives can be calculated by using
the following recursions:

am dE; 3S; o« 6g 9
—c; (26)
601,] daj 601,,65 Ba”ag
o _ [, +s)aF,, aS‘jﬂJraEa_w
a0, L 7" " a6, " 96,05 36;; 35,
(27)

dE; 8S;9x 85 o
=i
30, " 36,05, 0, o5,

The first term in (26) represents the impact of an
increase in o;; on profits on link (z, j ). The second and
third terms look at the impact of «;; on S; and S; and
the subsequent impact on profits on all links in future
time periods. Equation 27 has the same structure but
is complicated by the fact that increasing 6; will
increase the flow both on link (i, j ) and on the overflow
link (i, 1). The use of both (26) and (27) requires also

knowing d=/3S; and d#/dS; which describe the impact
of an increase in S; and S; on all future profits.
Numerical experiments described in Section 4, how-
ever, support the use of the approximation that

dw/38S; = 0. This approximation is used in this section;

interested readers are referred to Appendix A for the

relationships which do not use this approximation.
To calculate (26) observe that

Y
5 ok _g, (28)
aa,’j 601,-,-
which gives
an on
— =\—c; + =] S 29
da;) ( o 33‘) § 9
To calculate (27) requires
. oF;
BSJ _ J (30)

88; 80,



and
aS; F.
i_g 9K (31)
aoij 60,’]‘
Combining (27), (30) and (31) gives
0_7r_ .A+s.,+c..+a_7r__?_1 aFij
6011 =\ri i 3 as’ ag}: 80”
(32)
ar
—_ (Cé - a§£> Si.

Finally, the use of (29) and (32) requires knowing
d7/dS;. Applying the same logic behind (27) gives

67r _ aEk ank agk (971'
35, kezB, [(r"k o) 55 T 938 T 33, a5,
0E; 05 5y

Cj 35, + 35, 35, (33)
The first term in (33) reflects the direct effect of an
increase in S; on the revenues for each link (Jj, k) as a
result of the impact of flows and empties on that link,
as well as the subsequent impact on future profits.
The second term incorporates the effect of an increase
in S; on the total flow on the holdover link on S;.
Equation 33 can be simplified by observing that  ~

35, oF, . oE,

— = , RKEB; (34)
aS;, a5 aS; ‘
and ‘2@1’* = a, k€ B, (35)
J
For the holdover link (j, 4 ),
anj oF
ER Y L
a5, it kgs,. (0”‘ a&) (36)
and i W (37)
S,  aS;-’
Combining (33)-(37) gives
_al_z r‘+s'+c__+8_1r_8_1r aij
35 w&y I\" T F T E T 88, 95 65

i) d
_ (Cjk - 5—;_r'_k> Ojp — (CJZ-' h (’37%%_) 0_,' ] (38)

ar
- C_,z - ﬁ a_,'{'.
z j =
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Expressions for 8F,;/96;; and 8F;;/dS; are given in
Appendix B.

Equations 29, 32, and 38 can be calculated quickly
and easily by starting with the last node in the net-
work, which would fall in the last time period, and
working backward in time. For the nodes {j} in the
last time period, 7/3S; = 0. Using (38) for 97/3S;
(29) and (32) may be calculated in a single pass over
the network.

The Solution Algorithm

Once the derivatives are determined, new “trial”
values for {#} and {a}, denoted {#.} and {a.}, are
determined either by applying the Frank-Wolfe algo-
rithm, resulting in an “all-or-nothing” choice of {4}
and {«ar}, or by using the heuristic splitting formulas
(24) and (25). Finally, a one dimensional search is
applied to find the best convex combination of the
current set {#} and {a} and the trial values {0,} and
far].

The complete algorithm is summarized as follows:

Step 1. Initialization
Determine initial values {#°} and {a’} by
solving the problem deterministically. Set
N=0.

Step 2. Forward pass
Calculate the moments of the flows on each
link, F};, F;;, and E;; and E;;, and the moments
of the supplies at each node, S; and S, begin-
ning with the first node and moving forward
in time.

Step 3. Backward pass
Calculate the derivatives d7/d6;; and dn/d«;;
using the recursion for d7/dS;, beginning with
the last node and working backward in time.

Step 4. Direction finding
Determining a trial solution {8V} and {a;"}
by applying the logit splitting functions
(Equations 24 and 25) using the concentration
parameter v = y(N).

Step 5. Step size
Find a stepsize 8 which solves:

max = (0N + 88N — 6V), o + B(aN — a®))
0=<p=<1

using a Golden section search (see, for exam-
ple, [7, p. 90]). Set

oN+t = o~ + B(6.N — 6Y)
a1 = o 4+ Blag — aV).

Step 6. Convergence
If w (0N, a™*Y) — 7 (8F, o) < ¢, stop. Other-
wise, set N = N + 1 and go to Step 2.
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The initialization step makes use of a network sim-
plex code to solve the problem deterministically. All
supplies and demands are set equal to the means of
their distributions and then assumed to be known
exactly. All the nodes in the last planning period are
joined to a supersink with links that generate no
revenue. The other links in the network are divided
between full movement links, with revenue r;; and
upper bound equal to the expected demand, and empty
movement links with “revenue”—c;; and no upper
bound.

In Step 4, the algorithm calls for using Equations
24 and 25 for determining the trial values {6,} and
{ar}, with a concentration parameter y(XN) that is
allowed to vary with the iteration number. If y(N) is
set equal to a very large constant for all N, the effect
is equivalent to using the Frank-Wolfe algorithm,
where the solution of the linearized subproblem (20)
results in an all-or-nothing choice for {6} and {ar}.
Let v, = v(0) be an appropriately scaled constant,
where v, = 0. A sequence that is tested in the next
section is v(N) = 2V . «v,, which is designed so that
the choice of {#;} and {a;} converges to the solution
of (20). The use of v, = 0 is equivalent to dividing the
flow among all the paths that show an increase in
profit. The next section presents the results of nu-
merical experiments that test the performance of the
algorithm.

4. NUMERICAL EXPERIMENTS

A SERIES of numerical experiments were conducted to
a) test the validity of certain independence assump-
tions required to calculate flows, b) evaluate the ac-
curacy of the approximation that d=/4S; = 0, ¢) com-
pare the efficiency of alternative search algorithms,
and d) demonstrate the importance of incorporating
uncertainty in the model.

Model Validation

Two independence assumptions were made in Sec-
tion 2 in order to efficiently calculate the moments of
the flows over the network. The first is that flows
coming from two separate nodes into the same node
are independent, and the second is that the overflow
from two links emanating from the same node i onto
the overflow link (i, i) are independent. A Monte

Carlo simulation program was written which ran-
domly generated initial supplies of trucks and then,
using a set of decision variables {6;;} and {a;;} as input
as well as randomly generated demands on all the
links, moved these supplies forward over the network.
A network with 10 cities and 7 time periods was used.
Initial supplies of vehicles were assumed to be de-
scribed by an Erlang distribution with a standard

deviation set at 20 and a mean chosen from a uniform
distribution between 15 and 25. Demands were as-
sumed to be described by an Erlang distribution with
a mean chosen from a uniform distribution between 0
and 8 with a standard deviation equal to the mean. In
both cases, adjustments were made to the standard
deviation in the process of fitting the Erlang distri-
bution to ensure the integrality of the shape parameter
(see Equations 11 and 12).

The simulation was run with 100 repetitions, from
which average flow values (for fulls and empties) were
computed, along with confidence intervals for the true
population means. A plot of observed versus predicted
is shown in Figure 2, demonstrating excellent agree-
ment between the two models. Ninety percent confi-
dence intervals were constructed around each sample
average, and it was found that 88% of the predicted
flows fell within the appropriate confidence interval.
The standard error between the observed and pre-
dicted means was 1.26. Based on these results, it seems
safe to conclude that the analytical model is accu-
rately estimating the mean link flows when the net-
work is operated under the assumptions described
in Section 1.

Evaluating the Approximation that 67r/6§ =0

It was shown in Section 3 that the approximation

d7/3S = 0 considerably simplifies the calculation of
the derivatives dm/d6;; and d=/da;;. To test the valid-
ity of the approximation, the same network described
above was used, although now it is necessary to specify
costs and revenues. Link distances were generated

80
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Fig. 2. Validation of estimates of predicted link flows.



randomly from a uniform distribution from 100 to
1000 miles. The cost of moving an empty truck was
set at $0.80 per mile, and the net revenue from moving
a loaded truck was set at $0.15 per mile. The cost of
holding a truck at a location for 1 day was set at $100.

Applying the relationships described in Appendix

A, it was found that d7/3S; was smaller than d7/3S;
typically by a factor of 107 After performing 20
iterations of a straight Frank-Wolfe algorithm, the
difference in the optimum solution found was negli-
gible. Using the exact derivatives, the optimum objec-
tive function was found to be 69167 after 30 iterations
and required 20.2 CPU seconds. The approximate
derivatives, on the other hand, produced an objective
function of 69184 after the same number of iterations
and required only 9.1 seconds. In view of these results,

the assumption that dx/3S; = 0 will be made in all
remaining experiments,

Comparing Alternative Search Algorithms

There are two mechanisms by which the speed of
the search process can be controlled. The first is in
the solution of the linearized subproblem (20), where
either a straight all-or-nothing choice of the trial
solution {6;} and {a;} may be used, or the logit split-
ting formulas (24) and (25) may be used. The second
is the choice of step size, where a one dimensional
search may be used or an alternative procedure such
as one which simply sets the step size using a prede-
termined sequence. Beginning with the solution of the
linearized subproblem, the primary question is the
choice of the scaling parameter vy at each iteration.
The decision was made to begin with an initial value
v°, and to double it after every iteration so that as the
algorithm progresses, the values of {4, } and {«;,} found
using the logit splitting function converges to that
produced by actually solving (20), which yields an all
or nothing solution. Increasing v at every iteration,
then, helps to ensure convergence.

A series of experiments were conducted to help
determine the best value of y°. Observing that the
derivatives dw/d6,; tended to fall in the range of 100
to 2,000 for links in the first time period, experiments
were run using v° =5 X 1073, 5 x 107™* and 5 x 1075,
The differences in the rate of convergence were not
large. The best value, namely v° = 5 X 107*, produced
an objective function value of 66722 after 10 iterations,
as compared to 66489 after 10 iterations of a pure
Frank-Wolfe algorithm (which performed the worst).

Considerably greater savings were realized by im-
proving the choice of stepsize. Calculating the opti-
mum step size to an accuracy of ¢ = 0.001 over the
reduced interval from 0 to 0.1 (instead of from 0 to 1)
was found to make up over 90% of the total execution
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time. One method of reducing this requirement is to
reduce the accuracy of the one dimensional search.
Two alternatives are the following. If 3V is the step
size on the Nth iteration, then it is possible to use a
predetermined sequence!® where

g™ = a/N, (39)

where a 1s a given constant. A value of a = 0.1 was
chosen for the experiments reported here. A second
alternative is to begin with a fixed step size, and to
reduce the step size only when a reduction is needed
to produce an increase in the objective function. This
method is equivalent to:

r3(1\/) if’n’[B(N)"’B(N)

(6.=6N), ™
+B8M(a—a™)]  (40)
>7r[0‘”’, a‘N’]

7% . 8™ otherwise

6(N+1) = J

\
where 7 is a predetermined constant less than 1 and
K is the smallest positive integer such that

7[0N + % - BB — M), ™ + p¥ (41)
BNy — a™)] > 7 [0, a ™).
Throughout this research, n = 0.75 was used and an
initial step size of 8" = 0.1 was used.
Figure 3 compares the effectiveness of these differ-
ent methods for finding the step size by showing the

objective function versus the elapsed CPU time, which
includes the time required to calculate the derivatives,

701

641
A: B(n«-l):nKB(N)
B BN =N

OBJECTIVE JUNCTION (x10%)

62
¢ B = oPTIMUM STEPSIZE
€=.0l

2]
[e]

1 1 1 ]

0 2 4 6 8 10
ELAPSED TIME (CPU SECS)

Fig. 3. Rate of convergence for different choices of step size.
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but does not include data input or initialization. As is
evident from the figure, the method using Equation
40 is substantially faster than the arithmetic sequence
(39) or the optimum step size.

The Importance of Uncertainty

There are two issues associated with uncertainty.
The first is the methodological issue of whether a
deterministic model produces a sufficiently accurate
solution, while the second addresses the more sub-
stantive question of the value of perfect (or better)
information. The answer to both questions is, of
course, highly problem dependent, but a few experi-
ments do help to shed some light on the question.

The accuracy of the deterministic model can be seen
by comparing three numbers, the value of the optimal
solution of the deterministic objective function, the
value of the stochastic objective function using the
solution provided by the deterministic model and fi-
nally the value of the optimal solution of the stochastic
objective function. These numbers were calculated for
the same network described earlier, while varying the
coefficient of variation of the demand distribution
from 0.10 to 1.0. (Note that because of the integrality
of the shape parameter, the actual coefficient of vari-
ation can only take on values from the sequence
«/1_/—k, fork=1,2,3, ---.) The results of this experi-
ment, shown in Table I, demonstrate the large dis-
crepancy that can exist between the deterministic
objective function (which is not affected by the vari-
ance of the demand distribution) and the correspond-
ing value of the stochastic objective function. After
optimizing the stochastic objective function, net rev-
enue increased 14.4% for the most highly variable
demands down to an increase of just 2.7% for the least
variable demands. It is important to realize that some
of this improvement can be attributed to the use of
fractional vehicles, an important problem when flows
are small.

The figures in Table I also provide some insight
into the question of the cost of uncertainty. Profits
increase over 57% when the coefficient of variation

when the coefficient of variation is decreased to 0.4.
Because of the assumptions underlying the model,
these numbers are probably overstating the true cost
of uncertainty. The methodology described in this
paper does, however, provide a framework for devel-
oping improved models for investigating the cost of
uncertainty.

5. DIRECTIONS FOR FURTHER RESEARCH

A sTOCHASTIC formulation of the vehicle allocation
problem raises a number of questions that do not arise
in a deterministic model. The presence of stochastic
supplies raises the question of the choice of appropri-
ate decision variables, since the flow on a link, as used
in a deterministic model, is no longer a well defined
concept. The use of the decision variables {#} and {a},
which specify the fraction of the available supply that
should move along each link, is only one of several
possible approaches which should be compared in a
systematic way.

A second but related issue is the development of a
better model of the dispatching process at each loca-
tion. It was assumed in this research that a certain
fraction of the supply of vehicles is allocated for de-
mands on a given link, and that if this supply exceeds
the actual demand, then these vehicles must be held
over at that location for another day. Such an as-
sumption probably overstates the number of vehicles
that could not move due to insufficient demand. A
more accurate model would require developing a better
understanding of how the dispatching process actually
responds to uncertainty.

APPENDIX A

IN THIS appendix, the derivatives d7/d0 and d/da
are found without using the approximation that
d7/38 = 0. The presentation will work from Equations
26 and 27 in the text. Beginning with Equation 26,
observe that

05 _9B;_g (A1)
decreases from 1.0 to 0.6, and increases another 31% dai;j  day; " )
TABLE I
Comparison of Solutions from Deterministic and Stochastic Models
Coefficient of Variation of Demand Distribution
0.1 0.2 0.4 0.6 0.8 10
Optimal deterministic objective function® 163.4 163.4 163.4 163.4 163.4 163.4
Stochastic objective function with deterministic solution® 142.9 138.1 118.2 100.8 87.7 60.4
Optimal stochastic objective function® 146.7 142.7 125.1 108.9 96.3 69.1
Percent improvement over deterministic solution 2.7 3.3 5.8 8.0 9.8 14.4

@ All numbers in thousands of dollars over planning horizon.



Next, differentiating (19) gives

6§ = 2a”S +2Cov(S;, F;j)
oo (A2)

+ ;5 Zkea,_- [‘§j_'0_£k — Cov(S;, Fjl

where

8 = 1= ¢
Y7 10 otherwise.
Combining (26), (A.1), and (A.2) gives

on onr
— =8\~ + 7
daj ( “ 33’)

+ {2a,—,~§i + 2 Cov(S;, Fy) (A.3)

+ 6 2 [S ij

kEB

om
Cov(S;, F; —=.

ov(S;, F{kn} 25
The derivatives dx/3S; and 9w/dS; are calculated
later.

Finding d7/d0;; uses logic similar to that used to
find (A.3) but is complicated by the fact that changing
0; affects the flow both on the link (i, J) and the
holdover link (i, ;). Keeping this in mind gives

oF; , 85;0x 35, 0w
60,_, 60,,857, 80113§

oF; aSu?vr ag or
+ “C,’é S,‘ 30, +
i

60,1857 +60,,a§

The terms in the first set of brackets in (A.4) reflects
the direct impact of an increase in ;; on link (i, j) and
the subsequent impact on profits from a change in S;
and S;. The second set of brackets reflects the impact
of 6;; on the overflow of vehicles that could not be
filled to the holdover link, where again the impact on
the moments of S; on future profits must be accounted
for.

To calculate the terms of (A.4) note that 65,/d6;; =
d0F;;/80,; and 35,/36;; = S; — dF;;/86;;. Differentiating

I

60,} |:(rlj+sl])

(A4)

(19) gives:
aS; ai, .
= : 3 Sz i '5
30, 90, 2a,60 Cov(S;, Fij) J#L (AD)
05, oF,
—~="0 4 5+ 20,5,
30, o0, Y 4
(A.6)
(a”+ 20;;) — a6, Cov(Sl,F,,)

-2 COV(S;’, Fij).
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Combining (A.4), (A.5), and (A.6) gives
LA PPN LAY
a0; ut 35,/ a9
(g 22)(5,- 25
cq l (90;‘_,‘

+ [6 7 L Zau'— Cov(S;, F”)] S

(A7)

J

o)

+ _6“ COV(S,‘,F,’,’))

Y4 (au +26;;) (S 30,

b;j

In
-2 COV(S,‘,Fi ):|——“ .
* 165,

Calculating 6F’,»,~/60,—,-, aﬁ_’ij/aﬁ,-j and 9 COV(S,‘, Fi,-)/aﬂ,»,-
simply involves differentiating (13), (14), and (15),
with respect to 6;;. These expressions are given in
Appendix B. '

The next problem is calculating the derivatives
d7/dS; and d7/3S;. These calculations can be handled
efficiently by setting up a recursion where, for exam-
ple, 37/8S; would be expressed in terms of 37/3S, and
d7/38Sk, k € B;. Beginning with d=/3S;, the recursion
is given by:

9 oF,  OE,
5%.f=k€23 |:(rjk+sjk) agk C}k—a?_]jk
L8k om 85, 0m
*+35,05, T 33 a§k] (A8)
O, aS, or 85, o
~ %33, T35, a5, T35, ag '

To calculate a§k/aS,~, Equation 19 is again used to
find:

S, o
%_ ;;k 2a,kag Cov(S;, F;z) k;.e] (A.9)
J j
a5, oF,,
3,535 — (o + 26,0 55 OV F) | (A10)

The expressions for dF;+/35;, 0F;,/35; and 9 Cov(S;,
F;,)/dS; are presented in Appendix B. Combining
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(A.8)-(A.10), together with (34)-(37) in the text, gives

== X (r]k+s]k) — CjrQjr+ oF, a]k) on
aS; 4Es a§ 35; aS,

+ Jl"Ff" + 200 cov(s,, F,k)}
S,

+{3F;k (a,,+20,k) SCOV(S,,F,k)} SJ

o dF;,
(oo 2 (- 58))

Finally, a recursion for d7/3S; is needed. The steps
required to set up this recursion closely follow those
used to develop that used to calculate d7/dS,. Repeat-
ing these steps produces the following relationship:

LI [(r L 67r>8F,k
8Sj» kEB; JRT SR 8S, 84S 6§,

(o )
35S, aS, 7R 88,

J

(A.11)

oF
+ < ; §”* + ;05— (et + 20;%) (A.12)

g

om
—COV(S,F )> ]+(,\z2 .
653 i HJk agj i agj
Expressions for 6Fi,-/8§,»j, aﬁ,-,-/ai and 38 Cov(S;,
F.;)/3S; are given in Appendix B.

APPENDIX B—EXPRESSIONS FOR THE
DERIVATIVES
LET ry(a, b) = dr(a, b)/06 and ry(a, b) = dr(a, b)/IA,
where r(a, b) is given by Equation 17 in the text. It is
easily verified that

— bub
re(a, b) = r{aq, b) 02 N (B.1)
d (@, b) = r(a, b) 20 =2 (B.2)
an ra, b) = r(a BYFSCh .

The derivatives 6F‘,~j/¢90,»,~, al’__;ij/aaij and a COV(S,', F,'j)/
d4;; are given by (dropping the subscripts i and j ):

(B.3)

;=1[(Kfn) <K+l_ln_1>r0(l,'<_n)]

oF 2(F+F2) 6%l

w1 |7@Ck+1—n)(xk+1—n
' "=1‘[ (k—n+1) ( ! ) (B4)

~oF

-rell,k—n+ 1)] 2F———

d Cov(S, F)
el

_(Cov(S,F)+SF) _6«l
B 9 A2

. ;';11 [#(K-Fll_ n)rg(l,x—n+ 1)] (B.5)

oF
_Sae'

The derivatives of F, F and Cov(S, F) with respect

to S and S were calculated using the chain rule as
follows:

oF oF on oF o«
—_—=— — 4 — — .
35~ on a8 T ox 03 (B.6)
oF oF ax 6F6
Lo oK (B.7)
a8  9A 8 «k 88

Similar expressions are used for the derivatives of F
and Cov(S, F) with respect to g_and S. The derivatives
dN/3S, 3x/d8, d1/88 and d«/dS were calculated using

A=3/8 (B.8)
K= §2/§. (B.9)
Differentiating (B.8) and (B.9) gives
oA 1
a5 = ? (B.10)
Z—% = — % (B.11)
% = TST_S (B.12)
dk 5?2
5—§ = — ? (B.13)

The derivatives of F, F and Cov(S, F) with respect to
« were found numerically. The derivatives with respect
to A are very similar to those with respect to 6, using
ri(a, b) in place of ry(a, b) in addition to other minor



changes. As the steps are very straightforward, the
expressions are not included.
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