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Abstract Stochastic optimization, also known as optimization under uncertainty, is studied by
over a dozen communities, often (but not always) with different notational systems
and styles, typically motivated by different problem classes (or sometimes different
research questions) which often lead to different algorithmic strategies. This resulting
“jungle of stochastic optimization” has produced a highly fragmented set of research
communities which complicates the sharing of ideas. This tutorial unifies the modeling
of a wide range of problems, from dynamic programming to stochastic programming to
multiarmed bandit problems to optimal control, in a common mathematical framework
that is centered on the search for policies. We then identify two fundamental strategies
for finding effective policies, which leads to four fundamental classes of policies which
span every field of research in stochastic optimization.
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1. Introduction

Deterministic optimization, which comes in many forms such as linear/nonlinear/integer
programming (to name a few), has long enjoyed a common mathematical framework. For
example, researchers and academics over the entire world will write a linear program in the
form

min
x
cx, (1)

subject to

Ax = b, (2)

x ≤ u, (3)

x ≥ 0, (4)

where x is a vector (possibly integer), c is a vector of cost coefficients, and A and b are
suitably dimensioned matrices and vectors. There are various transformations to handle
integrality or nonlinearities that are easily understood.

The same cannot be said of stochastic optimization, which is increasingly becoming known
as optimization under uncertainty. Stochastic optimization has a long history of being highly
fragmented, with names that include

• Decision trees
• Optimal control, including
· Stochastic control
· Model predictive control

• Stochastic search
• Optimal stopping
• Stochastic programming
• Dynamic programming, including
· Approximate/adaptive dynamic programming
· Reinforcement learning

• Simulation optimization
• Multiarmed bandit problems
• Online optimization
• Robust optimization
• Statistical learning

These communities are characterized by diverse terminologies and notational systems, often
reflecting a history where the need to solve stochastic optimization problems evolved from a
wide range of different application areas. Each of these communities start from well-defined
canonical problems or solution approaches, but there has been a steady process of field
creep as researchers within a community seek out new problems, sometimes adopting (and
reinventing) methodologies that have been explored in other communities (but often with a
fresh perspective).

Hidden in this crowd of research communities are methodologies that can be used to
solve problems in other communities. A goal of this tutorial is to expose the universe of
problems that arise in stochastic optimization, to bring them under a single, unified umbrella
comparable to that enjoyed in deterministic optimization.

The tutorial begins in section 2 with a summary of the dimensions of stochastic opti-
mization problems, which span static through fully sequential problems. Section 3 describes
different modeling styles, and then chooses a particular modeling system for our framework.
Section 4 describes a series of canonical problems to help provide a base of reference for
readers from different communities, and to illustrate the breadth of our framework. Section 5
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provides a brief introduction to belief models which play a central role in sequential learning
policies.

Then, section 6 provides a tour from the canonical static stochastic search problem to
fully sequential problems (dynamic programs), and back. This section presents a series of
observations that identify how this diverse set of problems can be modeled within a sin-
gle framework. Section 7 takes a brief detour to build bridges to two particular problem
settings: learning with a dynamic, exogenous state (sometimes referred to as “contextual
bandits”) and the entire field of statistical learning, opening an entirely new path for unifica-
tion. Having shown that optimizing over policies is the central modeling device that unifies
these problems, section 8 provides a roadmap by identifying two fundamental strategies for
designing policies.

2. Dimensions of a stochastic optimization problem

The field of math programming has benefitted tremendously from a common canonical
framework consisting of a decision variable, constraints, and an objective function. This
vocabulary is spoken the world over, and has helped serve as a basis for highly successful
commercial packages. Stochastic optimization has not enjoyed this common framework.

Below we describe the dimensions of virtually any stochastic optimization problem, fol-
lowed by a rundown of problem classes based on the staging of decisions and information.

2.1. Dimensions of a problem

We begin by identifying five dimensions of any stochastic optimization problem:

• State variable - The state variable is the minimally dimensioned function of history that
captures all the information we need to model a system from some point in time onward.
The elements of a state variable can be divided into three classes:
· Physical state - This might capture the amount of water in a reservoir, the location of

a piece of equipment, or speed of an aircraft.
· Informational state - This includes other information, known deterministically, that is

not included in the physical state.
· Knowledge (or belief) state - This captures the probability distributions that describe

the uncertainty about unknown static parameters, or dynamically evolving (but unob-
servable) states.

The difference between physical and informational state variables is not important; these
are distinguished simply because there is a natural tendency to equate “state” with
“physical state.” The knowledge state captures any information that is only known prob-
abilistically (technically this includes the physical or information states, which is simply
information known deterministically).

• Decisions/actions/controls - These can come in a variety of forms:
· Binary
· Discrete set (categorical)
· Continuous (scalar or vector)
· Vector integer (or mixed continuous and integer)
· Subset selection
· Vector categorical (similar to discrete set, but very high-dimensional)

• Exogenous information - This describes new information that arrives over time from an
exogenous (uncontrollable) source, which are uncertain to the system before the informa-
tion arrives. There are a number of different uncertainty mechanisms such as observational
uncertainty, prognostic (forecasting) uncertainty, model uncertainty and implementation
uncertainty (to name a few), which can be described using a variety of distributions:
binomial, thin-tailed, heavy-tailed, bursts, spikes, and rare events.
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• Transition function - These are functions which describe how the state of the system
evolves over time due to endogenous decisions and exogenous information. This may be
known or unknown, and may exhibit a variety of mathematical structures (e.g. linear
vs. nonlinear). The transition function describes the evolution of all the state variables,
including physical and informational state variables, as well as the state of knowledge.

• Objective function - We always assume the presence of typically one metric (some appli-
cations have more) that can be used to evaluate the quality of decisions. Important
characteristics of objective functions include:
· Differentiable vs. nondifferentiable
· Structure (convex/nonconvex, monotone, low-rank, linear)
· Expensive vs. inexpensive function evaluations
· Final or cumulative costs (or regret)
· Uncertainty operators, including expectations, conditional value at risk (CVaR), quan-

tiles, and robust objectives (min max).

Remark 1. Some stochastic optimization problems require finding a single decision vari-
able/vector that works well (according to some metric) across many different outcomes.
More often, we are looking for a function that we refer to as a policy (also referred to as a
decision function or control law) which is a mapping from state to a feasible decision (or
action or control). Finding effective (ideally optimal) policies is the ultimate goal, but to do
this, we have to start from a proper model. That is the central goal of this article.

2.2. Staging of information and decisions

It is useful to distinguish problem classes in terms of the staging of information and decisions.
Below we list major problem classes, and describe each in terms of the sequencing of decisions
and information.

• Offline stochastic search - Decision-information
• Online learning - Decision-information-decision-information . . .
• Two-stage stochastic programming - Decision-information-decision
• Multistage stochastic programming - Decision-information-decision-information . . . -

decision-information
• Finite horizon Markov decision processes - Decision-information-decision-information . . . -

decision-information
• Infinite horizon Markov decision process - Decision-information-decision-information . . .

All of these problems are assumed to be solved with an initial static state S0 (which
may include a probability distribution describing an unknown parameter), which is typically
fixed. However, there is an entire class of problems where each time we perform a function
evaluation, we are given a new state S0. These problems have been described as “contextual
bandits” in the machine learning community, optimization with an “observable state,” and
probably a few other terms. We can modify all of the problems above by appending initial
“information” before solving the problem. We return to this important problem class in
more depth in section 7.1.

3. Modeling sequential decision problems

If we are going to take advantage of the contributions of different fields, it is important to
learn how to speak the languages of each communities. We start by reviewing some of the
major notational systems used in stochastic optimization, followed by a presentation of the
notational system that we are going to adopt.
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3.1. Notational systems

To present the universe of problems in stochastic optimization it is useful to understand the
different notational systems that have evolved to model these problems. Some of the most
commonly used notation for each of the elements of a problem include:

• State variables - These are typically modeled as St (or st or s) in the dynamic programming
literature, or xt in the optimal control literature.

• Decisions - The most common standard notations for decisions are
· at - Discrete actions.
· ut - Continuous controls, typically scalar, but often vector-valued with up to 10 or 20

dimensions.
· xt - Typically vectors, may be continuous, or discrete (binary or general). In operations

research, it is not unusual to work with vectors with tens to hundreds of thousands of
variables (dimensions), but even larger problems have been solved.

• Exogenous information - There is very little standard notation when it comes to model-
ing exogenous information (random variables). There are two fairly standard notational
systems for sample realizations: s for “scenario” and ω for “sample path.” While the
language of scenarios and sample paths is sometimes used interchangeably, they actually
have different meanings. In Markov decision processes, the random process is buried in
the one-step transition matrix p(s′|s, a) which gives the probability of transitioning to
state s′ when you are in state s and take action a. Notation for random variables for the
new information arriving at time t includes ξt, wt, ωt, ω̄t, and Xt.

• Transition functions - The control theory community uses the concept of a transition
function more widely than any other community, where the standard notation is xt+1 =
f(xt, ut) (for a deterministic transition) or xt+1 = f(xt, ut,wt) for a stochastic transition
(where xt is the state variable, ut is the control, and wt is the “noise” which is random at
time t). The operations research community will typically use systems of linear equations
linking decisions across time periods such as

Atxt +Bt−1xt−1 = bt,

where xt is a decision variable. This style of writing equations follows the standard protocol
of linear programming, where all decision variables are placed to the left of the equality
sign; this style does not properly represent the dynamics, and does not even attempt to
model a state variable.

• Objective function - There are a number of variables used to communicate costs, rewards,
losses and utility functions. The objective function is often written simply as F (x,W )
where x is a decision variable and W is a random variable, implying that we are minimizing
(or maximizing) EF (x,W ). Linear costs are typically expressed as a coefficient ct (we
might write total costs at time t as ctxt, c

T
t xt or 〈ct, xt〉), while it is common in dynamic

programming to write it as a general function of the state and action (as in C(St, at)).
g(·) (for gain), r(·) (for reward), and L(·) (or `(·)) (for losses) are all common notations
in different communities. Instead of maximizing a reward or minimizing a cost, we can
minimize regret or opportunity cost, which measures how well we do relative to the best
possible.

Authors exercise considerable independence when choosing notation, and it is not uncommon
for the style of a single author to evolve over time. However, the discussion above provides
a high-level perspective of some of the most widely used notational systems.

In our presentation below, we will switch from using time t= 0, . . . , T , which we index in
the subscript, and iteration counters n = 0, . . . ,N − 1, since each of these systems is best
suited to certain settings. We start our iteration counter at n= 0 for consistency with how
we index time (it also makes it easier to use notation such as θ0 as our prior). There are
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problems where we will iteratively simulate over a finite horizon, in which case we might let
xnt be a decision we make at time t while following sample path ωn. Below, we will switch
from sampling at time t (using decision xt) or iteration n (using decision xn) reflecting the
context of the problem (and the style familiar to the community that works on a problem).

3.2. A canonical notational system

Choosing a notational system requires navigating different communities. We have evolved
the following notational system:

• State variable - St is the minimally dimensioned function of history that captures all the
information needed to model the system from time t onward (when combined with the
exogenous information process). The initial state S0 captures all information (determin-
istic or distributional) that we are given as input data. We then limit St to include only
information that is changing over time (we implicitly allow the system to use any deter-
ministic, static data in S0). We note that this definition (which is consistent with that
used in the controls community) means that all properly modeled systems are Markovian.

• Decisions/actions/controls - We use at to refer to discrete actions, and xt to represent
decisions that may be vector-valued, as well as being continuous or discrete. We would
reserve ut for problems that are similar to engineering control problems, where ut is
continuous and low-dimensional. When dealing with sequential problems, we assume that
we need to find a function, known as a policy (or control law in engineering), that maps
states to decisions (or actions, or controls). If we are using a, u, or x for action, control
or decision, we denote our policy using Aπ(St), U

π(St) or Xπ(St), respectively. In this
notation, “π” carries information about the structure of the function, along with any
tunable parameters (which we tend to represent using θ). These are all stationary policies.
If the policy is time dependent, then we might write Xπ

t (St), for example.
• Exogenous information - We let Wt be the information that first becomes known at time
t (or between t− 1 and t). Our use of a capital letter is consistent with the style of the
probability community. It also avoids confusion with wt used in the control community,
where wt is random at time t. When modeling real problems, we have to represent specific
information processes such as prices, demands, and energy from wind. In this case, we put
a “hat” on any variables that are determined exogenously. Thus, p̂t might be the change
in a price between t− 1 and t; D̂t might be the demand that was first revealed at time t.
We would then write Wt = (p̂t, D̂t).
For those that like the formality, we can let ω ∈Ω be a sample realization of the sequence
W1, . . . ,WT . Let F be the sigma-algebra that captures the set of events on Ω and let P
be the probability measure on (Ω,F), giving us the standard probability space (Ω,F ,P).
Probabilists like to define a set of sub-sigma-algebras (filtrations) Ft = σ(W1, . . . ,Wt) gen-
erated by the information available up to time t. We note that our notation for time implies
that any variable indexed by t is Ft-measurable. However, we also note that a proper and
precise model of a stochastic, dynamic system does not require an understanding of this
mathematics (but it does require a precise understanding of a state variable).

• Transition function - The transition function (if known) is a set of equations that takes
as input the state, decision/action/control, and (if stochastic), the exogenous information
to give us the state at the next point in time. The control community (which introduced
the concept) typically writes the transition function as xt+1 = f(xt, ut) for deterministic
problems, or xt+1 = f(xt, ut,wt) for stochastic problems (where wt is random at time t).
The transition function is known variously as the “plant model” (literally, the model of a
physical production plant), “plant equation,” “law of motion,” “transfer function,” “sys-
tem dynamics,” “system model,” and “transition law,” as well as “transition function.”
Since f(·) is used for so many purposes, we let

St+1 = SM (St, xt,Wt+1) (5)
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be our transition function, which carries the mnemonic “state transition model.” Appli-
cations where the transition function is unknown are often referred to as “model free”;
an example might arise in the modeling of complex systems (climate, large factories) or
the behavior of people. The term “model-based” would naturally mean that we know the
transition function, although the reinforcement learning community often uses this term
to mean that the transition matrix is known, which is typically written p(s′|s, a) where
s= St is a discrete state, a is a discrete action, and s′ = St+1 is a random variable given
s and a. There are many problems where the transition function is known, but difficult
or impossible to compute (typically because the state space is too large).

• Objective function - Below we use two notational systems for our contributions or costs.
In certain settings, we use F (x,W ) as our contribution (or cost), reflecting the behavior
that it depends only on our choice x and a random variable W . In other settings, we use
C(St, xt) as our contribution, reflecting its dependence on the information in our state
variable, along with a decision xt. In some cases, the contribution depends on a random
variable, and hence we will write C(St, xt,Wt+1). There are many settings where it is more
natural to write C(St, xt, St+1); this convention is used where we can observe the state,
but do not know the transition function. There are three styles for writing an objective
function:
Asymptotic form - We wish to solve

max
x

EF (x,W ). (6)

Here, we will design algorithms to search for the best value of x in the limit.
Terminal reward - We may have a budget of N function evaluations, where we have to
search to learn the best solution with some policy that we denote xπ,N , in which case we
are looking to solve

max
π

E
{
F (Xπ,N ,W )|S0

}
. (7)

Cumulative contribution - Problems that are most commonly associated with dynamic
programming seek to maximize contributions over some horizon (possibly infinite). Using
the contribution C(St, xt) and the setting of optimizing over time, this objective function
would be written

max
π

E

{
T∑
t=0

C(St,X
π
t (St))|S0

}
, (8)

where Sn+1 = SM (Sn,Xπ
t (Sn),Wn+1).

State-dependent information - The formulations above have been written under the
assumption that the information process W1, . . . ,WT is purely exogenous. There are prob-
lems where the information Wt may depend on a combination of the state St and/or the
action xt, which means that it depends on the policy. In this case, we would replace the
E in (7) or (??)ith Eπ.

Remark 2. There is tremendous confusion about state variables across communities.
The term “minimally dimensioned function of history” means the state variable St (or Sn)
may include information that arrived before time t (or n). The idea that this is “history”
is a complete misnomer, since information that arrives at time t− 1 or t− 2 is still known
at time t (what matters is what is known, not when it became known). State variables
may be complex; it is important to model first, and then deal with computational issues,
since some policies handle complexity better than others. There is a tendency to associate
multi-dimensional problems with the so-called “curse of dimensionality,” but in fact the
curse of dimensionality only arises when using lookup table representations. For example,
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Figure 1. Illustration of a decision tree to determine if we should hold or sell a stock, where the
stock might go up or down $1, or stay the same in each time period.

[56] describes a Markov decision process model of a large trucking company, where the
state variable has 1020 dimensions. Please see [46][Section 3] for a careful discussion of state
variables.

Remark 3. The controls community often refers to the transition function as “the
model,” but the term “model” is sometimes also used to include the exogenous information
process, and the cost function. In operations research, the term “model” refers to the entire
system: objective function, decision variables and constraints. Translated to our setting,
“model” would refer to all five dimensions of a dynamic system, which is the approach we
prefer.

4. Canonical problems

Each community in stochastic optimization seems to have a particular canonical problem
which is used as an illustrative problem. These basic problems serve the valuable role of
hinting at the problem class which motivates the solution approach.

4.1. Decision trees

Decision trees appear to have evolved first, and continue to this day to represent a powerful
way of illustrating sequential decision problems, as well as a useful solution approach for
many problems. Figure 1 illustrates a basic decision tree representing the problem of hold-
ing or selling a stock with a stochastically evolving price. This figure illustrates the basic
elements of decision nodes (squares) and outcome nodes (circles). The decision tree is solved
by stepping backward, computing the value of being at each node. The value of outcome
nodes are computed by averaging over the outcomes (the cost/reward plus the downstream
value), while the value of decision nodes is computed by taking the best of the decisions
(cost/reward plus the downstream value).
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Decision trees are easy to visualize, and are rarely expressed mathematically. Although
decision trees date at least to the early 1800’s, they represent fully sequential problems
(decision-information-decision-information-...), which is the most difficult problem class. The
difficulty with decision trees is that they grow exponentially in size, limiting their use to
relatively short horizons, with small action sets and small (or sampled) outcomes.

4.2. Stochastic search

The prototypical stochastic search problem is written

min
x∈X

EF (x,W ), (9)

where x is a deterministic decision variable or vector, X is a feasible region, and W is
a random variable. It is generally understood that the expectation cannot be computed
exactly, which is the heart of why this problem has attracted so much interest. The basic
stochastic search problem comes in a wide range of flavors, reflecting issues such as whether
we have access to derivatives, the nature of x (scalar discrete, scalar continuous, vector,
integer), the nature of W (Gaussian, heavy-tailed), and the time required to sample F (x,W )
(which may involve physical experiments). See [58] for an excellent introduction to this
problem class.

This basic problem has been adopted by other communities. If X is a set of discrete
choices, then (9) is known as the ranking and selection problem. This problem has been
picked up by the simulation-optimization community, which has addressed the problem in
terms of using discrete-event simulation to find the best out of a finite set of designs for
a simulation (see [12]), although this field has, of late, expanded into a variety of other
stochastic optimization problems [23].

A related family of problems replaces the expectation with a risk measure ρ:

min
x∈X

ρF (x,W ), (10)

There is a rich theory behind different risk measures, along with an accompanying set
of algorithmic challenges. A careful discussion of these topics is beyond the scope of this
tutorial, with the exception of robust optimization which we introduce next.

4.3. Robust optimization

Robust optimization evolved in engineering where the problem is to design a device (or
structure) that works well under the worst possible outcome. This addresses the problem
with (9) which may work well on average, but may encounter serious problems for certain
outcomes. This can cause serious problems in engineering, where a “bad outcome” might
represent a bridge failing or a transformer exploding.

Instead of taking an average via an expectation, robust optimization constructs what is
known as an uncertainty set that we denote W (the standard notation is to let uncertainty
be denoted by u, with the uncertainty set denoted by U , but this notation conflicts with the
notation used in control theory). The problem is canonically written as a cost minimization,
given by

min
x∈X

max
w∈W

F (x,w). (11)

This problem is easiest to solve if W is represented as a simple box. For example, if w =
(w1, . . . ,wK), then we might represent W as a simple box of constraints wmink ≤wk ≤wmaxk

for k = 1, . . . ,K. While this is much easier to solve, the extreme points of the hypercube
(e.g. the worst of all dimensions) are unlikely to actually happen, but these are then likely to
hold the points w ∈W that guide the design. For this reason, researchers represent W with
an ellipsoid which represents the uncertainty set more realistically, but produces a much
more difficult problem (see [4] for an excellent introduction to this field).
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4.4. Multiarmed bandit problem

The original statement of the multiarmed bandit problem involves choosing from a finite
set of alternatives X = {1,2, . . . ,M} (known as “arms”) where the goal is to find the alter-
native that produces the highest reward, given by an unknown contribution F (x,W ). This
terminology is based on the rather odd story of learning the probability that a slot machine
x(known as a “one-armed bandit”) will return a reward, which requires playing the slot
machine to collect information. Each alternative (slot machine) is referred to as an arm, and
we are forced to spend money to learn, resulting in the use of cumulative rewards.

If we could compute µx = EF (x,W ), we would simply choose the alternative x with
the largest value of µx. Since we do not know µx, we assume that we can make a series
of observations xn, n = 0, . . . ,N − 1. Assume we use a sampling policy Xπ(Sn) where Sn

captures our state of knowledge about the vector µ after n observations. We then observe
F̂n+1 = F (xn,Wn+1) and update our state of knowledge using updating equations that we
can represent simply using Sn+1 = SM (Sn, xn,Wn+1). However, we have to incur whatever
reward we receive while collecting the information.

The problem can be formulated as

max
π

E

{
N−1∑
n=0

F (Xπ(Sn),Wn+1)|S0

}
. (12)

Aside from the cosmetic difference of being formulated as a maximization problem (this is
the classical form of a multiarmed bandit problem), this can be viewed as similar to (9) with
the single difference that we use the cumulative rewards, since the basic problem assumes
that we have to experience the rewards while we do our learning.

Although the roots of the multiarmed bandit problem started with a problem with discrete
alternatives and where the objective function measures cumulative rewards, the research
community focusing on “bandit problems” has expanded to include virtually any sequential
learning problem where we are allowed to choose what to observe.

4.5. Optimal stopping

A classical problem in stochastic optimization is known as the optimal stopping problem
(there are many references, but [14] is an early classic). Imagine that we have a stochastic
process Wt which determines a reward f(Wt) if we stop at time t. Let ω ∈ Ω be a sample
path of W1, . . . ,WT (we are going to limit our discussion to finite horizon problems, which
might represent a maturation date on a financial option). Let

Xt(ω) =

{
1 If we stop at time t,
0 Otherwise.

Let τ be the time t when Xt = 1 (we assume that Xt = 0 for t > τ). This notation creates
a problem, because ω specifies the entire sample path, which seems to suggest that we are
allowed to look into the future before making our decision at time t (don’t laugh - this
mistake is not just easy to make, it is actually a fairly standard approximation in the field
of stochastic programming [6]).

To fix this, we require that the function Xt be constructed so that it depends only on
the history W1, . . . ,Wt. When this is the case τ is called a stopping time. The optimization
problem can then be stated as

max
τ

EXτf(Wτ ), (13)

where we require τ to be a “stopping time.” Mathematicians will often express this by
requiring that τ (or equivalently, Xt) be an “Ft-measurable function.” We return to this
terminology later.
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4.6. Two-stage stochastic programming

Stochastic programming emerged in the 1950’s as the first effort (initiated by George
Dantzig) to introduce uncertainty into linear programs [17]. The prototypical stochastic pro-
gram, widely known as a two-stage stochastic program, consists of the sequence of decision-
information-decision. For example, imagine first deciding where to build a factory, then you
see product demands, and then you ship from the factory to the customer (if we knew the
demands in advance, we could do a better job of locating the factory).

The canonical two-stage stochastic programming problem (see [54]) would be written as

min
x0

c0x0 +EQ(x0,W1) (14)

subject to

A0x0 = b0, (15)

x0 ≤ u0, (16)

x0 ≥ 0. (17)

It is typically assumed that W1 is a random variable defined over a discrete set of outcomes,
or scenarios, that we represent using Ω̂ (this is typically a sample of a larger set of outcomes).
The function Q(x0) = EQ(x0,W1) is known as the recourse function and is given by

Q(x0) =
∑
ω∈Ω̂

p(ω) min
x1(ω),ω∈Ω̂

c1(ω)x1(ω), (18)

subject to

A1(ω)x1(ω) = b0, (19)

x1(ω) ≤ u1(ω), (20)

x1(ω) ≥ 0. (21)

Often, this is solved as a single optimization problem over (x0, x1(ω))ω∈Ω̂ which can then
be written

min
(x0,x1(ω))ω∈Ω̂

c0x0 +
∑
ω∈Ω̂

p(ω) min
x1

c1(ω)x1(ω)

 , (22)

subject to (15)-(17) and (19)-(21).
There are many applications where x0 and x1 are reasonably high-dimensional vectors

(this is typical in logistics applications). Such problems can be quite large, and have attracted
considerable attention, since the resulting deterministic problem has considerable structure
(see [50] for one of the earliest and most widely cited examples).

4.7. Multi-stage stochastic programming
The natural extension of a two-stage stochastic (linear) program is the multi-stage version,
which is written as

min
A0x0=b0

x0≥0

〈c0, x0〉+E1

 min
B0x0+A1x1=b1

x1≥0

〈c1, x1〉+E2

· · ·+ET

 min
BT−1xT−1+AT xT=bT

xT≥0

〈cT , xT 〉

 . . .


 .

(23)

This very general model allows all information to be random and revealed over time. Thus,
the exogenous information at time t is given by Wt = (At,Bt, bt, ct), t= 1, . . . , T . The initial
values A0,B0, b0, c0 are assumed to be deterministic components of the initial state of the
system S0 = (A0,B0, b0, c0).

As written this is computationally intractable, but it states a problem that is the extension
of decision trees to problems where a decision at time t is a vector xt that has to satisfy a
set of linear constraints.
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4.8. Markov decision processes

Assume that we have a state variable St that takes on a (not too large) set of discrete
values S = {1, . . . , S}, with a discrete set of actions a ∈ A. Further assume we are given a
one-step transition matrix p(s′|s, a) = P [St+1 = s′|St = s, at = a] for s, s′ ∈ S. If C(s, a) is
the contribution from being in state s and taking action a, we can characterize an optimal
action using Bellman’s equations which are written

Vt(St) = max
at∈A

(
C(St, at) +

∑
s′∈S

p(s′|St, at)Vt+1(s′)
)
. (24)

Equation (24) can be solved by stepping backward in time, starting from a final time period
where we might assume VT (ST ) = 0. Once we have computed Vt(St) for all times t and all
states St ∈ S. Given these value functions, we obtain a policy (decision rule) given by

A∗t (St) = arg max
at∈A

(
C(St, at) +

∑
s′∈S

p(s′|St, at)Vt+1(s′)
)
. (25)

Bellman’s equation is mathematically the same as rolling back the decision tree in figure 1,
but there is one significant exception between the two models. Decision trees are typically
drawn with a unique path from the root node to each other node in the decision tree. In a
Markov decision process, the state St corresponds to a decision node, but there may be many
ways of reaching a particular state St. Formulated as a decision tree, a Markov decision
process would continue growing exponentially, while the formulation here restricts the set
of decision nodes (states) to the set S. This, in fact, was the central insight of Bellman in
the development of dynamic programming.

Often overlooked is that equations (24) and (25) are the basis of the optimal solution of
the optimization problem

max
π

E

{
T∑
t=0

C(St,A
π
t (St))|S0

}
, (26)

where St+1 = SM (St,A
π
t (St),Wt+1), where the expectation operator is over all possible sam-

ple paths for the exogenous information process W1, . . . ,WT . When faced with formulating
a “dynamic program,” most authors will write Bellman’s equation in the form of equa-
tion (24). In fact, Bellman’s equation (24) is an optimality condition, not an optimization
problem. We address the problem of finding policies in section 8.

4.9. Optimal control

Deterministic optimal control is widely formulated as

J∗ = min
ut,0≤t≤T

T∑
t=0

Lt(xt, ut), (27)

where the state xt evolves according to xt+1 = f(xt, ut) where f(xt, ut) is a known transition
function capturing the dynamics of the system. Here, Lt(xt, ut) is a “loss” to be minimized.
The controls ut may be subject to a set of constraints.

We note that while this problem is deterministic, it is formulated using a state variable
xt and a transition function f(xt, ut), which are standard tools for stochastic problems. We
note that time-dependent linear programs do not use either of these notational devices.

Now consider what happens when our problem is stochastic, which is modeled by intro-
ducing noise into the transition function using

xt+1 = f(xt, ut,wt),
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where the noise wt is random at time t. The objective function (27) might now be written

J∗ = min
ut,0≤t≤T

E
T∑
t=0

Lt(xt, ut). (28)

We have introduced an expectation, but it appears that we are still optimizing over a
deterministic vector ut, t= 0, . . . , T . However, ut is now a random variable since it depends
on the evolution of the system. If ω corresponds to a sample path of w0,w1, . . . ,wT , then we
can write ut(ω) to reflect the dependence of the control on the sample path. The problem
is that writing ut(ω) as a function of ω could be interpreted to mean that ut has been
chosen given all the information that has yet to come in the future. Mathematicians fix
this problem by following the objective function (28) with a statement such as “where ut is
Ft-measurable” or, equivalently, “where ut is an admissible policy.” Both statements mean
simply that ut(ω) is only allowed to reflect information that would be available by time t. We
refer to this language as “MCCM” (mathematically correct, computationally meaningless)
since it does not provide a path to computation.

A mathematically equivalent way of writing this problem is to write the control ut =
Uπt (xt) as dependent only on the state xt at time t, which means that the policy (control) is
only a function of the past by construction. Using this notation, we assume that the index π
carries information on the type of function Uπt (xt). We can now write the objective function
as

J∗ = min
π

E
T∑
t=0

Lt(xt,U
π
t (xt)). (29)

We address the problem of searching over policies in section 8. There is a special case of
optimal control problem known as linear, quadratic regulation where the loss function has
the form

Lt(xt, ut) = (xt)
TQtxt + (ut)

TRtut.

For unconstrained problems, it is possible to show that an optimal policy has the form

u∗t =Ktxt, (30)

where Kt is a suitably configured matrix that is a function of the matrices Qt and Rt (see
[5] or [35]). Policies that are linear in the state variable (such as (30)) are known in dynamic
programming as “affine controllers” (or “affine policies”). They can also be written in the
form

Uπ(xt|θ) =
∑
f∈F

θfφf (xt), (31)

where (φf (xt))f∈F is a set of suitably chosen features. In most applications, policies of the
form (31) are not optimal; rather, we pose them as approximations and then search for the
values of θ that perform the best. We revisit this idea in section 8.

5. Belief models

Many stochastic optimization problems involve sequential learning. These can be divided
into two groups:

• Pure learning problems, where the set of feasible decisions at each iteration (or point in
time) is independent of past decisions.



Unified Framework for Optimization under Uncertainty
Tutorials in Operations Research, c© 2016 INFORMS 15

• Learning with a physical state - In these problems, decisions are constrained by past
decisions, as might occur when moving over a graph or managing resources.

We let Kn (or Kt) represent our state of knowledge, but in this section, we are just going
to use Sn.

In any learning problem, the state of knowledge is stored in a belief model, which may
be frequentist or Bayesian. These models can be represented using one of several basic
strategies:

• Lookup table belief models - Here we have a distribution of belief about µx =EF (x,W ) for
each discrete alternative x, which can be represented using a Bayesian or frequentist belief
model. Assuming our belief about µx is normally distributed, we can use two possible
representations:
· Independent beliefs - We let µx ∼N(θnx , β

n
x ) where θnx is our estimate after n observations

of the mean of the random variable µx, while βnx = 1/σ2,n
x is the precision.

· Correlated beliefs - Here we let Σnxx′ =Covn(µx, µx′) after n measurements. If we assume
that the means µx are normally distributed, we would write µ∼MVN(θn,Σn).

• Parametric belief models - Again we have two choices:
· Linear belief models - This may be written (after n measurements)

EF (x,W ) = µx ≈
∑
f∈F

θnf φf (x),

where (φf (x))f∈F is a set of features extracted from x, and θn is the vector of coefficients
at iteration n.
· Nonlinear belief models - Here we refer to parametric models that are nonlinear in the

parameter vector θ. If we assume that EF (x,W ) = f(x|θ) for some known function
f(x|θ), we would let the random variable θ follow some distribution appropriate for the
applications. This might still be multivariate normal, or we might assume that θ is one
of a finite set (θ1, . . . , θK) each with probability pnk , in which case we would write Sn =
(f(x|θ), (θk, pnk )Kk=1). Nonlinear belief models also include a broad spectrum of powerful,
general purpose models such as neural networks or support vector regression/machines.

• Nonparametric/locally parametric belief models - This covers a wide range of methods
which produce local approximations.

We assume that any belief model is more than just a point estimate, but rather includes
a distribution of possible models. Let Sn represent this distribution of beliefs (our state of
knowledge) after n observations. If we are using a lookup table representation with correlated
beliefs, we would write Sn = (θn,Σn) where θnx is our estimate of the function EF (x,W ),
and Σn is the covariance matrix where Σnx,y is the covariance of our estimate of EF (x,W )
and EF (y,W ). A point estimate of our approximation of F (x) = EF (x,W ) would be

F̄n(x) = θnx .

We might approximate F (x) using a linear model such as

F̄n(x|θ) =
∑
f∈F

θnf φf (x),

Finally, we might represent F (x) using a parametric model f(x|θ) where θ can take on one
of a finite set of possible values (θ1, . . . , θK) where pnk = P [θ= θk|Fn] is the probability that
the true parameter vector θ = θk. In this case, our belief model is given by the probability
vector pn = (pnk )Kk=1. In this case, our belief state is Sn = pn and our approximation is given
by

F̄n(x|θ) =

K∑
k=1

pnkf(x|θk).
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Belief models can be virtually any statistical model (see [28] for an excellent overview
of a wide range of statistical models). What distinguishes statistical estimation in a learn-
ing setting is that we need access to recursive updating equations. While it is beyond the
scope of this document, simple updating equations exist for each of the models above (see
[45][Chapter 7] for a discussion of these methods). For our purposes, we simply assume that
the updating equations (for our knowledge state) are captured in our transition function
Sn+1 = SM (Sn, xn,Wn+1).

It is known (but not widely) that an optimal policy for learning problems can be charac-
terized using Bellman’s optimality equation (see e.g. [19])

V n(Sn) = min
x

(
C(Sn, x) +E{V n+1(Sn+1)|Sn}

)
, (32)

where Sn is a knowledge state and C(Sn, x) might be some form of statistical error, although
it could be a performance metric that we are maximizing (as we do elsewhere in this article).
The key idea is that the knowledge state is no different than a physical state in terms of
modeling the problem. While equation (32) is typically intractable for a learning problem,
there are special cases where it can be solved. For example, if our knowledge state Sn =
(f(x|θ), (θk, pnk )Kk=1) consists of a discrete vector (pnk )Kk=1 and if outcomes Wn+1 are discrete
(and finite, as would happen if the information was a random number of discrete arrivals),
then pnk is limited to a set of finite outcomes, making it possible to solve (32) optimally (for
small values of n).

6. From static optimization to sequential, and back

In this section we are going to show that static stochastic search, multiarmed bandit prob-
lems, and fully sequential dynamic programs (or stochastic control problems) can all be
formulated in the same way.

6.1. Derivative-based stochastic search - asymptotic analysis

We return to our static stochastic search problem which we repeat here for convenience

max
x

EF (x,W ). (33)

If F (x,W ) is differentiable, a well-known solution procedure is the stochastic gradient algo-
rithm due to [49] which produces a sequence of iterates xn according to

xn+1 = xn +αn∇xF (xn,Wn+1). (34)

Under some fairly simple conditions on the stepsize αn, this algorithm ensures that xn→ x∗

where x∗ solves (33). This can be described as a static stochastic optimization problem
which we solve using an asymptotically optimal algorithm. This algorithmic strategy, along
with its asymptotic analysis, is formulated and solved using the same framework as a deter-
ministic optimization problem. We are going to refer to this problem shortly with a different
perspective.

The optimization problem in (33) is sometimes called offline learning, because we do not
care about the value of the function at intermediate solutions. Instead, we only care about
the cost of the final solution, something that we can also call the terminal cost. However,
the stochastic gradient algorithm in (34) can also be viewed as an online algorithm, because
it adapts to a stochastic process that we may be observing in the field (rather than being
generated within the computer). While we believe that “online” could (and perhaps should)
refer to situations where we have to live with the rewards as they arrive, this term is not
uniformly used in this way in the literature. For this reason, we refer to iterative algorithms
such as (34) as sequential.
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By contrast, a static (or batch) solution approach might be to replace the expectation
over Ω with a sample Ω̂∈Ω, allowing us to compute an approximate solution using

x̂= arg max
x

1

N

∑
ω̂∈Ω̂

F (x,W (ω̂)). (35)

Equation (35) is known as the sample average approximation (see [33], [54]). It replaces
(33) with a (potentially large) deterministic optimization problem with nice asymptotic
properties as the sample N grows. Of course, the simplest approach is to simply replace the
random variable W with its expectation, giving

x̄= arg max
x

F (x,EW ), (36)

but x̄ is no longer reflecting the range of outcomes of W .

6.2. The effect of horizon on problem formulation

The formulation in (33) assumes that we can test different values of x, after which we can
observe F (x,W ), where the only goal is to find a single, deterministic x that solves (33).
We only care about the final solution, not the quality of different values of x that we test
while finding the optimal solution.

We have seen that an asymptotic analysis of (33) using a stochastic gradient algorithm
such as (34) approaches the problem just as we would any deterministic optimization prob-
lem. In practice, of course, we have to limit our evaluation of different algorithms based on
how well they do within some specified budget. In this section, we are going to see what
happens when we formally approach the problem within a fixed budget, known in some
communities as finite time analysis (see [2] and [39] for examples).

We begin by assuming that F (x,W ) is a reward that we incur each time we test x. For
example, we might have a newsvendor problem of the form

F (x,W ) = pmin{x,W}− cx. (37)

Here, W would be interpreted as a demand and x is the supply, where p is the price at
which newspapers are sold, and c is the purchase cost. We can use our newsvendor problem
for computing the stochastic gradients we need in our stochastic gradient algorithm (34).

In practice we have to tune the stepsize formula. While there are many rules we could use
(see [24]), we will illustrate the key idea using a simple stepsize rule known as Kesten’s rule
given by

αn(θ) =
θ

θ+Nn
,

where θ is a tunable parameter and Nn counts the number of times that the objective
function F (xn,Wn+1) has declined (which means the stepsize remains constant while the
function is improving).

Now, our stochastic gradient algorithm (34) becomes a policy Xπ(Sn) with state Sn =
(xn,Nn), and where π captures the structure of the rule (e.g. the stepsize rule in (34)) and
any tunable parameters (that is, θ). Let xπ,N be the solution xn for n=N , where we include
π to indicate that our solution xπ,N after N function evaluations depends on the policy π
that we followed to get there. The problem of finding the best stepsize rule can be stated as

max
π

EF (xπ,N ,W ), (38)

which states that we are looking for the best terminal value within a budget of N function
evaluations. Of course, we do not have to limit our search over policies to comparing stepsize
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rules. There are different ways of computing the gradient, such as gradient averaging or the
stochastic version of mirror descent ([42]).

There is a substantial literature on stochastic optimization algorithms which prove asymp-
totic convergence, and then examine rate of convergence empirically. Experimental testing
of different algorithms is forced to work with fixed budgets, which means that researchers
are looking for the best solution within some budget. We would argue that (38) is stating the
aspirational goal of finding the optimal algorithm for maximizing EF (x,W ) in N iterations.

It is easy to assume that the offline learning setting (optimizing terminal cost or reward)
does not involve the tradeoff of exploration and exploitation, but this is not the case, since
we have to do the best we can to learn the best choice within our budget of N function
evaluations. This tradeoff is avoided only in the setting of an infinite horizon problem, since
we no longer face a budget constraint.

6.3. Sequential learning - terminal reward

Now return to the case where X is a set of discrete alternatives, and where we want to
maximize the terminal reward. This problem has been studied since the 1950’s under the
name of ranking and selection (see [19] for a nice review of this early literature). This
literature has been extended under the umbrella of the simulation-optimization community
[12] where the original problem was to use discrete-event simulation to find the best out of
a finite set of designs, although lately the field has broadened to encompass a much wider
range of problems (see the edited volume [23] for a nice summary of this expansion).

In contrast with our stochastic gradient-based approach where we depend on derivative
information to guide our search, we have to introduce the concept of learning, which means
we have to create a belief model about the function EF (x,W ). The simplest belief model
is a lookup table where we assume that µx = EF (x,W ) is a random variable where, after
n observations, our belief about µx is that it is normally distributed with mean θnx and
variance σ2,n

x (this is a Bayesian interpretation, although we could easily shift to a frequentist
one). We can assume that beliefs are independent, or we may capture covariances where
Σnx,x′ =Cov(µx, µx′). In this case, we would say that the vector µ∼MVN(θn,Σn) after n
observations. We then let Sn = (θn,Σn) be our belief state, with an assumption of normality
(belief states must always carry an explicit model of the uncertainty). Other belief models
can be any of the representations reviewed in section 5.

Let F̄π,n(x|θ) be our point estimate of the function F (x) = EF (x,W ) after n iterations
following learning policy π. If we are using our lookup table representation, then F̄π,n(x|θ) =
θnx (for notational consistency, we continue to write F̄ (x|θ) as dependent on a parameter
vector θ). If we approximate F (x) with a linear model, then we would write

F̄π,n(x|θ) = θn0 + θn1φ1(x) + θn2φ2(x) + . . . .

Our belief model could also be a nonlinear parametric model, a neural network, or even a
nonparametric model (see [28] for a nice overview of methods in statistical learning, and
[15] and [29] for presentations in optimization settings).

We can now write our stochastic optimization problem as a sequential decision problem.
Starting with some belief state S0, we make a decision x0 =Xπ(S0) using some policy, and
then observe the outcome of the experiment W 1 resulting from experiment x0, which then
leads us to belief state S1, and so on. We can write the sequence of states, actions and
information as

(S0, x0 =Xπ(S0),W 1, S1, x1 =Xπ(S1),W 2, . . . , SN ).

Assume that we use as our solution after N observations the one that appears to be best
based on our approximation, given by

xπ,N = arg max
x

F̄π,N (x|θN ).
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Our objective function, then, is given by

max
π

E
{

max
x
F (xπ,N ,W )|S0

}
, (39)

where S0 captures our prior distribution of belief about F (x). Since we cannot compute
EF (x,W ) exactly, we may evaluate our results based on our approximation, giving us the
objective

max
π

E{max
x
F̄π,N (x|θ)|S0}. (40)

It is possible to show that (39) and (40) are equivalent if, for example, the approximation
F̄ (x|θ) spans EF (x,W ) (that is, F̄ (x|θ) = EF (x,W ) for some θ).

There has evolved a fairly substantial literature for solving offline (terminal cost) stochas-
tic optimization problems that can be viewed collectively as a search for the best algorithm
(policy). For example, [42] compares stochastic gradient methods to sample average approx-
imation. Other authors have investigated response surface methods [25], along with a host
of methods based on lookup table representations (for problems where X is a set of discrete
alternatives).

One policy is based on maximizing the value of information, which has been referred to
as the knowledge gradient which is literally the marginal value of information ([22], [47]).
This has been explored for offline (terminal cost) problems where the value of information
is given by

νKG,nx =E{max
x′

F̄n+1(x′|θ)|Sn, xn = x}−max
x′

F̄n(x′|θ). (41)

Here, F̄n+1(x′|θ) represents the updated state of knowledge about F (x) = EF (x,W ) after
running experiment x = xn given our current state of knowledge Sn which includes both
point and distributional information about F̄n(x′|θ). The knowledge gradient policy for
offline (terminal cost) problems is given by

XKG(Sn) = arg max
x

νKG,nx . (42)

This policy is asymptotically optimal [22], but it also enjoys the property that it is optimal
if N = 1 which explains its behavior of fast initial learning. The knowledge gradient is also
able to handle a range of belief models, including correlated lookup table [21], linear belief
model [41], nonparametric models ([38], [3]) and nonlinear models [13]. We return to this
class of policies below for different problem settings.

So, we found in section 6.2 that when we transition from an asymptotic to a finite time
analysis, our problem changes from optimizing over x to one of optimizing over policies π.
Said differently, this formulation poses (we believe for the first time) the question of finding
the optimal algorithm, expressed in the form of finding the best policy. This question is moot
for infinite horizon problems, since trivial policies such as random search or round-robin
algorithms are easily seen to be asymptotically optimal (but with very slow convergence
rates). When we transition from derivative-based methods to derivative-free (as is necessary
when X is discrete), we have to introduce the idea of learning a belief model.

There is one important feature of the sequential learning problem with a final reward
objective that we need to keep in mind. We are trying to find the best policy to collect
information to learn our function, but the ultimate goal is to find a single decision xπ,N

(rather than a policy). We still face the problem of searching over functions (the policies for
collecting information). However, this is the only problem we consider where the end result
is a single decision x rather than a function.

We next consider what happens when we accumulate rewards as we progress.
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6.4. Sequential learning - Cumulative cost

Now consider the case of our newsvendor problem where we have to accumulate rewards as
we proceed. The finite-budget version of this problem is given by

max
π

E

{
N−1∑
n=0

F (Xπ(Sn),Wn+1)|S0

}
, (43)

where F (x,W ) is our newsvendor problem given in (37). Unlike our terminal cost criterion,
it makes sense to formulate a (discounted) infinite-horizon version of the problem, which we
would write as

max
π

E

{ ∞∑
n=0

γnF (Xπ(Sn),Wn+1)|S0

}
. (44)

The infinite horizon, discounted reward problem (44) has long been studied under the name
of the multiarmed bandit problem [26] which we first introduced in section 4.4.

Work on this problem class initially started in the applied probability community (see
[62], [19] for early reviews), which first formulated the learning problem as a dynamic pro-
gram using the belief state Sn as the state variable. The resulting dynamic program required
handling a multidimensional state variable (two times the number of alternatives for the
case of normally distributed beliefs) which was computationally intractable. The first break-
through came with the introduction of Gittins indices ([27], [26]) which reduces the problem
to a series of dynamic programs defined for each alternative (arm) individually. The Gittins
index has the form

νGittins,nx = θnx + Γ

(
σnx
σW

, γ

)
σW , (45)

where σW is the standard deviation of the observation noise of an experiment. The term

Γ
(
σnx
σW

, γ
)

is called the “Gittins index” (computed for problems where rewards have mean 0

and variance 1), which requires solving a dynamic program for a standard problem. Although

computing Γ
(
σnx
σW

, γ
)

is not in itself easy, it was viewed as a computational breakthrough,

and spawned a substantial literature on solving “bandit problems” by finding optimal index
strategies (see [26] for a thorough introduction to the literature).

In 1985, the field spawned a new line of investigation with the paper [34] which introduced
a new class of policies based on the principle of upper confidence bounding. While there are
many versions of these policies, a standard one is

νUCB,nx = θnx + 4σW

√
logn

Nn
x

, (46)

where θnx is our estimate of the value of alternative x, and Nn
x is the number of times we

evaluate alternative x within the first n iterations. The coefficient 4σW has a theoretical
basis, but is typically replaced with a tunable parameter θUCB which we might write as

νUCB,nx (θUCB) = θnx + θUCB

√
logn

Nn
x

. (47)

We would then use (43) to tune θUCB (this means we are searching for the best policy
within this class). It is easy to see that the policy defined by (47) is much easier to compute
than those based on Gittins indices. Just as the applied probability community pursued
numerous variations of index policies, the machine learning community (in computer science)
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has pursued a wide variety of UCB-based policies for variations of bandit problems (see [9]
for an excellent review).

Another policy that has worked quite well in practice is interval estimation [30]

νIE,nx (θIE) = θnx + θIE σ̄nx , (48)

where σ̄nx is the standard deviation of the estimate θnx . Again, θIE has to be tuned using (43),
although we note that θIE is unitless, while this is not the case with θUCB (and a number
of similar policies). Interestingly, it appears that interval estimation does not enjoy any of
the theoretical bounds that have attracted so much attention from the computer science
literature, yet it works extremely well in practice when properly tuned ([52] reports on a
series of comparisons between interval estimation, UCB and knowledge gradient policies).
See [61] for extensive experiments using MOLTE, a public domain testing environment for
optimal learning.

The knowledge gradient policy, which maximizes the marginal value of information, was
originally developed for offline (terminal reward) problems as we showed earlier. [52] devel-
oped a version for online (cumulative reward) problems, given by

νOLKG,nx = F̄n(x|θn) + τνKG,nx , (49)

where τ reflects a planning horizon. Here, the term τνKG,nx captures the value of information
gained from making, and learning from, a decision x, which plays the same role of encour-
aging exploration as the bonus terms in the Gittins index policy (45) or the UCB policy
(46). The online KG policy would be written

XOLKG(Sn) = arg max
x

(
F̄n(x|θn) + τνKG,nx

)
. (50)

Note that all the policies for optimizing cumulative rewards include a current estimate of
the reward we would receive at time n (either θnx or F̄n(x|θ)), along with another term that
encourages exploration. Of these, the knowledge gradient policy is the only one with a clear
delineation between a policy that uses pure learning for the offline case (since there are no
rewards earned each time), and one that balances current rewards and value of information
for the online case with cumulative rewards.

The popularity of index policies (based on Gittins index theory or the UCB index poli-
cies) has attracted considerable attention to search problems using the “bandit” vocabulary.
Variations include names such as restless bandits [36] (learning problems where the under-
lying function is changing), intermittent bandits [18] (where alternatives are not always
available), finite-horizon bandits [43], and contextual bandits [9] (where we are first given
an initial state before observing our reward), to name just a few of the variants. This litera-
ture has been growing beyond its origins where alternatives (bandits) are discrete to include
continuous-armed bandits [1] (now x can be continuous), and X-armed bandits [10] (where
x can be a vector). The original problem used a lookup table belief model (where there
was a belief θnx about each discrete alternative) but this has been extended to linear belief
models (so-called linear bandits [11], [57]) as well as to general response surfaces (response
surface bandits [25]).

While writing this tutorial, we came to realize that there did not seem to be a formal
definition of a “bandit” problem. Despite its introduction as a well defined problem (given
in section 4.4), today a bandit problem is any sequential learning problem (which means the
state Sn includes a belief state about the function EF (x,W )) where we control the decisions
of where to evaluate F (x,W ). At this stage we believe it is fair to say that the “bandit”
vocabulary has outgrown its original motivating problem (slot machines).

We closed the previous section on the terminal reward case by noting that the challenge
there was to find the best policy for collecting information to find a decision xπ,N . For the
cumulative reward case, we no longer have the final step of using the information we have
collected to make a deterministic decision. Instead, each of the decisions we make along the
way matters, so the end result is the policy used to make all the decisions along the way.
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6.5. Dynamic programming

We now turn our attention to problems where the state St includes a physical state. This is
what is most commonly assumed when people use terms such as “dynamic programming”
(or optimal control), although we recognize that pure learning problems can be formulated
and solved as dynamic programs (we are unaware of learning problems being addressed
within the optimal control community).

Consider a slight generalization of our newsvendor problem where left-over inventory is
held until the next day. If Rt is the inventory at time t (that is, the inventory left over after
satisfying demands between t− 1 and t), the inventory equation would be

Rt+1 = max{0,Rt +xt− D̂t+1}, (51)

where xt is the amount of new product ordered at time t (which arrives right away) and
D̂t+1 is the demand that arises between t and t+ 1. Also assume that the price that we can
sell our product evolves randomly according to

pt+1 = θ0pt + θ1pt−1 + εt+1. (52)

Thus, our transition function St+1 = SM (St, xt,Wt+1) is given by equations (51) - (52),
where Wt+1 = (D̂t+1, εt+1). Our state variable is St = (Rt, pt, pt−1). The contribution func-
tion is given by

C(St, xt, D̂t+1) = ptmin{Rt +xt, D̂t+1}− cxt.

Let Xπ
t (St) be the policy that determines the order quantity xt given the state variable St,

where the policy has to return decisions that fall within the constraint set Xt (which may
depend on St). Our objective function would be written

max
π

E

{
T∑
t=0

C(St,X
π
t (St),Wt+1)|S0

}
, (53)

where St+1 = SM (St, xt,Wt+1).
This is a classical dynamic program where the state variable consists of an endogenously

controlled physical state Rt, and an exogenously controlled price process pt. It is useful to
compare our dynamic program (53) with the offline (terminal reward) and online (cumulative
reward) versions of our sequential stochastic search problems, which we repeat below for
convenience:

Online: maxπ E

{
N−1∑
n=0

F (Xπ(Sn),Wn+1)|S0

}
, (54)

Offline: maxπ E{max
x
F (xπ,N ,W )|S0}. (55)

We see the obvious similarity between our dynamic program (53) and the (online) stochastic
search with cumulative rewards (54). The similarity is notable because dynamic programs
are not generally thought of as instances of online learning problems. In practice, the vast
majority of dynamic programs are solved “offline” where we use some algorithm to find
a policy that can then be used “online.” At the same time, readers will also see that the
terminal cost objective (55) and the cumulative cost objective (54) are mathematically
equivalent to our statement of a “dynamic program” in (53). We can convert the terminal-
cost objective to (53) by simply setting

Ct(St,X
π(St),Wt+1) =

{
0 t < T
F (xπ,T ,W ) t= T .
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For the cumulative cost criterion, we would write

Ct(St,X
π(St),Wt+1) = F (Xπ(ST ),Wn+1), t= 0, . . . , T,

where we have made the conversion from iteration n to time t.
This is not an idle observation. There is an entire class of algorithmic strategies that have

evolved under names such as reinforcement learning and approximate (or adaptive) dynamic
programming which make decisions by simulating repeatedly through the planning horizon.
These strategies could be implemented in either offline or online settings. If we are in state
Snt at iteration n at time t, we can get a sampled estimate of the value of being in the state
using

v̂nt =
(
C(Snt , x

n
t ) +E{V t+1(St+1)|Snt , xnt }

)
.

We can then use this decision to update our estimate of the value of being in state Snt using

V
n

t (Snt ) = (1−αn)V
n−1

t (Snt ) +αnv̂
n
t .

To use this updating strategy we need a policy for selecting states. Typically, we specify
some policy Xπ(Snt ) to generate an action xnt from which we sample a downstream state
using Snt+1 = SM (Snt , x

n
t ,Wt+1(ωn)). A simple greedy policy would be to use

Xπ(Snt ) = arg max
xt∈Xt

(
C(Snt , xt) +E{V t+1(St+1)|Snt , xt}

)
. (56)

This is known as a pure exploitation policy in the optimal learning literature [47], which
only produces good results in special cases such as when we can exploit convexity in the
value function ([53],[40]). Consider the policies developed for discrete alternatives for online
(cumulative cost) learning problems that we introduced in section 6.4 such as the Gittins
index policy (45) or upper confidence bounding (46). Both of these policies have the structure
of choosing an action based on an immediate cost (which in this problem consists of both
the one step contribution C(St, xt) and the downstream value E{Vt+1(St+1)|St}), to which
is added some form of “uncertainty bonus” which encourages exploration.

There is a wide range of heuristic policies that have been suggested for dynamic program-
ming that ensure sufficient exploration. Perhaps the most familiar is epsilon-greedy, which
chooses a greedy action (as in (56)) with probability ε, and chooses an action at random
with probability 1−ε. Others include Boltzmann-exploration (where actions are chosen with
probabilities based on a Boltzmann distribution), and strategies with names such as E3

[32] and R-max [7]. However, the depth of research for learning when there is a physical
state does not come close to the level of attention that has been received for pure learning
problems.

[51] develops knowledge gradient policies for both online learning (maximizing cumulative
rewards) as well as offline learning (maximizing final reward). The online policy (cumulative
reward) has the structure

xnt = arg max
xt∈Xt

(
C(Snt , xt) +E{V t+1(St+1)|Snt , xt}+E{νKG,nx (Sx,nt , St+1)|Sxt }

)
. (57)

Here, νKG,nx (Sx,nt , St+1) is the value of information derived from being in post-decision state
Sx,nt (the state produced by being in state Snt and taking action xt) and observing the
information in the random transition from Sx,nt to the next pre-decision state St+1.

The corresponding policy for offline learning (maximizing the final reward at time N)
proposed in [51] is given by

xnt = arg max
xt∈Xt

E{νKG,nx (Sx,nt , St+1)|Sxt }. (58)
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Offline
Terminal reward

Online
Cumulative reward

Learning
problems

maxπ EF (Xπ,N ,W )
Stochastic search

maxπ E
∑N−1
n=0 F (Xπ(Sn),Wn+1)

Multiarmed bandit problem

Control
problems

maxπlearn E
∑T
t=0C(St,X

πimpl(St))
Dynamic programming

maxπ E
∑T
t=0C(St,X

π(St))
Dynamic programming

Table 1. Comparison of formulations for learning vs. control problems, and offline (terminal
reward) and online (cumulative reward).

Not surprisingly, the policies for online (cumulative reward) and offline (final reward) learn-
ing for dynamic programming (with a physical state) closely parallel with our online (54)
and offline (55) policies for pure learning.

So this raises a question. We see that the policy (54) is designed for the (online) cumu-
lative reward objective (43), while the policy (55) is designed for the (offline) final-reward
objective. We have further argued that our generic objective function for a dynamic program
(53) closely parallels the (online) cumulative reward objective (43). The policy (57) balances
exploitation (the contribution plus value term) and exploration (the value of information
term), which is well suited to learning for (online) cumulative reward problems. Given all
this, we should ask, what is the objective function that corresponds to the knowledge gra-
dient policy for (offline) final-reward learning for dynamic programs?

The answer to this question lies in looking carefully at the (offline) final-reward objective
for stochastic search given in (39). This problem consists of looking for a policy that learns
the best value for the decision x after the learning budget is exhausted. We can designate the
“policy” as a learning policy, while x is the implementation decision. For our fully sequential
dynamic program, the policy (58) is a learning policy πlearn, but to learn what? The answer
is that we are learning an implementation policy πimpl. That is, we are going to spend a
budget using our learning policy (58), where we might be learning value functions or a
parametric policy function (see section 8 for further discussions of how to construct policies).

Stated formally, the sequential version of the offline final-reward objective (39) can be
written

max
πlearn

E

{
T∑
t=0

C(St,X
πimpl(St))|S0

}
. (59)

We note that the implementation policy Xπimpl is a function of the learning policy. Table 1
shows all four problems divided by learning vs. control problems (by which we mean sequen-
tial problems with a physical state), and offline (terminal reward) and online (cumulative
reward) objectives.

7. Some extensions

We are going to take a brief detour through two important problem classes that are distinctly
different, yet closely related. The first involves learning in the presence of dynamic, exogenous
state information that produces a problem known under various names, but one is contextual
bandits, where each time we need to make a decision, we are handed a different state of the
world. The second involves building bridges to the entire field of statistical learning.

7.1. Stochastic search with exogenous state information

There are many problems where information is first revealed, after which we make a decision,
and then more information is revealed. Using our newsvendor example, we might first see
the weather (or a weather forecast), then we have to make a decision, and then we finally
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see the demand (which might depend on the weather). Another example arises in a health
setting where a patient arrives for treatment, and a doctor has to make treatment decisions.
The attributes of the patient represent initial information that is revealed exogenously, then
a decision is made, followed by a random outcome (the success of the treatment).

In both of these examples, we have to make our decision given advance information (the
weather, or the attributes of the patient). We could write this as a standard stochastic search
problem, but conditioned on a dynamic initial state S0 which is revealed each time before
solving the problem, as in

max
x

E{F (x,W )|S0}. (60)

Instead of finding a single optimal solution x∗, we need to find a function x∗(S0). This
function is a form of policy (since it is a mapping of state to action). This is known in the
bandit literature as a contextual bandit problem [9]; however this literature has not properly
modeled the full dynamics of this problem.

We propose the following model. First, we let Kt be our “state of knowledge” at time
t that captures our belief about the function F (x) = EF (x,W ) (keep in mind that this is
distributional information). We then model two types of exogenous information. The first
we call W e

t which is exogenous information that arrives before we make a decision (this
would be the weather in our newsvendor problem, or the attributes of the patient before
making the medical decision). Then, we let W o

t+1 be the exogenous information that captures
the outcome of the decision after the decision xt. The exogenous outcome W o

t , along with
the decision xt and the information (Kt and W e

t ), is used to produce an updated state of
knowledge Kt+1.

Using this notation, the sequencing of information, knowledge states and decisions is

K0,W
e
0 , x0,W

o
1 ,K1,W

e
1 , x1,W

o
2 ,K2, . . . .

We have written the sequence (W o
t ,Kt,W

e
t ) to reflect the logical progression where we first

learn the outcome of a decision W o
t , then update our knowledge state producing Kt, and then

observe the new exogenous information W e
t before making decision xt. However, we can write

Wt = (W o
t ,W

e
t ) as the exogenous information, which leads to a new state St = (Kt,W

e
t ). Our

policy Xπ
t (St) will depend on both our state of knowledge Kt about EF (x,W ), as well as the

new exogenous information. This change of variables, along with defining S0 = (K0,W
e
0 ),

gives us our standard sequence of states, actions and new information, with our standard
search over policies (as in (54)) for problems with cumulative rewards.

There is an important difference between this problem and the original terminal reward
problem. In that problem, we had to find the best policy to collect information to help us
make a deterministic decision, xπ,N . When we introduce the exogenous state information, it
means we have to find a policy to collect information, but now we are using this information
to learn a function xπ,N (W e) which we recognize is a form of policy. This distinction is less
obvious for the cumulative reward case, where instead of learning a policy Xπ(Kn) (when
Sn =Kn), we are now learning a function (policy) Xπ(Kn,W e) with an additional variable.

Thus, we see again that a seemingly new problem class is simply another instance of a
sequential learning problem.

7.2. From stochastic optimization to statistical learning

There are surprising parallels between stochastic optimization and statistical learning, sug-
gesting new paths for unification. Table 2 compares a few problems, starting with the most
basic problem in row (1) in statistics of fitting a specified model to a batch dataset. Now
contrast this to an instance of the sample average approximation on the right. In row (2)
we have an instance of an online learning problem where data (in the form of pairs (Y,X))



Unified Framework for Optimization under Uncertainty
26 Tutorials in Operations Research, c© 2016 INFORMS

Statistical learning Stochastic optimization

(1)
Batch estimation:

minθ
1
N

∑N
n=1(yn− f(xn|θ))2

Sample average approximation:
x∗ = arg maxx∈X

1
N F (x,W (ωn))

(2)
Online learning:

minθ EF (Y − f(X|θ))2
Stochastic search:
minθ EF (X,W )

(3)
Searching over functions:

minf∈F,θ∈Θf EF (Y − f(X|θ))2

Policy search:

minπ E
∑T
t=0C(St,X

π(St))

Table 2. Comparison of classical problems faced in statistics (left) versus similar problems in
stochastic optimization (right).

arrive sequentially, and we have to execute one step of an algorithm to update θ. On the
right, we have a classical stochastic search algorithm which we can execute in an online
fashion using a stochastic gradient algorithm.

Finally, row (3) restates the estimation problem but now includes the search over func-
tions, as well as the parameters associated with each function. On the right, we have our
(now familiar) optimization problem where we are searching over policies (which is literally
a search over functions). We anticipate that most researchers in statistical machine learning
are not actually searching over classes functions, any more than the stochastic optimization
community is searching over classes of policies. However, both communities aspire to do
this.

We see that the difference between statistical learning and stochastic optimization is
primarily in the nature of the cost function being minimized. Perhaps these two fields should
be talking more?

8. Designing policies

We have shown that a wide range of stochastic optimization problems can be formulated as
sequential decision problems, where the challenge is to solve an optimization problem over
policies. We write the canonical problem as

max
π

E

{
T∑
t=0

C(St,X
π
t (St))|S0

}
, (61)

where St+1 = SM (St,X
π
t (St),Wt+1). We now have to address the challenge: how do we

search over policies?
There are two fundamental strategies for designing effective (and occasionally optimal)

policies:

Policy search - Here we search over a typically parameterized class of policies to find the
policy (within a class) that optimizes (61).
Policies based on lookahead approximations - These are policies that are based on approxi-
mating the impact of a decision now on the future.

Both of these strategies can lead to optimal policies in very special cases, but these are rare
(in practice) and for this reason we will assume that we are working with approximations.

8.1. Policy search

Policy search involves searching over a space of functions to optimize (61). This is most
commonly done when the policy is a parameterized function. There are two approaches to
representing these parameterized functions:
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Optimizing a policy function approximation (PFA) - The analytical function might be a lin-
ear function (where it is most commonly known as an affine policy), a nonlinear function,
or even a locally linear function. An affine policy might be as simple as

Xπ(St|θ) = θ0 + θ1φ1(St) + θ2φ2(St),

where (φ1(St), φ2(St)) are features extracted from the state variable St. Policy search means
using (61) to search for the best value of θ.
Optimizing a parametric cost function approximation (CFA) - Consider a policy of the form

Xπ(St) = arg max
xt∈Xt

C(St, xt).

This represents a myopic policy, although we could use a deterministic lookahead as an
approximation. We may replace the contribution C(St, xt) with an appropriately modified
contribution C̄π(St, xt|θ); in addition, we might replace the constraints Xt with modified
constraints X πt (θ). The policy would be written

Xπ(St|θ) = arg max
xt∈Xπt (θ)

C̄π(St, xt|θ).

For example, we might use a modified cost function with an additive correction term

Xπ(St|θ) = arg max
xt∈Xπt (θ)

(
C(St, xt) +

∑
f∈F

θfφf (St, xt)
)
. (62)

We might replace constraints of the form Ax = b, x ≤ u with Ax = b, x ≤ u+Dθ where
the adjustment Dθ has the effect of introducing buffer stocks or schedule slack. This is how
uncertainty is often handled in industrial applications, although the adjustment of θ tends
to be very ad hoc.

Once we have our parameterized function Xπ
t (St|θ), we use classical stochastic search tech-

niques to optimize θ by solving

max
θ

E

{
T∑
t=0

C(St,X
π
t (St|θ))|S0

}
. (63)

We note that this is the same as the stochastic search problem (9) which, as we have pointed
out earlier, can also (typically) be formulated as a dynamic program (or more precisely, as
an offline sequential learning problem).

Policy function approximations can be virtually any statistical model, although lookup
tables are clumsy, as are nonparametric models (although to a lesser degree). Locally para-
metric models have been used successfully in robotics [20], although historically this has
tended to require considerable domain knowledge.

Policy search typically assumes a particular structure: a linear or nonlinear model, perhaps
a neural network. Given a structure, the problem reduces to searching over a well-defined
parameter space that describes the class of policies. Search procedures are then divided
between derivative-based, and derivative-free. Derivative-based methods assume that we can
take the derivative of

F (θ,ω) =

T∑
t=0

C(St(ω),Xπ
t (St(ω))), (64)

where St+1(ω) = SM (St(ω),Xπ
t (St(ω)),Wt+1(ω)) represents the state transition function for

a particular sample path ω. If these sample gradients are available, we can typically tackle
high-dimensional problems. However, there are many problems which require derivative-free
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search, which tends to limit the complexity of the types of policies that can be considered.
For example, a particularly problematic problem class is time-dependent policies.

Policy search can produce optimal policies for special classes where we can identify the
structure of an optimal policy. One of the most famous is known as (q,Q) inventory policies,
where orders are placed with the inventory Rt < q, and the order xt = Q−Rt brings the
inventory up to Q. However, the optimality of this famous policy is only for the highly
stylized problems considered in the research literature.

8.2. Policies based on lookahead approximations

While policy search is an exceptionally powerful strategy for problems where the policy has
structure that can be exploited, there are many problems where it is necessary to fall back
on the more brute-force approach of optimizing over the entire horizon starting with the
current state.

We develop this idea by starting with the realization that we can characterize the optimal
policy for any problem using

X∗t (St) = arg min
xt

(
C(St, xt) + min

π∈Π
E

{
T∑

t′=t+1

C(St′ ,X
π
t′(St′))

∣∣∣∣∣St, xt
})

. (65)

The problem with equation (65) is that it is impossible to solve for the vast majority of
problems (although we note that this is the same as solving a decision tree). The difficulties
in solving the problem starting at time t are the same as when we start at time 0: we cannot
compute the expectation exactly, and we generally do not know how to optimize over the
space of policies.

For this reason, the research community has developed two broad strategies for approxi-
mating lookahead models:

Value function approximations (VFA) - Widely known as approximate dynamic program-
ming or reinforcement learning, value function approximations replace the lookahead model
with a statistical model of the future that depends on the downstream state resulting from
starting in state St and making decision xt.
Approximations of the lookahead model - Here, we approximate the model itself to make
equation (65) computationally tractable.

We describe these in more detail in the following subsections.

8.2.1. Value function approximations Bellman first introduced the idea of capturing
the value of being in a state using his famous optimality equation

Vt(St) = min
at

(
C(St, at) + min

π∈Π
E

{
T∑

t′=t+1

C(St′ ,X
π
t′(St′))

∣∣∣∣∣St
})

,

= min
at

[
C(St, at) +E

{
min
at+1

[
C(St+1, at+1) +E

{
min
at+2

. . . |St+1, at+1

}]
|St, at

}]
,

= min
at

[C(St, at) +E{Vt+1(St+1)|St, at}] . (66)

We write this equation assuming that St+1 = SM (St, at,Wt+1) (note the similarities with
our multistage stochastic program (23)). The Markov decision process community prefers
to compute

P (St+1 = s′|St = s, at) = E{1{SM (St,at,Wt+1)=s′}}.

Using this matrix produces the more familiar form of Bellman’s equation given in equation
(24). This community often treats the one-step transition matrix as data, without realizing
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that this is often a computationally intractable function. It is well-known that state variables
are often vectors, producing the well-known curse of dimensionality when using what is
known as a flat representation, where states are numbered 1, . . . , |S|. It is often overlooked
that the random information Wt may be a vector (complicating the expectation), in addition
to the action at (which the operations research community writes as a vector xt). These
make up the three curses of dimensionality.

Bellman’s equation works well for problems with small state and action spaces, and where
the transition matrix can be easily computed. There are real problems where this is the case,
but they are small. For example, there are many problems with small state and action spaces,
but where the random variable Wt can only be observed (the distribution is unknown). There
are many other problems where the state variable has more than three or four dimensions, or
where they are continuous. Of course, there are many problems with vector-valued decisions
xt.

To deal with the potentially three curses of dimensionality, communities have evolved
under names such as approximate dynamic programming ([55], [45]), reinforcement learning
([59], [60]), and adaptive dynamic programming. While these terms cover a host of algo-
rithms, there are two broad strategies that have evolved for estimating value functions. The
first, known as approximate value iteration, involves bootstrapping a current value function
approximation where we would calculate

v̂nt = max
at

(
C(Snt , at) +E{V n−1

t+1 (Snt+1)|Snt }
)
. (67)

We then use v̂nt to update our value function approximation. For example, if we are using a
lookup table representation, we would use

V
n

t (Snt ) = (1−α)V
n−1

t (Snt ) +αv̂nt .

We simplify the process if we use the post-decision state Sat , which is the state after an
action at is taken, but before new information has arrived. We would calculate v̂nt using

v̂nt = max
at

(
C(Snt , at) +V

a,n−1

t+1 (Sa,nt )
)
. (68)

v̂nt is a sample estimate of the value of being at pre-decision state Snt . Thus, we have to step
back to the previous post-decision state Sa,nt−1, which we do using

V
n

t−1(Sa,nt−1) = (1−α)V
n−1

t−1 (Sa,nt−1) +αv̂nt .

An alternative approach for calculating v̂nt involves simulating a suboptimal policy. For
example, we may create a VFA-based policy using

XV FA,n
t (St) = arg min

at

(
C(St, at) +V

a,n−1

t (Sat )
)
, (69)

Now consider simulating this policy over the remaining horizon using a single sample path
ωn, starting from a state Snt . This gives us

v̂nt =

T∑
t′=t

C(Snt′(ω
n),AV FA,nt′ (Snt′(ω

n))).

Often this is calculated as a backward pass using

v̂nt =C(Snt (ωn),AV FA,nt (Snt (ωn))) + v̂nt+1, (70)
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where v̂nt+1 is calculated starting at Snt+1 = SM (Snt ,A
V FA,n
t (Snt (ωn))). We note only that

either the forward pass approach (68) or the backward pass approach (70) may be best for
a particular situation.

The approximation strategy that has attracted the most attention in the ADP/RL liter-
ature, aside from lookup tables, has been the use of linear architectures of the form

V t(St) =
∑
f∈F

θfφf (St), (71)

where (φf (St))f∈F is a set of features that have to be chosen. We note that if we substitute
the linear value function approximation (71) into the policy (69), we get a policy that looks
identical to our parametric cost function approximation in (62). In fact, it is not unusual
for researchers to begin with a true value function approximation (71) which is estimated
using updates that are calculated using forward (68) or backward (70) passes. Once they
get an initial estimate of the parameter vector θ, they can use policy search to further tune
it (see [37] for an example). However, if we use policy search to tune the coefficient vector,
then the linear model can no longer be viewed as a value function approximation; now, it is
a cost function approximation.

These techniques are also used for multistage linear programs. In this setting, we would use
gradients or dual variables to build up convex approximations of the value functions. Popular
methods are based on Benders cuts using a methodology known as the stochastic dual
decomposition procedure (SDDP) ([44], [53], [54]). An overview of different approximation
methods are given in [45][Chapter 8].

8.2.2. Direct lookahead models All the strategies described up to now (PFAs, CFAs,
and VFAs) have depended on some form of functional approximation. This tends to work
very well when we can exploit problem structure to develop these approximations. However,
there are many applications where this is not possible. When this is the case, we have to
resort to a policy based on a direct lookahead.

Assuming that we cannot solve the base model (65) exactly (which is typically the case),
we need to create an approximation that we call the lookahead model, where we have to
introduce approximations to make them more tractable. We are able to identify five types
of approximations that can be used when creating a lookahead model (this is taken from
[46]):

Limiting the horizon - We may reduce the horizon from (t, T ) to (t, t+H), where H is a
suitable short horizon that is chosen to capture important behaviors. For example, we might
want to model water reservoir management over a 10 year period, but a lookahead policy
that extends one year might be enough to produce high quality decisions. We can then
simulate our policy to produce forecasts of flows over all 10 years.
Stage aggregation - A stage represents the process of revealing information followed by the
need to make a decision. A common approximation is a two-stage formulation, where we
make a decision xt, then observe all future events (until t+H), and then make all remaining
decisions. A more accurate formulation is a multistage model, but these can be computa-
tionally very expensive.
Outcome aggregation or sampling - Instead of using the full set of outcomes Ω (which is
often infinite), we can use Monte Carlo sampling to choose a small set of possible outcomes
that start at time t (assuming we are in state Snt during the nth simulation through the hori-
zon) through the end of our horizon t+H. The simplest model in this class is a deterministic
lookahead, which uses a single point estimate.
Discretization - Time, states, and decisions may all be discretized in a way that makes
the resulting model computationally tractable. In some cases, this may result in a Markov
decision process that may be solved exactly using backward dynamic programming (see
[48]). Because the discretization generally depends on the current state St, this model will
have to be solved all over again after we make the transition from t to t+ 1.
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Dimensionality reduction - We may ignore some variables in our lookahead model as a form
of simplification. For example, a forecast of weather or future prices can add a number of
dimensions to the state variable. While we have to track these in the base model (including
the evolution of these forecasts), we can hold them fixed in the lookahead model, and then
ignore them in the state variable (these become latent variables).

We illustrate a notational system for lookahead models. First, all variables are indexed
by time t′ where t is the time at which we are creating and solving the lookahead model,
and t′ indexes time within the lookahead model.

To avoid confusion with our base model, we use the same variables as the base model but
use tilde’s to identify when we are modeling the lookahead model. Thus, S̃tt′ is the state at
time t′ in the lookahead model (created at time t), x̃tt′ is the decision variable, and W̃tt′ is
our exogenous information that first becomes known at time t′ within the lookahead model
(if we are using a stochastic lookahead). The sample paths ω̃t ∈ Ω̃t are created on the fly.
We write our transition function as

S̃t,t′+1 = S̃M (S̃tt′ , x̃tt′ , W̃t,t′+1(ω̃t)),

where S̃M (·) is the appropriately modified version of the transition function for the base
model SM (·).

The simplest lookahead model would use a point forecast of the future, where we might
write W tt′ =E{Wt′ |St}. We would write a deterministic lookahead policy as

XLA−D
t (St|θ) = arg max

x̃tt

(
arg max

x̃t,t+1,...,x̃t,t+H

t+H∑
t′=t

C(S̃tt′ , x̃tt′)

)
. (72)

Here, we use θ to capture all the parameters that characterize our lookahead model (horizon,
discretization, sampling, staging of information and decisions).

A stochastic lookahead model can be created using our sampled set of outcomes Ω̃nt , giving
us a stochastic lookahead policy

XLA−SP,n
t (Sn

t ) = argmax
xt

C(Sn
t , xt)+ min

(x̃tt′ (ω̃),...,x̃t,t+H (ω̃)),∀ω̃∈Ω̃nt

Ẽn


t+H∑

t′=t+1

C(S̃tt′ , x̃tt′ (ω̃))

∣∣∣∣∣∣St, xt


 .

(73)

This model is basically a sampled approximation of the multistage stochastic program given
in (23).

If the actions are discrete, but where the exogenous information is complex, we can use
a technique called Monte Carlo tree search to search the tree without enumerating it. [8]
provides a survey, primarily in the context of MCTS for deterministic problems (which have
received the most attention in the computer science community where this idea has been
developed). [16] introduces a method known as “double progressive widening” to describe
an adaptation of classical MCTS for stochastic problems.

When decisions are vectors, we can turn to the field of stochastic programming. Either the
two-stage stochastic program introduced in section 4.6 or the multistage stochastic program
from section 4.7 can be used to create approximate lookahead models. At the heart of this
methodology is separating a controllable resource state Rt from an exogenous information
process It. Stochastic linear programming exploits the fact that the problem is convex in Rt
to build powerful and highly effective convex approximations, but has to resort to sampled
versions of the information process in the form of scenario trees. See ([6], [31], [54]) for
excellent introductions to the field of stochastic linear programming.
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Deterministic model Stochastic model

Objective function minx0,...,xT

∑T
t=0 ctxt maxπ E

{∑T
t=0C(St,X

π
t (St))

}
Decisions x0, . . . , xT Policy Xπ : S →X

Constraints at t Xt = {x|Atxt =Rt, xt ≥ 0 } Xπ(St)∈Xt
Transition function Rt+1 = bt+1 +Btxt St+1 = SM (St, xt,Wt+1)

Exogenous inf. Wt, . . . ,WT ∈Ω

Table 3. Comparison of the elements of a (time-staged) deterministic linear program (left) and a
sequential decision process (dynamic program) (right).

8.3. Remarks

We note that these two strategies (policy search and lookahead approximations) which
combine to create four classes of policies (policy function approximations, parametric cost
function approximations, value function approximations and lookahead models), span all
the strategies that we have ever seen in any of the communities of stochastic optimization
listed in the beginning of this article.

It is important to keep in mind that while the goal in a deterministic optimization problem
is to find a decision x (or a, or u), the goal in a stochastic problem is to find a policy Xπ(S)
(or Aπ(S) or Uπ(S)), which has to be evaluated in the objective function given by (61). Our
experience has been that people who use stochastic lookahead models (which can be quite
hard to solve) often overlook that these are just policies for solving a stochastic base model
such as that shown in (61).

Figure 3 shows a side by side comparison of a generic time-staged deterministic linear pro-
gram and a corresponding formulation of a sequential decision problem (that is, a dynamic
program).

9. Uncertainty modeling

Just as important as designing a good policy is using a good model of the uncertainties
that affect our system. If we do not accurately represent the nature of uncertainty that we
have to handle, then we are not going to be able to identify good policies for dealing with
uncertainty.

Below we provide a brief overview of the types of uncertainty that we may want to
incorporate (or at least be aware of), followed by a discussion of state-dependent information
processes.

9.1. Types of uncertainty

Uncertainty is communicated to our modeling framework in two ways: the initial state S0

which is used to capture probabilistic information about uncertain information (Bayesian
priors), and the exogenous information process Wt. While beyond the scope of this chapter,
below is a list of different mechanisms that describe how uncertainty can enter a model.

• Observational errors - This arises from uncertainty in observing or measuring the state of
the system. Observational errors arise when we have unknown state variables that cannot
be observed directly (and accurately).

• Prognostic uncertainty - Uncertainty in a forecast of a future event.
• Experimental noise - This describes the uncertainty that is seen in repeated experiments

(this is distinctly different from observational uncertainty).
• Transitional uncertainty - This arises when we have a deterministic model of how our

system should evolve as a result of an action or control, but errors are introduced that
disturb the process.
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• Inferential (or diagnostic) uncertainty - This is the uncertain in statistical estimates based
on observational data.

• Model uncertainty - This may include uncertainty in the transition function, and uncer-
tainty in the distributions driving the stochastic processes (e.g. uncertainty in the param-
eters of these distributions).

• Systematic uncertainty - This covers what might be called “state of the world” uncertainty,
such as the average rate of global warming or long term price trends.

• Control uncertainty - This is where we choose a control ut (such as a price, concentration
of a chemical, or dosage of a medicine), but what happens is ût = ut + δut where δut is a
random perturbation.

• Adversarial behavior - The exogenous information may be coming from an adversary,
whose behavior is uncertain.

It is unlikely that a model will capture all of these different types of uncertainty, but we feel
it is useful to at least be aware of them.

9.2. State dependent information processes

It is relatively common to view the exogenous information process as if it is purely exogenous.
That is, let ω ∈Ω represent a sample path for W1,W2, . . . ,WT . We often model these as if
they are, or at least could be, generated in advance and stored in some file. Assume we do
this, and let p(ω) be the probability that ω ∈Ω would happen (this might be as simple as
p(ω) = 1/|Ω|). In this case, we would write our objective function as

max
π

∑
ω∈Ω

p(ω)

T∑
t=0

C(St(ω),Xπ
t (St(ω))),

where St+1(ω) = SM (St(ω),Xπ
t (St(ω)),Wt+1(ω)).

There are many problems where the exogenous information process depends on the state
and/or the action/decision. We can write this generally by assuming that the distribution of
Wt+1 depends (at time t) on the state St or decision xt, or more compactly, the post-decision
state Sxt . In this case, we would write our objective function as

max
π

Eπ
{

T∑
t=0

C(St,X
π
t (St))|S0

}
.

The difference is that we have written Eπ rather than E to reflect the fact that the sequence
W1,W2, . . . ,WT depends on the post-decision state, which depends on what policy we are
following. In this case, we would never generate the exogenous information sequences in
advance; in fact, we suspect that this is generally not done even when Wt does not depend
on the state of the system.

It is relatively straightforward to capture state-dependent information processes while
simulating any of our policies. Let PW (Wt+1 =w|St, xt) be the conditional distribution of
Wt+1 given the state St and action xt. As we simulate a policy Xπ

t (St), we use St to generate
xt =Xπ

t (St), and then sample Wt+1 from the distribution PW (Wt+1 =w|St, xt). This does
not cause any problems with policy search, or simulating policies for the purpose of creating
value function approximations.

The situation becomes a bit more complex with stochastic lookahead models. The problem
is that we generate a lookahead model before we have made the decision. It is precisely for
this reason that communities such as stochastic programming assume that the exogenous
information process has to be independent of decisions. While this is often viewed as a
limitation of stochastic programming, in fact it is just one of several approximations that
may be necessary when creating an approximate lookahead model. Thus, we re-emphasize
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that the stochastic process in the lookahead model is designated W̃tt′ for t′ = t, . . . , t+H
since this is distinct from the true information process Wt, . . . ,WT in the base model. The
exogenous information process in the stochastic lookahead model will invariably involve
simplifications; ignoring the dependence on the state of the system is one of them (but
hardly the only one).

10. Closing remarks

We opened this article making the point that while deterministic optimization enjoys
widely used canonical forms (linear/nonlinear/integer programming, deterministic control),
stochastic optimization has been characterized with a diverse set of modeling frameworks
with different notational systems, mathematical styles and algorithmic strategies. These are
typically motivated by the wide diversity of problem settings that arise when we introduce
uncertainty.

We have made the case that virtually all stochastic optimization problems, including
stochastic search and even statistical learning, can be posed using a single canonical form
which we write as

max
π

E

{
T∑
t=0

C(St,X
π
t (St))|S0

}
,

where decisions are made according to a policy xt =Xπ
t (St), where we might use at =Aπt (St)

for discrete actions, or ut =Uπt (xt) for state xt and control ut. States evolve according to a
(possibly unknown) transition function St+1 = SM (St,X

π
t (St),Wt+1).

All of the modeling devices we use are drawn from the literature, but they are not widely
known. The concept of a policy is not used at all in stochastic programming, and when it
is used (in dynamic programming and control), it tends to be associated with very specific
forms (policies based on value functions, or parameterized control laws). This is accompanied
with widespread confusion about the nature of a state variable, for which formal definitions
are rare.

While we believe it will always be necessary to adapt notational styles to different commu-
nities (the controls community will always insist that the state is xt while decisions (controls)
are ut), we believe that this article provides a path to helping communities communicate
using a common framework centered on the search for policies (which are functions) rather
than deterministic variables.
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