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1. Introduction. We consider the following stochastic programming problem:

(1) max
x∈X

Ɛf �x����

where f � �n×
→�, �
�� ��� is a probability space, and Ɛ denotes the expected value.
We assume that the function f is concave with respect to the first argument, and such that

F �x�= Ɛf �x���

is finite for every x ∈ X. We assume that for almost all �, all i = 1�    �m, and for all
feasible integer values of xj for j �= i, the function f �x1�    � xi−1� ·� xi+1�    � xn��� is
piecewise linear with integer break points. We also assume that the set X is closed, and that

X ⊆ �x ∈�n � 0≤ xi ≤Mi� i= 1�    � n��
Problems of this type arise in a variety of resource allocation problems. In the car dis-
tribution problem of railroads, for example, planners often face the problem of having to
reposition empty cars before a customer order has been realized. Truckload carriers have
to assign drivers to loads before knowing the opportunities available to the driver at the
destination. The air mobility command needs logic for their simulators that will reposition
aircraft back to locations where they might be needed, before actual demands are known.
All of these problems can be modeled as multistage stochastic linear programming prob-

lems. Experimental research (see, for example, Godfrey and Powell 2001) has demonstrated
that the recourse function for these problems can be well approximated by sequences of
piecewise linear, separable functions. These scalar functions can be approximated by tech-
niques that use sample gradients, where the challenge is to maintain the concavity of the
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approximations. As a result of the need to use Monte Carlo samples, it is necessary to
introduce steps that maintain the concavity after every update. This paper explores a class
of such techniques and establishes conditions under which these approximations converge
to the true function.
An important case is what is referred to as the two-stage stochastic program:

max�c� x+ Ɛ Q�x���(2)

subject to Ax= b�
x≥ 0�

where

Q�x���=max�q� y
subject to Wy = h���− Tx�

y ≥ 0�
A special case of (2) is the two-stage stochastic program with network recourse, where the
second-stage problem is the min-cost network flow problem. If h takes integer values a.s.,
then this problem is a special case of (1). Another special case occurs when f in (1) is a
separable function of the form

(3) f �x���=
n∑
i=1
fi�xi����

This is the form most often taken in the context of classical resource allocation problems
(Righter 1989) that involve the allocation of resources to independent activities subject to
a common budget constraint.
To obtain the optimal solution to (1), one can consider building sequential approximations

of F , say F k. If the sequence �F k� converges to F in an appropriate sense, then we can
claim to have a procedure to solve (1). Alternatively, we may solve optimization problems of
the form xk ∈ argmaxx∈X F k�x�, constructed in such a way that the sequence �xk� converges
to x∗ ∈ argmaxx∈X F �x�. In this case the sequence of functions �F k� does not necessarily
converge to F , but �xk� may converge to an optimal (or nearly optimal) point. Of critical
importance in practical applications is also the speed of convergence, a question that we
treat on an experimental basis.
For our class of applications it is relatively easy, for a given xk, to sample an elementary

event �k and to calculate fi�x
k
i ��

k�. Moreover, it is also easy to obtain information about
the slope of fi�·��k� at xki :
(4) vki = fi�xki ��k�− fi�xki − 1��k��
It is difficult, however, to obtain the exact values of f̄i�x�= Ɛ�fi�x����, because it involves
the calculation of the expected value.
Example 1. Let xi denote the amount of resource allocated to activity i, where i =

1�    � n. These amounts have to be chosen from the set

(5) X =
{
x ∈�n� xi ∈ �0�1�    �Mi�� i= 1�    � n�

n∑
i=1
xi ≤ b

}
�

For each activity i there is a nonnegative integer random variable Di representing the
demand. The reward associated with activity i is defined as in the newsvendor problem:

fi�xi�Di�= qimin�xi�Di�− cixi�
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where qi > ci > 0. Our objective is to allocate the resources in such a way that the expected
reward, F �x� = Ɛ

∑n
i=1 fi�xi�Di�, is maximized, subject to the constraint x ∈ X. Porteus

(1990) provides a thorough review of the newsvendor problem in the context of stochastic
inventory models. The optimal solution of a single newsvendor problem can be expressed
analytically, but this requires knowing the distribution of demand. An extensive literature has
evolved to solve what is known as the censored newsvendor problem (where you only see
the amount sold, not the actual demand). This literature (see, for example, Ding et al. 2002)
requires assuming a parametric form for the demand distribution. The algorithm provided
in this paper does not require any information about the demand distribution or a set of
demand observations from which the demand distribution can empirically be constructed.
In such a problem we may sample a demand realization Dk = �Dk1�    �Dkn� and calculate

vki =
{
qi− ci if xki ≤Dki �
−ci if xki >D

k
i �

i= 1�    � n�

We can also calculate the right slope estimate

vki+ =
{
qi− ci if xki <D

k
i �

−ci if xki ≥Dki �
i= 1�    � n�

The information our algorithm uses is �xk�, �vk�, and �vk+�, where x
k, vk, and vk+, respec-

tively, denote the vectors �xk1�    � x
k
n�, �v

k
1�    � v

k
n�, and �v

k
1+�    � v

k
n+�. To compute any

vki or v
k
i+, we only need to know if x

k
i ≤ Dki . For the newsvendor problem, this trans-

lates into knowing whether or not the newsvendor has sold all the newspapers rather than
observing the exact value of the demand random variable. This is exactly the same situa-
tion addressed in the censored newsvendor problem. Therefore, the algorithm presented in
this paper provides an asymptotically optimal solution to the censored newsvendor problem
without requiring any particular form for the demand distribution.
Similar estimates can be generated in a slightly more complicated case, with the reward

associated with activity i defined as

fi�xi�Di�= qi�min�xi�Di��− ci�xi��
where qi�·� is a concave piecewise linear function, and ci�·� is a convex piecewise linear
function, both with break points at 0�1�    �Mi.
There exists a wealth of numerical methods for stochastic programming problems. The

first group are scenario methods, in which a sufficiently rich sample �1�    ��N is drawn
from the space 
, and the expectation is approximated by the sample average:

F N �x�= 1
N

N∑
#=1
f �x��#��

A discussion of these approaches can be found in Shapiro and Homem-De-Mello (2000),
Korf and Wets (2001), and Kleywegt et al. (2002).
The second group of methods are stochastic subgradient methods, which use the fact that

the random vector vk in (4) satisfies the relation

Ɛ�vk � xk� ∈ $F �xk��
where $F is the subdifferential of F (understood as the negative of the subdifferential of
the convex function −F ). Stochastic subgradient algorithms depend on updates of the form

xk+1 = xk+%kvk�
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These methods make very many small updates to the current approximation by using the
stochastic subgradients as directions, achieving convergence almost surely to the optimal
point. A treatment of these methods can be found in Ermoliev (1988). Constraints can be
treated by projection, by feasible direction techniques (Ruszczyński 1980), or by recursive
linearization (Ruszczyński 1987).
Finally, Benders decomposition can be used to solve two-stage stochastic linear programs

by approximating the recourse function ƐQ�x��� with a series of cutting planes (Van Slyke
and Wets 1969, Ruszczyński 1986, Higle and Sen 1991, Ruszczyński 2003, Chen and Powell
1999).
Our problem class is motivated by applications that require integer solutions. The intro-

duction of uncertainty often has the effect of destroying the natural integer structure of many
problems. All of the three classes of techniques mentioned above destroy the natural inte-
grality either by how the recourse function is approximated (scenario methods and Benders
decomposition) or the nature of the algorithm itself (stochastic subgradient methods). The
method proposed in this paper handles integrality requirements very easily (Laporte and
Louveaux 1993 show how integrality can be incorporated into Benders decomposition).
We propose to solve these problems by adaptively estimating, using sample subgradient

information, and sequences of separable approximations that are piecewise linear, concave,
and that have integer break points. We use the information gathered in iterations 1�    � k
to construct models f ki �·� of the expected value functions f̄i�·�= Ɛ�fi�·����, i= 1�    � n.
The next approximation to the solution is given by

(6) xk ∈ argmax
x∈X

n∑
i=1
f ki �xi��

An associated learning step provides information employed to update the models f ki . Such
an approach is already known to be optimal if the objective function is continuously dif-
ferentiable (Culioli and Cohen 1990, Cheung and Powell 2000), but there is no comparable
result for nondifferentiable problems. While the relation of stochastic approximation type
methods and learning is well known (see, e.g. Kushner and Yin 1997), the use of the struc-
ture (separability and concavity) allows here for the construction of particularly efficient
methods.
Our solution strategy extends a line of research in stochastic resource allocation using

separable approximations. This problem class has been most widely studied using the frame-
work of two-stage stochastic programs with network recourse (Wallace 1986, 1987; Birge
and Wallace 1988). Independently, separable, piecewise linear approximations have been
proposed for discrete resource allocation problems that arise in the context of fleet manage-
ment (Powell 1986, 1987, 1988). Frantzeskakis and Powell 1990 suggest a static, piecewise
linear separable approximation for specially structured tree problems, a result that is gener-
alized in Powell and Cheung (1994) and applied to multistage resource allocation problems
in Cheung and Powell (1996). These methods, however, were not adaptive, which limited
the quality of the solution. Powell and Carvalho (1998) provided an adaptive learning algo-
rithm based on linear approximations, which was extended in Godfrey and Powell (2001)
to an adaptive, piecewise linear approximation based on the CAVE algorithm. The CAVE
algorithm provided exceptionally good experimental performance, but offered no provable
results. Wallace (1987) introduces a piecewise linear upper bound for networks, a result that
is generalized in Birge and Wallace (1988) for stochastic programs.
In this paper, we introduce and formally study the use of sequences of piecewise linear,

separable approximations as a strategy for solving nondifferentiable stochastic optimization
problems. As a byproduct, we produce a fast algorithm for problems such as two-stage
stochastic programs with network recourse, a topic that was first studied in depth by Wallace
(1986). We establish several important convergence results for the special case of separa-
ble objective functions, and show experimentally that the algorithm provides near-optimal,
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and often optimal, solutions for problems when the objective function is not separable, as
would be the case with two-stage stochastic programs. Furthermore, the observed speed of
convergence is much faster than techniques such as Benders decomposition, especially for
higher dimensional problems.
This paper is divided into two parts. Sections 2–6 deal exclusively with problems where

the original objective function F �x��� is separable. While this problem class enjoys its own
sets of applications (for example, in a variety of budget allocation problems), our interest
in this special problem class arises primarily because we are able to prove some important
convergence results. Section 2 presents the basic algorithm for learning piecewise linear,
concave approximations (while maintaining concavity after every update), and proves con-
vergence to the real function assuming that all points are sampled infinitely often. Section 3
provides a variation of the algorithm that combines gradient information with sample infor-
mation on the function itself. In practical applications, we cannot generally guarantee that
we will sample all points infinitely often, and this is not necessary to find the optimal
solution. Section 4 proves convergence when we only sample the points xk generated by
Equation (6). Section 5 shows how a certain projection required to maintain concavity can
be implemented, and §6 provides the results of a series of experiments that investigate the
rate of convergence of variations of the algorithm.
The second part of the paper, given in §7, focuses on nonseparable problems that arise in

the context of two-stage stochastic programs. We cannot guarantee that our algorithm will
produce the optimal solution for two-stage problems, but we show that the right separable
approximation can produce the optimal solution, and we use this to develop a bound on our
result. Numerical comparisons with Benders decomposition (which is optimal for noninteger
versions of these problems) indicate that our approach may provide much faster convergence
and optimal or very-near-optimal results.

2. Learning concave functions of one variable. We start from the description and
analysis of the basic learning algorithm for a concave piecewise linear function of one
variable f̄ � &0�M'→�. We assume that f̄ is affine on the intervals &s−1� s', s = 1�    �M .
Let

v̄s = f̄ �s�− f̄ �s− 1�� s = 1�    �M�
Let us note that the knowledge of the vector v̄ = �v̄1�    � v̄M� allows us to reconstruct
f̄ �x�, x ∈ &0�M', except for the constant term f̄ �0�:

f̄ �x�= f̄ �0�+
l∑
s=1
v̄s + v̄l+1�x− l��

where l is such that l ≤ x < l + 1. In the context of our problem (1) with the objective
function (3), f̄ �·� represents the expected value of a coordinate function, Ɛ�fi�·��.
The main idea of the algorithm is to recursively update a random vector vk taking values

in �M , k= 1�2�    , to achieve convergence of vk to v̄ (in some stochastic sense). We still
denote by �
�� ��� the probability space on which this sequence is defined.
Let us note that by the concavity of f̄ the vector v̄ has nonincreasing components:

(7) v̄s+1 ≤ v̄s� s = 1�    �M − 1�
We shall at first assume that there exists a constant B such that

(8) v̄1 ≤ B� v̄M ≥−B�
Clearly, the set V of vectors satisfying (7)–(8) is convex and closed. We shall ensure that
all our approximate slopes vk are also elements of V . To this, end we shall employ the
operation of orthogonal projection on V :

(9) ,V �z�= argmin��v− z�2 � v ∈ V ��
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We show in §5 that for the set V defined by (7) such a projection can be calculated in an
easy way.
Our learning algorithm, which is called the separable, projective, approximation routine

(SPAR), is given in Algorithm 1.

Algorithm 1. Separable, projective approximation routine (SPAR).
Step 0. Set v1 ∈ V , k= 1.
Step 1. Sample sk ∈ �1�    �M�.
Step 2. Observe a random variable .k such that

(10) Ɛ�.k � v1�    � vk/ s1�    � sk�= v̄sk � a.s.
Step 3. Calculate the vector zk ∈�M as follows:

(11) zks =
{
�1−%k�vks +%k.k if s = sk,
vks otherwise�

where %k ∈ �0�1'.
Step 4. Calculate vk+1 =,V �zk�, increase k by one, and go to Step 1.
At this moment we shall not specify the way in which sk is defined, except to say that

sk is a random variable. Specific conditions on it will be formulated later. We use �k to
denote the 0-subalgebra generated by v1�    � vk� s1�    � sk−1. We denote

pks = ��sk = s ��k�� s = 1�    �M�
The stepsizes %k employed at Step 3 may also be random, but must be �k-measurable.
Let us denote by 2k the random vector with the components

2ks =
{
−.k+ vks if s = sk,
0 otherwise�

We can now rewrite the method compactly as

vk+1 =,V �vk−%k2k�� k= 1�2�    �
It follows from (10) that

Ɛ�2ks ��k�= pks �vks − v̄s�� s = 1�    �M�
Thus,

(12) Ɛ�2k ��k�= Pk�vk− v̄�� P k = diag�pks �Ms=1�
We assume that there exists a constant C such that for all k,

(13) Ɛ��.k�2 � v1�    � vk/ s1�    � sk�≤C a.s.� k= 1�2�    �
We also assume that

�∑
k=1
%k =� a.s.�(14)

�∑
k=1

Ɛ%2k <��(15)

lim inf
k→�

pks > 0 a.s.� s = 1�    �M�(16)
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Theorem 1. Assume (10) and (13)–(16). Then, SPAR generates a sequence �vk� such
that vk → v̄ a.s.

Proof. Our proof is standard, but we present it here to derive some useful inequalities
that will be applied later. By the nonexpansiveness of the projection ,V �·�,

�vk+1− v̄�2 ≤ �zk− v̄�2 = �vk− v̄�2− 2%k�vk− v̄� 2k+%2k�2k�2�
We add and subtract the term 2%k�vk− v̄� P k�vk− v̄� to obtain

�vk+1− v̄�2 ≤ �vk− v̄�2− 2%k�vk− v̄� P k�vk− v̄�(17)

− 2%k�vk− v̄� 2k−Pk�vk− v̄�+%2k�2k�2�
Let us consider the sequence

Sm =
m∑
k=1
%2k�2k�2� m= 1�2�    �

and let S0 = 0. By the boundedness of V , and by (13) there exists a constant C1 such that
Ɛ�%2m�2m�2 ��m�≤C1%2m a.s. for all m. Therefore, in view of the �m-measurability of %m,

Sm−1 ≤ Ɛ�Sm ��m�≤ Sm−1+C1%2m� m= 1�2�    �
Taking the expected value we obtain that Ɛ�Sm�≤ Ɛ�Sm−1�+C1Ɛ�%2m� for all m, and thus

Ɛ�Sm�≤C1Ɛ
{ m∑
k=1
%2k

}
�

The last two displayed relations and Assumption (15) imply that the sequence �Sm� is a
submartingale, which is convergent a.s., by virtue of (Doob 1953, Theorem 4.1).
Consider now the series

(18) Um =
m∑
k=1
%k�vk− v̄� 2k−Pk�vk− v̄�� m= 1�2�    �

and let U0 = 0. By (12), Ɛ�Um � �m�= Um−1, m= 1�2�    , and thus the sequence �Um� is
a martingale. We can write Equation (18) as

Um =Um−1+%m�vm− v̄� 2m−Pm�vm− v̄��
Squaring both sides and taking the expectation yields

Ɛ�U 2m ��m�= U 2m−1+ Ɛ
{
&%m�vm− v̄� 2m−Pm�vm− v̄�'2 ��m

}
(19)

+ Ɛ
{
Um−1�%m�vm− v̄� 2m−Pm�vm− v̄�� ��m

}
= U 2m−1+ Ɛ

{
&%m�vm− v̄� 2m−Pm�vm− v̄�'2 ��m

}
�

where the last term in Equation (19) is zero, due to (12). By the boundedness of V , and by
(13), there exists a constant C2 such that

(20) Ɛ
{
&%m�vm− v̄� 2m−Pm�vm− v̄�'2 ��m

}≤C2%2m� m= 1�2�    �
Equations (19) and (20) yield

Ɛ�U 2m ��m�≤U 2m−1+C2%2m� m= 1�2�    �
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Taking the expected value, we conclude that

Ɛ�U 2m�≤C2Ɛ
{ m∑
k=1
%2k

}
� m= 1�2�    �

Assumption (15) implies that the martingale �Um� is convergent a.s., by virtue of Doob
1953, Theorem 4.1. Therefore, (17) may be rewritten as

(21) �vk+1− v̄�2 ≤ �vk− v̄�2− 2%k�vk− v̄� P k�vk− v̄�+Ak�
where Ak = �Sk− Sk−1�− �Uk−Uk−1� and

∑�
k=1Ak is finite a.s. This implies that

�vk+1− v̄�2+
�∑

j=k+1
Aj ≤ �vk− v̄�2+

�∑
j=k
Aj� k= 1�2�    �

The sequence �vk− v̄�2+∑�
j=k Aj , k= 1�2�    , is nonincreasing and bounded from below

a.s., and hence is convergent. Thus, the sequence ��vk − v̄�2� is convergent a.s. From (21)
we get

�∑
k=1
%k�vk− v̄� P k�vk− v̄�<� a.s.

Using (14) and (16) we deduce that a.s. there must exist an infinite subset of indices �⊆�
and a subsequence �vk�, k ∈ �, such that vk → v̄ for k ∈ �. Because the sequence of
distances �vk− v̄�2 is convergent, the entire sequence �vk� converges to v̄. �

If we remove Inequalities (8) from the definition of V , only small technical changes are
needed to ensure convergence a.s. Instead of the steps %k2

k we need to use normalized
steps %k7k2

k, where the normalizing coefficients have the form

7k = �max��vk��B��−1

for some large constant B. We first prove that both martingales �Sm� and �Um� converge, due
to the damping by the 7ks. Then, the corresponding version of (21) yields the boundedness
of �vk� a.s. Consequently, the normalizing coefficients are bounded away from 0 a.s., and
the remaining part of the analysis goes through, as well. In our further considerations we
shall still assume that Inequalities (8) are present in the definition of V to avoid unnecessary
notational complications associated with the normalizing coefficients 7k.
In many applications, at a given point sk ∈ �1�    �M − 1�, we can observe two random

variables: .k satisfying (10), and .k+ such that

(22) Ɛ�.k+ � v1�    � vk/ s1�    � sk�= v̄sk+1
and

(23) Ɛ��.k+�2 � v1�    � vk/ s1�    � sk�≤C� k= 1�2�    �
This was illustrated in Example 1.
Our algorithm can be easily adapted to this case, too. The only difference is Step 3,

where we use both random observations, whenever they are available:

(24) zks =



�1−%k�vks +%k.k if s = sk,
�1−%k�vks +%k.k+ if sk <M and s = sk+ 1,
vks otherwise�
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The analysis of this version of the method is similar to the basic case. We define

2ks =



−.k+ vks if s = sk,
−.k+ + vks if sk <M and s = sk+ 1,
0 otherwise�

It follows from (10) and (22) that

(25) Ɛ�2ks ��k�=
{
pks �v

k
s − v̄s� if s = 1,

�pks +pks−1��vks − v̄s� if 1< s ≤M .
Therefore, after replacing the coefficients pks by

p̄ks =
{
pks if s = 1�
pks +pks−1 if 1< s ≤M ,

we can reduce this version of the method to the basic case analyzed earlier.

3. Using objective value observations. In the applications that we have in mind, our
observations provide us with more information than just the estimate of the slope of the
objective function at sk. We also observe the value of the objective function at sk corre-
sponding to some outcome �k. We denote this by

8k = f �sk��k��
Usually, we know the value of f̄ �0� and with no loss of generality we assume that f̄ �0�= 0.
We also assume that 8k satisfies

(26) Ɛ�8k � v1�    � vk/ s1�    � sk�= f̄ �sk�=
sk∑
i=1
v̄i a.s.

Condition (26) is trivially satisfied when �k is independent of v1�    � vk/ s1�    � sk, but this
does not necessarily have to be the case. We can now use �8k� to facilitate the convergence
to v̄. The algorithm is described in Algorithm 2.

Algorithm 2. SPAR with objective function updates (SPAR-Obj).
Step 0. Set v1 ∈ V , k= 1.
Step 1. Sample sk ∈ �1�    �M�.
Step 2. Observe random variables .k and 8k satisfying (10) and (26).
Step 3. Calculate the vector zk ∈�M as follows:

(27) zks =




vks +%k
(
8k−

sk∑
i=1
vki

)
for s = 1�    � sk− 1,

�1−%k�vks +%k.k+%k
(
8k−

sk∑
i=1
vki

)
for s = sk,

vks otherwise�

where %k ∈ �0�1'.
Step 4. Calculate vk+1 =,V �zk�, increase k by one, and go to Step 1.
We additionally assume that there exists a constant C such that

(28) Ɛ��8k�2 � v1�    � vk/ s1�    � sk�≤C� k= 1�2�    �
We have a result similar to Theorem 1.
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Theorem 2. Assume (10), (13)–(16), (26), and (28). Then, SPAR-Obj generates a
sequence �vk� such that vk → v̄ a.s.

Proof. Let us calculate the conditional expectation of the vector 2k = �vk − zk�/%k.
Directly from (10) and (26) we have

(
Ɛ�2k ��k�

)
s
=




sk∑
i=1
�vki − v̄ki � for s = 1�    � sk− 1�

vksk − v̄ksk +
sk∑
i=1
�vki − v̄ki � for s = sk�

0 for s = sk+ 1�    �M�
Therefore,

(
Ɛ�2k ��k�

)
j
= pkj �vkj − v̄j �+

M∑
s=j
pks

s∑
i=1
�vki − v̄ki �

=
j−1∑
i=1

( M∑
s=j
pks

)
�vki − v̄ki �+

(
pkj +

M∑
s=j
pks

)
�vkj − v̄kj �

+
M∑

i=j+1

( M∑
s=i
pks

)
�vki − v̄ki ��

Consider the matrix Wk of dimension M ×M , with the entries

wkij =




M∑
s=j
pks if i≤ j ,

M∑
s=i
pks if i > j�

The last two relations yield

(29) Ɛ�2k ��k�= �Pk+Wk��vk− v̄k��
where Pk = diag�pkj �Mj=1. We have

Wk =
M∑
l=1
Wk
l �

where each of the matrices Wk
l has entries

�W k
l �ij =

{
pkl if i� j ≤ l�
0 otherwise.

Each Wk
l is positive semidefinite, and thus W

k is also positive semidefinite. Now we can
proceed as in the proof of Theorem 1. We have an inequality similar to (17):

�vk+1− v̄�2 ≤�vk− v̄�2− 2%k�vk− v̄� �P k+Wk��vk− v̄�
− 2%k�vk− v̄� 2k− �Pk+Wk��vk− v̄�+%2k�2k�2�

Using (29) and (15) we can rewrite this inequality as

�vk+1− v̄�2 ≤ �vk− v̄�2− 2%k�vk− v̄� �P k+Wk��vk− v̄�+Ak�
where

∑�
k=1Ak is finite a.s. Because W

k is positive semidefinite, we can omit it in the
above inequality and obtain (21) again. The rest of the proof is the same as in the proof of
Theorem 1. �
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SPAR-Obj can be modified to assign different weights to the components of the direction
associated with the observations .k and 8k. In particular, we may set at Step 3

(30) zks =




vks +
%k
;k

(
8k−

sk∑
i=1
vki

)
for s = 1�    � sk− 1,

�1−%k�vks +%k.k+
%k
;k

(
8k−

sk∑
i=1
vki

)
for s = sk,

vks otherwise�

where 0<;min ≤ ;k ≤ ;max and ;k is �k-measurable. The analysis of this version is identical
to the proof of Theorem 2. Our numerical experiments reported in §6 indicate that the
additional scaling in (30) is useful.

4. Multidimensional problems and learning while optimizing. Let us now return to
Problem (1). If the next observation point sk = �sk1 �    � skn� is sampled at random, and if
for each coordinate i the probabilities

pkis = ��ski = s ��k�� s = 1�    �M�
satisfy Assumption (16), then all results of the preceding two sections apply componentwise.
The situation is different if we generate the next observation point sk by solving the

approximate Problem (6), that is

ski = xki � i= 1�    � n� k= 1�2�    �
If the solution xk is not unique, we choose it at random from the set of optimal solutions
of (6). For each coordinate function fi, we observe two random variables: .

k
i satisfying

(10) and .ki+ satisfying (22). Then, we update the left and right slopes for each function
fi according to (24), and the iteration continues. In this way we define the sequences �v

k
i �,

k = 1�2�    , of estimates of the slopes of fi, i = 1�    � n, and a sequence xk of the
solutions of approximate models (6).
This algorithm is well defined if the approximate Problems (6) have integer solutions

for all concave piecewise linear functions fi having integer break points. This is true, for
example, for models having alternative network representations, such as those discussed in
Powell and Topaloglu (2003).
Note that in the previous two sections our convergence proofs depend on the assumption

that lim infk→� pkis > 0 a.s. for s = 1�    �M , i= 1�    � n. However, when sk is selected as
sk = argmaxx∈X

∑n
i=1 f̄

k
i �xi�, this assumption may not be satisfied. In this section, we show

that even with this new choice of sk, the sequence �sk� converges to an optimal solution of
maxx∈X

∑n
i=1 f̄i�xi�, provided a certain stability condition is satisfied.

Let us note that for a concave, piecewise linear, and separable function

(31) F �x�=
n∑
i=1
fi�xi��

where each fi is defined as

(32) fi�xi�=
l∑
s=1
vs + vl+1�x− l��

with an integer l such that l ≤ x < l+ 1, the subdifferential of F at an integer point x is
given by

$F �x�= &v1� x1+1� v1� x1 '× &v2� x2+1� v2� x2 '× · · ·× &vn�xn+1� vn�xn '�
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Under the Slater constraint qualification, the necessary and sufficient condition of optimality
for problem

max
x∈X

F �x��

where X is a convex closed set, has the form

(33) 0 ∈ $F �x�−N�x��
with N�x� being the normal cone to X at x. An optimal point x̂ is called stable if it satisfies

(34) 0 ∈ int&$F �x̂�−N�x̂�'�
It can be seen directly from Conditions (33) and (34) that a stable point x̂ is also a solution
to a perturbed problem

max
x∈X

�F �x��
provided that dist�$F �x̂�� $ �F �x̂�� < < and < is a sufficiently small positive number.
Clearly, the solutions xk of our approximate Problems (6) satisfy Condition (33) for the

approximate functions f k constructed by the method. Then, by passing to the limit, we
can conclude that each accumulation point �x∗� v∗� of the sequence ��xk� vk�� satisfies the
condition

0 ∈ $F ∗�x∗�−N�x∗��
with F ∗ constructed from v∗ as in (31)–(32). We shall show that if such an accumulation
point satisfies the condition of stability, it is optimal for the original problem.

Theorem 3. Assume that for each i = 1�    � n, Conditions (10), (13)–(15), and
(22)–(23) are satisfied. If an accumulation point �x∗� v∗� of the sequence ��xk� vk�� gener-
ated by the algorithm satisfies the stability condition

(35) 0 ∈ int&$F ∗�x∗�−N�x∗�'�
then with probability one x∗ is an optimal solution of (1).

Proof. Let us observe that Relation (25) holds for each coordinate i. Therefore, Inequal-
ity (21) is true for each coordinate i:

(36) �vk+1i − v̄i�2 ≤ �vki − v̄i�2− 2%k�vki − v̄i� P ki �vki − v̄i�+Aik�
The matrix Pki , which is �k-measurable, is a nonnegative diagonal matrix with positive
entries corresponding to the ith coordinates of possible solutions to (6). Proceeding exactly
as in the proof of Theorem 1, we conclude that the series

∑�
k=1Aik is convergent a.s.

Furthermore, the sequence ��vki − v̄i�� is convergent a.s. for every i= 1�    � n.
Our proof will analyze properties of sample paths of the random sequence ��vk� xk�� for

all elementary events � ∈
\
0, where 
0 is a null set. It will become clear in the course
of the proof what this null set is.
Let us fix � ∈
 and consider a convergent subsequence ��vk���� xk�����, k ∈����,

where ����⊆� is some infinite set of indices. Let us denote by �v∗� x∗� the limit of this
subsequence. This limit depends on � too, but we shall omit the argument � to simplify
notation.
If the stability condition holds, then there exists < > 0 such that for all iterations k for

which �vki� x∗i ���− v∗i� x∗i � ≤ <, i = 1�    � n, the solution xk of the approximate Problem (6)
is equal to x∗. Then, the coefficients pki� s are equal to 1 for s = x∗i and s = x∗i + 1, and are
zero otherwise, for each function i. Let us fix an arbitrary i and focus our attention on the
points s = x∗i . Inequality (36) implies
(37) �vk+1i ���− v̄i�2 ≤ �vki ���− v̄i�2− 2%k����vki� x∗i ���− v̄i� x∗i �2+Aik����
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The series
∑
k Aik is convergent a.s. Let k ∈���� be large enough that �vki� x∗i ���− v∗i� x∗i �<

</2. Consider j ≥ k such that
(38) �vji� x∗i ���− v∗i� x∗i � ≤ < for all i= 1�    � n�
Let us suppose that the ith coordinate of the limit point is not optimal, i.e.,

(39) v∗i� x∗i �= v̄i� x∗i �
We shall prove that it leads to a contradiction. The remaining part of our proof has three
stages.
Stage 1. We can always choose a sufficiently small < > 0 such that �v∗i� x∗i − v̄i� x∗i �> 2<.

Then for the iterations j satisfying (38) we have �vji� x∗i ���− v̄i� x∗i �> <, and Inequality (37)
implies

(40) �vj+1i ���− v̄i�2 ≤ �vji ���− v̄i�2− 2%j���<2+Aij����
The series

∑
j %j��� is divergent and the series

∑
j Aij ��� is convergent, unless � is in a

certain null set. If the set of consecutive j ≥ k for which Condition (38) holds was infinite,
Inequality (40) would lead to a contradiction. Therefore, for all k ∈���� and all sufficiently
small < > 0, the random index

l�k� <���= inf
{
j ≥ k� max

1≤i≤n
�vji� x∗i ���− v∗i� x∗i �> <

}
is finite.
Stage 2. We shall prove that the sum of stepsizes between k ∈���� and l�k� <���−1 is

at least of order < if k is large enough. By the definition of l�k� <��� we have, for some i,
�vl�k�<���i� x∗i

���− v∗i� x∗i �> <. Because vk���→ v∗, k ∈����, we also have �vl�k�<���i − vki ����>
</2 for all sufficiently large k ∈����. Thus,

(41)
l�k�<���−1∑
j=k

%j����2ji ����> </2�

Let us observe that Conditions (13) and (15) imply that for each i the random series

�∑
k=1
%k

(�2ki �− Ɛ��2ki � ��k�
)

is a convergent martingale. Therefore, unless � is in a certain null set,

l�k�<���−1∑
j=k

%j����2ji ���� =
l�k�<���−1∑
j=k

%j���=ij���+0ik����

where =ij = Ɛ��2ji � � �j � and 0ik���=
∑l�k�<���−1
j=k %j�����2ji ����−=ij����→ 0 as k→�,

k ∈����. This, combined with (41), implies that for all sufficiently large k ∈����,

l�k�<���−1∑
j=k

%j���=ij���≥ </3�

From Assumption (13) it follows that there exists a constant C such that =ij���≤C for all
i and j . Using this in the last displayed inequality we obtain

(42)
l�k�<���−1∑
j=k

%j���≥
<

3C

for all sufficiently small < > 0 and all sufficiently large k ∈����.
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Stage 3. Summing (40) from k to l�k� <���− 1, letting >= 1/3C, and combining with
(42) gives, for some coordinate i,

�vl�k�<���i ���− v̄i�2 ≤ �vki ���− v̄i�2− 2><3+
l�k�<���−1∑
j=k

Aij����

Let ?��� be the limit of the entire sequence ��vji ���− v̄i�2� as j→�, whose existence has
been established at the beginning of the proof. Passing to the limit with k→�, k ∈����,
and using the fact that

∑�
j=k Aij���→ 0 as k→�, we obtain

?���≤?���− 2><3�
a contradiction. Therefore, our Assumption (39) must be false, and we have

(43) v∗i� x∗i = v̄i� x∗i for all i= 1�    � n�
Inequality (37) is also true with xki replaced by x

k
i + 1 (if xki <Mi). We can thus apply the

same argument to prove

(44) v∗i� x∗i +1 = v̄i� x∗i +1 for all i= 1�    � n�
For x∗i =Mi, we take the convention that v

∗
i� x∗i +1 = v̄i� x∗i +1 =−�. Consequently,

$F �x∗�= $F ∗�x∗�

and the point x∗ is optimal for (1). �

The assumptions of Theorem 3 are stronger than those of Theorems 1 and 2. However,
the result of Theorem 3 is much stronger. For a general closed convex set X, it may be
very costly to devise a sampling scheme for �sk� satisfying lim infk→� pkis > 0 a.s. for s =
1�    �M , i = 1�    � n. Theorem 3 saves us from devising such a sampling scheme and
lets us pick sk by simply solving an optimization problem. The stability Assumption (35) is
difficult to verify a priori, but it is very easy to check a posteriori, when the accumulation
point x∗ and the approximate function F ∗ have been identified.
In a similar way (and under identical assumptions) we can prove the convergence of the

version that uses function value estimates.

Theorem 4. Assume (10), (13)–(15), (22)–(23), (26), and (28). If an accumulation
point �x∗� v∗� of the sequence ��xk� vk�� generated by SPAR-Obj satisfies the stability Con-
dition (35), then with probability one x∗ is an optimal solution of (1).

The proof is almost a verbatim copy of the proof of Theorem 3, with the modifications
as in Theorem 2.

5. Projection. Let us now describe the way the projection v=,V �z� can be calculated.
Clearly, v is the solution to the quadratic programming problem

min 12�v− z�2(45)

subject to vs+1− vs ≤ 0� s = 0�    �M�(46)

where for uniformity we denote v0 = B, and vM+1 =−B. Associating with (46) Lagrange
multipliers @s ≥ 0, s = 0�    �M , we obtain the necessary and sufficient optimality
conditions

vs = zs +@s −@s−1� s = 1�    �M�(47)

@s�vs+1− vs�= 0� s = 0�    �M�(48)
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If i1�    � i2 is a sequence of coordinates such that

vi1−1 > vi1 = vi1+1 = · · · = c= · · · = vi2−1 = vi2 > vi2+1�

then adding Equations (47) from i1 to i2 yields

c= 1
i2− i1+ 1

i2∑
s=i1
zs�

If i1 = 1, then c is the minimum of the above average and B, and for i2 =M the maximum
of −B, and this average has to be taken.
The second useful observation is that vk ∈ V and zk computed by (11) differs from vk in

just one coordinate. If zk �∈ V , one of two cases must occur: Either zk
sk−1 < z

k
sk
or zk

sk+1 > z
k
sk
.

If zk
sk−1 < z

k
sk
, we search for the largest 1< i≤ sk for which

(49) zki−1 ≥
1

sk− i+ 1
sk∑
s=i
zks �

If such i cannot be found, we set i= 1. Then, we calculate

(50) c= 1
sk− i+ 1

sk∑
s=i
zks

and set

(51) vk+1j =min�B� c�� j = i�    � sk�

We have @0 =max�0� c−B� and

@s =



0� s = 1�    � i− 1�
@s−1+ zs − vs� s = i�    � sk− 1�
0� s = sk�    �M�

It is straightforward to verify that the solution found and the above Lagrange multipliers
satisfy Conditions (47)–(48).
The procedure in the case when zk

sk
< zk

sk+1 is symmetrical it is the same procedure applied
to the graph of z rotated by A.
Let us now consider the method which employs two random variables at each iteration,

with Step 3 as in (24). Then, both zsk and zsk+1 may differ from vsk and vsk+1 (although we
still have zsk > zsk+1). We shall show that the algorithms defined by (49)–(51) can easily be
adapted to this case.
Suppose that zsk > zsk−1. We apply (49)–(50) to compute the candidate value for c. Now

two cases may occur.
Case 1. If c ≥ zsk+1, we may apply (51). We can now focus on the points to the right:

zsk+1� zsk+2�    . We apply the symmetric analogue of (49)–(51) to these values, and the
projection is accomplished.
Case 2. If c < zsk+1, the value of c is not correct. We need to incorporate zsk+1 into

the averaging procedure. Thus, we repeat (49)–(51) but with sk replaced by sk+ 1 in (49),
although we still search for 1< i≤ sk. After this we apply (51) for j = i�    � sk+ 1.
If zsk+1 < zsk+2, the situation is symmetrical to the one discussed above (after rotating the

graph of z by A) and an analogous procedure can be applied.
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6. Experiments for separable problems. To illustrate the behavior of the methods
discussed, we consider the problem in Example 1:

max
x∈X

Ɛ
n∑
i=1
fi�xi�Di�� where X is given in (5) and fi�xi�Di�= qimin�xi�Di�− cixi.

Clearly, both SPAR and SPAR-Obj can be applied to this problem componentwise: We
approximate Ɛ

∑n
i=1 fi�xi�Di� by

∑n
i=1 f

k
i �xi� at iteration k. For a given resource allocation

sk = �sk1 �    � skn� among n activities and a sampled demand realization Dk = �Dk1�    �Dkn�,
we can separately apply the updates of SPAR and SPAR-Obj for each component i =
1�    � n. In the description below, ski plays the role of s

k for the ith component, ;ki the
role of ;k, and so on. We compare the following methods:
• SPAR—This is the basic learning algorithm with projection.
• SPAR-Obj(a) with ;ki = ski—This uses objective function estimates to help with the

learning, using weights of 1/sk for the objective function estimates.
• SPAR-Obj(b) with ;k =Mis

k
i—Same as above, but with a much smaller weight on the

objective function.
• The leveling method of Topaloglu and Powell (2003)—This algorithm maintains con-

cavity by forcing slopes that violate an updated estimate to be no larger (to the left) or no
smaller (to the right) than the most recently updated cell. This algorithm has been shown
to be convergent.
• The CAVE algorithm of Godfrey and Powell (2001)—This was the first algorithm

suggested for adaptively estimating piecewise linear functions while maintaining concavity.
In the first series of experiments, the random variable sk is generated from the uniform

distribution over the rectangle &1�M1'× · · · × &1�Mn'. We assume that each component of
the demand variable Dk is independent and Poisson distributed. Having sampled ski and D

k
i ,

we compute the left-hand slope of fi�·�Dki � at ski as

.ki =
{
qi− ci if ski ≤Dki �
−ci if ski > D

k
i �

Having obtained this slope information and the value of ski for iteration k, we can obtain the
approximation f k+1i using any of the methods mentioned above. We call this a learning step,
because in this iteration we are exploring the slope of the function at randomly sampled
points.
To estimate the quality of an approximation we find x̄k ∈ argmaxx∈X

∑n
i=1 f

k
i �xi� and

compute Ɛ
∑n
i=1 fi�x̄i

k�Di�. This gives us an idea about the average actual performance of
the solution given by the approximation

∑n
i=1 f

k
i .

For each method and coordinate (activity) the sequence of step sizes is %k = 20/�40+k�.
We take the number of coordinates to be n = 90. Mi ranges between 20 and 40, and ci
ranges between 0�6 and 1�4 for different 90 activities. Dki is truncated-Poisson distributed
with mean ranging between 9 and 21 for i= 1�    �90. Finally, qi = 2 for all i= 1�    � n
and b= 950. We run each method 50 times using 100 demand realizations at each run, and
Figure 1(a) presents the averages over these 50 runs.
We see that our basic learning method, SPAR, performs very well. Its quality can be

slightly improved by using objective function estimates as in SPAR-Obj, but the weight
associated with them must be significantly smaller than the weight associated with the slope
observations, as the comparison of SPAR-Obj(a) and SPAR-Obj(b) shows.
The second series of experiments differs from the first by the method we utilized to gener-

ate the random variables sk. Now, sk is chosen to be the maximizer of
∑n
i=1 f

k
i , as discussed

in §4. We call this an optimizing step because this step involves maximizing the current
approximation as opposed to selecting sk randomly over the interval &1�M1'× · · ·× &1�Mn'.
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b. Comparison of methods with optimizing steps.

Figure 1. Comparison of methods with learning (a) and optimizing (b) steps.

This version concentrates its efforts around the maximizers of the approximations, and one
might expect that it has a potential of being more efficient. The results are collected in
Figure 1(b).
Comparing Figures 1(a) and 1(b), all optimizing methods perform worse than the corre-

sponding learning method at the early iterations. Only after about 30–40 iterations did the
versions with optimizing steps take the lead over their learning counterparts. However, the
tail performance of the optimizing methods is much better.
Several conclusions can be drawn from our experiments. First, the application of the

projection operator facilitates the convergence. It provides an update to a range of values
on the basis of the observation obtained at one value. Second, learning is useful especially
at earlier iterations. Instead of trying to shoot at the optimal point for the current model,
it is better to collect information at randomly selected points from time to time. Third, the
indirect use of noisy objective values to correct the subgradients has a positive effect on
the convergence, provided that the weight of the additional modification is small. Finally,
the learning-based methods provide good approximations to the solutions at early iterations;
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these approximations make them attractive candidates for problems where the cost of one
experiment is high.

7. Application to nonseparable resource allocation problems. We now turn our
attention to nonseparable problems that arise in the context of two-stage stochastic resource
allocation problems. Section 7.1 shows that there exists a separable approximation that will
produce an optimal first-stage solution, although there is no guarantee that our algorithm
will find this approximation. We also provide a bound on the solution provided by our
algorithm. Then, §7.2 compares our algorithm, which produces integer solutions, to the
solutions produced by several variations of Benders decomposition.

7.1. Outline of the method. Let us start from the following observation. Consider the
problem

(52) max
x∈X

F �x��

where X ⊂�n is a closed convex set and F � �n→� is a concave function. Suppose that x̂
is the optimal solution of the problem and that F is subdifferentiable at x̂. Let us construct
a concave separable approximation of F at x̂ in the form

�F x̂�x�= F �x̂�+
n∑
i=1
f̄ x̂i �xi��

where

f̄ x̂i �xi�=
{
F ′�x̂� ei��xi− x̂i� if xi ≥ x̂i�
F ′�x̂�−ei��x̂i− xi� if xi ≤ x̂i�

In the formula above, F ′�x̂i� d� denotes the directional derivative of F at x̂ in direction d,
and ei is the ith unit vector in �n. We use x̂ as the superscript of �F to stress that the
approximation is constructed at x̂.
The point x̂ is also the solution of the deterministic approximate problem

(53) max
x∈X

�F x̂�x��
Indeed, each direction d can be represented as

d=
n∑
i=1
diei =

n∑
i=1
�di�+ei+

n∑
i=1
�di�−�−ei��

Because the directional derivative is a concave positively homogeneous function, we have

(54) F ′�x̂� d�≥
n∑
i=1
�di�+F

′�x̂� ei�+
n∑
i=1
�di�−F

′�x̂�−ei�=
[ �F x̂]′�x̂� d��

By the optimality of x̂, the directional derivative F ′�x̂� d� of F at x̂ in any direction
d ∈ cone �X − x̂� is nonpositive. Therefore, & �F x̂'′�x̂� d� ≤ 0 for every feasible direction d,
as required.
Consider an arbitrary point y at which such a separable approximation �F y�x� has been

constructed. We have just proved that if y = x̂, then y is the solution of (53). The converse
statement is not true, in general, and one can easily construct counterexamples in which the
separable approximation �F y�·� constructed at some point y achieves its maximum at y, but
F �·� does not.
Then, however, we can derive an upper bound on the optimal value of F �·� in X as

follows. If x̂ is an optimal solution of Problem (52), then

F �x̂�− F �y�≤ F ′�y� x̂− y�≤−F ′�y� y− x̂��
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In the second inequality above we have used the concavity of F ′�y� ·�. Inequality (54) can
be developed at the point y instead of x̂ and reads

F ′�y�d�≥ [ �F y]′�y�d��
Setting d= y− x̂ and combining the last two inequalities, we obtain

F �x̂�− F �y�≤−F ′�y� y− x̂�≤−[ �F y]′�y� y− x̂��
Thus, the following bound on the difference between the optimal value of Problem (52) and
the value of F at y holds true:

(55) F �x̂�− F �y�≤−min
x∈X
& �F y'′�y� y− x��

The quantity at the right-hand side can be easily calculated or estimated, given the current
approximate solution y and the piecewise linear separable approximation �F y .
For a general stochastic programming problem with a nonseparable recourse function,

our methods do not necessarily converge to the optimal solution. Furthermore, our methods
use samples of the directional derivatives in the directions ei, rather than exact values, so
the error bound will also be an estimate.
For solving maxx∈X F �x�, when F is a nonseparable function, our method proceeds as fol-

lows: At iteration k, our approximation is
∑n
i=1 f

k
i �xi�, where each f

k
i is a one-dimensional,

piecewise linear, concave function characterized by the slope vector vki = �vki1�    � vkiMi �
and Mi is an upper bound on the variable xi. The point x

k is the maximizer of
∑n
i=1 f

k
i �xi�.

We update our approximation using the slopes gathered at xk. The procedure is described
in Algorithm 3.

Algorithm 3. The optimizing version of SPAR.
Step 0. Set v1i ∈ V for all i= 1�    � n, k= 1.
Step 1. Find xk ∈ argmaxx∈X

∑n
i=1 f

k
i �xi�, where each f

k
i is defined by the slope vec-

tor vki .
Step 2. Observe a random variable .k such that

Ɛ�.k � v1�    � vk/ x1�    � xk� ∈ $F �xk� a.s.
Step 3. For each i= 1�    � n, do the following:
Step 3.1. Calculate the vector zki ∈�Mi as follows:

zkis =
{
�1−%k�vkis +%k.ki if s = xki ,
vkis otherwise�

Step 3.2. Calculate vk+1i =,V �zki ��
Step 4. Increase k by one and go to Step 1.

Several remarks are in order. First, as a stopping criterion, one may choose to continue
for a specified number of iterations or until F �xk� does not improve for a certain number
of iterations.
Second, we note that there are two sources of error in this approximate procedure. The

main source of error is the use of separable approximations, as discussed above. The second
source of error is the use of an arbitrary stochastic subgradient .k rather than estimates
of the forward and backward directional derivatives, as required in §4. Nevertheless, the
method performs remarkably well on a class of stochastic optimization problems that we
discuss below.
Third, many stochastic programming problems lend themselves to compact state vari-

ables, and the recourse functions in these problems have considerably fewer dimensions
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than the number of decision variables. For example, in (2), the recourse cost ƐQ�x���
depends on Tx. If the dimension of Tx is less than x, by writing (2) as

max �c� x+ Ɛ Q�s���

subject to Ax= b�
Tx− s = 0�
x≥ 0�

where

Q�s���=max �q� y
subject to Wy = h���− s�

y ≥ 0�
and building separable approximations of ƐQ�s���, we can decrease the number of required
approximations.
In this case, the extension of the algorithm we presented above is straightforward.

The dimension of s is denoted by n. In Step 1, we set �xk� sk� ∈ argmax�x� s�∈X�c� x +∑n
i=1 f

k
i �si�, where X is the feasible set of the first stage problem. In Step 2, .

k has to sat-
isfy Ɛ�.k � v1�    � vk/ s1�    � sk� ∈ $Ɛ�Q�sk����. One can choose .k to be the Lagrange
multipliers associated with the constraints of the second-stage problem for a certain realiza-
tion of �, say �k and for a certain value of sk. If �k is independent of all previously used
realizations of �, then Ɛ�.k � v1�    � vk/ s1�    � sk� ∈ $Ɛ�Q�sk���� is easily satisfied.

7.2. Numerical illustration. We illustrate our method using the following two-stage
stochastic programming problem:

max
∑
i∈�

∑
j∈�∪�

cijxij + ƐQ�s�D�

subject to
∑

j∈�∪�
xij ≤ pi� i ∈��

∑
i∈�
xij − sj = 0� j ∈� ∪��

xij � sj ≥ 0�
where Q�s�D� is the optimal value of the second-stage problem:

max
∑
i∈�∪�

∑
j∈�
dijyij +

∑
i∈�

∑
l∈	
r li z

l
i

subject to
∑
j∈�
yij ≤ si� i ∈� ∪��

∑
i∈�∪�

yij −
∑
l∈	
zlj ≥ 0� j ∈��

zlj ≤Dlj� l ∈	� j ∈��

yij � z
l
j ≥ 0�

The problem above can be interpreted as follows: There is a set of production facilities
(with warehouses) � and a set of customers �. At the first stage, an amount xij is trans-
ported from production facility i to a warehouse or customer location j , before the demand
realizations at the customer locations become known. After the realizations of the demand
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at the customer locations are observed, we move an amount yij from location i to customer
location j . At each customer location we face different types of demands, indexed by l ∈	:
Dli is the demand of type l at location j . We serve z

l
j units of demand of type l at location j;

the excess demand, if any, is lost. The production capacity of facility i is denoted by pi.
For the first-stage costs, we set cij = c0 + c1>ij , where >ij is the Euclidean distance

between locations i and j , and c0 can be interpreted as the unit production cost and c1 is
the transportation cost applied on a per mile basis. For the second-stage costs, we have

dij =
{
d1>ij if i ∈� or i= j�
d0+d1>ij if i ∈� and i �= j�

d0 represents the fixed charge for shipping a unit of the product from one customer location
to another customer location, and d1 is the per mile cost of transportation in the second
stage. For every demand type l occurring in location i, we associate a revenue r li . Our test
problems differ in cost parameters and �� ∪��, which determines the dimensionality of the
recourse function. Each test problem has 100 possible demand scenarios.
As a benchmark, we use three well-known Benders decomposition-based stochastic pro-

gramming algorithms: L-shaped decomposition (LSD) (Van Slyke and Wets 1969), stochas-
tic decomposition (SD) (Higle and Sen 1991), and cutting plane partial sampling (CUPPS)
(Chen and Powell 1999).
Our focus is on the rate of convergence, measured by the improvement in the objective

function as the number of iterations or the CPU time increases. To measure the rate of
convergence of different methods, we ran each algorithm for 25, 100, 500, 1,000, and 5,000
iterations. For our separable approximations, the number of iterations refer to the number
of demand samples used. For LSD, SD, and CUPPS, the number of iterations refer to the
number of cuts used to approximate the recourse function. Having constructed a recourse
approximation at iteration k, say �Qk, we find �xk� sk� ∈ argmax∑i� j∈� cijxij + �Qk�s�. Then,
we compute

∑
i� j∈� cijxkij + ƐQ�sk��� to measure the performance of the solution �xk� sk�

provided by the approximation �Qk.
The results are summarized in Table 1. The numbers in the table represent the percent

deviation between the optimal objective value and the objective value corresponding to the
solution obtained after a certain number of iterations. For all problem instances, we use
LSD to find the optimal solution. Table 1 also gives the CPU time per iteration. We present
results on 10 problems. Six of these problems vary in cost parameters, and four vary in the
dimensionality of the recourse function.
The results indicate that for the problem class we consider, SPAR is able to produce

high-quality solutions rather quickly, and provides consistent performance over different sets
of problem parameters. In particular, the consistent performance of SPAR over problems
with different numbers of locations may make it appealing for large-scale applications.
Nevertheless, our numerical results are limited to a specific problem class and one should
be cautious about extending our findings to other problem classes. However, as a result
of Equation (55), SPAR provides an estimate of the optimality bound at every point it
generates.
In view of these results, SPAR is a promising approach for the allocation of indivisible

resources under uncertainty, but more comprehensive numerical work is needed before using
it in a particular problem context. Finally, we note that due to its simplicity and fast run-
times, SPAR can be used as an initialization routine for stochastic programming approaches
that can exploit high-quality feasible solutions. For example, the recourse approximation
provided by SPAR can be used to initialize that of SD or LSD, and CUPPS can start by
constructing a support of the recourse function at the solution provided by SPAR.
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Table 1. Percent error over optimal with different first-stage costs.

Number of iterations

Problem Method 25 100 500 1,000 5,000 Sec./iter.

Cost. SPAR 10�18 0�81 0�21 0�15 0�02 0�07
param. I LSD 29�88 11�68 0�44 0�03 2�41

CUPPS 20�74 9�86 5�21 2�39 0 0�37
SD 47�63 15�64 11�42 7�56 2�48 0�46

Cost. SPAR 9�28 0�77 0�23 0�26 0�04 0�06
param. II LSD 44�19 8�28 0�49 0�05 2�46

CUPPS 49�43 13�58 6�17 1�95 0 0�37
SD 24�76 17�8 8�56 8�54 1�62 0�46

Cost. SPAR 10�72 1�64 0�39 0�44 0�1 0�05
param. III LSD 37�07 8�16 0�5 0 2�51

CUPPS 36�36 10�99 6�3 2�25 0 0�37
SD 35�37 17�52 9�14 6�53 2�28 0�45

Cost. SPAR 10�43 2�41 0�67 0�65 0�08 0�04
param. IV LSD 36�18 6�72 0�46 0 2�03

CUPPS 41�79 22�02 9�14 2�94 0 0�64
SD 57�06 25�4 23�11 12�02 4�45 0�45

Cost. SPAR 9�58 3�61 0�53 0�74 0�07 0�04
param. V LSD 29�53 11�49 0�33 0 1�68

CUPPS 36�28 21�34 9�26 2�5 0 0�64
SD 25�37 22 23�89 25�93 3�25 0�44

Cost. SPAR 8�95 4�42 0�75 0�87 0�09 0�04
param. VI LSD 40�68 1�91 0 0�93

CUPPS 38�97 6�02 4�77 0�53 0�64
SD 40�64 11�37 9�22 6�78 1�64 0�43

�� ∪�� = 10 SPAR 18�65 7�07 0�48 0�28 0�15 0�00
LSD 3�3 0 0�06
CUPPS 5�84 0�5 0 0�07
SD 45�45 11�35 2�3 1�12 0�26 0�10

�� ∪�� = 25 SPAR 11�73 2�92 0�34 0�13 0�06 0�02
LSD 19�88 2�14 0 0�26
CUPPS 8�27 4�33 1�47 0�16 0�31
SD 40�55 22�22 4�24 4�8 0�95 0�22

�� ∪�� = 50 SPAR 9�99 1�18 0�26 0�3 0�05 0�06
LSD 42�56 6�07 0�52 0�04 2�51
CUPPS 34�93 19�3 5�09 1�38 0 0�37
SD 43�18 17�94 5�91 6�25 1�02 0�46

�� ∪�� = 100∗ SPAR 8�74 1�2 0�16 0�05 0 0�22
LSD 74�52 26�21 2�32 0�85 0�02 10�15
CUPPS 54�59 23�99 14�68 14�13 0�91 1�42
SD 62�63 40�73 15�22 17�43 9�42 1�30

Note. Figures represent the deviation from the best objective value known.
∗ Optimal solution not found.
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A. Shapiro, eds. Handbooks in Operations Research and Management Science: Stochastic Programming.
Elsevier, Amsterdam, The Netherlands, 555–635.

Righter, R. 1989. A resource allocation problem in a random environment. Oper. Res. 37 329–338.
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