
An Approximate Dynamic Programming Algorithm for
the Allocation of High-Voltage Transformer Spares in the

Electric Grid

Johannes Enders
Department of Operations Research and Financial Engineering

Princeton University

Warren B. Powell
Department of Operations Research and Financial Engineering

Princeton University

David Egan
PJM Interconnection

May 25, 2009

Abstract

This paper addresses the problem of allocating high-voltage transformer spares throughout

the electric grid to mitigate the risk of random transformer failures. With this application

we investigate the use of approximate dynamic programming (ADP) for solving large scale

stochastic facility location problems. The ADP algorithms that we develop consistently obtain

near optimal solutions for problems where the optimum is computable and outperform a

standard heuristic on more complex problems. Our computational results show that the

ADP methodology can be applied to large scale problems that cannot be solved with exact

algorithms.

1 Introduction

High-voltage transformers are an integral part of the electric transmission system. A catas-

trophic transformer failure constitutes the most severe failure event and usually requires the

replacement of the transformer. Catastrophic failures can be extremely costly if they require

more expensive generation to be brought online in order to relieve system congestion. We refer

to the additional costs that are due to a transformer failure as congestion costs. As many of

the high-voltage transformers in the U.S. have been installed in the 1960s and 70s, transmis-

sion owners and operators have become increasingly concerned with the growing failure risk

of these older transformers.

We study the system of 500kV to 230kV transformers that are operated by PJM Intercon-

nection (PJM). PJM operates the electric grid in all or parts of Delaware, Illinois, Indiana,

Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio, Pennsylvania, Tennessee,

Virginia, West Virginia, and the District of Columbia. This service area has a population of

about 51 million. The approximately 200 500/230kV transformers in this area are owned by

11 different transmission owners (TOs).

We address the problem of planning spare transformers to respond to random failures.

Spares are crucial because the lead time to obtain a new transformer to replace a failed one can

be 12 to 18 months or longer depending on the order books of transformer manufacturers. For

high-voltage transformers the issue of where to locate transformer spares in the transmission

network is of particular importance. These transformers weigh up to 200 metric tons and as a

result the cost and time involved in moving them are significant. Their transportation needs

special permits, and may require the reinforcement of bridges and the restoration of rail access

to a transformer substation. Considerable congestion costs may be incurred during the time it

takes to transfer a spare to a failure site. Hence, moving spares quickly is an important task.

In this paper we consider the problem of placing a given number of spares in the network

such that the expected costs associated with random transformer failures are minimized. By

running our model repeatedly for different numbers of spares we can also address the issue of

spare quantity which is of considerable practical importance.

1

The problem of planning spare transformers can be formulated as a multistage stochastic,

dynamic program of a very large size. A growing body of research in approximate dynamic

programming has demonstrated that these techniques scale to very large problems, with a

virtually unlimited ability to handle complex operational details (see, for example, Bertsekas

& Tsitsiklis (1996), Powell et al. (2005), Topaloglu & Powell (2006)). The basic strategy in

ADP is to simulate forward in time, iteratively updating estimates of value functions that

approximate the value of being in a state. As with many stochastic optimization algorithms,

multistage problems are reduced to sequences of two-stage problems. In our setting, this

two-stage problem consists of allocating transformers to different locations, followed by a

random realization of failures around the network. If our technique is going to be successful

for multistage problems, it has to be able to provide good solutions to the two-stage problem.

In this paper, we consider only the two-stage problem, but we use techniques that generalize

easily to multistage problems, where we will be interested in 50 year horizons.

The two-stage allocation problem has the behavior of a two-stage stochastic facility location

problem where we allocate the spares to locations, then observe random failures after which we

have to move the spares to the locations where the failures occurred. The framework of two-

stage stochastic programming is presented in Birge & Louveaux (1997) and Kall & Wallace

(1994). The allocation problem we present here is integer in nature and thus the stochastic

integer programming literature is relevant. Sen (2005) provides a comprehensive overview of

the state of the art in stochastic integer programming. Stochastic facility location problems

(Louveaux & Peeters (1992), Laporte et al. (1994), Ntaimo & Sen (2005)) are among the

many applications of stochastic integer programming. In that context the problem is to open

a number of facilities that can be used to satisfy random client demand. This corresponds

to allocating spare transformers that can be used to respond to random transformer failures.

Our problem instances are far larger than what appears to be solvable exactly with current

technology, where problem size is measured by the number of possible facility locations. For

example, the largest instances solved in Ntaimo & Sen (2005) have 10 and 15 possible facility

locations whereas we solve instances with up to 71 candidate locations. Our problem becomes

much larger when we add dimensions such as transformer type (e.g. one-phase vs. three-

phase), time of arrival (relevant to multistage applications) and other features (e.g. self-

2

monitoring maintenance). It is clear from the CPU times reported in Ntaimo & Sen (2005)

that the number of possible facility locations has a decisive impact on run times. These

findings are consistent with the results reported in Powell et al. (2004) (see also Topaloglu

(2001)) which show that Benders decomposition becomes quite slow as the dimensionality of

the second stage resource vector grows.

If we assume that there can be at most one failure and that we always meet that failure

with a spare then our problem is equivalent to a generalization of the classic deterministic

p-median problem given by Mirchandani (1990) and Labbé et al. (1995). This equivalence

breaks down as soon as we allow more than one failure or if we allow that a failure is left

unmet because the transfer cost is higher than the avoided congestion cost. Nevertheless we

will make extensive use of the p-median model as a benchmark for our algorithms.

Several papers in the electric power literature (Chowdhury & Koval (2005), Li et al. (1999),

Kogan et al. (1996)) present techniques to determine the number of transformer spares to be

held. None of these papers considers the issue of spare location which is central to our

approach.

Prior research in stochastic resource allocation problems has shown that separable, piece-

wise linear function approximations work extremely well for two-stage resource allocation

problems (see Godfrey & Powell (2002), Powell et al. (2004), Topaloglu & Powell (2006)),

providing near-optimal results while scaling easily to very large scale, multistage applications

(see Powell & Topaloglu (2004)). This work suggests that this strategy might be very practical

for the problem of managing spare transformers. However, all of this work was in the con-

text of managing large fleets of vehicles which exhibits very different problem characteristics.

The problem of allocating spare transformers, where there may be a half dozen spares spread

among 70 locations, is quite different and it was not clear that the same strategies would work

(our experiments confirmed this).

Our paper makes three contributions. 1) We present an approximate dynamic program-

ming algorithm that provides very good solutions to realistic instances of the two-stage spare

transformer allocation problem. 2) In the context of approximate dynamic programming, we

illustrate the shortcomings of standard linear value function approximations when the true

3

value function is not separable. We introduce new value function approximations that take

into account this nonseparability. 3) We contribute insights into spare transformer allocation

issues of practical interest. The location and number of spares for the PJM system are impor-

tant questions as are the value of sharing spares among TOs, the role of ordering lead times,

and the influence of transformer transportation costs.

Section 2 contains the basic notation and the model formulation of the spare transformer

allocation problem. Section 3 introduces the algorithmic framework that we adopt to solve the

problem. The main ingredients of our approach are suitable value function approximations

which we present in section 4. We validate our algorithmic approach and apply it to PJM’s

system performing a series of computational experiments which are described in section 5.

The results of the experiments are presented in section 6. We state conclusions and directions

for further research in section 7.

2 Model Formulation

Each transformer that is in operation in the electric grid belongs to a transformer bank. A

bank is a set of transformers that together handle all three power phases. Each bank consists

of either a single three-phase transformer, or three single phase transformers. Failures are

modeled at the level of banks since if a single-phase transformer fails, the entire bank has to

be shut down. Once the failed transformer is replaced the bank is brought back online.

If a bank fails, then electricity has to be routed through other transformers. However,

there is a limit to how much electricity can be routed along specific links in the network. As

a result, if a bank fails, then it may be necessary to obtain power from a utility that may be

more expensive, but whose location allows electricity to be routed through paths that have

available capacity. The additional cost of acquiring power from a more expensive utility due

to capacity constraints (resulting from a failed transformer) is referred to as congestion costs.

The goal of our problem is to minimize the total expected cost incurred as a result of bank

failures.

Transformers and banks share the same attribute space A. For the purposes of this paper

4

an element a ∈ A is a three-dimensional vector indicating a bank identifier, the location, and

the transmission owner. An example for an element a ∈ A is

a =

 a1

a2

a3

 =

 1
Branchburg

PSEG

.

In this example PSEG is the transmission owner. The Branchburg substation belongs to

PSEG’s service area and 1 identifies the bank within the Branchburg substation. There are 71

500/230kV banks in PJM’s system and that is the largest attribute space we consider in our

numerical work. The notation and our model are completely general and equipped to include

other transformer attributes. We are not using any technical transformer attributes as part of

our attribute vector because we assume a universal type of transformer spare - one that from

a technical standpoint can be used to replace any failed transformer anywhere in the system.

However, our methodology can be naturally extended to handle these additional attributes.

The state of the system is defined as

Rta = number of spares with attribute a at time t ∈ {0, 1} after

the time t decisions are made.

Rt = (Rta)a∈A

= resource state vector.

We denote a decision by d ∈ D where D is the set of decisions that can be used to act on

a transformer. The set D contains three decision types, i.e. D = Dbuy ∪Dmove ∪ d∅ where the

subsets are defined as follows:

Dbuy = decision to buy a spare transformer. There is one element

in this set for every possible purchasing source, i.e. manu-

facturer or manufacturing facility.

Dmove = decisions to move a spare to a particular failure site and

use it to meet the failure. There is one decision for every

possible failure site, i.e. for every element of A.

5

d∅ = decision to hold a transformer (do nothing).

Using the set notation introduced above we define the generic decision variables xt =

(xtad)a∈A,d∈D where

xtad = the number of transformers with attribute a acted on with

decision d at time t and

ctad = the cost parameter associated with xtad.

The parameter B specifies the number of spares that we want to maintain, which we

assume is determined by a policy decision made by management. In our model we fix the

number of spares and concentrate on the location decisions. However, in our numerical work

we run the model for different values of B and can thereby gain insight into the optimal

number of spares as well.

Randomness is introduced in our model via the 0/1 random variables Ŵ1 = (Ŵ1a)a∈A

where Ŵ1a indicates if transformer bank a failed in time period 1. The model underlying

Ŵ1 is the finite probability space (Ω,F ,P) where Ω is the set of all possible failure scenarios,

ω, F is the discrete σ-algebra on Ω, and P is the probability measure that assigns a given

probability to each element ω ∈ Ω.

V0(R0) is the value function, which is the expectation of the second stage costs as a function

of the information of the first stage. We can now present the optimization model. The problem

is to find

min
x0

{∑
a∈A

∑
d∈Dbuy

c0adx0ad + V0(R0)

}
(1)

where

V0(R0) = E

{
min
x1

[∑
a∈A

(∑
d∈Dmove

c1adx1ad + c1ad∅x1ad∅

)]
|R0

}
(2)

6

subject to:

∑
a∈A

∑
d∈Dbuy

x0ad = B ∀ a (3)∑
d∈Dbuy

x0ad −R0a = 0 ∀ a (4)

x0ad ∈ {0, 1} ∀ a, d ∈ Dbuy (5)∑
d∈Dmove∪d∅

x1ad(ω)−R0a = 0 ∀ a, ω (6)

x1ad(ω) ≤ Ŵ1a(ω) ∀ a, d ∈ Dmove, ω (7)

x1ad(ω) ∈ {0, 1} ∀ a, d ∈ Dmove ∪ d∅, ω. (8)

In this model formulation a movement decision implies a) that the spare is moved to

a failure site and b) that the spare is used at the destination location to replace a failed

transformer. Therefore, the coefficients c1ad for d ∈ Dmove contain two components: the cost

associated with the movement, which we call transfer cost, and the avoided congestion costs

due to the replacement of the failed transformer. Thus, this model minimizes the sum of

transformer purchase costs, transfer costs, avoided congestion costs, and inventory holding

costs of spares.

Equation (3) is the budget constraint that fixes the number of spares to be acquired.

Equation (4) defines the resource state. The acquisition variables are binary as expressed in

equation (5). Equation (6) ensures flow conservation in the first stage. Equation (7) states

that a spare can only be used to meet a failure if in fact a failure occurred.

3 Basic Algorithm

Solving model (1)-(8) directly is computationally infeasible for problems of realistic size. The

experimental evidence in Louveaux & Peeters (1992), Laporte et al. (1994), and Ntaimo &

Sen (2005) shows this for integer stochastic programming based algorithms. Interestingly, the

results in Ntaimo & Sen (2005) suggest that computational difficulties do not necessarily arise

with a large sample space but with a high dimensional first-stage decision vector x0 = (x0a)a∈A.

7

Classic stochastic dynamic programming (Puterman (1994)) is also out of the question as a

solution approach as it suffers from the well-known “curse of dimensionality” (Powell (2007))

caused by a large action space (x0), a large state space (R0), and a large sample space (Ω).

In order to address these computational problems we turn to approximate dynamic pro-

gramming (ADP). This set of techniques has recently proven useful in finding very good

approximate solutions for large-scale multi-period resource allocation problems (Powell et al.

(2002), Topaloglu & Powell (2006)). Powell & Van Roy (2004) give an introduction to ADP

in the context of resource allocation problems.

The central idea in ADP is to replace the value function V (R0) with an approximation

V̄ (R0) that depends only on R0 - the information known at time zero. In order to illustrate

the main idea let us for the moment assume a linear value function approximation

V̄0(R0) =
∑
a∈A

v̄aR0a (9)

where the v̄a are estimates of the unknown parameters va which - in this case - can be

interpreted as the marginal value of a resource with attribute a.

Using this approximation, the model becomes:

min
x0

{∑
a∈A

∑
d∈Dbuy

c0adx0ad +
∑
a∈A

v̄aR0a

}
(10)

subject to:

∑
a∈A

∑
d∈Dbuy

x0ad = B ∀ a (11)∑
d∈Dbuy

x0ad −R0a = 0 ∀ a (12)

0 ≤ x0ad ≤ 1 ∀ a, d ∈ Dbuy (13)

As we can see the model is now radically simplified. The random variable Ŵ1, the expec-

tation with respect to Ŵ1, and the random recourse decisions x1 have been eliminated from

the model as the entire second stage has been replaced by an approximation. The resulting

8

approximate model can be easily solved using commercially available optimization software

such as CPLEX.

Using a value function approximation (VFA) comes at a price. Once a particular functional

form of the approximation is chosen the challenge lies in the estimation of the parameters v̄a.

In this sense we have replaced an optimization problem with an estimation problem.

In the following we give a high level description of an ADP algorithm that uses stochastic

gradients to perform this estimation. For illustrative purposes we continue to use the linear

VFA of equation (9). Detailed algorithms using different value function approximations are

given in section 4.

The core of the algorithm has three steps that are iterated N times. In our notation index n

denotes the iteration. The first step consists of solving the approximate problem (10)-(13). In

the second step the algorithm takes a failure sample Ŵ1(ωn) and determines sample gradients

of the true value function with respect to the Rn
0a. These sample gradients are used to obtain

a sample realization v̂n
a of the parameter value. Sampling failures and solving the second stage

problem for that sample realization prepares the ground for the gradient calculation. Let

m(d) = the attribute resulting from modifying a resource with de-

cision d.

The second stage problem is to find

F̂
(
Rn

0 , Ŵ1(ωn)
)

= min
x1

{∑
a∈A

(∑
d∈Dmove

cadx1ad + cad∅x1ad∅

)}
(14)

subject to:

∑
d∈Dmove∪d∅

x1ad = Rn
0a ∀ a (15)∑

a′∈A

x1a′d ≤ Ŵ1,m(d)(ω
n) ∀ d ∈ Dmove (16)

0 ≤ x1ad ≤ 1 ∀ a, d ∈ Dmove ∪ d∅ (17)

9

Note that in this model Rn
0 is determined by xn

0 , the solution to the first-stage problem. F̂

is also a function of the failure sample Ŵ1(ωn). For the sake of notational simplicity we will

omit Ŵ1(ωn) as an argument of F̂ henceforth. Suppose now that Rn
0a is 1 for a particular a.

Then the sample gradient of the true value function with respect Rn
0a is a left gradient of the

form:

v̂n
a = F̂ (Rn

0)− F̂ (Rn
0 − ea). (18)

where ea is a vector of zeros with a one at element a.

In the third step of the algorithm we use the newly obtained sample realization v̂n
a to

update our estimate v̄n
a . The updating follows the general formula

v̄n
a = (1− αn−1)v̄n−1

a + αn−1v̂
n
a , (19)

where αn−1 is the step size in iteration n.

Step 0: Initialize V̄ 0
0 and set n = 1.

Step 1: Solve the approximate problem to get xn
0 and Rn

0 . If n = N + 1 stop. xN+1
0 is the solution.

Step 2: Sample Ŵ1(ωn) and determine sample realizations of VFA parameters using sample gradients.

Step 3: Update VFA parameter estimates as in equation (19).
Increment n and go to Step 1.

Figure 1: General ADP algorithm for the spare allocation problem

Figure 1 lists the steps of the ADP algorithm. The more detailed algorithms of section 4

are variations of this general approach. Using this algorithmic approach successfully hinges

on finding good value function approximations. This means finding appropriate functional

forms that can be estimated with a reasonable amount of effort. This is the task of the next

section.

10

4 Value Function Approximations

In this section we present different value function approximations. We start with the linear

VFA as a natural starting point and progress to somewhat more sophisticated approximations

that address the limitations of the linear approach.

4.1 Linear Approximation

We have used a linear value function approximation as an example before and repeat the

definition here for convenience. The linear approximation has the following form:

V̄0(R0) =
∑
a∈A

v̄aR0a. (20)

A linear VFA has been shown to be effective in the context of certain types of resource

allocation problems (see Powell et al. (2002)). It also has a very intuitive interpretation: v̄a is

the estimate of the value of a transformer with attributes a. It is intuitively clear that spares

can have different values. For example, a spare in a central network location might have a

higher value than a spare in a remote network location.

The use of this approximation leads to the approximate problem (10)-(13). If Rn
0a is 1 then

the sample gradient of the true value function with respect Rn
0a is a left gradient of the form:

v̂left,n
a = F̂ (Rn

0)− F̂ (Rn
0 − ea). (21)

If Rn
0a is 0 then the sample gradient is a right gradient. The right gradients require special

consideration. If we just added a spare a to calculate F̂ (Rn
0 + ea) then we would have B + 1

spares in the system. The right gradient F̂ (Rn
0 + ea) − F̂ (Rn

0) would be the marginal value

of spare a if it was the B + 1st spare. Clearly, this gradient is not the best choice if we

are restricted to placing B spares. The gradient is influenced by two effects, namely by the

attributes of the spare (location effect) and by the fact that we have B + 1 spares (quantity

effect). But if we are placing B transformers we are only interested in the location effect.

11

To address this we calculate the right gradients as

v̂right,n
a = F̂ (Rn

0 − ea∗ + ea)− F̂ (Rn
0 − ea∗) (22)

where a∗ is the marginal spare, i.e. the least valuable of all the B selected spares. Now the

right gradients have the same interpretation as do left gradients. They measure the marginal

value of a as the Bth spare.

The updating equations for the parameter estimates are

v̄n
a =

{
(1− αn−1)v̄n−1

a + αn−1v̂
right,n
a if Rn

0a = 0,

(1− αn−1)v̄n−1
a + αn−1v̂

left,n
a if Rn

0a = 1.
(23)

Figure 2 gives a step by step view of the ADP algorithm using a linear VFA.

Step 0: Initialize V̄ 0
0 and set n = 1.

Step 1: Solve (10)-(13) to get xn
0 and Rn

0 . If n = N + 1 stop. xN+1
0 is the solution.

Step 2: Sample Ŵ1(ωn) and determine gradients v̂n
a ∀ a ∈ A as in (21) and (22).

Step 3: Calculate v̄n
a ∀ a ∈ A as in (23).

Increment n and go to Step 1.

Figure 2: Spare allocation algorithm with linear VFA

Our numerical experiments will provide detailed insight into the solution quality obtained

using a linear VFA. We expose its main limitation here to motivate the presentation of our

other approximations. Using the linear VFA the ADP algorithm produces solutions as shown

in figure 3, which depicts part of PJM’s service area. Shown is the spare allocation for part

of PJM’s service area. Overlapping circles indicate substation locations with multiple spares.

The algorithm correctly identifies good spare locations, but when a location has multiple

banks, it often allocates multiple spares leading to bunching.

The reason for this behavior is the separability of the linear VFA with respect to the ele-

ments of R0. Separability means that the value of a spare transformer with certain attributes

is assumed to be independent of the spare allocation in the rest of the network. This is cer-

tainly not true. For example, the value of the first spare in a location is very different from

12

Figure 3: Partial solution obtained using a linear VFA. The small spots are bank locations
which are slightly perturbed to show multiple banks in the same location. Transformer spares
- indicated by circles - are bunched in “good” locations with multiple banks.

the value of the second or the third. Clearly, the true value function has non-separable effects

with respect to the elements of R0. In the following we present two approximation strategies

that incorporate this non-separability.

4.2 Quadratic Approximation

We wish to find VFAs that allow us to make the contribution of a spare dependent on the

remaining spare allocation. One way to introduce such dependence is by considering pairs

{a, a′} of spare attributes. Let us define the relevant set of such pairs as

P = set of unordered attribute pairs {{a, a′}|a ∈ A, a′ ∈ A, a 6= a′}.

We assume the following model based on attribute pairs:

F̂ (R0) =
∑

{a,a′}∈P

β00
aa′1

00
aa′ + β10

aa′1
10
aa′ + β01

aa′1
01
aa′ + β11

aa′1
11
aa′ + ε (24)

13

where we write 100
aa′ for 1{R0a=0,R0a′=0} and where ε stands for i.i.d. error terms with expectation

zero. Note that in this model every pair of attributes {a, a′} contributes to the value of the

allocation with one β that depends on the values of R0a and R0a′ . This is fundamentally

different from the linear approximation where the value of an allocation is determined by

looking at single attributes rather than attribute pairs. By replacing the indicator functions

in equation (24) we obtain

F̂ (R0) =∑
{a,a′}∈P

β00
aa′(1−R0a)(1−R0a′) + β10

aa′R0a(1−R0a′) + β01
aa′(1−R0a)R0a′ + β11

aa′R0aR0a′ + ε

Multiplying out and collecting terms results in:

F̂ (R0) = K +
∑
a∈A

θaR0a +
∑

{a,a′}∈P

θaa′R0aR0a′ + ε (25)

where

K =
∑

{a,a′}∈P

β00
aa′

θa =
∑
a′ 6=a

β10
aa′ − β00

aa′

θaa′ = β00
aa′ − β10

aa′ − β01
aa′ + β11

aa′

This model gives rise to the value function approximation

V̄0(R0) = K +
∑
a∈A

θ̄aR0a +
∑

{a,a′}∈P

θ̄aa′R0aR0a′ . (26)

We see that our assumption leads to a quadratic non-separable value function approximation.

The θ̄a can not be interpreted as the value of spare a because the value of spare a depends on

other allocations across the network. However, the θ̄aa′ have an intuitive interpretation. θ̄aa′

is a penalty for allocating spares to a and a′ simultaneously. The higher θ̄aa′ the less desirable

it is to have a spare in both places.

14

We now have to show that we can solve the resulting approximate problem and that we

can estimate the parameters of equation (26). We first show how to solve the approximate

problem, which is to find

min
x0

∑
a∈A

∑
d∈Dbuy

c0adx0ad +
∑
a∈A

θ̄aR0a +
∑

{a,a′}∈P

θ̄aa′R0aR0a′

 (27)

subject to:

∑
a∈A

∑
d∈Dbuy

x0ad = B ∀ a (28)∑
d∈Dbuy

x0ad −R0a = 0 ∀ a (29)

x0ad ∈ {0, 1} ∀ a, d ∈ Dbuy. (30)

Note that we omit the constant K in the objective function because it does not affect the

solution. This model is a quadratic mixed 0-1 program which is much harder to solve than

the linear model (10)-(13). In order to facilitate the computational treatment of (27)-(30)

we linearize it to obtain an equivalent linear mixed 0-1 program (see Helmberg (2000)). We

define yaa′ = R0aR0a′ . The linearized approximate problem then is to find

min
x0

∑
a∈A

∑
d∈Dbuy

c0adx0ad +
∑
a∈A

θ̄aR0a +
∑

{a,a′}∈P

θ̄aa′yaa′

 (31)

subject to:

R0a +R0a′ − yaa′ ≤ 1 ∀ {a, a′} ∈ P (32)

yaa′ ≤ R0a ∀ {a, a′} ∈ P (33)

yaa′ ≤ R0a′ ∀ {a, a′} ∈ P (34)

yaa′ ≥ 0 ∀ {a, a′} ∈ P (35)

x0 ∈ X0 (36)

where the last constraint expresses equations (28)-(30) from before. Note that only the x0ab

need a binary constraint; the yaa′ do not.

15

We now turn to the issue of estimating the parameters of the quadratic approximation.

Below we show how to obtain sample realizations of the parameters θa and θaa′ . In these

computations we use second stage objective function values F̂ , where the resource state vector

is perturbed around the initial solution R0. Let, for example, R0a = 0 and R0a′ = 0 be part

of the initial solution. Then

F̂ (R0) = F̂ (R0a(1) , R0a(2) , ..., R0a, ..., R0a′ , ..., R0a|A|)

= F̂ (R0a(1) , R0a(2) , ..., 0, ..., 0, ..., R0a|A|).

We define

F̂ 11
aa′ = F̂ (R0a(1) , R0a(2) , ..., 1, ..., 1, ..., R0a|A|).

For the example case R0a = 0 and R0a′ = 0 this corresponds to the perturbation

F̂ 11
aa′ = F̂ (R0 + ea + ea′).

F̂ 10
aa′ , F̂

01
aa′ , and F̂ 00

aa′ are defined analogously. Let A1 = {a′′ ∈ A \ a|R0a′′ = 1} which is the set

of all transformer banks that are different from a and have a spare. We define

θ̂a =


∑

a′′∈A1
(F̂ 10

aa′′ − F̂ 00
aa′′)− (|A1| − 1)

(
F̂ (R0 + ea)− F̂ (R0)

)
, for R0a = 0,∑

a′′∈A1
(F̂ 10

aa′′ − F̂ 00
aa′′)− (|A1| − 1)

(
F̂ (R0)− F̂ (R0 − ea)

)
, for R0a = 1,

(37)

θ̂aa′ = F̂ 11
aa′ − F̂ 10

aa′ − F̂ 01
aa′ + F̂ 00

aa′ . (38)

In iteration n the θ̂n
a and θ̂n

aa′ are calculated and smoothed into the current estimates in

the standard way:

θ̄n
a = (1− αn−1)θ̄n−1

a + αn−1θ̂
n
a , (39)

θ̄n
aa′ = (1− αn−1)θ̄n−1

aa′ + αn−1θ̂
n
aa′ . (40)

16

Step 0: Initialize V̄0 to V̄ 0
0 . Choose a steps size rule αn such that α0 = 1 and 0 ≤ αn ≤ 1 for n = 1, ..., N .

Set n = 1.

Step 1: Solve (31)-(36) to get xn
0 and Rn

0 . If n = N + 1 stop. xN+1
0 is the solution.

Step 2: Sample Ŵ1(ωn) and determine sample realizations θ̂n
a ∀ a ∈ A and θ̂n

aa′ ∀ {a, a′} ∈ P as in (38)
and (37).

Step 3: Calculate θ̄n
a ∀ a ∈ A and θ̄n

aa′ ∀ {a, a′} ∈ P as in equations (39) and (40).
Increment n and go to step 1.

Figure 4: Spare allocation algorithm with quadratic VFA

The complete ADP algorithm using the quadratic value function approximation is given

in figure 4.

With the formulas for θ̂a and θ̂aa′ we can correctly separate the effect of the variable R0a

from the effects of the cross terms R0aR0a′ . The following proposition makes this statement

precise.

Proposition. Assume the model of equation (25) and let θa and θaa′ be estimated with the

procedure in figure 4. Then θ̄n
a and θ̄n

aa′ are unbiased estimators of θa and θaa′ respectively for

all a ∈ A, {a, a′} ∈ P and n = 1, ..., N.

Proof: We start by showing that θ̂a is an unbiased estimator of θa for all values of R0.

We use equation (37) to calculate θ̂a and show the proof for R0a = 0. The case R0a = 1 follows

the same arguments. Pick a′′ ∈ A1.

F̂ 10
aa′′ − F̂ 00

aa′′ = F̂ (R0 + ea − ea′′)− F̂ (R0 − ea′′)

= θa +
∑

a∗∈A1\a′
θaa∗ + ε∗

where ε∗ is a linear combination of error terms. Summing over all such a′′ gives:

∑
a′′∈A1

(
F̂ (R0 + ea − ea′′)− F̂ (R0 − ea′′)

)
= |A1|θa + (|A1| − 1)

∑
a∗∈A1

θaa∗ + ε∗. (41)

Furthermore,

F̂ (R0 + ea)− F̂ (R0) = θa +
∑

a∗∈A1

θaa∗ + ε∗. (42)

17

Inserting (41) and (42) into equation (37) and canceling terms gives

θ̂a = θa + ε∗. (43)

Note that according to (43) θ̂a is not a function of R0. Hence we can take expectations on

both sides to get

E
[
θ̂a

]
= θa. (44)

Having shown unbiasedness of θ̂a we proceed by induction. Let n = 1. Since α0 = 1 we

have by (39)

θ̄1
a = θ̂1

a,

and the unbiasedness of θ̄1
a follows from the unbiasedness of θ̂1

a. Assume θ̄n
a is unbiased for

n = k − 1 and let n = k. We have by (39)

θ̄k
a = (1− αk−1)θ̄k−1

a + αk−1θ̂
k
a.

Since θ̄k−1
a is unbiased by assumption and θ̂k

a is unbiased by (44) we obtain

E
[
θ̄k

a

]
= (1− αk−1)θa + αk−1θa = θa.

To show unbiasedness of θ̄n
aa′ we start by showing that θ̂aa′ is an unbiased estimator of θaa′

for all values of R0. We use equation (38) to calculate θ̂aa′ and show the proof for the case where

R0a = 1 and R0a′ = 0 . The other three cases, i.e. {R0a, R0a′} = {1, 1}, {R0a, R0a′} = {0, 1},

and {R0a, R0a′} = {0, 0} follow the same arguments. Let R0a = 1 and R0a′ = 0. By equation

(38)

θ̂aa′ = F̂ (R0 + ea′)− F̂ (R0)− F̂ (R0 − ea + ea′) + F̂ (R0 − ea)

= θa′ +
∑

a′′∈A1∪a

θa′′a′ − θa′ −
∑

a′′∈A1

θa′′a′ + ε∗

= θaa′ + ε∗ (45)

18

where ε∗ is a linear combination of error terms. Equation (45) shows that θ̂aa′ is not a function

of R0. Thus, taking expectations on both sides gives

E
[
θ̂aa′

]
= θaa′ .

Unbiasedness of θ̄n
aa′ follows by induction. �

4.3 Piecewise Linear Approximation and Aggregation

Another tool to incorporate non-separable effects in the VFA is aggregation. Aggregation

means that the set A is partitioned into groups A1,A2, ...,AK and that these groups are used

in the VFA in a useful way. It is important to make clear that aggregation applies only to the

VFA. We do not aggregate data elements such as failure probabilities or congestion costs, and

we also do not aggregate purchasing decisions. The simulation of the system does not change

and the optimization is affected only in so far as the VFA now has a different form.

Using the partition ofA we define the aggregate resource state variableRg
0 = (Rg

0k)k=1,2,...,K ,

where Rg
0k denotes the number of spares in group k. Formally, we have

Rg
0k =

∑
a∈Ak

R0a. (46)

Using the aggregate resource state variable we introduce the aggregate VFA component

V̄ g
0 (Rg

0). The key advantage of aggregation is that V̄ g
0 (Rg

0) can consist of nonlinear functions

which allow us to capture the declining marginal value of spares in a group. If, for example,

a group corresponds to a location then the aggregate VFA component can capture the fact

that the first spare in a location is worth more than the second one which is worth more than

the third and so forth.

We use piecewise linear, convex functions to approximate value functions of spares at an

aggregated level. The usefulness of piecewise linear functions in VFAs was first documented

in Godfrey & Powell (2001) and Godfrey & Powell (2002). Figure 5 illustrates the VFA with

piecewise linear components. Note that the VFA contains both linear terms on the disaggre-

gate level (i.e. the bank level) and aggregate piecewise linear terms. The existence of aggregate

19

01 0()gR x

01
gV

01R

01δ

02 0()gR x

02
gV

02R

02δ

03R

03δ

04R

04δ

05R

05δ

Figure 5: VFA with nonlinear components. The arcs on the left represent the purchasing
decisions. The arcs in the middle are linear value function terms on the disaggregate level; on
the right are piecewise linear aggregate VFA terms for every group.

and disaggregate VFA components comes from the fact that under the aggregation paradigm

we look at the marginal value of a spare transformer, va, as containing two components. We

can write for a ∈ Ak: va = vg
k + δa. One value component, vg

k, is derived from the group level

and the other, δa, is a correction term that differentiates spares in a group. Of course, none

of these values is known, so we set out to describe how they can be estimated.

We define

ykr = the flow on the rth segment of the piecewise linear function

of group k,

v̄g
kr = estimate of the slope of the rth segment of the piecewise

linear function of group k,

δ̄a = slope of the disaggregate VFA term a.

The approximate problem is to find

min
x0

∑
a∈A

∑
d∈Dbuy

c0adx0ad +
∑
a∈A

δ̄aR0a +
K∑

k=1

|Ak|−1∑
r=0

v̄g
krykr

 (47)

20

subject to:

∑
a∈Ak

R0a −
|Ak|−1∑

r=0

ykr = 0 ∀ k (48)

0 ≤ ykr ≤ 1 ∀ r,k (49)

x0 ∈ X ′0 (50)

where X ′0 is the feasible region defined by (11)-(13). Note that the double sum in (47) is the

aggregate VFA component V̄ g
0 (Rg

0) and that (48) ensures flow conservation in the aggregate

nodes.

The raw materials for the estimation of VFA slopes are the left and right sample gradients

as defined in equations (21) and (22). The right gradient can be calculated if Rn
0a is 0, the left

gradient if Rn
0a is 1. We define the sample gradient on the group level as:

v̂g,right,n
k = min

a∈A,Rn
0a=0

v̂right,n
a (51)

v̂g,left,n
k = min

a∈A,Rn
0a=1

v̂left,n
a . (52)

The aggregate gradients are the minimum of the left and right gradients in the group. We

find that using the minimum function to aggregate sample gradients produces much better

solutions than using simple averages. Now we can calculate the sample correction terms δ̂n
a as

the difference between the disaggregate sample gradient and the aggregate sample gradient:

δ̂n
a =

{
v̂right,n

a − v̂g,right,n
k , if a ∈ Ak and Rn

0a = 0

v̂left,n
a − v̂g,left,n

k , if a ∈ Ak and Rn
0a = 1.

(53)

It remains to be shown how to use v̂g,right,n
k , v̂g,left,n

k , and δ̂n
a to update their respective VFA

terms. The update of δ̄n−1
a follows the usual scheme

δ̄n
a = (1− αn−1)δ̄n−1

a + αn−1δ̂
n
a . (54)

Updating the piecewise linear VFA components V̄ g
0k(Rg

0k) requires a more involved proce-

dure. Godfrey & Powell (2001), Topaloglu & Powell (2003), and Powell et al. (2004) propose

21

different methods. Common to all methods is a preliminary step where v̂g,left,n
k is used to

update the slope to the left of Rgn
0k and v̂g,right,n

k is used to update the slope to the right of

Rgn
0k . The formula for this preliminary step is

un
kr =


(1− αn−1)v̄g,n−1

kr + αn−1v̂
g,right,n
k if r = Rgn

0k ,

(1− αn−1)v̄g,n−1
kr + αn−1v̂

g,left,n
k if r = Rgn

0k − 1,

v̄g,n−1
kr otherwise.

(55)

Now we would be done except that the updated estimate might not be convex and a

procedure to restore convexity is needed. We follow the SPAR algorithm of Powell et al. (2004)

for concave functions and apply it to our convex case. This method restores convexity by

projecting the updated estimate of the slopes onto the space of monotone increasing functions.

The projection operation is an optimization problem of the form

min
v̄gn

k

‖ v̄gn
k − u

n
k ‖2 (56)

subject to:

v̄gn
k,r+1 − v̄

gn
kr ≥ 0 (57)

which is easily solved since it involves simply averaging slopes around Rgn
0k .

0 321

, 1
1
g n
kv

−

, 1
0
g n
kv

−

, 1
2
g n
kv

−

, 1
3
g n
kv

−

r
0 321

r 0
gn
kR

0 321

1 2,
gn gn
k kv v

0
gn
kv

3
gn
kv

r 0
gn
kR

1
n
ku

0
n
ku
2
n
ku

3
n
ku

Figure 6: Illustration of SPAR with a convexity violation to the left of Rgn
0k = 3. The original

VFA is on the left, the intermediate update in the middle, and the result of the projection on
the right. The functions represent the slopes of the piecewise linear VFA term of group k.

22

Step 0 Initialize V̄ 0
0 and set n = 1.

Step 1 Solve (47)-(50). If n = N + 1 stop. xN+1
0 is the solution.

Step 2a Sample Ŵ1(ωn) and determine gradients:

v̂right,n = (v̂right,n
a)a∈A,Rn

0a=0

v̂left,n = (v̂left,n
a)a∈A,Rn

0a=1

as defined in (21) and (22)

Step 2b Determine:

v̂g,right,n = (v̂g,right,n
k)k=1,2,..,K,Rgn

0k <|Ak|

v̂g,left,n = (v̂g,left,n
k)k=1,2,...,K,Rgn

0k >0

δ̂n = (δ̂n
a)a∈A

as defined in (51), (52), and (53) respectively.

Step 3a For every k = 1, 2, ...,K calculate vector un
k = (un

kr)r<|Ak| as in (55).

Step 3b For every k project un
k onto the space of monotone functions to get v̄gn

k = (v̄gn
kr)r<|Ak| using (56)-(57).

Step 3c Calculate δ̄n = (δ̄n
a)a∈A as in (54).

Set n = n+ 1 and go to Step 1.

Figure 7: ADP algorithm for the spare allocation problem with aggregation.

Figure 6 shows the steps of the SPAR algorithm for a convexity violation to the left

of Rgn
0k = 3. Figure 7 shows the steps of the ADP algorithm with piecewise linear VFA

components and aggregation.

5 Experimental Design

This section describes the setup of the numerical experiments that we perform to evaluate

the presented ADP algorithms and to analyze the PJM system. We are interested in the

solution quality produced by four different value function approximations. We study the

linear approximation of section 4.1 (abbreviated LINEAR), the quadratic approximation of

section 4.2 (QUAD) and the piecewise linear approximation of section 4.3 with two different

aggregations. We choose to aggregate by transmission owner (PLTO) and by location (PLLO).

These are the two most natural aggregations and they differ in a key point. The aggregation

by transmission owner requires a mechanism to allocate spares within each group. When

23

aggregating by location the allocation within a group is not important because transfer costs

to and from all the banks in a location are identical.

5.1 The p-Median Problem as Reference Solution

How to measure solution quality is a subtle and interesting point in this research. There is

a classic deterministic discrete location problem - the p-median problem - that serves very

well as a standard to compare against. In fact, with some restrictions our problem reduces

to a generalized p-median problem. Since p-median problems of the size encountered in this

research can be easily solved using commercial optimization software we are able to find

the optimal solution for these simplified problem instances. In these cases the goal for our

algorithms is to come close to optimal. In the cases where a problem instance violates p-

median assumptions we would expect to outperform the reference solution in some systematic

way or at least in most cases.

We refer the reader to Mirchandani (1990) and Labbé et al. (1995) for a detailed presen-

tation of the p-median problem. It aims to optimally locate p facilities among a discrete set

of possible locations. The facilities are used to satisfy demand in a discrete set of demand

locations. The objective is to minimize the total sum of transportation costs between facilities

and demand locations. At first sight the p-median problem looks very similar to the spare

transformer problem. A closer look reveals the differences.

The facilities in the p-median problem are assumed to have infinite capacity and therefore

demand is always satisfied and it is always satisfied from the “closest” facility (i.e. the one

with the lowest transportation costs).

This is clearly not the case in our problem. If there is a failure and the closest spare is

otherwise in use our model attempts to get the next closest spare. If there are more failures

than spares then failures are left unmet. If there is a spare available to meet a failure but

the transfer is not economical the failure is also left unmet. These are the three most obvious

differences to the p-median problem.

We can convert our problem to a p-median problem by assuming there is at most one

24

failure and the congestion costs at a failure location always outweigh the transfer costs of a

spare to that location. Making these assumptions puts us in the position to obtain optimal

solutions for interesting instances of our problem.

5.2 Test Data Sets

Table 1 describes all the data sets used in the experiments. The data sets are meant to

comprise an interesting mix of data characteristics. Data sets with the prefix MU include all

71 of PJM’s transformer banks in 42 substation locations. That means there are locations with

multiple banks. Data sets with the prefix SI include 42 banks in 42 locations. All locations

have a single bank.

Data sets MU1, MU2, SI1, SI2, and SI3 are used for testing the solution quality. The

others are used in the study of section 6.3. Among the five data sets used for testing MU1,

SI1 and SI2 assume a single transformer failure and our model is in this case equivalent to

the corresponding p-median problem. Data sets MU2 and SI3 allow for multiple independent

failures and we would expect to outperform the reference solutions in these cases. In all

five data sets we use hazard rate functions estimated by PJM (Chen & Egan (2006)) to

determine transformer failure probabilities. The failure probability of a transformer depends

on its age and its maintenance status which can be “good”, “average”, or “watch”. We obtain

bank failure probabilities from individual transformer failure probabilities by calculating the

probability of the event that “at least one transformer in the bank fails” over the period of

one year.

For the experiments, the inventory holding cost is 0. We also assume a single transformer

manufacturer and a fixed transformer purchase price of $5 million. This leaves the parameter

c1ad for d ∈ Dmove to be considered. The corresponding decision x1ad for d ∈ Dmove implies that

a spare is moved to a failure site and used to cover a failure. Thus, the cost parameter for that

decision is the transfer cost minus the one-year congestion cost. The former is incurred due

to the movement of the spare. The latter represents the benefit of avoided system congestion.

25

Name
No.

Banks
No.
Loc.

Shared
Spares

Failure
Gener.

Exp.
No.

Failures

Transp.
Cost

(millions)

Transfer
Time

(years)

Cong.
Cost

Model

Cong.
Cost
(107)

min: 0.16
MU1* 71 42 Yes Single 1 n.a. med: 0.26 n.a. med: 22.24

max: 0.43
min: 0.01 Uniform

MU2 71 42 Yes Indep. 5.2 n.a. med: 0.24 between 12 med: 24.49
max: 0.63 and 32

min: 0.23 min: 0.16
MU3 71 42 Yes Indep. 2.7 med: 1.69 med: 0.26 n.a. med: 22.24

max: 3.45 max: 0.43
min: 0.23 min: 0.16

MU4 71 42 No Indep. 2.7 med: 1.03 med: 0.26 n.a. med: 22.24
max: 2.15 max: 0.43
min: 0.23 min: 0.16

MU5 71 42 Yes Indep. 4.1 med: 1.69 med: 0.26 n.a. med: 33.36
max: 3.45 max: 0.43
min: 0.23 min: 0.09

MU6 71 42 Yes Indep. 2.7 med: 1.69 med: 0.19 n.a. med: 22.24
max: 3.45 max: 0.36

min: 0.01
SI1* 42 42 Yes Single 1 n.a. med: 0.37 n.a. med: 22.1

max: 0.98
min: 0.25

SI2* 42 42 Yes Single 1 n.a. med: 0.25 n.a. med: 22.1
max: 0.25
min: 0.01 Uniform

SI3 42 42 Yes Indep. 2.6 n.a. med: 0.24 between 12 med: 23.76
max: 0.63 and 32

Table 1: Data sets used for solution quality assessment.
* Equivalent to the corresponding p-median problem.

We use two different scenarios for the congestion cost. One scenario consists of congestion

costs provided by PJM. In these cases we do not need a congestion cost model (denoted by n.a.

in Table 1). Of course we wish to show that our methods work for more than one congestion

cost scenario. The second scenario uses randomly generated congestion costs. The median

congestion cost of the two scenarios are very close. But otherwise the two scenarios are very

different. The real data has high variance and is skewed with a number of outliers that have

very high congestion cost. The randomly generated data - coming from a uniform distribution

- is much smoother.

The transfer cost contains two components, a) a transportation cost which is the cost to

effect the physical movement of the spare and b) a congestion cost component that accounts

for the system congestion while the spare is being transferred. The transfer time represents

26

the time it takes to organize and execute the spare movement. During the transfer time the

failure that initiated the spare movement is left unmet. If the transfer time is, for example,

three months then the transfer cost would include one quarter of the one-year congestion cost

at the destination location.

In reality little more than anecdotal evidence on actual transfer times is available. This is

why we need a model to generate artificial transfer times. We use different models. Sometimes

transfer times are multiples of the distance between locations, sometimes they are fixed, and

sometimes they have a fixed component and a linear variable component in the distance.

The location of the spares becomes more important as the variability in the transfer times

increases. Thus the purely variable case makes for good test cases for our algorithms.

The data sets that are used for the solution quality assessment are set up such that a

failure is always met with a spare if a spare is available. In this case the avoided congestion

cost is constant for a given sample realization and number of spares. It is therefore legiti-

mate to remove the avoided congestion costs from the objective function when evaluating two

competing solutions. By evaluating only the transfer cost we can get a sharper picture of the

relative solution quality than by looking at the entire objective function that includes large

constant avoided congestion cost terms.

5.3 Algorithm Tuning

ADP algorithms would not work well without parameters that ensure a good learning behavior.

The step sizes, αn−1, and the number of training iterations, N , are the most important

parameters.

Figure 8 shows how the average solution quality changes with the number of training

iterations for different problem instances using the PLLO algorithm. To obtain the graph we

ran the algorithm for each instance and periodically evaluated the solution of the approximate

problem. The evaluation of a solution is performed in slightly different ways. If the sample

space is easily enumerable (as in our single failure experiments) then the evaluation uses

all the scenarios and their probabilities to calculate the expectation of the relevant second

27

0 500 1000 1500 2000 2500 3000
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

iterations

co
st

 r
at

io

Influence of Training Period on Solution Quality

SI3 - 12 Spares
SI3 - 4 Spares
SI1 - 8 Spares
MU2 - 12 Spares
MU2 - 8 Spares
MU2 - 4 Spares

Figure 8: Average solution quality as a function of the number of training iterations for
different problem instances using the PLLO algorithm. Each line is an average of 5 different
sample paths where each sample path (ω1, ω2, ..., ω3000) contains one sample for each iteration.
The expected transfer cost is evaluated in increments of 50 iterations and divided by the
expected transfer cost of the corresponding p-median solution to obtain the cost ratio.

stage costs. If the sample space is not enumerable we use 3000 randomly drawn, and equally

weighted failure scenarios to approximate the expectation. The graphs in figure 8 show the

cost ratio which is the quality of the PLLO solution divided by the quality of the corresponding

p-median solution.

We see that the convergence behavior varies considerably across instances. For data set

SI3 with four spares (SI3 - 4 Spares), for example, the solution quality improves and stabilizes

within about 500 iterations. SI1 - 8 Spares on the other hand has much slower improvement

and the solution quality also varies considerably until around iteration 2700. Given the vari-

ation in convergence behavior it is appropriate to customize the number of training iterations

to each problem instance. In order to do so we run PLLO for each problem instance for

multiples of 500 iterations and pick N for which the average solution quality is best. Tables

3 in section 6.1 and 5 in section 6.2 show the results of this analysis.

28

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-1.07

-1.065

-1.06

-1.055

-1.05

-1.045

-1.04

-1.035

-1.03

-1.025

-1.02
x 10

4

iterations

ex
p.

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

PLLO and QUAD Convergence Behavior

PLLO
QUAD

Figure 9: An example of the convergence behavior of QUAD and PLLO (data set MU3, 10
spares).

Run time considerations prevent us from using more than 600 iterations for QUAD which

is adequate according to our empirical tests.

Since convergence is key in ADP algorithms we have chosen the step size rules with great

care based on extensive experimental testing. For QUAD we use the quickly decreasing step

sizes αn−1 = 1
n

and for LINEAR, PLTO, and PLLO we choose αn−1 = 5
4+n

which produces

step sizes that decline more slowly.

As figure 8 suggests ADP algorithms do not continuously improve over the training period.

For PLLO this characteristic is manageable and obtaining a very good solution is typical. This

is not the case for QUAD. Figure 9 shows by example that PLLO converges more uniformly

than QUAD. In the example QUAD finds a reasonable solution right around iteration 600

but does not systematically converge to it. This issue needs to be addressed in order to

ensure satisfactory solution quality. We employ the simplest possible fix: QUAD periodically

evaluates the solution of the approximate problem and remembers the best solution over the

course of the algorithm.

29

QUAD can suffer from excessive run times if the first stage MIP happens to be a difficult

problem instance. To address this we cannot rely on MIP warm starts as they are not nearly

as effective as LP warm starts. Instead we set a time limit of 17 seconds for the first stage

MIP. Every 50 iterations we increase the limit to 60 seconds for one iteration to increase the

chances of getting an optimal solution. Fortunately, the run time limit on the first stage MIP

does not appear to lead to a deterioration of the solution quality.

6 Numerical Results

This section presents the results of three different types of experiments. In section 6.1 we

carefully study the solution quality of different VFAs for data sets where the p-median solution

is optimal (MU1, SI1, SI2). The goal is to show that our algorithms provide consistently

near-optimal solutions. Section 6.2 contains results for more realistic data sets where the p-

median solution is not necessarily optimal (MU2, SI3). We wish to show that our algorithms

outperforms the reference solution when it is not optimal. Section 6.3 investigates spare

transformer allocation issues of practical interest using data sets MU3 - MU6.

6.1 Solution Quality when the Optimal Solution Is Known

Table 2 shows the experimental results for problem instances where p-median is optimal. We

ran each algorithm for each data set varying the number of transformer spares. The solutions

are evaluated as described in section 5.3. r is the cost ratio which is defined as

r =
expected transfer cost of ADP solution

expected transfer cost of p-median solution
.

N gives the number of training iterations and s the average run time in seconds. The entries

in the r and s columns are averages over five different sample paths (ω1, ω2, ..., ωN).

LINEAR works very well in cases with one bank per location. Its bad performance for

cases with multiple banks reflects the bunching issue analyzed in section 4.1. PLTO does

address the bunching problem to a degree but shows sometimes poor performance when the

number of spares is large.

30

LINEAR PLTO QUAD PLLO
Data
Set

No.
Spares r N s r N s r N s r N s

MU1 1 1.00 500 271 1.00 500 168 1.00 100 1041 1.00 500 168
4 1.30 2000 646 1.05 2000 632 1.02 400 4195 1.00 1500 486
8 1.76 2000 645 1.15 2000 634 1.04 400 4473 1.00 2000 651

SI1 1 1.00 500 42 1.00 500 41 1.00 100 166 1.00 500 42
4 1.02 2000 161 1.07 2000 158 1.08 600 1121 1.02 1000 82
8 1.04 2000 159 1.42 2000 159 1.14 600 2055 1.01 3000 242

SI2 1 1.01 500 40 1.01 500 158 1.01 100 161 1.01 500 41
4 1.01 2000 161 1.04 2000 158 1.01 400 654 1.00 1500 121
8 1.02 2000 160 1.16 2000 158 1.02 400 651 1.00 3000 241

Table 2: Solution quality and computational effort for instances where p-median is optimal.
r is the ratio of the transfer cost of the ADP solution to the transfer cost of the p-median
solution, N is the number of iterations, and s is the elapsed time in seconds. r and s are
averages with sample size 5. Runs are measured on a single processor (Intel P4), 3.06 GHz
machine.

QUAD on the other hand produces generally good solutions even though the run times

for the larger instances (MU1) are fairly high. PLLO provides excellent solutions and shows

good run-time behavior. The cost ratio is always within 2% of the optimal and the largest

instance solves in less than 11minutes.

Iterations Run Time
Data
Set

No.
Spares 500 1000 1500 2000 2500 3000 s/500it

MU1 1 1.00 1.00 1.00 1.00 1.00 1.00 166
4 1.03 1.01 1.00 1.00 1.00 1.01 164
8 1.06 1.04 1.03 1.00 1.01 1.01 161

SI1 1 1.00 1.00 1.00 1.00 1.00 1.00 41
4 1.04 1.02 1.03 1.02 1.02 1.02 40
8 1.09 1.06 1.03 1.04 1.04 1.01 40

SI2 1 1.01 1.01 1.01 1.01 1.01 1.01 40
4 1.02 1.02 1.00 1.01 1.00 1.01 40
8 1.07 1.04 1.02 1.02 1.02 1.00 40

Table 3: Average solution quality (cost ratio) of PLLO for multiples of 500 iterations and
computational effort in seconds per 500 iterations.

Table 3 quantifies the trade off between run time and solution quality for PLLO. We also

use these results to pick the best number of training iterations for PLLO as described in

31

section 5.3. This table shows the run times per 500 iterations. Technically, this is an average

run time but for each problem instance the run times per 500 iterations is nearly constant. We

see that 500 iterations are always enough to bring the solution quality within 10 percentage

points of the best achievable value. The rest of the iterations is spent closing this gap.

6.2 Solution Quality when the Optimal Solution Is Unknown

Table 4 shows the experimental results for problem instances where p-median is not necessarily

optimal.

LINEAR PLTO QUAD PLLO
Data
Set

No.
Spares r N s r N s r N s r N s

MU2 1 0.96 500 173 0.96 500 171 0.96 100 1283 0.96 500 203
4 0.91 2000 686 0.90 2000 669 0.89 400 13322 0.89 1000 371
8 1.11 2000 661 0.94 2000 663 0.98 400 12690 0.93 2000 688
12 1.50 2000 664 1.10 2000 653 1.04 600 19571 0.96 2500 854

SI3 1 1.00 500 43 1.00 500 42 1.00 100 287 0.99 500 60
4 0.94 2000 167 0.98 2000 161 0.99 400 1872 0.94 500 60
8 0.92 2000 168 1.11 2000 161 1.01 400 1781 0.92 2000 179
12 1.03 2000 164 1.51 2000 160 1.10 400 2699 1.01 3000 260

Table 4: Solution quality and computational effort for instances where p-median is not optimal.
r is the cost ratio, N is the number of iterations, and s is the elapsed time in seconds. r and
s are averages with sample size 5.

This table documents the problem with QUAD which are the excessive run times for most

runs with data set MU2. PLLO is again the best algorithm, outperforming the p-median

solution almost always and by as much as 11%. PLLO solves instance SI3 - 12 Spares in

less than 5 minutes and MU2 - 12 Spares in less than 15 minutes which indicates that the

algorithm could also handle problems with more locations.

Table 5 shows the results of the convergence analysis. We see that 500 iterations are

enough to bring the solution quality within 4 percentage points of the best achievable value.

32

Iterations Run Time
Data
Set

No.
Spares 500 1000 1500 2000 2500 3000 s/500it

MU2 1 0.96 0.96 0.96 0.96 0.96 0.96 172
4 0.90 0.89 0.89 0.89 0.89 0.89 169
8 0.94 0.93 0.93 0.92 0.93 0.93 165
12 0.99 0.97 0.96 0.96 0.95 0.95 162

SI3 1 0.99 1.00 1.00 1.00 1.00 1.00 43
4 0.94 0.94 0.94 0.94 0.94 0.94 42
8 0.98 0.93 0.93 0.92 0.92 0.92 41
12 1.05 1.02 1.02 1.03 1.03 1.01 40

Table 5: Average solution quality (cost ratio) of PLLO for multiples of 500 iterations and
computational effort in seconds per 500 iterations.

6.3 Practical Spare Allocation Issues

This section provides insights into four spare transformer allocation issues that are of interest

to transmission owners and operators. How many spares to have in order to achieve a balance

between failure risk and capital expenditures is a primary concern. We address this question

by running our model repeatedly increasing the number of spares and evaluating the solutions.

The differences in expected costs are the expected marginal values of spares.

Data sets MU3 - MU6 are used for this analysis. They lay claim to being a realistic -

in terms of failure probabilities and cost parameters - for PJM’s system. In data set MU3,

spares can be used without restrictions throughout the network. This assumption does not

always hold in practice. For example, sharing spares among the TOs that own them is not

standard practice. Spares can also have technical characteristics that make them unusable

in certain network locations. With data set MU4 we analyze the situation where spares may

not be shared among TOs. Once a spare is allocated to a TO it can only be used to address

failures in this TO’s territory. In all other respects MU4 is identical to MU3.

Ordering lead times for new transformers are also a concern in the industry. Production

capacity is limited. High demand, labor strikes, copper shortages, and other uncertain events

can push ordering lead times beyond 18 or even 24 months. In MU3 the failure probabil-

ities and the avoided congestion costs are calculated for a 12 month horizon which can be

33

Expected Marginal Values of Transformer Spares

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of Spares

$
m

ill
io

n
MU3 MU4 MU5 MU6

Figure 10: Expected marginal values of transformer spares as a function of the number of
spares. Each data point is an average over five sample paths (ω1, ω1, ..., ωN) where N = 2000.

interpreted as a 12 month ordering lead time. MU5 uses an 18 month horizon instead.

Finally, it is of interest to explore the effect of switchable spares. Any spare can be pre-

prepared for service at the substation where it is stored. Turning on such a switchable spare

is a matter of a few days. If a spare is not switchable positioning within the substation and

putting it in service can take up to one month. Data set MU3 assumes switchable spares that

take 5 days to put into service. MU6 assumes non-switchable spares which require 30 days

of preparation. It is important to stress that this distinction is only relevant for substations

with an on-site spare.

Figure 10 shows the results of the marginal value analysis. In order to determine the

optimal number of spares one looks for the point where the marginal value hits the marginal

cost of a spare. The cost of a spare has to be prorated to match the one year time horizon of

the model.

As would be expected, the sharing of spares (MU3 vs. MU4) has a strong impact on the

34

optimal number. Assuming a marginal cost of $1 million the optimal number is 8 with sharing

and between 14 and 15 without. If the marginal cost is $500, 000 the numbers are 14 and

18 respectively. The relative effect of transformer sharing decreases as the marginal cost go

down.

Comparing MU3 with MU5 we see that the effect of the ordering lead time on the optimal

number is relatively small and also shrinks as the marginal cost decreases. If the marginal

cost is $1 million/$1.5 million for MU3/MU5 the optimal number is 8 for MU3 and between

9 and 10 for MU5. If the marginal cost is $500, 000/$750, 000 then the optimal number is

approximately 14 for MU3 and 15 for MU5.

The curve for MU3 dominates the curve for MU6. That means that if spares are switchable

the optimal number increases. The intuitive interpretation of this behavior is that with

switchable spares it is very desirable to have an on-site spare as opposed to bringing in an off-

site spare. With additional spares the model can potentially grab more of the on-site/off-site

transfer cost difference. Since this difference is big if spares are switchable it can justify more

spares.

7 Conclusions and Further Research

In this paper we have introduced a two-stage spare transformer allocation model. Current

technology is far from being able to solve large realistic instances of this problem exactly. We

use an ADP approach to solve the model approximately and observe that VFAs are needed that

can take into account the non-separable behavior of the true value function. We introduce

two such VFAs and test the obtainable solution quality. PLLO is the best algorithm. It

consistently produces very good solutions and solves very efficiently. We show that the model

can be used to answer spare transformer allocation questions of practical interest.

A useful extension of this research is the introduction of multi-period models that reflect

the true dynamic nature of high-voltage transformer management. They could be used to

model the transformer population and the electric grid as they change over time and answer

questions about the timing of transformer purchases and replacements, spare deployment

35

policies, and many others. The performance characteristics of the algorithm used in this

paper are so good that it would be a suitable algorithmic starting point for the richer and

larger multi-period transformer management models.

36

References

Bertsekas, D. & Tsitsiklis, J. (1996), Neuro-Dynamic Programming, Athena Scientific, Bel-
mont, MA. 2

Birge, J. & Louveaux, F. (1997), Introduction to Stochastic Programming, Springer-Verlag,
New York. 2

Chen, Q. M. & Egan, D. M. (2006), ‘A bayesian method for transformer life estimation using
perks’ hazard function’, IEEE Transactions on Power Systems 21(4), 1954–1965. 25

Chowdhury, A. A. & Koval, D. O. (2005), ‘Development of probabilistic models for com-
puting optimal distribution substation spare transformers’, IEEE Transactions on Industry
Applications 41(6), 1493–1498. 3

Godfrey, G. & Powell, W. B. (2002), ‘An adaptive, dynamic programming algorithm for
stochastic resource allocation problems I: Single period travel times’, Transportation Science
36(1), 21–39. 3, 19

Godfrey, G. A. & Powell, W. B. (2001), ‘An adaptive, distribution-free approximation for the
newsvendor problem with censored demands, with applications to inventory and distribution
problems’, Management Science 47(8), 1101–1112. 19, 21

Helmberg, C. (2000), Semidefinite programming for combinatorial optimization, Technical
report, Konrad-Zuse-Zentrum fuer Informationstechnik Berlin, Berlin. 15

Kall, P. & Wallace, S. (1994), Stochastic Programming, John Wiley & Sons, New York. 2

Kogan, V. I., Roeger, C. J. & Tipton, D. E. (1996), ‘Substation distribution transformers
failures and spares’, IEEE Transactions on Power Systems 11(4), 1905–1912. 3

Labbé, M., Peeters, D. & Thisse, J.-F. (1995), Location on networks, in M. Ball, T. L.
Magnanti, C. L. Monma & G. L. Nemhauser, eds, ‘Handbooks in Operations research and
Management Science: Network Routing’, Elsevier, Amsterdam. 3, 24

Laporte, G., Louveaux, F. V. & van Hamme, L. (1994), ‘Excact solution to a location problem
with stochastic demands’, Transportation Science 28(2), 95–103. 2, 7

Li, W., Vaahedi, E. & Mansour, Y. (1999), ‘Determining number and timing of substation
spare transformers using a probabilistic cost analysis approach’, IEEE Transactions on
Power Delivery 14(3), 934–939. 3

Louveaux, F. V. & Peeters, D. (1992), ‘A dual-based procedure for stochastic facility location’,
Operations Research 40(3), 564–573. 2, 7

Mirchandani, P. B. (1990), The p-median problem and generalizations, in P. B. Mirchandani
& R. L. Francis, eds, ‘Discrete Location Theory’, Wiley, New York. 3, 24

Ntaimo, L. & Sen, S. (2005), ‘The million-variable ”march” for stochastic combinatorial opti-
mization’, Journal of Global Optimization 32, 385–400. 2, 3, 7

Powell, W. B. (2007), Approximate Dynamic Programming: Solving the curses of dimension-
ality, John Wiley and Sons, New York. 8

37

Powell, W. B. & Topaloglu, H. (2004), Fleet management, in S. Wallace & W. Ziemba, eds,
‘Applications of Stochastic Programming’, Math Programming Society - SIAM Series in
Optimization, Philadelphia. 3

Powell, W. B. & Van Roy, B. (2004), Approximate dynamic programming for high dimensional
resource allocation problems, in J. Si, A. G. Barto, W. B. Powell & D. W. II, eds, ‘Handbook
of Learning and Approximate Dynamic Programming’, IEEE Press, New York. 8

Powell, W. B., George, A., Bouzaiene-Ayari, B. & Simao, H. (2005), Approximate dynamic
programming for high dimensional resource allocation problems, in ‘Proceedings of the
IJCNN’, IEEE Press, New York. 2

Powell, W. B., Ruszczyński, A. & Topaloglu, H. (2004), ‘Learning algorithms for separable
approximations of stochastic optimization problems’, Mathematics of Operations Research
29(4), 814–836. 3, 21, 22

Powell, W. B., Shapiro, J. A. & Simão, H. P. (2002), ‘An adaptive dynamic program-
ming algorithm for the heterogeneous resource allocation problem’, Transportation Science
36(2), 231–249. 8, 11

Puterman, M. L. (1994), Markov Decision Processes, John Wiley & Sons, New York. 8

Sen, S. (2005), Algorithms for stochastic mixed-integer programming models, in K. Aardal,
G. L. Nemhauser & R. Weismantel, eds, ‘Handbooks in Operations Research and Manage-
ment Science: Discrete Optimization’, North Holland, Amsterdam. 2

Topaloglu, H. (2001), Dynamic programming approximations for dynamic programming prob-
lems, Ph.d. dissertation, Department of Operations Research and Financial Engineering,
Princeton University. 3

Topaloglu, H. & Powell, W. B. (2003), ‘An algorithm for approximating piecewise linear
concave functions from sample gradients’, Operations Research Letters 31(1), 66–76. 21

Topaloglu, H. & Powell, W. B. (2006), ‘Dynamic programming approximations for stochas-
tic, time-staged integer multicommodity flow problems’, Informs Journal on Computing
18(1), 31–42. 2, 3, 8

38

	Introduction
	Model Formulation
	Basic Algorithm
	Value Function Approximations
	Linear Approximation
	Quadratic Approximation
	Piecewise Linear Approximation and Aggregation

	Experimental Design
	The p-Median Problem as Reference Solution
	Test Data Sets
	Algorithm Tuning

	Numerical Results
	Solution Quality when the Optimal Solution Is Known
	Solution Quality when the Optimal Solution Is Unknown
	Practical Spare Allocation Issues

	Conclusions and Further Research

