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Abstract

We present a new technique for adaptively choosing the sequence of molecular compounds to
test in drug discovery. Beginning with a base compound, we consider the problem of searching for
a chemical derivative of this molecule that best treats a given disease. The problem of choosing
the molecules to test to maximize the expected quality of the best compound discovered may
be formulated mathematically as a ranking and selection problem, in which each molecule is an
alternative. We apply a recently developed algorithm, known as the knowledge-gradient algorithm.
This algorithm uses correlations in our Bayesian prior belief between the performance of different
alternatives (molecules) to dramatically reduce the number of molecular tests required, but has
heavy computational requirements that limit the number of alternatives that can be considered
to a few thousand. We develop computational improvements that allow the knowledge-gradient
method to consider much larger sets of alternatives, and demonstrate the method on a problem
with 87120 alternatives.

1 Introduction

Ewing’s sarcoma is a pediatric bone cancer primarily affecting adolescents. It has the least

favorable prognosis of all primary musculoskeletal tumors (Iwamoto 2007), with an overall 5-

year survival rate of 58%, and with only 18-30% of those children presenting metastatic disease at

diagnosis surviving beyond this 5 year period. Current treatment usually consists of chemotherapy

followed by surgery or radiation therapy, often causing damaging side effects. While the impact

of the disease is mitigated by its relatively rarity, with approximately 200 cases diagnosed in the

United States each year (Ries et al. 1999), this rarity limits funding for research that might lead

to better treatments more quickly.

A medical research group led by Professor Jeffrey Toretsky at the Lombardi Cancer Center

at Georgetown University has discovered a chemical compound that shows promise in treating
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Ewing’s sarcoma. If successful as a drug, this compound would improve the patients’ prognosis and

avoid many of the side effects caused by chemotherapy and radiation. This compound operates

by preventing two proteins, RNA Helicase and EWS-FLI, from binding with each other, thus

stopping the spread of the disease. The research group is now searching for variations of this

compound that could block binding with even greater efficiency. Such searches are common in

drug discovery, where medical researchers often begin with a single molecule or small group of

molecules that show some promise for treating a disease, and then test many variations of those

molecules to find one that produces the best results.

Variations on a compound are obtained by substituting atoms or groups of atoms at certain

locations (sites) on the original chemical molecule with other atoms or groups of atoms (sub-

stituents) in order to improve the performance of the molecule in treating the disease. The

number of possible variations increases exponentially in the number of sites and substituents,

and therefore the number of candidate compounds is usually extremely large. Synthesizing and

testing a compound may require several days’ work and a significant investment of lab materials,

which strictly limits the number of tests that a research team can perform. A critical problem

is therefore deciding which compounds should be tested in order to most accurately and quickly

find compounds with good disease-treating ability.

The problem of deciding which compounds to evaluate can be modeled mathematically as

a ranking and selection problem. In this problem, we have a budget of measurements that we

allocate sequentially to alternatives (molecular compounds in our case) so that, when we finish

our experiments, we have collected the information needed to maximize our ability to find the

best alternative. In deciding which compound to measure, we may use the fact that compounds

with similar structures often have similar properties. While a vast literature exists for ranking and

selection problems in which the alternatives are treated independently, the use of structure within

the set of alternatives has received much less attention. A recent ranking and selection algorithm

that uses correlated Bayesian beliefs to take advantage of structure within the set of alternatives is

the knowledge-gradient algorithm for correlated beliefs (KGCB) (Frazier et al. (2009)). However,

the standard implementation of this algorithm requires storing and manipulating a covariance

matrix whose dimension is the number of alternatives. In drug discovery, where one commonly

has tens or hundreds of thousands of alternatives, this strategy is computationally expensive at

best and often computationally infeasible.

In this paper, we represent beliefs about molecules using a linear, additive model. We take

advantage of the structure of this model to develop two computational improvements to the

knowledge-gradient algorithm that substantially streamline the procedure. When the number of

molecules considered is large, as it almost always is during drug discovery, our new procedures

improve computation time by several orders of magnitude. These improvements allow the KGCB

algorithm to be used in applied settings for which the standard implementation is simply too
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slow to be useful. After introducing these new computation-saving procedures, we evaluate the

performance of the KGCB algorithm in a drug discovery application and compare its performance

to that of other policies. The dataset to which we apply the KGCB algorithm is a collection

of narcotic analgetics for which data is publicly available. As a result of these computational

improvements and the successful application of the KGCB method to this narcotic analgetics

dataset, the medical research team at Georgetown University is now in the initial stages of using

the KGCB algorithm to suggest which compounds to measure in their search for a treatment for

Ewing’s sarcoma.

Although we designed the implementations of KGCB algorithm in this paper for use in drug

discovery, they also may be applied to any problem in which beliefs can be approximated using a

linear additive model. Such problems include:

• Choosing the shortest path through a network. The length along a path is exactly or

approximately equal to the sum of the lengths along each link.

• Choosing members of a team in order to maximize performance. The performance of a team

is approximately equal to the sum of the contributions of each member.

• Choosing features to include in a product. Both the value of a product to a consumer, and

the cost to produce the product, are approximately equal to the sum of the values or costs

of the features included.

• Choosing a collection of advertisements to include on a webpage. The number of click-

throughs generated by a collection of advertisements is approximated by the number of

click-throughs that would be received by each ad viewed individually.

Note that in each of these examples, we may optionally model combination effects with a linear

model through terms specific to each combination.

Traditionally, there are two main approaches to ranking and selection: the frequentist ap-

proach, which is based entirely on observed data, and the Bayesian approach, which uses subjec-

tive a priori beliefs on the values of the compounds. We briefly review the Bayesian approach

here. For a more thorough review of both approaches, see Swisher et al. (2003) and Kim & Nelson

(2006).

Within the Bayesian approach, there are two main directions of research. The first is the

Optimal Computing Budget Allocation (OCBA) (see, e.g., Chen et al. (1996)), in which the

probability of correct selection is maximized and the posterior variance is reduced under the

assumption that sampling will not change the posterior means. The second considers so-called

Value of Information Procedures (VIP) (see, e.g., Chick & Inoue (2001)). VIP is similar to OCBA

in that it maximizes the improvement in a single stage’s allocation, but unlike OCBA, it considers

the change in posterior mean when estimating the improvement. One of the first contributions

in VIP is Gupta & Miescke (1996), which uses a one-step analysis under an independent normal
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prior. Under this analysis, one chooses the measurement decision that would be optimal if only

one additional sample were allowed. The independent normal case was then further analyzed by

Frazier et al. (2008), and extended to the unknown variance case by Chick et al. (2007). Frazier

et al. (2008) uses the term ‘knowledge-gradient’ to refer to this one-step approach because the

value of a single sample is the difference in implementation value between two different quantities

of knowledge – the knowledge that one has before the sample, and the knowledge that one has

after it.

The knowledge-gradient approach of Gupta & Miescke (1996) is extended to correlated nor-

mal beliefs in Frazier et al. (2009) and its KGCB algorithm. With correlated beliefs, one may

model how structural relationships between alternatives (such as those between chemically re-

lated molecules) cause the values of alternatives to relate to one another. These relationships

allow learning about multiple alternatives from just a single measurement, often resulting in a

dramatic improvement in measurement efficiency. While an abundant literature in ranking and

selection treats beliefs that are independent across alternatives, correlated beliefs have received

much less attention in that literature, and, to our knowledge, Frazier et al. (2009) is the first to

consider them. Correlated priors have a rich history, however, within the literature on Bayesian

global optimization, where Gaussian process priors model the similarity between values of a con-

tinuous function evaluated at nearby points. Then, similarly to Bayesian ranking and selection,

these beliefs are used to decide at which points to evaluate this function, with the ultimate goal

of finding the function’s global maximum. See Sasena (2002) for a review.

Preceding any Bayesian ranking and selection algorithm for drug discovery must be a prior

belief on the values of the candidate compounds. Several such priors have been developed in

the medicinal chemistry literature, where the collection of statistical models that predict biolog-

ical activity from chemical structure are known collectively as Quantitative Structure Activity

Relationship (QSAR) models. In our case, the biological activity of interest is the compound’s

ability to treat a disease, as measured in a laboratory test. Examples of such laboratory tests

would include those that test a compound’s ability to kill diseased cells, or to inhibit a protein

interaction believed to be critical to the disease’s progression.

The first attempt to quantify relationships between biological activity and chemical structure

dates to 1868, when Crum-Brown and Fraser published the first formulation of a quantitative rela-

tionship between ‘physiological activity’ and ‘chemical structure’ (Crum-Brown & Fraser (1868)).

The modern origins of the field lie in the Free-Wilson model (Free & Wilson (1964)) and the

Hansch Analysis (Hansch & Fujita (1964)). In both methods, multiple linear regression is used to

correlate activity on a laboratory test with a collection of compound features. In the Free-Wilson

model these features are indicator variables indicating the presence or absence of substituents

at given sites, and in the Hansch Analysis these features are physiochemical properties such as

molecular weight and lipophilicity. Many of the statistical methods have been applied to provide
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QSAR methods, including cluster analysis, pattern recognition, principle component analysis,

discriminant analysis, partial least squares, neural networks, and evolutionary algorithms. See

(Grover et al. (2000)) for a review.

In this paper, we consider the Free-Wilson model. The Free-Wilson model assumes that the

base molecule and each substituent contributes additively to the overall value of the compound.

This contribution is assumed to be independent of the presence or absence of other substituents.

We also consider a generalization of Free-Wilson that allows for deviations from perfect linearity.

The structure of the Free-Wilson model allows us to derive two highly efficient implementations

of the KGCB algorithm that can be used for sets of candidate compounds much larger than

can be handled by the classic algorithm. While the classic implementation manipulates a belief

on the values of the compounds, our new implementations manipulate beliefs on the underlying

contributions of the substituents at each site. Since the number of compounds is exponential

in the number of substituents per site, maintaining a belief in this way results in substantial

computational and memory savings, allowing the KGCB algorithm to be used on problems with

even hundreds of thousands of candidate compounds.

The paper is organized as follows. In section 2, we describe the ranking and selection prob-

lem considered and the models describing relationships between the structure and value of an

alternative. In Section 3 we review the classic implementation of the KGCB algorithm and in

Sections 4 and 5 we describe two computational improvements to this implementation. In Sec-

tion 6 we present the drug discovery problem and the computational and real-world performance

of the KGCB algorithm on a narcotic analgetics data set. Section 7 presents our conclusions.

2 Model

We suppose that we have M alternatives and a budget of N measurements, and we wish to

sequentially decide which alternatives to measure so that when we exhaust our budget of mea-

surements we have maximized our ability to find the best alternative. We assume that samples

from testing alternative i are normally distributed with unknown mean ϑi and known variance

λi, and conditionally independent of all other samples, given the unknown mean and the decision

to sample that alternative. We write ϑ to indicate the column vector (ϑ1, ..., ϑM )′. We further

assume that our belief about ϑ is distributed according to a multivariate normal prior with mean

vector µ0 and positive semi-definite covariance matrix Σ0,

ϑ ∼ N (µ0,Σ0).

We assume that we have a budget of N sampling decisions, x0, x1, ..., xN−1. The measurement

decision xn selects an alternative to test at time n from the set {1, ...,M}. The measurement

error εn+1 is assumed to be normally distributed εn+1 ∼ N (0, λxn) and independent conditional
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on xn. Therefore, the resulting sample observation is ŷn+1 = ϑxn + εn+1. Through experiments,

we try to learn the value of ϑ, which is assumed to be fixed throughout the duration of the trials.

We define a filtration (Fn)Nn=0 as the sequence of sigma-algebras generated by the samples

observed by time n and the identities of their originating alternatives. More explicitly, Fn is the

sigma-algebra generated by x0, ŷ1, x1, ŷ2, ..., xn−1, ŷn. We write En and Varn to indicate E [ · |Fn]

and Var [ · |Fn], the conditional expectation and variance, respectively, taken with respect to Fn.

Then define µn := En[ϑ], and Σn := Cov [ϑ|Fn]. Conditionally on Fn, our posterior belief on ϑ

is multivariate normal with mean vector µn and covariance matrix Σn.

We define Π to be the set of all possible policies satisfying our sequential requirement, that is,

Π := {(x0, ..., xN−1) : xn ∈ Fn}. We let π be a generic policy in Π and we write Eπ to indicate

the expectation taken when the policy is π.

After exhausting the budget of N measurements, we select the alternative with the highest

posterior mean. Our goal is to choose a measurement policy maximizing expected reward, which

can be written as,

sup
π∈Π

Eπ
[
max
i
µNi

]
.

We now describe how the prior mean vector µ0 and covariance matrix Σ0 are chosen according

to the Free-Wilson model. Although we apply this work to drug discovery, where we think of

“compounds,” “sites,” and “substituents,” we describe the model in the generic language of

“alternatives,” “dimensions” and “attributes.” These generic terms facilitate the observation

that the Free-Wilson model is simply a linear model whose explanatory variables are 0 or 1. To

define them, we suppose the existence of several dimensions, and state that each attribute may

be associated with only one dimension. Each alternative is obtained through a specific choice

of which single attribute, if any, is present in each dimension. In the context of drug discovery,

an alternative is a compound, a dimension is a site, and an attribute is a substituent, where we

consider the same atom or chemical group substituted at two different sites to be two different

attributes.

2.1 The Free-Wilson Model

The Free-Wilson model (Free & Wilson (1964)) assumes that each attribute contributes additively

to the value of the alternative. Denote by ai the contribution of attribute i, and by sx a vector of

0’s and 1’s, with a 1 for every attribute that is present in alternative x. Thus, sxi = 1 means that

the ith attribute is present in alternative x. We denote by ζ the value of the base alternative,

which is the alternative obtained from taking sxi = 0 over every alternative i. Let L(i) denote the

dimension associated with attribute i, and let k denote the total number of attributes. We restrict

the sx to specify at most one attribute associated with each dimension. That is, we require of

each x that
∑
i s
x
i 1{L(i)=l} ≤ 1 for each dimension l. Furthermore, we allow any sx meeting this
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specification. The Free-Wilson model assumes that each attribute contributes additively to the

value of the alternative, which may be expressed as

ϑx =
∑
i

ais
x
i + ζ.

Under this model, if we sample alternative x, having attributes given by sx1 , ..., s
x
k, the sample

value would be of the form

ŷx = a1s
x
1 + ...+ aks

x
k + ζ + ε,

where ε ∼ N (0, λx) is independent measurement noise.

We suppose that we have an independent normal prior on ζ and a1, . . . , ak. Under this prior,

the mean µi of our belief about the value of alternative i is

µ0
i = E[ζ] +

∑
m

simE[am],

and the covariance Σ0
ij between the values of alternatives i and j is

Σ0
ij = Cov(i, j) = Cov

(∑
m

ams
i
m + ζ,

∑
m′

am′sjm′ + ζ

)
= Var(ζ) +

∑
m,m′

sims
j
m′Cov(am, am′) = Var(ζ) +

∑
m∈Lij

Var(am),

where Lij = {l ∈ {1, . . . , k} | sil = sjl = 1} is the set of attributes common to alternatives i and j.

2.2 The General Model

We now generalize the Free-Wilson model, which assumes a perfectly additive structure, to allow

some deviation from perfect additivity. These deviations are specified by terms bx, with one such

term for each alternative x. The resulting model is still a linear model, but with more terms.

Under this model, the value of alternative x is

ϑx =
∑
i

ais
x
i + bx + ζ.

Under our prior, the terms b1, ..., bM are normally distributed with mean 0 and a variance σ2
b .

Additionally, they are independent of each other as well as from the ai and ζ terms. Under this

structure, the covariance Σ0
ij between the values of alternatives i and j is

Σ0
ij = Cov(i, j) = Cov

(∑
m

ams
i
m + ζ + bi,

∑
m′

am′sjm′ + ζ + bj

)
= Var(ζ) +

∑
m,m′

sims
j
m′Cov(am, am′) + σ2

b1{i=j}

= Var(ζ) +
∑
m∈Lij

Var(am) + σ2
b1{i=j}.
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Thus, under this general model, the covariance matrix of the values of the alternatives under our

prior belief is obtained by taking the covariance matrix from the Free-Wilson model and adding

σ2
b to the diagonal entries. Since E[bx] = 0 for all x, the mean µ0 of our belief about the values of

the alternatives is the same as it is under the Free-Wilson model.

We see a spectrum of behaviors from this model over different values of σ2
b . When σ2

b = 0,

the model is identical to the Free-Wilson model in Section 2.1. When σ2
b is non-zero but still

significantly smaller that Var(al), it models a situation in which the values of the alternatives

are well-approximated by an additive structure, but also understands that there may be small

deviations from it. When σ2
b is very large, and in particular much larger than the Var(al) terms,

the deviation from additivity is quite large, correlations between the alternatives are very weak,

and our belief is similar to one that is independent across alternatives.

It is in this second regime, where σ2
b is non-zero but not too large, that this general model is

likely to be most useful. It allows exploiting the additive structure of a problem to learn quickly,

while simultaneously allowing flexibility in its understanding that the alternatives’ true values

may not obey this structure perfectly.

In the third regime, where σ2
b is large, we essentially have an independent prior, and learning

the value of one alternative teaches us almost nothing about the value of the other alternatives.

This makes it very difficult to learn in situations with large numbers of alternatives, because in

order to come close to finding a good alternative, we need to make at least as many measurements

as the number of b’s. In such situations, we must either find other non-additive structure in the

problem, or resign ourselves to making a number of measurements that is larger than the number

of alternatives.

3 The Knowledge-Gradient Algorithm with Correlated Be-
liefs

The Knowledge-Gradient with Correlated Beliefs (KGCB) policy, as introduced in Frazier et al.

(2009), measures the alternative that attains the maximum in

νKG,n = max
x

En
[
max
i
µn+1
i |Sn = s, xn = x

]
−max

i
µni , (1)

where Sn := (µn,Σn) parameterizes the posterior belief at measurement n. The knowledge-

gradient (KG) factor, νKG,n, represents the incremental value obtained from measuring a partic-

ular alternative x.

After each alternative is measured, we obtain a posterior distribution on ϑ that depends on

which alternative was measured, xn, its sampled value, ŷn+1, and our belief on ϑ prior to sampling,

which is parameterized by µn and Σn. This posterior may be calculated using standard results
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for normal sampling with a multivariate normal prior (see, e.g., Gelman et al. (2004)) as

µn+1 = µn +
ŷn+1 − µnx
λx + Σnxx

Σnex,

Σn+1 = Σn − Σnexe′xΣn

λx + Σnxx
,

where ex is a column M -vector with a single 1 at index x and the rest 0s.

We now describe the time-n conditional distribution of µn+1, which allows us to compute (1).

This distribution is multivariate normal, with mean given by the tower property as En[µn+1] = µn

and covariance given by the conditional variance formula as σ̃(Σn, xn)σ̃(Σn, xn)′, where

σ̃(Σ, x) :=
Σex√

λx + Σxx
.

The details of this computation are given in Frazier et al. (2009).

Thus, the time-n conditional distribution of µn+1 is the same as that of µn+1 = µn +

σ̃(Σn, xn)Z, where Z is any independent one-dimensional standard normal random variable. This

allows us to rewrite (1) as

xKG(s) = arg max
x

E
[
max
i

(µni + σ̃i(Σn, xn)Z) |Sn, xn = x
]
−max

i
µni

= arg max
x

h(µn, σ̃(Σn, x)).

Here, h : RM × RM → R is defined by h(p, q) = E[maxi pi + qiZ] − maxi pi, where p and q are

deterministic M -vectors, and again Z is any one-dimensional standard normal random variable.

Frazier et al. (2009) provides a method for computing h(p, q), which is summarized in Algo-

rithm 3.2. This algorithm in turn uses Algorithm 3.1 in an inner loop. In Algorithm 3.2, the

components of p and q are sorted, and then some are dropped, resulting in new vectors p′ and q′

of length M ′, and a sequence c′. These quantities are then used to calculate h(p, q) via

h(p, q) =
M ′−1∑
i=1

(q′i+1 − q′i)f(−|c′i|),

where the function f is given by f(z) = ϕ(z) + zφ(z), and where ϕ is the normal cumulative
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distribution function and φ is the normal density.

Algorithm 3.1: Calculate c and the set A(Inputs : p, q)

c0 ← −∞, c1 ← +∞, A← {1}
for i← 1 to M − 1
do

ci+1 ← +∞
repeat

j ← A[end(A)]
cj ← (pj − pi+1)/(qi+1 − qj)

if length(A) 6= 1



k = A[end(A)− 1]
if cj ≤ ck,
then{
A← A(1, ..., end(A)− 1)
loopdone← false
else

loopdone← true
until loopdone
A← (A, i+ 1)

Algorithm 3.2: Compute h(Inputs : p, q)

sort (pi, qi)Mi=1 such that pi are in non-decreasing order
and ties broken such that pi ≤ pi+1 if qi = qi+1

for i← 1 to M − 1
doif qi = qi+1

then
Remove entry i from (pi, qi)Mi=1

Use algorithm 3.1 to compute c and A from p, q
p← p[A], q ← q[A], c← (c[A],+∞),M ← length(A)
return (log)

(∑M−1
i=1 (qi+1 − qi)f(−|ci|)

)

Using Algorithm 3.2, we can compute h(µn, σ̃(Σn, x)) for any vectors µn and σ̃(Σn, x) . This

then allows computing the KG factor via (1) for each alternative, the largest of which gives the

measurement decision of the KGCB policy. This is summarized in Algorithm 3.3.

Algorithm 3.3: KGCB1 Algorithm(Inputs : µn,Σn)

for x← 1 to length(µn)
do

p← µn

q ← σ̃(Σn, x)
ν ← h(p, q) % use Algorithm 3.2
if x = 1 or ν > ν∗
then

ν∗ ← ν, x∗ ← x

Within Algorithm 3.3, Algorithm 3.2 executes M times. Within one execution of Algo-

rithm 3.2, the sort has complexity O(M logM) and Algorithm 3.1 has complexity O(M). Thus,
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the most computationally demanding step within Algorithm 3.2 is the sort, and the overall com-

plexity of the KGCB algorithm as computed by Algorithm 3.3 is O(M2 logM).

In drug discovery, families of molecules often contain tens or hundreds of thousands of com-

pounds, which makes this algorithm for computing KGCB computationally infeasible. Thus,

even though we might very much wish to use the KGCB method to reduce the number of physical

measurements that need to be taken, the computational requirements of actually computing the

KGCB measurement decisions under the standard algorithm, Algorithm 3.3, preclude doing so in

most cases. The next section describes a first improvement to the standard algorithm that dra-

matically reduces the computational requirements and allows computing KGCB for large numbers

of linearly related alternatives such as those encountered in drug discovery.

4 A First Improvement

In this section, we present a first computational improvement to the standard implementation of

KGCB that exponentially reduces the computational and storage requirements of the algorithm.

The essential idea behind this improvement is to maintain a belief on the attributes themselves

instead of on the (much larger) set of alternatives. This greatly improves the efficiency of the

KGCB algorithm.

We first describe this improvement in the context of the Free-Wilson model from Section 2.1 in

Sections 4.1 and 4.2, and then we extend this improvement to the general model from Section 2.2

in Section 4.3.

4.1 Beliefs On Attributes

In this section we describe how one may maintain a belief on attributes rather than on alternatives

in the Free-Wilson model of Section 2.1.

Let α be the vector of attribute values α = (ζ, a1, ..., ak) containing the value of the base

molecule and of each substituent, where chemically identical substituents at different locations

are given different indices. We assume the linear additive model for modeling structure-value

relationships from Section 2.1 and we let X be a matrix comprised of rows representing the

alternative. Each row of X is a vector of 0’s and 1’s of the same length as α, and each 1 indicates

an attribute that is present in the alternative. The value of this attribute is the corresponding

component in α. In the context of drug discovery, this row contains a single 1 in the first entry

to indicate that the base molecule (whose value is ζ) is present, and then the subsequent entries

contains a 1 for each substituent present. Thus, this row is a 1 followed by the vector sx (defined

in Section 2.1) corresponding to the molecule x being represented. With these definitions, the

true value of the alternatives is ϑ = Xα.

Any multivariate normal belief on α induces a multivariate normal belief on ϑ. If we have a
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multivariate normal belief on α with the k+1-dimensional mean vector θ and the (k+1)× (k+1)

covariance matrix C,

α ∼ N (θ, C), (2)

we then have the mean of the values of the alternatives given by E[ϑ] = Xθ. The covariance

between the values of the alternatives is given by

Cov(ϑi, ϑj) = Cov

(∑
k

Xi
kαk,

∑
k

Xj
kαk

)
=
∑
k,k′

Xi
kX

j
k′Cov(αk, αk′) =

∑
k,k′

Xi
kX

j
k′Ck,k′

= eTi XCX
T ej ,

where ei is, as before, a column vector of length the size of our alternative database, with a 1 on

position i and zeros everywhere else. Thus, the belief induced on ϑ by (2) is

ϑ ∼ N (Xθ,XCXT ). (3)

Having described how a generic multivariate normal prior on α induces a multivariate normal

prior on ϑ, we begin with a prior on α with mean vector θ0 and covariance matrix C0. Thus, the

parameters of the induced prior on ϑ are µ0 = Xθ0 and Σ0 = XC0X ′. We similarly define θn

and Cn be the mean vector and covariance matrix, respectively, of the posterior belief on α after

n measurements. This posterior belief is also multivariate normal, and we have µn = Xθn and

Σn = XCnX ′.

There exists a recursive expression for θn and Cn that is similar to the recursive expression for

µn and Σn given in Section 3. Before providing this expression, we first introduce some additional

notation. Let x̃n = (x̃n0 ; x̃n1 ; ...; x̃nk )T be a column vector of 0s and 1s describing the alternative

xn ∈ {1, . . . ,M} that was measured at iteration n, where x̃n0 = 1 represents the presence of the

base alternative, and x̃ni is 1 for those attributes i present in alternative xn and 0 otherwise.

Additionally, define ε̂n+1 = yn+1 − (θn)T x̃n and γn = λxn + (x̃n)TCnx̃n. Then, the following

updating equations result from standard expressions for normal sampling of linear combinations

of attributes (see, e.g., Powell (2007)),

θn+1 = θn +
ε̂n+1

γn
Cnx̃n,

Cn+1 = Cn − 1
γn
(
Cnx̃n(x̃n)TCn

)
.

(4)

When the number of substituents is large, maintaining θn and Cn through this recursive

expression is much more efficient than maintaining µn and Σn through the recursive expression

in Section 3. This is because the dimension of Σn is equal to the number of alternatives, which

grows exponentially with the number of substituents per site. For a set of compounds with 5 sites

and 9 possible substituents at each site (to make 10 possible choices at each site, including the

possibility of attaching no substituent) the number of possible compounds is 105, compared to
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only 45 total substituents. In this case, Σn is 105 × 105 while Cn is only 46× 46 (we add 1 to 45

to account for the base molecule).

4.2 Improved Implementation of KGCB

Because θn and Cn are much smaller and easier to maintain than µn and Σn, there is significant

computational and storage savings to be achieved by calculating the KGCB policy from these

inputs directly rather than from µn and Σn.

To accomplish this, we recall from Section 4.1 that µn and Σn may be written in terms of θn

and Cn as µn = Xθn and Σn = XCnXT . We also recall that Σn enters into the computation

of the KG-factor for alternative x, νKGx = h(µn, σ̃(Σn, x)), only through σ̃(Σn, x). This quantity

is given by σ̃(Σn, x) = Σnex
/√

λx + Σnxx, which depends only upon row x in Σn, and not the

entire matrix. To facilitate describing these computations, we define Ax,· to be row x from generic

matrix A. Then, the required row of Σn may be computed from Cn as

Σnx,· = (XCnXT )ex = (XCn)XT
x,·.

By calculating row x of Σn from Cn, then calculating σ̃(Σn, x) from this row vector, and

then computing the KG-factor from σ̃(Σn, x) and µn, we obtain the KG-factor while completely

avoiding any computations with matrices of size M ×M . This is summarized in Algorithm 4.1.

Algorithm 4.1: KGCB2 Algorithm(Inputs : θn, Cn, X)

µn ← Xθn

B ← XCn

for x← 1 to M
do

Σnx,· ← BXT
x,·

a← µn

b← Σnx,·/
√
λx + Σnxx

ν ← h(a, b) % use Algorithm 3.2
if x = 1 or ν > ν∗
then

ν∗ ← ν, x∗ ← x

Algorithm 4.1 is similar to Algorithm 3.3, with the main differences being the first operation,

which retrieves the mean belief on alternatives from the mean of the belief on attributes, and

the second and third operations (the latter being the first step inside the loop), which together

retrieve the covariance of the belief on alternatives from the covariance of the belief on attributes.

The B matrix used in the second and third operations caches XCn, which does not depend on

the measurement x being considered in the loop.

This algorithm significantly improves upon Algorithm 3.3 because it computes only Σnx,·, a

column vector, instead of the full matrix Σn. This is particularly significant when there are many

alternatives. If there were 106 alternatives, we would create a vector of size 106 × 1 instead of a

matrix of size 106 × 106.
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4.3 Extending this Improvement to the General Model

This improvement, which has been described thus far in the context of the Free-Wilson model,

can also be implemented for the general model.

To do so, we must maintain a belief about the bx terms together with our belief about ζ and

the ai terms. Although the number of bx terms is equal to the number of compounds, which is

generally very large, we need only maintain a mean vector and covariance matrix for only those bx

terms corresponding to alternatives that we have measured. If we have not measured a particular

alternative x by time n, then our posterior belief on bx will have the same marginal distribution

that it had under the prior, and will remain independent of ζ, the ai terms, and all other deviation

terms. Thus, by explicitly maintaining a belief about ζ, a1, . . . , ak, and only those bx terms for

compounds we have measured, we can reconstruct our belief about those deviation terms we are

not explicitly tracking as needed.

Toward this end, let us define a vector αn that contains α = (ζ, a1, . . . , ak), and the bx for

x ranging over the unique alternatives in x0, . . . , xn−1. This vector plays the role that α plays

in Section 4.1. Let θn and Cn be the mean and variance of our time n posterior belief on αn.

Note that α0 = α, θ0 = (E[ζ],E[a1], . . . ,E[ak]) and C0 is a diagonal matrix whose diagonal is

(E[ζ],E[a1], . . . ,E[ak]).

Before providing recursive expressions for θn and Cn, Cn−1, we first define two quantities,

θ̃n−1 and C̃n−1. If we have previously measured alternative xn, so xn ∈ {x0, . . . , xn−1}, then let

θ̃n−1 = θn−1 and C̃n−1 = Cn−1. If we have not previously measured xn, then let θ̃n−1 be the

column vector obtained by appending a scalar 0 to θn−1, and let C̃n−1 be the (1+k+n)×(1+k+n)

matrix obtained from the (k+n)×(k+n) matrix Cn−1 by adding one extra row and column after

the last row and column of Cn−1. This extra row and column is all 0s, except for the diagonal

entry, which is σ2
b . These quantities θ̃n−1 and C̃n−1 are constructed so that our time n − 1

posterior belief on αn is N (θ̃n−1, C̃n−1). Additionally, let x̃n be a column vector of 0s and 1s,

with a 1 at exactly those indices of αn+1 for which the alternative xn contains the corresponding

base alternative, substituent, or deviation term. We also define ε̂n+1 = yn+1 − (θ̃n)T x̃n and

γn = λxn + (x̃n)T C̃nx̃n. With these definitions, we may update θn+1 and Cn+1 recursively from

θn and Cn (via θ̃n and C̃n) as

θn+1 = θ̃n +
ε̂n+1

γn
C̃nx̃n, (5)

Cn+1 = C̃n − 1
γn

(
C̃nx̃n(x̃n)T C̃n

)
. (6)

These updating equations allow us to maintain our belief about αn in a computationally efficient

way, analogously to the way in which we were able to recursively maintain about α in Section 4.1.

We now show how KG factors may be computed from a belief on αn parameterized by θn

and Cn. Since the KG factor is given by νx = h(µn, σ̃(Σn, x)), it is enough to compute µn and
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σ̃(Σn, x) efficiently (without computing the much larger matrix Σn), and then to use the standard

implementation of h. The first term, µn, does not depend on x and is given by

µn = Xnθn,

where Xn is a M×|αn| matrix of 0s and 1s whose each row corresponds to an alternative, and has

a 1 for the base alternative, and each substituent and deviation term from αn contained within

the alternative. To compute the second term, σ̃n(Σn, x), fix xn = x and the corresponding αn+1

and C̃n resulting from this choice of xn. Let X̃n be a M × |αn+1| matrix that is similar to Xn,

except that it maps alternatives to components of αn+1 rather than αn. That is, each row of

X̃n corresponds to an alternative, and has a 1 for the base alternative and each substituent and

deviation term from αn+1 contained within the alternative. Then, observe that the beliefs about

those bx not included in αn+1 will not change as a result of measuring xn, and so σ̃(Σn, xn),

which is the standard deviation of the change in beliefs about the values of the alternatives, is

not affected by these deviation terms not included in αn+1. Thus, we can compute σ̃(Σn, xn) by

dropping these left-out deviation terms. In such a model in which these deviation terms outside

αn+1 have been left out of the model, the xth column of Σn is

Σnx,· = (X̃nC̃n)(X̃n
x,·)

T ,

and σ̃(Σn, xn) may be computed from this vector via σ̃(Σn, x) = Σnex
/√

λx + Σnxx. The resulting

method of computing the KGCB policy is summarized below in Algorithm 4.2.

Algorithm 4.2: General KGCB2 Algorithm(Inputs : θn, Cn, Xn)

µn ← Xnθn

for x← 1 to M
do

Compute C̃n from Cn and x.
Σnx,· ← (X̃nC̃n)(X̃n

x,·)
T

a← µn

b← Σnx,·/
√
λx + Σnxx

ν ← h(a, b) % use Algorithm 3.2
if x = 1 or ν > ν∗
then

ν∗ ← ν, x∗ ← x

With these expressions, we may compute the KG factor for alternative x in the general model

without explicitly computing a covariance matrix Σn. The dimensionality of the objects θn and

Cn that we must retain in memory is the sum of 1 + k together with the number of unique

alternatives measured. When the number of measurements that can be made is much smaller

than the number of alternatives, as it is in drug discovery, this is a significant savings.
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5 A Further Improvement for the Free-Wilson Model

We now return from the general model to consider only the Free-Wilson model of Section 2.1.

When using this model, we may compute the KGCB policy with even greater efficiency than

described thus far. This further improvement has at its heart Proposition 1 below.

This proposition states that the calculation of each KG factor, which would ordinarily require

considering the entire family of molecules, may be decomposed into the sum of a set of much

smaller and easier to compute KG factors. Each of these smaller KG factors is the KG factor that

would result from a base molecule with substituents only at a single site. Since the number of

compounds grows exponentially with the number of substituents per site, and the complexity of

computing a KG factor scales as O(s log s) where s is the number of substituents considered, this

decomposition dramatically reduces the computational effort required to compute a KG factor.

While the KGCB policy still needs to calculate the KG factor corresponding to each possible

measurement to find the largest one, faster calculation of each KG factor makes the overall

computation much faster as well.

Before stating the proposition, recall that θnj = En[aj ] and θn0 = En[ζ] are the means of the

time-n posterior belief on the value of substituent j and the base molecule respectively, and that

L(j) is the site at which substituent j may be placed. Additionally, let A` ∈ {i : L(i) = `}, so

that A` is a vector containing those substituents that may be placed at site `.

Proposition 1. Under the Free-Wilson model,

νn,KGx =
∑
`

h
(

(θni )i∈A(`)∪{−1} , (σ̃
n
xi)i∈A(`)∪{−1}

)
,

where (σ̃nxi)
2
n := Varn

[
θn+1
i | xn = x

]
for i > 0 and θn−1 = σ̃nx,−1 = 0.

Proof: We write

max
x′

µn+1
x′ = max

x′
En+1

∑
j

ajs
x′

j + ζ

 = max
x′

∑
i

θn+1
i sxi + θn+1

0

= max
x′

∑
`

(∑
i

θn+1
i 1{L(i)=`}

)
+ θn+1

0 =
∑
`

max
i∈A(`)∪{−1}

θn+1
`i + θn+1

0 ,

where θn+1
`−1 is defined to be 0, and where the crucial final step is due to the fact that the maximum

over x′ is achieved by the x′ that places the substituent with the largest estimated value in each

site (or no substituent in a site, corresponding to i = −1, if all the estimates at that site are

negative). Substituting this expression for maxx′ µn+1
x′ and noting that the tower property implies

En
[
θn+1

0

]
= En [En+1[ζ]] = En[ζ] = θn0 , we obtain

En[max
x′

µn+1
x′ ] = En

[∑
`

max
i∈A(`)∪{−1}

θn+1
i + θn+1

0

]
= En

[∑
`

max
i∈A(`)∪{−1}

θn+1
i

]
+ θn0 .
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Then, noting that maxx′ µnx′ =
∑
` maxi∈A(`)∪{−1} θ

n
`i + θn0 by an argument similar to the one for

maxx′ µn+1
x′ , we have

νn,KGx =

(∑
`

En
[

max
i∈A(`)∪{−1}

θn+1
i |xn = x

]
+ θn0

)
−

(∑
`

max
i∈A(`)∪{−1}

θni + θn0

)

=
∑
`

En
[

max
i∈A(`)∪{−1}

θn+1
i |xn = x

]
− max
i∈A(`)∪{−1}

θni

Since the joint distribution of (θn+1
i )i∈A(`) conditioned on Fn and xn = x is the same as that

of the Fn conditional distribution of (θni + σ̃nxiZ)i∈A(`), where Z is a one-dimensional standard

normal random variable, and θn+1
−1 = 0 = θn

1
+ σ̃nxiZ almost surely, we may substitute for θn+1

i to

obtain

νn,KGx =
∑
`

En
[

max
i∈A(`)∪{−1}

θni + σ̃nxiZ

]
− max
i∈A(`)∪{−1}

θni

=
∑
`

h
(

(θni )i∈A(`)∪{−1} , (σ̃
n
xi)i∈A(`)∪{−1}

)
. �

To actually use the decomposition property inherent in this proposition, we must first compute

σ̃nxi. We have (σ̃nxi)
2 = Varn [En+1[ai]|xn = x] which, using the conditional variance formula and

the fact that En[Varn+1[ai]] = Varn+1[ai], becomes

(σ̃nxi)
2 = Varn[ai]−Varn+1[ai|xn = x].

We have Varn[ai] = Cnii, and by (4),

Varn+1[ai] = eTi C
n+1ei = eTi

[
Cn − 1

γn
Cnx̃n(x̃n)TCn

]
ei = Cnii −

eTi C
nx̃n(x̃n)TCnei

λxn + (x̃n)TCnx̃n
.

Therefore,

(σ̃nxi)
2 =

eTi C
nx̃n(x̃n)TCnei

λxn + (x̃n)TCnx̃n
,

which gives the vector σ̃nx,·, with i ranging over all the substituents (not just those corresponding

to a particular site) as

σ̃nx,· =
Cnx̃n√

λxn + (x̃n)TCnx̃n
. (7)
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We summarize the resulting implementation below in Algorithm 5.1.

Algorithm 5.1: KGCB3 Algorithm(Inputs : θn, Cn, X)

for x← 1 to M

do



σ̃nx,· ← Cnx̃n√
λxn +(x̃n)TCnx̃n

νx ← 0
for `← 1 to L

do


p← (θni )i∈A(`)∪{−1}
q ← (σ̃nxi)i∈A(`)∪{−1}
νx ← νx + h(p, q) % use Algorithm 3.2

if x = 1 or νx > ν∗
then ν∗ ← νx, x∗ ← x

If there are l dimensions withMl substituents that can be placed at each dimension, the number

of total alternatives is M = (Ml)l. The computational complexity of Algorithm 4.1 is O(M2 lnM),

which is equivalent to O
(
l (Ml)

2l ln (Ml)
)

. The computational complexity of Algorithm 5.1 on

the other hand is O
(

(Ml)
l
l (Ml) ln (Ml)

)
because the outer loop executes (Ml)l times, while the

inner loop executes l times and takes O ((Ml) ln (Ml)). Thus the efficient implementation has

a computational complexity of O
(
l (Ml)

l+1 ln (Ml)
)

, compared to O
(
l (Ml)

2l ln (Ml)
)

for the

previous implementation.

6 Empirical Study

We simulate the performance of the KGCB algorithm using data from a previously published

QSAR study of narcotic analgetics that used the Free-Wilson model Katz et al. (1977). The paper

contains a set of 6,7-Benzomorphans, which have 5 sites at which substituents can be attached.

The molecule is shown in Figure 1. At site 1 there are 11 possible substituents (together with

H), at site 2 there are 8 possible substituents, at site 3 there are 5 possible substituents, at site 4

there are 6 possible substituents and at site 5 there are 11 possible substituents. The collection of

compounds resulting from choosing a substituent at each site contains 11×8×5×6×11 = 29040

compounds from substituents at the 5 positions. Additionally, each compound can be charged

positively, negatively or be neutral, which brings the number of compounds to 87120. The paper

provides experimentally observed activity values for 99 of these compounds.

In the Section 6.1, we describe methods for choosing the prior on the values of this collection

of compounds. Then, in Section 6.2, we present an empirical study of the performance of KGCB

on this collection of compounds.
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Figure 1: An example of substituent locations (marked with R1, ..., R5). Source: Katz et al. (1977)

6.1 Setting up a prior on the substituent contributions

When choosing a prior distribution, one may be in contact with experienced practitioners who

may be able to articulate their prior beliefs on the value of compounds or substituents. In many

cases, however, even if one is quite experienced in drug discovery, or is working with those who

are quite experienced, it may be difficult for the experts to articulate their prior beliefs. In such

cases it is useful to have a method for setting the prior distribution from some other source, such

as previous measurements of families of molecules that may be completely different from the one

to which drug discovery effort is being applied. We now present one such method that may be

used with either the Free-Wilson model or the general model.

We first discuss priors for the Free-Wilson model. Our method of choosing a prior supposes

that there exists a large population of substituent values in nature, and that nature has drawn

independently at random from this population the particular substituent values to create the

family of compounds being investigated. We suppose that we may approximate the distribution

of values within this population with a normal distribution whose mean and variance we can

estimate. A method of estimation is discussed below.

Our method also supposes that we began with a non-informative belief on the value ζ of the

base molecule, which was subsequently altered by a laboratory measurement. This measurement

provides an informative belief on the value of the base molecule that we will use within our

prior whose mean is the value of the measurement, and whose variance is the variance of this

measurement. A measurement of the base molecule is generally available in practice, since a

molecule is usually chosen to have its space of chemical derivatives searched because it performed

well on an initial screening of many chemically dissimilar molecules.

Given these suppositions, our prior is given by taking θ0
0 and C0

00 to be the value and measure-
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ment variance, respectively, of our previous measurement of the base molecule, and θ0
i and C0

ii

for i > 0 to be the estimated mean and variance, respectively, of the population of substituents.

Our independence supposition causes the off-diagonal terms of C0 to be 0. These values for θ0

and C0 specify a prior as discussed in Section 4.1, and the equivalent prior on compound values

may be reconstructed as discussed in that section.

We now discuss how this method of setting a prior can be extended to the general model. To

do so, we suppose, in a manner quite similar to our supposition about substituent values, that

there exists a large population of deviation terms from which nature has drawn independently at

random to create the family of compounds being considered. Let σ2
b be the estimated variance of

this population, and, without loss of generality, we may assume that the mean of the population

of deviation terms is 0 because we can take any non-zero mean and move it into the value of the

base molecule. Then the prior, in the format of Section 4.3, is given by taking the same θ0 and

C0 as just described for the Free-Wilson model, and using this value of σ2
b in subsequent updates.

There is no need to use different values of θ0 or C0 because, even in the general model, our θ0

and C0 do not encode beliefs on the deviation terms, as these beliefs are implicitly independent

with mean 0 and variance σ2
b .

In order to use either of these methods for setting the prior, one needs access to a measurement

of the base molecule (with that measurement’s variance), estimates of the mean and variance of

the population of substituents, and, when using the general model, an estimate of the variance

of the population of deviation terms. These estimates may be obtained from measurements of a

reasonably large family of compounds that may be quite dissimilar from the one being investigated.

Using these measurements, one may use linear regression to estimate the substituent values and

deviation terms present in this family of compounds. The substituent values and deviation terms

that result will certainly be a very small subset of the entire population of substituent values and

deviation terms present in nature, but if one is willing to suppose that they are representative

of what one may encounter in nature, then the population means and variances of the observed

values may be taken as estimators of the means and variances of the overall populations. Because

one might make this assumption that the observed values are “representative,” it is better if one

has observations from multiple families of molecules, and it is also better if the observed values

are from families that are more similar to the one to which drug discovery effort is being applied.

We followed exactly this method of estimation using the data in Katz et al. (1977). This paper

provides measured values for 99 of the possible 87120 compounds. The measurement technique

used is quite accurate, and it is reasonable to take the measured values as the “true” values. By

fitting a multiple linear regression to this data set, we obtain substituent values and deviation

terms. From these values, we estimate the mean and variance of the population of substituents

as 0.31 and 0.47 respectively, and the variance of the population of deviation terms as σ2
b = 0.15.

20



6.2 Simulation Results

Before discussing the ability of KGCB to discover good molecules with relatively few measure-

ments in simulation, we first describe the computational costs of the various implementations of

the Free-Wilson-based KGCB implementation on the set of 87120 compounds. Algorithm 5.1

is able to compute the KGCB decision and update the belief in less than 3 seconds, which is

approximately 100 times faster than Algorithm 4.1. The standard implementation was so slow

that we were unable to determine its runtime on the problem.

In our simulations, we observed the number of measurements required by the KGCB algorithm

to find good compounds among collections of compounds of various sizes. In these simulations,

we compared KGCB against two policies: a pure exploration policy that chooses compounds to

test uniformly at random, and a one-factor-at-a-time (Montgomery (2005)) policy which begins

by testing the base molecule and then replaces each substituent at a time, cycling through the

same compounds.

Both policies update their beliefs using the same Bayesian updates as the KGCB algorithm.

We emphasize that these belief updates use correlated beliefs, which give our pure exploration

policy a substantial advantage over any policy that uses independent belief updates. With our

version of pure exploration, even though we are choosing compounds to measure uniformly at

random, we learn about the compounds through correlations the same way as we learn when we

use the KGCB policy.

We considered the one-factor-at-a-time policy even though it is often regarded as a poor policy

because it neglects interaction between factors (Montgomery (2005)) because, in the perfectly

linear Free-Wilson model these interaction terms do not exist. By using a policy like one-factor-

at-a-time that neglects these terms in tests that do not include them, we provide an advantage to

the policy against which KGCB competes. In cases like the general model in which interaction

terms exist, a factorial design would perhaps be more appropriate (Montgomery (2005)), but

such designs are infeasible in problems with many dimensions like the drug discovery problem

considered here.

In the next section (Section 6.2.1) we present numerical results from the Free-Wilson model

described in Section 2.1, and in Section 6.2.2 we present numerical results from the general model

described in Section 2.2.

6.2.1 Results using the Free-Wilson model

We begin by describing our results using the simple, linear-additive model described in Section

2.1. We assume that we have a budget of 100 measurements, and at each time, we plot the

opportunity cost of each policy, defined as the difference between the actual highest compound

value and the true value of the compound which is best according to the policy’s posterior belief.
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Figure 2: Opportunity cost for varying data set sizes and measurement noise.
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2a: Average opportunity cost over 100 runs using
a data set of 2640 compounds and a noise standard
deviation of 0.1.

2b: Average opportunity cost over 100 runs using
a data set of 2640 compounds and a noise standard
deviation of 0.5.
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2c: Average opportunity cost over 10 runs using a
data set of 87120 compounds and a noise standard
deviation of 0.1.

2d: Average opportunity cost over 10 runs using a
data set of 87120 compounds and a noise standard
deviation of 0.5.

Thus, once the opportunity cost is 0, the policy has found the best compound.

Figure 2 presents the results using a data set of 2640 compounds and one of 87120 compounds,

for two levels of noise: a noise standard deviation of 0.1 and 0.5. Using the measured values

published in Katz et al. (1977), we generate a truth for these compounds by fitting a linear

regression to the data, taking the true means θ to be the predicted values from the regression

and the standard deviation of the noise in our measurements to be the standard deviation of

the residuals from the regression. For the 2640 compounds data set, we average over 100 runs,

and for the 87120 compounds data set we average over 10 runs. As Figure 2 shows, the average

opportunity cost for KGCB is always lower than the average opportunity cost of the other two

policies. Among the other two policies, pure exploration seems to outperform one-factor-at-a-

time (OFAAT), due to the fact that OFAAT cycles through the same set of compounds when

measuring, whereas pure exploration chooses at random among all compounds. In general, a
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Figure 3: A sample path of 200 measurements on a data set of 1000 compounds showing opportunity cost (top) and
the true values of the compounds tested at each time step (bottom).

higher level of noise leads to worse performance by all policies, but relative to the other policies,

KGCB performs best. Since these initial experiments showed that pure exploration is more

competitive than OFAAT, our following experiments compare KGCB only to pure exploration.

In further experiments, we randomly selected sets of compounds from the full set of 87120.

Figure 3 shows a sample path of 200 measurements on a set of randomly selected 1000 com-

pounds, giving the opportunity cost at every iteration on the top panel and the true value of

the compound that is measured at each step on the bottom panel. While pure exploration fails

to find the best compound in the first 200 measurements, KGCB manages to do so in about

15 measurements, which is a significant improvement if we think about the amount of time and

money each measurement requires. As the bottom panel shows, part of KGCB’s success in this

sample path was the fact that it measured two very good compounds early on, at steps 10 and

15, while pure exploration was measuring mediocre compounds for a long period of time, which

prevented it from discovering the best compound quickly enough.

To better assess the difference in performance between KGCB and pure exploration, we

also ran 15 sample paths and plotted, on the same graph, the mean and standard deviation

of the mean for KGCB and pure exploration. Figure 4 shows the resulting plot, where each

error bar is of length twice the standard deviation of the mean in each direction (computed as
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Figure 4: Mean and standard deviation of the mean using 15 sample paths of 10000 compounds each, using a noise
standard deviation of 0.38.

standard deviation/
√
n− 1, where n, the number of samples, is 15 in our case.) As Figure 4

shows, the estimated mean opportunity cost for the KGCB policy is lower than that of the pure

exploration policy.

To get a sense of the distribution of the relative performance of KGCB vs pure exploration, we

ran our code on 75 sets of randomly selected 10000 compounds out of the entire data set of 87120

compounds, with a budget of 200 measurements. For each measurement and sample path, we

compute the difference between the pure exploration opportunity cost and the KGCB opportunity

cost, and then for each measurement, we plot the mean difference and standard deviation of the

difference in opportunity cost across the 75 sample paths. The results are shown in Figure 5. As

illustrated in Figure 5, the mean difference is always positive after the first measurement, and

it has a maximum at about the tenth measurement, suggesting that the learning rate is faster

on average for KGCB than for pure exploration, and the value of using the KGCB policy is

maximized at early measurements.

Numerical evidence indicates that KGCB has better average performance than pure explo-

ration. For more numerical work using the Free-Wilson model, please see the appendix.

6.2.2 Numerical results for the general structural model

We now present the results using the general model described in Section 2.2. To simulate a true set

of compound values in this set of experiments, we take the fitted values of ai and ζ from Katz et al.

(1977), and for each compound x, we generate bx independently from a normal distribution with
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Figure 5: Mean and standard deviation of difference in opportunity cost between pure exploration and KGCB using
75 sample paths of 10000 compounds each and a noise standard deviation of 0.38.
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Figure 6: Average opportunity cost over 10 runs using different data sets of 1000 compounds.

mean 0 and variance σ2
b (where σ2

b was obtained from the fit as well, as described in Section 6.1).

We then combine these values according to the model to obtain true values for the compounds.

To test the performance of KGCB under this model, we randomly selected 10 different sets

of 1000 compounds each and ran the KGCB algorithm using the prior described in Section 6.1.

For each sample path, we perform 150 measurements comparing KGCB to pure exploration and

we plot the average opportunity cost over the 10 runs just as in our previous experiments. The

results are shown in Figure 6.

As with the Free-Wilson model, the KGCB policy performs significantly better than pure

exploration. Opportunity cost decreases more slowly in this test than it did under tests that
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assumed the Free-Wilson model. This is because this test adds deviation terms to each molecule,

which makes it harder for any policy to find the best compound. Although this test was performed

with 1000 compounds and the general model contains a different deviation term for each one, the

KGCB policy finds a very good compound with many fewer than 1000 measurements. This is

because σ2
b is smaller than Var0(al), which makes learning the al terms more important than

learning the bx deviation terms, and allows a policy to find a compound with small opportunity

cost without learning all the deviation terms.

7 Conclusions

Drug discovery is a long and expensive process that requires synthesizing and testing many

molecules in order to find one that is efficient in treating disease. Our simulation results show that

the KGCB policy reduces the number of molecules that need to be tested in this process, saving

time and money. Furthermore, since budgets are limited and a search for a new drug is declared a

failure if it does not find a good molecule within this budget, more efficient search procedures may

cause the success of drug discovery efforts that otherwise would have failed. Previous implemen-

tations of the KGCB policy required too much computational effort to be practically applicable

to large problems like drug discovery, and the new implementations presented here overcome this

barrier. Although further mathematical effort is needed, particularly in creating sequential search

methods that use models from medicinal chemistry beyond Free-Wilson, we believe that this effort

will significantly improve our ability to discover new drugs.

The Georgetown University team has just started to test a long sequence of compounds, and

are planning to use the KGCB policy to help choose compounds to test. As a starting point, they

have decided to use the Free-Wilson model for modeling structure-activity relationships and an

informative prior obtained from their initial measurements. Future improvements might involve

using a different QSAR model such as the Hansch model or the partial least squares method.

Although the KGCB method can benefit all forms of drug discovery, for the time being we hope

it will help the research team at Georgetown find a cure for Ewing’s sarcoma.
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8 Appendix: More Numerical Results

We first present the results from running the code on data sets of randomly selected 10000
compounds. Figure 7 shows four such sample paths of the new implementation. As the figure
shows, the performance of the KGCB algorithm is encouraging, as it is usually able to find the best
compound by the 75th measurement, and gets very close to finding it by the 25th measurement.
In most sample paths, KGCB does at least as well as pure exploration - the policy in which we
choose compounds to measure completely at random, but update the belief in the same way as
we do for the KGCB policy.

We are interested also in the typical performance of the KGCB policy. That is, if we are able
to perform only one sample path (which is generally the case in practice), we are interested in
knowing the probability that the KGCB policy performs better than an exploration policy.

To better get a sense of the distribution of the relative performance of KGCB versus pure
exploration, we have made a box and whiskers plot of the differences between opportunity costs
at every 10 measurements. As shown in Figure 8, except for the first measurement, all the other
measurements have the lower quartile cutoff at or above 0, which suggests that the probability
that KGCB is better than pure exploration, on any measurement of any sample path, is higher
than 1/2.

Having tested the KGCB policy on data sets of 10000 compounds, we increased the size of
the data sets further to 25000 compounds. Figure 9 shows four sample paths from running the
KGCB and pure exploration policies on four randomly selected data sets of 25000 compounds.
The rate of convergence for these plots is slower than for 10000 compounds, but the KGCB policy
still manages to get reasonably close to the best compounds after about 50 measurements.

Figure 10 shows the mean opportunity cost for nine sample paths using nine different randomly
chosen data sets of 25000 compounds. Although not as impressive as the mean plot for 10000
compounds, this plot also attests that there is value in using the KGCB policy as opposed to a
pure exploration policy.
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Figure 7: Four sample paths using data sets of 10000 compounds and a noise standard deviation of 0.38.
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Figure 8: Distribution of difference between opportunity costs between pure exploration and KGCB using 75 sample
paths of 10000 compounds each and a noise standard deviation of 0.38.
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Figure 9: Four sample paths suing data sets of 25000 compounds and a noise standard deviation of 0.38.
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Figure 10: Average over nine runs of sample paths using data sets of 25000 compounds and a noise standard deviation
of 0.38.
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