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Abstract

A multiarmed bandit problem is studied when the arms are not always available. The
arms are first assumed to be intermittently available with some state/action-dependent
probabilities. It is proven that no index policy can attain the maximum expected total
discounted reward in every instance of that problem. The Whittle index policy is derived,
and its properties are studied. Then it is assumed that the arms may break down, but repair
is an option at some cost, and the new Whittle index policy is derived. Both problems are
indexable. The proposed index policies cannot be dominated by any other index policy
over all multiarmed bandit problems considered here. Whittle indices are evaluated for
Bernoulli arms with unknown success probabilities.
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1. Introduction

The classical multiarmed bandit problem considers the trade-off between exploration and
exploitation. It deals with the situations in which one needs to decide between the alternative
actions of either maximizing immediate reward or acquiring information that may help increase
one’s total reward in the future. In its typical formulation a decision maker has to choose at
each stage one of N arms of a slot machine to play in order to maximize the expected total
discounted reward over an infinite-time horizon. The reward obtained from an arm depends on
the state of a stochastic process that changes only when the arm is played.

Gittins and Jones [6] showed that each arm is associated with an index that is a function
of the state of the arm, and that the expected total discounted reward over an infinite horizon
is maximized if an arm with the largest index is played every time. We call an arm active if
it is played and passive otherwise. The proof (see [22] and [25]) relies on the condition that
only active arms change their states. Owing to this limitation, the range of problems where
some index policies are guaranteed to be optimal is small. Nevertheless, the Gittins index
policy is important because, by splitting the optimization problem into N independent smaller
subproblems, it reduces the problem dimension considerably. Moreover, at each stage only one
arm changes its state, and so at most one index has to be re-evaluated. For those reasons, many

Received 25 May 2007; revision received 14 November 2007.
∗ Postal address: Department of Operations Research and Financial Engineering, Princeton University, Princeton,
NJ 08544, USA.
∗∗ Email address: sdayanik@princeton.edu

377

http://www.appliedprobability.org
mailto:sdayanik@princeton.edu?subject=Adv. Appl. Prob.%20paper%2012335


378 S. DAYANIK ET AL.

authors have generalized the classical multiarmed bandit problem and studied the performance
of index policies designed for them.

In this paper we study bandit problems where passive and active arms may become
unavailable temporarily or permanently. Therefore, these are not classical multiarmed bandit
problems, and the Gittins index policy is not optimal in general.

For example, in a flexible manufacturing system a foreman may be unable to schedule
some of the jobs on a day when certain raw materials are absent because of an unexpected
transportation delay. In a construction project bad weather may not allow the contractors
to perform certain outside jobs that can otherwise be done simultaneously with other jobs.
For a related but different set of scheduling problems involving servers subject to periods of
unavailability, see [7] and [8].

Bandit problems are also common in economics. Faced with a trade-off between exploration
and exploitation, rational decision makers are assumed to act optimally using the Gittins index
policy. This framework was used to explain, for example, insufficient learning (see [1], [4],
and [21]), matching and job search (see [13] and [17]), and mechanism design (see [3]).
However, decision makers do not act in the same way when the alternatives are likely to
become unavailable in the future. Intuitively, the more pessimistic a decision maker is about
the future availability of the alternatives, the more attention he/she pays to the immediate
payoffs. Therefore, it is unlikely to expect that decision makers will use the Gittins index
policy in these situations.

In a variation of the abovementioned problem we assume that arms may break down, but the
decision maker has the option to fix them. For example, if an energy company loses its access
to oil owing to an unexpected international conflict, is it better to re-establish the access or to
turn to an alternative energy source, e.g. natural gas or coal? A classical bandit problem with
switching costs (see, for example, [14]) is a special case; arms break down immediately if they
are not engaged, and if a broken arm is engaged then a switching cost is incurred to pay for the
repair. According to Banks and Sundaram [2], it is difficult to imagine an economic problem
where the agent can switch between alternatives without incurring a cost. They also showed
that, in the presence of switching costs, there does not exist an index policy that is optimal for
every multiarmed bandit problem.

We generalize the classical multiarmed bandit problem as follows. There are N arms, and
each arm is available with some state/action-dependent probabilities. At each stage, the decision
maker choosesM arms to play simultaneously and collects rewards from each played arm. The
reward from a particular arm n depends on a stochastic process

Xn = (Xn(t))t≥0,

whose state changes only when the arm is played. The processXn may represent, for example,
the state of the knowledge about the reward obtainable from arm n.

At every stage, only a subset of the arms is available. We denote by Yn(t) the availability of
arm n at time t ; it is 1 if the arm is available at time t and 0 otherwise. UnlikeXn, the stochastic
process Yn changes even when the arm is not played. The objective is to find an optimal policy
that choosesM arms so as to maximize the expected total discounted reward collected over the
infinite-time horizon. We study the following two problems.

Problem 1. Each arm is intermittently available. Its availability at time t is unobservable
before time t . The conditional probability that an arm is available at time t + 1 given

(i) the state X(t) and its availability Y (t) of the arm, and
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(ii) whether or not the arm is played at time t

is known at time t . An arm cannot be played when it is unavailable.

This problem will not be well defined unless there are at least M available arms to play
at each stage. We can, however, let the decision maker pull fewer than M arms at a time by
introducing a sufficient number of arms that are always available and always give zero reward.

Problem 2. The arms are subject to failure, and the decision maker has the option to repair a
broken arm. Irrespective of whether an arm is played at time t , it may break down and may not
be available at time t + 1 with some probability that depends on

(i) the state X(t) of the arm at time t , and

(ii) whether or not the arm is played at time t .

If an arm is broken, the decision maker then has the option to repair it at some cost (or negative
reward) that depends on X(t). Repairing an arm is equivalent to playing the arm when it is
broken. If a broken arm is repaired at time t then it will become available at time t + 1 with
some conditional probability that depends only on the state X(t) of the arm at time t . On the
other hand, if it is not repaired then the arm remains broken at time t + 1.

We show that there does not exist a single index policy which is optimal for every instance of
either problem. We propose a competitive index policy based on the Whittle index for restless
bandit problems, and show that there is not a single index policy that is better than the Whittle
index policy for every instance of either problem. We evaluate the performance of the Whittle
index policy for each type of problem both analytically and numerically.

The restless bandit problem was introduced by Whittle [26], and it is a generalization of
the classical bandit problem in three directions: (i) the states of passive arms may change,
(ii) rewards may be collected from passive arms, and (iii) M ≥ 1 arms can be played simulta-
neously. Therefore, Problems 1 and 2 fall into the class of restless bandit problems, which are
computationally intractable; Papadimitriou and Tsitsiklis [19] proved that they are PSPACE-
hard. As in a typical restless bandit problem, we assume that rewards may be collected from
passive arms and that more than one arm may be pulled simultaneously.

Whittle [26] introduced the so-called Whittle index to maximize the long-term average
reward and characterized the index as a Lagrange multiplier for a relaxed conservation con-
straint, which ensures that on average M arms are played at each stage. See [18] for the
discounted case. The Whittle index policy makes sense if the problem is indexable. Weber
and Weiss [23], [24] proved that, under indexability, the Whittle index policy is asymptotically
optimal asM andN tend to∞whileM/N is constant. The verification of indexability is difficult
in general. Whittle [26] gave an example of an unindexable problem. However, indexability
can be verified, and the Whittle index policy can be developed analytically, for example, for
the dual-speed restless bandit problem (see [9]) and a special problem with improving active
arms and deteriorating passive arms (see [10]).

Glazebrook et al. [12] considered a problem in which passive arms are subject to permanent
failure. They modeled it as a restless bandit, showed its indexability, and developed the
corresponding Whittle index policy. Problems 1 and 2 are generalizations of their problem
in that a broken arm is allowed to get back to the system, and that both passive and active arms
may break down. We prove that Problems 1 and 2 are indexable and derive the Whittle indices
for them. Glazebrook et al.’s [12] and Gittins’ indices turn out to be the special cases of the
Whittle indices derived for Problems 1 and 2.
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We also evaluate Whittle index policies numerically. Like the Gittins index, the Whittle
indices for Problems 1 and 2 are also the solutions to suitable optimal stopping problems. We
generalize Katehakis andVeinott’s [15] restart-in formulation of the Gittins index to Problem 1’s
Whittle index. Problem 2’s Whittle index turns out to be similar to the Gittins index, and we
use the original restart-in problem to calculate the index for Problem 2.

In Section 2 we start by modeling Problems 1 and 2 as restless bandits. In Section 3 we
review the Whittle index and indexability. In Sections 4 and 5 we verify the indexability of
Problems 1 and 2 and develop corresponding Whittle indices. We prove that no index policy
can attain the maximum expected total discounted reward over the infinite-time horizon in
general in the class of Problems 1 and 2. A generalization of the restart-in problem to calculate
Problem 1’s Whittle index is discussed in Section 6. In Section 7 we introduce a numerical
example with a Bernoulli reward process whose success probability is unknown and evaluate
the index policies for Problems 1 and 2. Section 8 concludes with remarks.

2. Model

Using the same notation, X and Y defined in the previous section, the state of arm n at
time t can be denoted by Sn(t) = (Xn(t), Yn(t)). Then (S1(t), . . . , SN(t)) is the state at time
t ≥ 0 of the system with N arms. Suppose that Xn takes values in a countable state space Xn

for every n = 1, . . . , N , and let Sn = Xn × {0, 1}. Each process (Sn(t))t≥0 is a controlled
time-homogeneous Markov chain with an (Sn(t))t≥0-adapted control process

an(t) =
{

1 if arm n is played at time t ,

0 otherwise.

For every 1 ≤ n ≤ N , the process (Xn(t))t≥0 evolves according to some transition
probability matrix P (n) = (p

(n)

xx′ )x,x′∈Xn
, if arm n is available and is played, and does not

change otherwise; that is, for every x, x′ ∈ Xn,

P{Xn(t + 1) = x′ | Xn(t) = x, Yn(t) = y, an(t) = a} =
{
p
(n)

xx′ if y = a = 1,

δxx′ if y = 0 or a = 0,
(1)

where δxx′ equals 1 if x = x′ and 0 otherwise. Hence, even if arm n is active, the process
Xn does not change if the arm is unavailable. In Problem 2 activating an unavailable arm is
equivalent to repairing it. In that case the process Xn does not change; namely, repairing an
arm changes only its availability. In Problem 1 activating an unavailable arm is not allowed.

The conditional probability that arm n is available at time t + 1, given Xn(t), Yn(t), and
an(t), is denoted by

θan (x, y) := P{Yn(t + 1) = 1 | Xn(t) = x, Yn(t) = y, an(t) = a} (2)

for every (x, y) ∈ Sn, a ∈ {0, 1}, t ≥ 0, and 1 ≤ n ≤ N . The random variable Yn(t + 1)
is conditionally independent of Xn(t + 1) and has conditionally a Bernoulli distribution with
success probability θan(t)n (Xn(t), Yn(t)), given Xn(t), Yn(t), and an(t). Let

Ran(x, y) := the expected reward collected from arm n given that

Xn(t) = x, Yn(t) = y, an(t) = a for every (x, y) ∈ Sn, a ∈ {0, 1},
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and, as in the classical bandit problem, we assume that Ran(x, y) is bounded uniformly in
(x, y) ∈ Sn. Let 0 < γ < 1 be a given discount rate. Then the expected discounted immediate
reward at time t equals E[γ t ∑N

n=1 R
an(t)
n (Xn(t), Yn(t))].

The process (S1(t), . . . , SN(t))t≥0 is time homogeneous and Markov; hence, we consider
stationary policies π : S1 × · · · × SN �→ A := {a ∈ {0, 1}N : a1 + · · · + aN = M}. Denote,
for every fixed ((x1, y1), . . . , (xN , yN)) ∈ S1 × · · · × SN , the value under a stationary policy
π by Jπ(((x1, y1), . . . , (xN , yN))), and it equals

Eπ
[ ∞∑
t=0

γ t
N∑
n=1

Ran(t)n (Xn(t), Yn(t))

∣∣∣∣ (Xn(0), Yn(0)) = (xn, yn), n = 1, 2, . . . , N

]
,

where (a1(t), . . . , aN(t)) = π((X1(t), Y1(t)), . . . , (XN(t), YN(t))) for every t ≥ 0. A policy
π∗ ∈ � is optimal if it maximizes Jπ(((x1, y1), . . . , (xN , yN))) over π ∈ � for every initial
state ((x1, y1), . . . , (xN , yN)) in S1 × · · · × SN .

3. The Whittle index and indexability

Let us fix an arm and drop the arm-specific indices from the notation in Section 2; instead,
write S(t) = (X(t), Y (t)), t ≥ 0, for its state process on S = X × {0, 1}, controlled by the
{0, 1}-valued (S(t))t≥0-adapted process a(t) according to transition probabilities

pa(x,y),(x′,y′) := P{(X(t + 1), Y (t + 1)) = (x′, y′) | (X(t), Y (t)) = (x, y), a(t) = a}
for every (x, y), (x′, y′) ∈ S and a ∈ {0, 1}, which are determined by the transition probabilities
(pxx′)x,x′∈X of the Markov chain (X(t))t≥0 on the space X and the availability probabilities
θa(x, y) (a, y ∈ {0, 1}, x ∈ X), as described in (1) and (2), respectively. Finally, let Ra(x, y)
(a, y ∈ {0, 1}, x ∈ X) denote the expected reward collected from the arm, and

{0, 1} ⊇ A(x, y) := the set of actions available in state (x, y) ∈ S.

Recall that A(x, 1) = {0, 1} and A(x, 0) = {0} for every x ∈ X in Problem 1, and A(x, y) =
{0, 1} for every x ∈ X and y ∈ {0, 1} in Problem 2.

Consider the following auxiliary problem. At each time, the decision maker can either
activate the arm or leave it resting. Suppose that the current state of the arm is (x, y) ∈ S. If
1 ∈ A(x, y) and the arm is activated then reward R1(x, y) is obtained. If it is rested then a
passive rewardR0(x, y) and a subsidy in the amount ofW ∈ R are obtained. The objective is to
maximize the expected total discounted reward. Whittle [25] called this problem theW -subsidy
problem, which is a variation of the retirement problem; see, for example, [20, Chapter VII].
The so-called Whittle index in state (x, y) corresponds, by definition, to the smallest subsidy
amount W for which it is optimal to rest the arm.

After the Whittle index is calculated for every arm in their current states, the Whittle index
policy is to activate M arms with the largest indices. However, this policy makes sense only
if any arm rested under a subsidy W remains rested under every subsidy W ′ greater than W .
Namely, the set of states at which it is optimal to rest the arm increases as the value of subsidyW
increases. This property is called the indexability. These concepts were originally introduced
in [26] in the average-reward case, and in the discounted case they were described by other
authors; see, for example, [18].

For every fixed W ∈ R, the value function V ((x, y),W), (x, y) ∈ S, of the W -subsidy
problem satisfies the dynamic programming equation

V ((x, y),W) = max
a∈A(x,y)

(LaV )((x, y),W), (3)
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where

(L1V )((x, y),W) = R1(x, y)+ γ
∑

(x′,y′)∈S

p1
(x,y),(x′,y′)V ((x

′, y′),W),

(L0V )((x, y),W) = W + R0(x, y)+ γ
∑

(x′,y′)∈S

p0
(x,y),(x′,y′)V ((x

′, y′),W),
(4)

are the maximum expected total discounted rewards if the initial action is to activate or to rest
the arm, respectively, whenever those actions are allowed in state (x, y) ∈ S. Let�(W) be the
subset of S in which it is optimal to rest the arm when the subsidy is W ; namely,

�(W) := {(x, y) ∈ S : A(x, y) = {0}}
∪ {(x, y) ∈ S : A(x, y) = {0, 1} and L1((x, y),W)

≤ L0((x, y),W)}, W ∈ R. (5)

If the arm is indexable and resting it is optimal for the subsidy amountW , then doing the same
is also optimal whenever the subsidy amount is greater than W .

Definition 1. (Indexability.) An arm is indexable if �(W) is increasing in W ; namely,

W2 < W1 �⇒ �(W2) ⊆ �(W1).

Definition 2. (Whittle index.) The Whittle index of an indexable arm is defined as

W(x, y) := inf{W ∈ R : (x, y) ∈ �(W)} in every state (x, y) ∈ S. (6)

Under indexability and whenever the infimum in (6) is attained, the Whittle index W(x, y)
is the smallest subsidy amountW for which both active and passive actions are optimal in state
(x, y) ∈ S.

Definition 3. (Whittle index policy.) Suppose that the arms of a restless bandit problem are
indexable. The Whittle index policy plays M arms with the largest Whittle indices.

TheW -subsidy problem is one particular instance of Problems 1 and 2. If an index policy is
optimal for every instance of Problems 1 or 2 then it must also be optimal for everyW -subsidy
problem. This observation will imply the nonexistence of an index policy which is optimal for
every instance of Problems 1 or 2; see Propositions 4 and 7, below.

4. The Whittle index for Problem 1

This section presents an index policy for Problem 1. We obtain the Whittle index by studying
theW -subsidy problem and prove that no single index policy can be optimal for every instance
of Problem 1.

Because in Problem 1 an unavailable arm cannot be activated, we have

A(x, 0) = {0} and A(x, 1) = {0, 1}, for every x ∈ X,

and (5) guarantees that no amount of passive subsidy is enough to change this constraint:

(x, 0) ∈ �(W) for every x ∈ X, W ∈ R. (7)
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As in Section 3, let us fix an arm and drop the indices. For every subsidy amount W ∈ R,
the value function V ((x, y),W), (x, y) ∈ S, of the W -subsidy problem satisfies the dynamic
programming equation in (3), where (4) becomes

(L1V )((x, 1),W) = R1(x, 1)+ γ
∑
x′∈X

pxx′((1 − θ1(x, 1))V ((x′, 0),W)

+ θ1(x, 1)V ((x′, 1),W)),

(L0V )((x, y),W) = W + R0(x, y)

+ γ ((1 − θ0(x, y))V ((x, 0),W)+ θ0(x, y)V ((x, 1),W)),

for every x ∈ X and y ∈ {0, 1}. Let P1,0 be the probability law induced by the policy that
the arm is active whenever it is available and passive otherwise. Similarly, let P0,0 be the
probability law induced when the arm is always rested. That is, for every (x, y) ∈ S,

P1,0{X(t + 1) = x′, Y (t + 1) = y′ | X(t) = x, Y (t) = y}

=
{
pxx′(θ1(x, 1))y

′
(1 − θ1(x, 1))1−y′

, y = 1,

δxx′(θ0(x, 0))y
′
(1 − θ0(x, 0))1−y′

, y = 0,

and
P0,0{X(t + 1) = x′, Y (t + 1) = y′ | X(t) = x, Y (t) = y}

= δxx′(θ0(x, y))y
′
(1 − θ0(x, y))1−y′

.

Let E1,0
x,y[·] and E0,0

x,y[·] be the expectations under P1,0 and P0,0, respectively, given thatX(0) =
x and Y (0) = y. Denote by ρ(x, y) the expected total discounted reward from a passive arm
whose current state is (x, y) ∈ S; namely,

ρ(x, y) := E0,0
x,y

[ ∞∑
t=0

γ tR0(X(t), Y (t))

]
= E0,0

x,y

[ ∞∑
t=0

γ tR0(x, Y (t))

]
. (8)

Let (Ft )t≥0 be the filtration generated by (X(t), Y (t))t≥0, let S be the set of all P1,0-almost
surely (P1,0-a.s.) positive stopping times of (Ft )t≥0, and define

S̄ := {τ ∈ S : Y (τ) = 1, P1,0-a.s. on {τ < ∞}}
as the set of positive stopping times at which the arm is available.

The following proposition states the existence of an index policy which is optimal for the
W -subsidy problem, the indexability and the Whittle index for Problem 1. Most of the proofs
are given in Appendix A.

Proposition 1. In the W -subsidy problem it is optimal to rest an arm in state (x, 1) (namely,
(x, 1) ∈ �(W)) for some x ∈ X if and only if

W ≥ (1 − γ ) sup
τ∈S̄

E1,0
x,1[

∑τ−1
t=0 γ

tRY(t)(X(t), Y (t))+ γ τρ(X(τ), 1)] − ρ(x, 1)

1 − E1,0
x,1[(1 − γ )

∑τ−1
t=1 γ

t 1{Y (t)=0} +γ τ ]
=: W(x, 1). (9)

Moreover, the arm is indexable, and its Whittle index W(x, y) in state (x, y) ∈ S equals −∞
if y = 0 and is given by the right-hand side of (9) if y = 1.
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The index W(x, y), (x, y) ∈ S, generalizes Glazebrook et al.’s [12] index for a problem
where only passive arms may become unavailable and unavailable arms never become available.

It is easy to check that the Whittle indexW(x, 1), x ∈ X, coincides with the Gittins index if
θ0(x, y) = θ1(x, y) = 1 andR0(x, y) = 0 for every (x, y) ∈ S and with the immediate reward
R1(x, 1) if θ0(x, y) = θ1(x, y) = R0(x, y) = 0 for every (x, y) ∈ S. The next proposition
shows that, if R0(x, y) = 0 for every (x, y) ∈ S then W(x, 1) converges to the same limits as
θ0(x, y) = θ1(x, y) ≡ θ, (x, y) ∈ S tend simultaneously to the corresponding extreme values.

Proposition 2. Suppose that

θ0(x, y) = θ1(x, y) = θ and R0(x, y) = 0 for every (x, y) ∈ S.

Then the Whittle index W(x, 1) in (9) converges to the Gittins index as θ ↗ 1 and to the
one-time reward R1(x, 1) as θ ↘ 0 uniformly in x ∈ X.

The next two propositions show that there cannot be a single index policy that is optimal in
every instance of Problem 1. It turns out that if there exists such an index policy then its index
must be a strict monotone transformation of the Whittle indexW(·, ·) defined in Proposition 1.
Then the nonexistence of an index policy which is optimal in every instance of Problem 1
follows from an example in which the Whittle index policy is not optimal.

Proposition 3. The index function of every index policy that performs better than other index
policies for every instance of Problem 1 must be a strict monotone transformation of the Whittle
index W(·, ·) of Proposition 1.

Proposition 4. There does not exist a single index policy that performs as well as the Whittle
index policy in every instance of Problem 1 and strictly better in at least one of the instances.
Therefore, there is not an index policy optimal in every instance of Problem 1.

Proof. According to Proposition 3, the index function of every index policy that performs,
in every instance of Problem 1, at least as well as the Whittle index policy is a strictly monotone
transformation of the Whittle index; therefore, the performance of those index policies cannot
be strictly better than that of the Whittle index policy in any given instance of Problem 1. This
proves the first part of Proposition 4. By the same token, if there is an index policy which is
optimal in every instance of Problem 1 then so must the Whittle index policy be. We will now
give a counterexample to the latter.

Consider a case with two arms. Arm 1 is always available and arm 2 is available with
probability ε ∈ (0, 1). Passive arms do not give rewards and the M = 1 arm is played in
each period. The reward from arm 1 changes deterministically under the active action as in
1 → 100 → 10 → 10 → · · · → 10 → · · · . Let the corresponding states of arm 1 be
x11, x12, x13, . . . . The state x2 of arm 2 never changes and gives a constant reward of 40 when
it is available and activated. Arms 1 and 2 are initially available in states x11 and x2, respectively.
Let ε = 0.01 and γ = 0.7. After obvious choices of stopping times τ in (9), the Whittle index
W1(·, 1) for arm 1 satisfies the bounds

W1(x11, 1) ≥ 1 + γ 100

1 + γ
= 41.76, W1(x12, 1) ≥ 100

1
= 100,

W1(x1n, 1) = 10, n ≥ 3,
(10)

and W2(x2, 1) = 40 and W2(x2, 0) = −∞ for arm 2.
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According to the Whittle index policy, arm 1 must be pulled when X1 = x11 and x12, and
arm 2—if it is available and arm 1 otherwise—when X1 = x13, x14, . . . . That is, the optimal
policy is to pull arm 1 twice first and later pull arm 2 always if arm 2 is available and arm 1
otherwise. Therefore, the value function U(·, ·) of the Whittle index policy becomes

U((x11, 1), (x2, 1)) = 1 + γ 100 + γ 2(10(1 − ε)+ 40ε)+ γ 3(10(1 − ε)+ 40ε)+ · · ·
≈ 87.8233,

and U((x11, 1), (x2, 0)) = U((x11, 1), (x2, 1)). However, pulling arm 2 initially in the state
((x11, 1), (x2, 1)) and then executing the Whittle index policy gives a better value:

40 + γ (εU((x11, 1), (x2, 1))+ (1 − ε)U((x11, 1), (x2, 0)))

≈ 101.4763

> U((x11, 1), (x2, 1)).

Therefore, the Whittle index policy is not always optimal, and there is not an index policy which
is optimal in every instance of Problem 1.

5. The Whittle index for Problem 2

Unlike in the previous section, here we assume that the active action is always available—
even when the arm is unavailable. An unavailable arm is regarded as a broken arm that needs a
repair before it can start giving rewards. Activating a broken arm is equivalent to repairing it.
Therefore, −R1

n(x, 0) denotes the repair cost when arm n is broken in state x ∈ X. If a broken
arm is not repaired then it will remain unavailable and stay broken until the next stage with
probability 1. We assume that passive arms do not give rewards and that the reward obtained
from activating an available arm is positive as in the following condition.

Condition 1. For every (x, y) ∈ S and n = 1, . . . , N , suppose that R1
n(x, 1) ≥ 0, R1

n(x, 0) <
0, R0

n(x, y) = 0, and θ0
n (x, 0) = 0.

Let us fix an arm, drop all of the indices identifying the arm, and consider the W -subsidy
problem. In every state (x, y) ∈ S of the arm both the active and passive actions are available,
i.e. A(x, y) = {0, 1} for every (x, y) ∈ S, and the value function V ((x, y),W), (x, y) ∈ S
and W ∈ R, of the W -subsidy problem satisfies (3), where (4) becomes, under Condition 1,

(L1V )((x, 1),W) = R1(x, 1)+ γ
∑
x′∈X

pxx′((1 − θ1(x, 1))V ((x′, 0),W)

+ θ1(x, 1)V ((x′, 1),W)),

(L1V )((x, 0),W) = R1(x, 0)+ γ ((1 − θ1(x, 0))V ((x, 0),W)+ θ1(x, 0)V ((x, 1),W)),

(L0V )((x, 1),W) = W + γ ((1 − θ0(x, 1))V ((x, 0),W)+ θ0(x, 1)V ((x, 1),W)),

(L0V )((x, 0),W) = W + γV ((x, 0),W).

Let P1,1 be the probability law induced by the policy that activates the arm forever and let E1,1

denote the expectation under P1,1. Let ψ(x) be the expected total discounted reward if the arm
is active forever starting in state (x, 1) at time 0; namely,

ψ(x) := E1,1
x,1

[ ∞∑
t=0

γ tR1(X(t), Y (t))

]
, x ∈ X.
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Condition 2. Suppose that

ψ(x) ≥ R1(x, 0)

1 − γ
≡

∞∑
t=0

γ tR1(x, 0) for every x ∈ X.

Condition 2 is satisfied if (i) the arm never breaks down under the active action, i.e.
θ1(x, 1) = 1 for every x ∈ X, or (ii) R1(X(t), 0) is constant or nondecreasing a.s. under
the active action.

Proposition 5. Under Condition 2, activating the arm in state (x, y) ∈ S is optimal in the
W -subsidy problem for Problem 2 if and only if

W ≥ (1 − γ ) sup
τ∈S

E1,1
x,y[∑τ−1

t=0 γ
tR1(X(t), Y (t))]

1 − E1,1
x,y[γ τ ]

=: W(x, y). (11)

The arm is indexable with Whittle index W(x, y) defined by the right-hand side of (11).

If active arms do not break down and broken arms cannot be repaired then Problem 2 reduces
to a problem studied by Glazebrook et al. [12], where passive arms do not give rewards and the
indices coincide.

Problem 2 reduces to the bandit problem with switching costs if

θ1(x, 1) = 1 and θ0(x, 1) = θ0(x, 0) = 0,

and −R1(x, 0) is the cost of switching to the arm, currently idling in state x. Because
θ1(x, 1) = 1, Condition 2 is satisfied, and this version of Problem 2 is indexable. Glazebrook
et al. [11] formulated the same problem, slightly differently from us, as a restless bandit
problem where one does not wait for the broken arm to be fixed before the reward stream
is again available: if one plays a broken arm then he/she obtains its immediate reward minus
the switching cost, and the arm is guaranteed to be available in the next period. However, the
forms of their and our Whittle indices are the same. Their numerical studies suggested that the
Whittle index policy is near optimal for their version of Problem 2.

As in Problem 1, an index policy which is optimal in every instance of Problem 2 does not
exist. We show that if there exists one then its index function must be a strictly monotone
transformation of the Whittle index, and we give an example where the Whittle index policy is
not optimal. The proof of Proposition 6 is very similar to that of Proposition 3.

Proposition 6. If an index policy is optimal in every instance of Problem 2 then its index
function is a strictly monotone transformation of Whittle index W(·, ·) in (11).

Proposition 7. An index policy which is optimal in every instance of Problem 2 does not exist.

Proof. Suppose that γ and arms 1 and 2 are the same as in the proof of Proposition 4,
except that arm 2 does not break down if it is active but it breaks down as soon as it is
passive; if it is repaired then it becomes available in the next period with probability 1 (namely,
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θ1
2 (x2, 1) = θ1

2 (x2, 0) = 1 and θ0
2 (x2, 0) = θ0

2 (x2, 0) = 0) and the repair cost equals R1
2(x2, 0)

= 100. The Whittle index of arm 1 still satisfies the inequalities in (10) while the Whittle index
of arm 2 satisfies W2(x2, 1) ≤ 40, and

W2(x2, 0) = sup
τ∈S

E1,1
x2,0

[∑τ−1
t=0 γ

tR(X(t), Y (t))]
E1,1
x2,0

[∑τ−1
t=0 γ

t ]

≤ sup
τ∈S

E1,1
x2,0

[τ−1∑
t=0

γ tR(X(t), Y (t))

]

≤ R1
2(x2, 0)+ γ 40 + γ 240 + · · ·

= −100 + 40γ 1 − γ

≤ 10.

Hence, the Whittle index policy pulls arm 1 forever because it starts with pulling arm 1 at time 0,
and arm 2 breaks down immediately as a result. Thus, its value function U(·) satisfies

U((x11, 1), (x2, 1)) = 1 + 100γ + 10γ 2 + 10γ 3 + · · · ≈ 87.3.

However, pulling arm 2 forever gives

40 + 40γ + 40γ 2 + · · · ≈ 133 > 87.3,

and the Whittle index policy in (11) is not optimal and, by Proposition 6, no index policy is
optimal in every instance of Problem 2.

6. The restart-in problem

We have developed the Whittle indices for Problems 1 and 2 in the previous sections. Here
we discuss how to compute the indices in (9) and (11). For this purpose, we develop the restart-
in problem representation of the indices. The restart-in problem representation of the Gittins
index for the classical multiarmed bandit problem was introduced in [16]. The index in (11)
is similar to the Gittins index; therefore, we first formulate it as a restart-in problem. We then
propose a generalization of the restart-in problem representation for the Whittle index in (9).

6.1. The restart-in problem for the Gittins index

We first review Katehakis and Veinott’s [16] formulation of the Gittin’s index as a restart-in
problem. Consider a classical multiarmed bandit problem where the state of a fixed arm evolves
according to a Markov chain S = (S(t))t≥0 on some countable state space S with transition
probability matrix P = (pss′)s,s′∈S under the active action, and letR(s) be the one-time reward
obtained if the arm is activated in state s ∈ S.

Katehakis and Veinott [16] showed that the Gittins index of the arm in state s̃ ∈ S equals
(1 − γ )ν

(s̃)

s̃
with

ν
(s̃)

s̃
= sup
τ>0

E[∑τ−1
t=0 γ

tR(S(t)) | S(0) = s̃]
(1 − γ )E[∑τ−1

t=0 γ
t ] = sup

τ>0

E[∑τ−1
t=0 γ

tR(S(t)) | S(0) = s̃]
E[1 − γ τ ] , (12)
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where the suprema are taken over strictly positive stopping times of the state process S and
(ν
(s̃)
s )s∈S is the value function of the so-called restart-in-state-s̃ problem. In a restart-in-state-s̃

problem, the state process S evolves according to the transition probability matrix P and a
reward is collected in each state until every time we decide to restart the process S in state s̃ and
then continue to collect the rewards afterwards. The objective is to choose the restart times so as
to maximize the expected total discounted reward over an infinite-time horizon, and the value
function (ν(s̃)s )s∈S of this Markov decision process is easily shown to satisfy the optimality
equations

ν(s̃)s = max

{
R(s)+ γ

∑
s′∈S

pss′ν(s̃)
s′ , R(s̃)+ γ

∑
s′∈S

ps̃s′ν
(s̃)

s′

}
, s ∈ S. (13)

The Gittins index (1 − γ )ν
(s̃)

s̃
for every fixed state s̃ ∈ S is obtained after solving |S| equations

in (13) simultaneously for (ν(s̃)s )s∈S , for example, by applying the value-iteration algorithm
to (13). We will now characterize the Whittle indices in (9) and (11) of a potentially unavailable
arm in terms of the value function of a restart-in problem.

6.2. The representation of the Whittle index of Problem 2 in terms of restart-in problems

Because the Whittle index W(x, y) in (11) and the Gittins index in (12) are similar, we can
use the restart-in problem in (13) associated with the Gittins index. Let (X, Y ) be the state
process of a fixed arm on the state space S as described in Section 5. Then, for every fixed state
(x̃, ỹ) ∈ S, the Whittle indexW(x̃, ỹ) in (11) equals (1 − γ )ν

(x̃,ỹ)

x̃,ỹ
, where (ν(x̃,ỹ)x,y )(x,y)∈S is the

value function of the restart-in-state-(x̃, ỹ) problem for the process (X, Y ) under probability
measure P1,1 (namely, the arm is always activated—both when it is available and when it is
unavailable) and satisfies the optimality equations

ν
(x̃,ỹ)
x,y = max

{
R1(x, y)+ γ

∑
x′∈X

pxx′((1 − θ1(x, y))ν
(x̃,ỹ)

x′,0 + θ1(x, y)ν
(x̃,ỹ)

x′,1 ), R
1(x̃, ỹ)

+ γ
∑
x′∈X

px̃x′((1 − θ1(x̃, ỹ))ν
(x̃,ỹ)

x′,0 + θ1(x̃, ỹ)ν
(x̃,ỹ)

x′,1 )

}
for all (x, y) ∈ S.

6.3. The representation of the Whittle index of Problem 1 in terms of restart-in problems

Now let (X, Y ) be the state process of a fixed arm on the state space S as described in
Section 4. For every fixed x̃ ∈ X, recall from Proposition 1 that the Whittle index W(x̃, 0)
in state (x̃, 0) ∈ S equals −∞ and that W(x̃, 1) in state (x̃, 1) ∈ S is given by the expression
in (9). In Proposition 8, below, we show that W(x̃, 1) = (1 − γ )ν

(x̃,1)
(x̃,1) if (ν(x̃,1)x,y )(x,y)∈S is the

solution of the equations

ν
(x̃,1)
x,1 = max{(Lν(x̃,1)• )x,1, (Lν

(x̃,1)• )x̃,1}, (14)

ν
(x̃,1)
x,0 = (1 − γ )(ν

(x̃,1)
x̃,1 − ρ(x, 1))+ R0(x, 0)+ γ ((1 − θ0(x, 0))ν(x̃,1)x,0 + θ0(x, 0)ν(x̃,1)x,1 ),

(15)

where ρ(·, ·) and (Lw•)x,1 for any w : X × {1} �→ R are defined by (8) and by

R1(x, 1)− ρ(x, 1)+ γ
∑
x′∈X

pxx′ρ(x′, 1)+ γ
∑
x′∈X

pxx′((1 − θ1(x, 1))w(x̃,1)
x′,0

+ θ1(x, 1)w(x̃,1)
x′,1 ),



Bandit problems with availability constraints 389

respectively, for every x ∈ X. If we substitute ν(x̃,1)
x′,0 , x′ ∈ X, from (15) into (14) then

ν
(x̃,1)
x,1 = max

{
R(x)+ γ

∑
x′∈X

p
(x̃)

xx′ ν
(x̃,1)
x′,1 , R(x̃)+ γ

∑
x′∈X

p
(x̃)

x̃x′ν
(x̃,1)
x′,1

}
for all x ∈ X, (16)

where

p
(x̃)

xx′ :=
⎧⎨
⎩
pxx′qxx′ if x′ ∈ X \ {x̃},
pxx̃qxx̃ +

∑
x′′∈X

pxx′′ q̃xx′′ if x′ = x̃, (17)

R(x) := R1(x, 1)− ρ(x, 1)

+ γ
∑
x′∈X

pxx′
(
θ1(x, 1)− γ (1 − θ0(x, 0))

1 − γ (1 − θ0(x, 0))
ρ(x′, 1)+ 1 − θ1(x, 1)

1 − γ (1 − θ0(x, 0))
R0(x′, 0)

)
,

(18a)

qxx′ := θ1(x, 1)+ (1 − θ1(x, 1))
γ θ0(x′, 1)

1 − γ (1 − θ0(x′, 0))
, (18b)

q̃xx′ := (1 − θ1(x, 1))
1 − γ

1 − γ (1 − θ0(x′, 0))
, for every x, x′ ∈ X. (18c)

Let (X̃(t))t≥0 be a new Markov chain on the state space X with one-step transition probabilities
(p
(x̃)

xx′ )x,x′∈X in (17); note that qxx′ + q̃xx′ = 1 and
∑
x′∈X p

(x̃)

xx′ = 1. Then (16) shows that

(ν
(x̃,1)
x,1 )x∈X is the value function of the restart-in-state-x̃ problem for the Markov chain X̃ with

running-reward function (R(x))x∈X. Indeed, because this is a discounted Markov decision
process problem with a finite number of actions (‘continue’or ‘restart’) and a bounded running-
reward function on a countable state space, the function (ν(x̃,1)x,1 )x∈X is the unique solution of
the equations in (16) and is the uniform limit of a sequence of functions obtained successively
by applying the value-iteration algorithm to any initial bounded function defined on the state
space; see [16] and [20, Chapter II].

Proposition 8. For every fixed x̃ ∈ X, let (ν(x̃,1)x,y )x∈X,y∈{0,1} be the unique solution of (14)
and (15), equivalently, (16). Then, for Problem 1, the Whittle index W(x̃, 1) of the arm (X, Y )

in state (x̃, 1) ∈ S equals (1 − γ )ν
(x̃,1)
x̃,1 ; namely,

ν
(x̃,1)
x̃,1 = W(x̃, 1)

1 − γ
≡ sup
τ∈S̄

E1,0
x,1[

∑τ−1
t=0 γ

tRY(t)(X(t), Y (t))+ γ τρ(X(τ), 1)] − ρ(x, 1)

1 − E1,0
x,1[(1 − γ )

∑τ−1
t=1 γ

t 1{Y (t)=0} +γ τ ] .

Remark 1. Suppose that R0(x, y) = 0 and θ1(x, 1) = 1 for every x ∈ X and y ∈ {0, 1}, as
in the classical multiarmed bandit problem. Then (18a–c) and (17) become R(x) = R1(x, 1),
qxx′ = 1 − q̃xx′ = 1, and p(x̃)xx′ = pxx′ , for every x, x′, x̃ ∈ X, and (14) and (16) reduce to

ν
(x̃,1)
x,1 = max

{
R1(x, 1)+ γ

∑
x′∈X

pxx′ν(x̃,1)
x′,1 ,

R1(x̃, 1)+ γ
∑
x′∈X

px̃x′ν(x̃,1)
x′,1

}
for all x ∈ X, (19)
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which is the restart-in-state-x̃ problem uniquely solved by (ν(x̃,1)x,1 )x∈X in the Gittins index
(1 − γ )ν

(x̃,1)
x̃,1 of the arm in state (x̃, 1), as shown in [16]. Thus, the problem in (16) is the

natural generalization of that in (19) from an arm that is always available to an arm that is
intermittently available, as in the description of Problem 1.

7. Numerical example

We evaluate the performance of the Whittle index policies defined by (9) and (11) for
Problems 1 and 2, respectively, through an example in which the reward of each active arm is
a Bernoulli random variable with some unknown success probability. The success probability
of arm n is a random variable λn, having a beta posterior distribution with parameters a and b,
which depend on the prior distribution at time 0 and the number of successes in the previous
trials with the same arm; namely,

P{λn ∈ dr | a, b} = �(a + b)

�(a)�(b)
ra−1(1 − r)b−1 dr, r ∈ (0, 1).

More precisely, if the prior distribution of λn is beta with parameters (a, b) then, after c
successes and d failures in the plays so far with this arm, the posterior probability distribution
of λn is also beta with parameters (a + c, b + d). Thus, the parameters Xn(t) of the posterior
beta distribution of λn after t plays is a Markov chain with one-step transition probabilities

p(a,b),(a+1,b) = a

a + b
, p(a,b),(a,b+1) = b

a + b
, a, b > 0.

Let Yn(t) be the indicator of whether the arm is available at time t , and let

(Xn, Yn) = (Xn(t), Yn(t))t≥0

be a Markov process, as in the model of Section 2. The conditional expected reward from active
arm n at time t given Xn(t) = (a, b) and Yn(t) = 1 is a/(a + b). Finally, let

−R1
n((a, b), 0) = Cn > 0

be the constant repair cost for arm n in Problem 2.
We calculate Whittle indices by solving the Bellman equations for the restart-in problem

defined in Section 6. In a classical bandit problem with two Bernoulli arms, Katehakis and
Derman [15] calculated the Gittins index for each arm after truncating the state space of X to

ZL = {(a, b) ∈ N
2 : a + b ≤ L} for some fixed integer L > 0.

Similarly, we consider only states s = (x, y), where x = (a, b) ∈ ZL and y ∈ {0, 1}. Katehakis
and Derman [15] proved that, as L increases, their approximation converges to the value of the
Gittins index. It is easy to prove that the same result holds in our settings.

We now evaluate the Whittle index policies for Problems 1 and 2 and compare them to other
index policies based on Monte Carlo simulations with 1 000 000 samples. See [5] for more
numerical results and comparisons to the optimal policies.
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Table 1: Expected total discounted rewards and their 95% confidence intervals (CI) with Whittle and
Gittins index policies for Problem 1.

N M Whittle (95% CI) Gittins (95% CI)

Case 1: N/2 arms are available with probability θ = 1.0 and 0.5

12 1 6.9357 (6.9245, 6.9464) 6.5600 (6.5502, 6.5698)
2 13.7052 (13.6885, 13.7219) 13.3439 (13.3288, 13.3590)

36 1 7.0297 (7.0193, 7.0401) 6.6346 (6.6246, 6.6446)
6 41.5967 (41.5687, 41.6254) 40.3890 (40.3643, 40.4137)

Case 2: N/3 arms are available with probability θ = 1.0, 0.7, and 0.3

12 1 6.9309 (6.9199, 6.9419) 6.5544 (6.5446, 6.5642)
2 13.5260 (13.5088, 13.5432) 13.1447 (13.1298, 13.1596)

36 1 7.0266 (7.0162, 7.0370) 6.4499 (6.4401, 6.4597)
6 41.1573 (41.1283, 41.1863) 39.7806 (39.7561, 39.8051)

Case 3: N/6 arms are available with probability θ = 1.0, 0.9, 0.7, 0.5, 0.3, and 0.1

12 1 6.8716 (6.8604, 6.8828) 6.5676 (6.5574, 6.5778)
2 13.3253 (13.3079, 13.3427) 12.9986 (12.9829, 13.0143)

36 1 7.0178 (7.0071, 7.0283) 6.6399 (6.6299, 6.6499)
6 40.7183 (40.6842, 40.7434) 39.5345 (39.5079, 39.5609)

7.1. Numerical results for Problem 1

We compare the value function of the Whittle index policy with the bounds on the optimal
value function and that of the Gittins index policy defined below.

Definition 4. The Gittins index policy choosesM available arms with the largest Gittins indices,
and ties are broken randomly. Gittins and Whittle indices coincide when θ = 1.

We compare the Whittle and Gittins index policies for three cases in Table 1, where M
arms have θ = 1 and every time M of N arms are played. The parameters of the initial
beta distribution of the reward from each arm is (a, b) = (1, 1). The Whittle index policy
outperforms the Gittins index policy in most examples. The Gittins index policy does not use
the likelihood of each arm’s future availability, but the Whittle index policy does. The Gittins
index policy should still give tight lower bounds because it is optimal when each arm is always
available.

7.2. Numerical results for Problem 2

Problem 2 will be more realistic if the controller has the option to retire, because fixing
some of the broken arms may not be worthwhile. We introduce M dummy arms (of type 0),
which are initially broken and have zero repair costs, and they always break down immediately
after a repair (i.e. θ1(x, 0) = 0). Their Whittle indices are always 0. Choosing one of those
arms is equivalent to retiring (i.e. collecting zero reward from) one of the original arms. The
retirement option can be added to Problem 2 in this way. We compare the Whittle index policy
with policies 1 and 2 defined below.

(i) Policy 1 chooses up to M available arms from those with the largest Gittins indices.
Every broken arm is retired permanently.
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Table 2: Expected total discounted rewards and their 95% confidence intervals (CI) under the Whittle
index policy and policies 1 and 2 for Problem 2.

N M Whittle (95% CI) Policy 1 (95% CI) Policy 2 (95% CI)

Case 1: N arms are available with probability θ = (1.0, 0.5), C = 0.5

2 1 2.6785 (2.6746, 2.6824) 1.1976 (1.1954, 1.1998) 2.6789 (2.6750, 2.6828)
6 1 3.4055 (3.4024, 3.4086) 1.7559 (1.7535, 1.7583) 3.4119 (3.4088, 3.4150)

10 1 3.6048 (3.6017, 3.6079) 2.0158 (2.0134, 2.0182) 3.6103 (3.6072, 3.6134)

Case 2: N arms are available with probability θ = (0.5, 0.5), C = 1.0

2 1 1.1374 (1.1354, 1.1394) 1.1968 (1.1946, 1.1990) −0.8995 (−0.9038,−0.8952)
6 1 1.6653 (1.6631, 1.6675) 1.7555 (1.7531, 1.7579) 0.1800 (0.1761, 0.1839)

10 1 1.9111 (1.9087, 1.9135) 2.0134 (2.011, 2.0158) 0.5867 (0.5828, 0.5906)

Case 3: N/2 arms are available with probability θ = (1.0, 0.5), C = 2.0;
N/2 arms are available with probability θ = (0.5, 0.5), C = 1.0

2 1 1.1636 (1.1616, 1.1656) 1.1974 (1.1952, 1.1996) −1.2804 (−1.2849,−1.2759)
6 1 1.7071 (1.7047, 1.7095) 1.7563 (1.7539, 1.7587) −0.1007 (−0.1048,−0.0966)

10 1 1.9605 (1.9581, 1.9629) 2.0142 (2.0118, 2.0166) 0.3258 (0.3219, 0.3297)

(ii) Policy 2 chooses M arms with the largest Gittins indices regardless of availability.

The Gittins index is calculated regardless of the value of the breakdown probability or repair
cost. Policy 1 is pessimistic while policy 2 is optimistic about repairing arms.

Table 2 compares the performances of the Whittle index policy and policies 1 and 2 when
M = 1, the parameters of the beta prior distribution of each arm is (a, b) = (1, 1), each
arm is initially available (i.e. Y (0) = 1), and the probability that an arm is available does not
depend on the state of X or whether or not it is active; namely, θ1

n(x, 1) = θ0
n (x, 1) = θn(1),

θ1
n(x, 0) = θn(0), and θ0

n (x, 0) = 0, for every x ∈ X and n = 1, . . . , N for some θn =
(θn(0), θn(1)).

We expect policies 1 and 2 to work well because they are optimal if the arms never break
down. However, they behave oppositely when all the arms are unavailable; policy 1 does well
when policy 2 does not, and vice versa. As observed from Table 2, the Whittle index policy
handles the trade-off between repairing and retiring arms effectively.

8. Conclusion

We have studied an important extension of the classical multiarmed bandit problem, in which
arms may become intermittently unavailable, or they may break down, and repair is an option
at some cost. Bandit problems with switching costs can be handled with this extension.

We showed that multiarmed bandit problems with the availability constraints considered
here do not admit an index policy which is optimal in every instance of the problem. However,
the Whittle index policies we derived for each problem cannot be outperformed uniformly by
any other index policy and are optimal for the classical bandit and the W -subsidy problems.
As the probability of avalability approaches one, their indices converge to the Gittins index. As
the probability of availability approaches zero, the indices converge to the immediate reward.
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The Whittle indices can be computed by the value-iteration algorithm applied to a suitable
restart-in problem reformulation. Finally, the numerical results suggest that the Whittle index
policies perform well in general.

Appendix A. Proofs

A.1. Proof of Proposition 1

Consider the W -subsidy problem with fixed W ∈ R. We show that if the process (X, Y )
enters a state (x, 1) ∈ S where the passive action is optimal then the passive action remains
optimal at every future stage.

Suppose that (X(0), Y (0)) = (x, 1) for some (x, 1) ∈ �(W) and that the passive action is
initially optimal. Then the state of X does not change and the passive action remains optimal
as long as the arm is available. However, if the arm becomes unavailable one day (i.e. (X, Y )
enters (x, 0)) then the passive action is still optimal by (7). When the arm becomes available
again, the next state will become (x, 1) and the passive action remains optimal. Consequently,
once the process (X, Y ) enters the state (x, 1) ∈ �(W), the arm must be rested forever.

Thus, the W-subsidy problem reduces to an optimal stopping problem, where the optimal
time to switch, while the arm is available, to the passive action has to be found. For every
(Ft )t≥0-stopping time τ such that Y (τ) = 1 P1,0-a.s., we consider the following strategy:
activate the arm whenever it is available (and leave it rested otherwise) until time τ − 1, and
never activate it again at and after time τ . The corresponding expected total discounted reward is

E1,0
x,1

[τ−1∑
t=0

γ t (RY(t)(X(t), Y (t))+W 1{Y (t)=0})+
∞∑
t=τ

γ tW + γ τρ(X(τ), Y (τ ))

]
.

Conversely, immediate stopping in state (x, 1) gives
∑∞
t=0 γ

tW + ρ(x, 1) = W/(1 − γ ) +
ρ(x, 1). Therefore, (x, 1) ∈ �(W) if and only if, for every τ ∈ S̄, the quantity W/(1 − γ )+
ρ(x, 1) is greater or equal to the displayed expectation, which can be rewritten as

E1,0
x,1

[τ−1∑
t=0

γ tRY(t)(X(t), Y (t))+ γ τρ(X(τ), Y (τ ))

]
+W E1,0

x,1

[τ−1∑
t=1

γ t 1{Y (t)=0} + γ τ

1 − γ

]
,

and some algebra gives

W ≥ (1 − γ )
E1,0
x,1[

∑τ−1
t=0 γ

tRY(t)(X(t), Y (t))+ γ τρ(X(τ), Y (τ ))]−ρ(x, 1)

1 − E1,0
x,1[(1 − γ )

∑τ−1
t=1 γ

t 1{Y (t)=0} +γ τ ] for all τ ∈ S̄.

Thus, (x, 1) ∈ �(W) if and only if (9) holds.
If the arm is unavailable then the Whittle index follows from its definition and (7). Suppose

now that the arm is available. By the first part of Proposition 1, (x, 1) ∈ �(W) if and only if (9)
is satisfied. Then {(x, 1) ∈ S : (x, 1) ∈ �(W1)} ⊇ {(x, 1) ∈ S : (x, 1) ∈ �(W2)} ifW1 > W2,
and (7) implies that �(W1) ⊇ �(W2) whenever W1 > W2. Therefore, the arm is indexable
and W(x, 1) ≡ inf{W : (x, 1) ∈ �(W)} in (9) gives the Whittle index.

A.2. Proof of Proposition 2

In order to emphasize the dependence of W and P1,0 on θ ∈ [0, 1], we replace them with
Wθ and Pθ , respectively. Then Wθ(x, 1) = (1 − γ ) supτ∈S̄ �(θ, τ, x), where

�(θ, τ, x) := Eθx,1[
∑τ−1
t=0 γ

tR1(X(t), 1) 1{Y (t)=1}]
(1 − γ (1 − θ))Eθx,1[1 − γ τ ] for all θ ∈ [0, 1], τ ∈ S̄, x ∈ X.
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The Gittins index corresponds to M(x) = W1(x, 1) ≡ (1 − γ ) supτ∈S̄ �(1, τ, x). Let R̄ be a
finite constant such that |R(x, 1)| < R̄ for every x ∈ X.

We first prove the convergence to the immediate reward as θ ↘ 0. Because immediate
stopping gives R1(x, 1), we have Wθ(x, 1) ≥ R1(x, 1). Note that Wθ(x, 1) is less than or
equal to

(1 − γ )R1(x, 1)+ (1 − γ )R̄ Eθx,1[
∑∞
t=1 γ

t 1{Y (t)=1}]
(1 − γ (1 − θ))Eθx,1[1 − γ τ ] = (1 − γ )R1(x, 1)+ γ R̄θ

(1 − γ (1 − θ))Eθx,1[1 − γ τ ] .

First suppose that R1(x, 1) ≥ 0. Let K = min{t ≥ 1;Y (t) = 1} be the first time in the
future that the arm is available. Then

Eθx,1 γ
K =

∞∑
t=1

γ t (1 − θ)t−1θ = γ θ

1 − γ (1 − θ)
.

Because τ ≥ K a.s. for every τ ∈ S̄, we obtain

0 ≤ Wθ(x, 1)− R1(x, 1) ≤ (1 − γ )R1(x, 1)+ γ R̄θ

(1 − γ (1 − θ))Eθx,1[1 − γK ] − R1(x, 1) = γ R̄θ

1 − γ
.

Now suppose that R1(x, 1) < 0. For every 0 ≤ θ < (1 −γ )/γ , we have (1 −γ )R1(x, 1)+
γ R̄θ ≤ −(1 − γ )R̄ + γ R̄θ < 0 and

0 ≤ Wθ(x, 1)− R1(x, 1)

≤ (1 − γ )R1(x, 1)+ γ R̄θ

(1 − γ (1 − θ)) supτ∈S̄ Eθx,1[1 − γ τ ] − R1(x, 1)

= γ R̄θ

1 − γ (1 − θ)
.

Thus, for 0 ≤ θ < (1 − γ )/γ , we have

sup
x∈X

|Wθ(x, 1)− R1(x, 1)| ≤ γ R̄θ

1 − γ (1 − θ)
→ 0 as θ ↓ 0.

To show the convergence ofWθ(x, 1) to the Gittins index as θ ↗ 1 uniformly in x ∈ X, we
will need the following lemma.

Lemma 1. For some functionB : (0, 1) �→ R, we have supτ∈S̄,x∈X |�(1, τ, x)−�(θ, τ, x)| ≤
B(θ) for every θ ∈ (0, 1) and B(θ) → 0 as θ → 1.

Proof. For θ ∈ (0, 1), τ ∈ S̄, and x ∈ X, we have |�(1, τ, x) − �(θ, τ, x)| is less than or
equal to

|E1
x,1[

∑τ−1
t=0 γ

tR1(X(t), 1)] − Eθx,1[
∑τ−1
t=0 γ

tR1(X(t), 1) 1{Y (t)=1}]|
1 − γ

+ R̄

1 − γ

∣∣∣∣ 1

1 − E1
x,1[γ τ ]

− 1

(1 − γ (1 − θ))Eθx,1[1 − γ τ ]
∣∣∣∣.



Bandit problems with availability constraints 395

It is now sufficient to prove the existence of functions B1(θ) → 0 as θ ↑ 1 and B2(θ) → 0 as
θ ↑ 1 such that

∣∣∣∣E1
x,1

[τ−1∑
t=0

γ tR1(X(t), 1)

]
− Eθx,1

[τ−1∑
t=0

γ tR1(X(t), 1) 1{Y (t)=1}
]∣∣∣∣ ≤ B1(θ), (20)

∣∣∣∣ 1

1 − E1
x,1[γ τ ]

− 1

(1 − γ (1 − θ))Eθx,1[1 − γ τ ]
∣∣∣∣ ≤ B2(θ). (21)

Let L be the first time the arm is unavailable. For every l ≥ 1, the joint conditional
Pθ -distribution of {(X(t), Y (t)); 0 ≤ t ≤ l − 1} given L = l is the same as the joint
unconditional P1-distribution of {(X(t), Y (t)); 0 ≤ t ≤ l − 1}, and we have Pθ {L = l} =
θ l−1(1 − θ), l ≥ 1, and

Eθx,1[γ L] = γ (1 − θ)

1 − γ θ
<

1 − θγ

1 − γ
.

The inequality in (20) holds with B1(θ) := (1 − θ)2γ R̄/(1 − γ )2 because the left-hand side is
less than or equal to

∞∑
l=1

Pθx,1{L = l}
∣∣∣∣E1
x,1

[τ−1∑
t=0

γ tR1(X(t), 1)

]
− Eθx,1

[τ−1∑
t=0

γ tR1(X(t), 1) 1{Y (t)=1}
∣∣∣∣ L = l

]∣∣∣∣,
where, for every l ≥ 1, the absolute difference is less than or equal to

∣∣∣∣E1
x,1

[ l−1∑
t=0

γ tR1(X(t), 1) 1{τ>l−1}
]

− Eθx,1

[ l−1∑
t=0

γ tR1(X(t), 1) 1{Y (t)=1} 1{τ>l−1}
∣∣∣∣ L = l

]∣∣∣∣
+

∣∣∣∣E1
x,1

[τ−1∑
t=l

γ tR1(X(t), 1) 1{τ>l−1}
]

− Eθx,1

[τ−1∑
t=l

γ tR1(X(t), 1) 1{Y (t)=1} 1{τ>l−1}
∣∣∣∣ L = l

]∣∣∣∣
=

∣∣∣∣E1
x,1

[τ−1∑
t=l

γ tR1(X(t), 1) 1{τ>l−1}
]

− Eθx,1

[τ−1∑
t=l

γ tR1(X(t), 1) 1{Y (t)=1} 1{τ>l−1}
∣∣∣∣ L = l

]∣∣∣∣,
which is less than 2R̄

∑∞
t=l γ t ; therefore, the left-hand side of (20) is less than or equal to

∞∑
l=1

Pθx,1{L = l}
∞∑
t=l

γ t2R̄ = 2R̄

1 − γ
Eθx,1[γ L] = (1 − θ)

2γ R̄

(1 − γ )2
≡ B1(θ).

The inequality in (21) holds with

B2(θ) := γ (1 − γ )2(1 − θ)

1 − γ (1 − θ)
→ 0 as θ ↑ 1



396 S. DAYANIK ET AL.

because ∣∣∣∣ 1

1 − E1
x,1[γ τ ]

− 1

(1 − γ (1 − θ))Eθx,1[1 − γ τ ]
∣∣∣∣

= |(1 − γ (1 − θ))Eθx,1[1 − γ τ ] − (1 − E1
x,1[γ τ ])|

(1 − E1
x,1[γ τ ])(1 − γ (1 − θ))Eθx,1[1 − γ τ ]

≤ |E1
x,1[γ τ ] − Eθx,1[γ τ ]| + γ (1 − θ)Eθx,1[1 − γ τ ]
(1 − E1

x,1[γ τ ])(1 − γ (1 − θ))Eθx,1[1 − γ τ ]

≤ |E1
x,1[γ τ ] − Eθx,1[γ τ ]| + γ (1 − θ)

(1 − γ (1 − θ))(1 − γ )2

and

| E1
x,1[γ τ ] − Eθx,1[γ τ ]| ≤

∞∑
l=1

Pθx,1{L = l}| E1
x,1[γ τ ] − Eθx,1[γ τ | L = l]|

=
∞∑
l=1

Pθx,1{L = l}| E1
x,1[γ τ 1{τ>l−1}] − Eθx,1[γ τ 1{τ>l−1} | L = l]|

≤
∞∑
l=1

Pθx,1{L = l}
∞∑
t=l

γ t

= 1

1 − γ
Eθx,1[γ L]

< (1 − θ)
γ

(1 − γ )2
.

Finally, Lemma 1 follows with

B(θ) := B1(θ)

1 − γ
+ B2(θ)R̄

1 − γ
.

Now, thanks to Lemma 1, we have

sup
x∈X

|Wθ(x, 1)−M(x)| = sup
x∈X

∣∣∣sup
τ∈S̄

�(θ, τ, x)− sup
τ∈S̄

�(1, τ, x)
∣∣∣

≤ sup
τ∈S̄, x∈X

|�(θ, τ, x)− �(1, τ, x)|

≤ B(θ)

→ 0 as θ ↓ 0.

A.3. Proof of Proposition 3

Suppose that there are two arms. Arm 1 follows a stochastic process (X(t), Y (t))t≥0, as in
Section 2, and arm 2 is always available and gives some constant reward a. Let (x1, 1) and
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(x2, 1) be the current states of arms 1 and 2, respectively. Then

W(x2, 1) = (1 − γ ) sup
τ∈S̄

E1,0
x2,1

[∑τ−1
t=0 γ

tR1(X(t), 1) 1{Y (t)=1}]
1 − E1,0

x2,1
[∑τ−1

t=1 (1 − γ )γ t 1{Y (t)=0} +γ τ ]

= sup
τ∈S

E1,0
x2,1

[∑τ−1
t=0 γ

ta]
E1,0
x2,1

[∑τ−1
t=0 γ

t ]
= a.

By Proposition 1, resting arm 1 is optimal if and only if W(x1, 1) ≤ a ≡ W(x2, 1). If there is
an index policy which is optimal for every instance of Problem 1 then it must also be optimal
for the above problem; therefore, an optimal index policy’s index function must be a strictly
monotone transformation of the Whittle index W(·, ·).
A.4. Proof of Proposition 5

We prove the indexability and obtain the Whittle index under Condition 1. We consider
cases W < R1(x, 0) and W ≥ R1(x, 0) separately after the following lemmas.

Lemma 2. For every x ∈ X and W ∈ R, if (x, 0) ∈ �(W) then V ((x, 0),W) = W/(1 − γ ),
which is obtained by taking the passive action all the time.

Proof. The states of X and Y do not change under passive action. If (x, 0) ∈ �(W) then
the passive action remains optimal forever. Consequently, the expected total discounted reward
starting in (x, 0) becomes V ((x, 0),W) = ∑∞

t=0 γ
tW = W/(1 − γ ).

Lemma 3. For every x ∈ X andW ∈ R, if (x, 1) ∈ �(W) then the stochastic process (X, Y )
starting in (x, 1) visits only (x, 1) and/or (x, 0) under the optimal policy, and

V ((x, 1),W) = max

{
E0,1
x,1

[ ∞∑
t=0

γ t (W 1{Y (t)=1} +R1(x, 0) 1{Y (t)=0})
]
,
W

1 − γ

}
, (22)

where P0,1 is the probability law induced by the policy that activates the arm as long as it is
unavailable and leaves it rested otherwise.

Proof. The state of process X does not change under the passive action or if the arm is
unavailable. Therefore, at the next time the arm becomes available, the process X is in state x.
Because we assume that (x, 1) ∈ �(W), the passive action must be taken whenever the arm is
available. Therefore, the process (X, Y ) can visit only the states (x, 0) and (x, 1). The optimal
policy must be either that the arm always remains passive or that the arm remains passive in
state (x, 1), but is activated in state (x, 0). Their values are W/(1 − γ ) by Lemma 2 and the
expectation in (22), respectively.

Lemma 4. IfW < R1(x, 0), and Condition 2 holds, then (x, y) /∈ �(W) for every y ∈ {0, 1};
therefore, �(W) = ∅.

Proof. Suppose that (x, 0) ∈ �(W) for some x ∈ X. However, a lower bound on
V ((x, 0),W) can be obtained by considering the policy under which the arm is active at (x, 0)
and passive otherwise. Because W < R1(x, 0), this policy gives V ((x, 0),W) > W/(1 − γ ),
which contradicts with (x, 0) ∈ �(W) by Lemma 2 and implies that

(x, 0) /∈ �(W), x ∈ X. (23)
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Now suppose that (x, 1) ∈ �(W) for some x ∈ X. Then, by Lemma 3 and (23), we obtain
V ((x, 1),W) = E0,1

x,1[
∑∞
t=0 γ

t (W 1{Y (t)=1} +R1(x, 0) 1{Y (t)=0})] < R1(x, 0)/(1 − γ ). How-
ever, this contradicts with the lower bound obtained by applying the policy under which the arm
is always active; namely, V ((x, 1),W) = E1,1

x,1[
∑∞
t=0 γ

tR1(X(t), Y (t))] ≥ R1(x, 0)/(1 − γ ),
where the last inequality holds under Condition 2. Therefore, (x, 1) /∈ �(W), x ∈ X.

Lemma 5. Suppose that W ≥ R1(x, 0). Then (x, y) ∈ �(W) if and only if

W ≥ (1 − γ )E1,1
x,y[∑τ−1

t=0 γ
tR1(X(t), Y (t))]

1 − E1,1
x,y[γ τ ]

for every τ ∈ S.

Proof. We show that in theW -subsidy problem, once the passive action is optimal, it remains
optimal thereafter. This follows for y = 0 from Lemma 2.

Suppose that (x, 1) ∈ �(W) for some x ∈ X. By Lemma 3, starting at (x, 1) under the
optimal policy, only (x, 0) and (x, 1) will be visited by (X, Y ), and (22) holds. Since W ≥
R1(x, 0), in (22) we have E0,1

x,1[
∑∞
t=0 γ

t (W 1{Y (t)=1} +R1(x, 0) 1{Y (t)=0})] ≤ W/(1 − γ ); thus,
V ((x, 1),W) = W/(1 − γ ), and passive action is always optimal.

As in the proof of Proposition 1, theW -subsidy problem now reduces to an optimal stopping
problem. The optimal strategy must choose the active action until some stopping time τ and the
passive action at and after time τ . Differently from Problem 1, it may now be optimal to stop
when the arm is unavailable. If we switch from the active action to the passive action at some
stopping time τ then the expected total discounted reward will be E1,1

x,y[∑τ−1
t=0 R

1(X(t), Y (t))+∑∞
t=τ γ tW ]. As in the proof of Proposition 1, (x, y) ∈ �(W) if and only if immediate

stopping achieves greater value than the previous expectation for every positive τ ∈ S. Because
immediate-stopping yields W/(1 − γ ), we have (x, y) ∈ �(W) if and only if W/(1 − γ ) ≥
E1,1
x,y[∑τ−1

t=0 R
1(X(t), Y (t))+ ∑∞

t=τ γ tW ] for every τ ∈ S.

The inequality in (11) follows from Lemmas 4 and 5 and implies the monotonicity of
W �→ �(W), the indexability of the arm, and the form of the Whittle index W(x, y).

A.5. Proof of Proposition 8

Fix any state x̃ ∈ X. The Whittle index in state (x̃, 0) ∈ S equals W(x̃, 0) = −∞, and we
want to calculate W(x̃, 1) given by (9) for state (x̃, 1) ∈ S. From the proof of Proposition 1,
the value function V ((x, 1),W) of the W -subsidy problem equals

sup
τ∈S̄

E1,0
x,1

[τ−1∑
t=0

γ t (RY(t)(X(t), Y (t))+W 1{Y (t)=0})+ γ τ
(

W

1 − γ
+ ρ(X(τ), 1)

)]

for every x ∈ X and W ∈ R, which satisfies the optimality equation

V ((x, 1),W) = max

{
R1(x, 1)

+ γ
∑
x′∈X

pxx′((1 − θ1(x, 1))V ((x′, 0),W)+ θ1(x, 1)V ((x′, 1),W)),

W

1 − γ
+ ρ(x, 1)

}
, (24)

V ((x, 0),W) = W + R0(x, 0)

+ γ ((1 − θ0(x, 0))V ((x, 0),W)+ θ0(x, 0)V ((x, 1),W)). (25)
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By Definition 2, the Whittle index W(x̃, 1) of an arm in state (x̃, 1) is the smallest W ∈ R

in (24) for which one is indifferent in (x, 1) = (x̃, 1) between stopping and continuation:

V ((x̃, 1),W(x̃, 1)) = W(x̃, 1)

1 − γ
+ ρ(x̃, 1)

= R1(x̃, 1)+ γ
∑
x′∈X

px̃x′((1 − θ1(x̃, 1))V ((x′, 0),W(x̃, 1))

+ θ1(x̃, 1)V ((x′, 1),W(x̃, 1))). (26)

In (24) and (25) let us subtract ρ(x, 1) from both sides, and in the right-hand side of both
equations add and subtract ρ(·, 1) to and from the functions V ((·, 0),W) and V ((·, 1),W).
Rearranging the terms gives

V ((x, 1),W)− ρ(x, 1) = max

{
R1(x, 1)+ γ

∑
x′∈X

pxx′ρ(x′, 1)

+ γ
∑
x′∈X

pxx′((1 − θ1(x, 1))(V ((x′, 0),W)− ρ(x′, 1))

+ θ1(x, 1)(V ((x′, 1)− ρ(x′, 1),W))),
W

1 − γ

}
,

V ((x, 0),W)− ρ(x, 1) = W + R0(x, 0)− (1 − γ )ρ(x, 1)

+ γ ((1 − θ0(x, 0))(V ((x, 0),W)− ρ(x, 1))

+ θ0(x, 0)(V ((x, 1),W)− ρ(x, 1))).

In the last displayed equations, set W = W(x̃, 1), substitute

W(x̃, 1)

1 − γ
= (V (x̃, 1),W(x̃, 1))− ρ(x̃, 1)

= R1(x̃, 1)+ γ
∑
x′∈X

px̃x′ρ(x′, 1)

+ γ
∑
x′∈X

px̃x′((1 − θ1(x̃, 1))(V ((x′, 0),W(x̃, 1))− ρ(x′, 1))

+ θ1(x̃, 1)(V ((x′, 1)− ρ(x′, 1),W(x̃, 1))) (27)

from (26), and to get (14) and (15) rewrite the resulting equations in terms of ν(x̃,1)x,y :=
V ((x, y),W(x̃, 1))− ρ(x, 1), (x, y) ∈ S.As shown before Proposition 8, (14) and (15) have
a unique solution, and

(1 − γ )ν
(x̃,1)
x̃,1 = (1 − α)(V ((x̃, 1),W(x̃, 1))− ρ(x̃, 1)) = (1 − γ )

W(x̃, 1)

1 − γ
= W(x̃, 1)

by (27).
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