Robust Optimization for Unconstrained Simulation-Based Problems

Dimitris Bertsimas, Omid Nohadani
Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 {dbertsim@mit.edu, nohadani@mit.edu}

Kwong Meng Teo
Department of Industrial and Systems Engineering, National University of Singapore, 117576, Singapore, kwongmeng@alum.mit.edu

In engineering design, an optimized solution often turns out to be suboptimal when errors are encountered. Although the theory of robust convex optimization has taken significant strides over the past decade, all approaches fail if the underlying cost function is not explicitly given; it is even worse if the cost function is nonconvex. In this work, we present a robust optimization method that is suited for unconstrained problems with a nonconvex cost function as well as for problems based on simulations, such as large partial differential equations (PDE) solver, response surface, and Kriging metamodels. Moreover, this technique can be employed for most real-world problems because it operates directly on the response surface and does not assume any specific structure of the problem. We present this algorithm along with the application to an actual engineering problem in electromagnetic multiple scattering of aperiodically arranged dielectrics, relevant to nanophotonic design. The corresponding objective function is highly nonconvex and resides in a 100-dimensional design space. Starting from an “optimized” design, we report a robust solution with a significantly lower worst-case cost, while maintaining optimality. We further generalize this algorithm to address a nonconvex optimization problem under both implementation errors and parameter uncertainties.

Subject classifications: robust optimization; nonconvex optimization; robustness; implementation errors; data uncertainty; engineering optimization.

Area of review: Optimization.

History: Received June 2007; revisions received February 2008, September 2008; accepted November 2008. Published online in Articles in Advance September 23, 2009.

1. Introduction

Uncertainty is typically present in real-world applications. Information used to model a problem is often noisy, incomplete, or even erroneous. In science and engineering, measurement errors are inevitable. In business applications, the cost and selling price as well as the demand of a product are, at best, expert opinions. Moreover, even if uncertainties in the model data can be ignored, solutions cannot be implemented to infinite precision, as assumed in continuous optimization. Therefore, an “optimal” solution can easily be suboptimal or, even worse, infeasible. Traditionally, sensitivity analysis was performed to study the impact of perturbations on specific designs. Although these approaches can be used to compare different designs, they do not intrinsically find one that is less sensitive; that is, they do not improve the robustness directly.

Stochastic optimization (see Birge and Louveaux 1997 and Prekopa and Ruszczynski 2002) is the traditional approach to address optimization under uncertainty. The approach takes a probabilistic approach. The probability distribution of the uncertainties is estimated and incorporated into the model using:

1. Chance constraints (i.e., a constraint that is violated less than \(p\%\) of the time) (see Charnes and Cooper 1959);}

2. Risk measures (i.e., standard deviations, value-at-risk, and conditional value-at-risk) (see Markowitz 1952, Park et al. 2006, Ramakrishnan and Rao 1991, Ruszczynski and Shapiro 2006, and Uryasev and Rockafellar 2001); or

3. A large number of scenarios emulating the distribution (see Mulvey and Ruszczynski 1995 and Rockafellar and Wets 1991).

However, the actual distribution of the uncertainties is seldom available. Take the demand of a product over the coming week. Any specified probability distribution is, at best, an expert’s opinion. Furthermore, even if the distribution is known, solving the resulting problem remains a challenge (see Dyer and Stougie 2006). For example, a chance constraint is usually “computationally intractable” (see Nemirovski 2003).

Alternatively, in structural optimization, a robust design is achieved through a multicriteria optimization problem where a minimization of both the expected value and the standard deviation of the objective function is sought using a gradient-based method (see Dolsinis and Kang 2004). Other approaches incorporate uncertainties and perturbations through tolerance bands and margins in the respective multiobjective function while taking constraints into
account by adding a penalty term to the original constraints (see Lee and Park 2001).

Robust optimization is another approach towards optimization under uncertainty. Adopting a min-max approach, a robust optimal design is one with the best worst-case performance. Despite significant developments in the theory of robust optimization, particularly over the past decade, a gap remains between the robust techniques developed to date, and problems in the real world. Most current robust methods are restricted to convex problems such as linear, convex quadratic, conic quadratic, linear discrete problems (see Ben-Tal and Nemirovski 1998, 2003 and Bertsimas and Sim 2003, 2006), and convex-constrained continuous minimax problems (see Žaković and Pantelides 2000). More recently, a linearization of the uncertainty set allowed to reduce the dependence of the constraints on the uncertain parameters and provided robust solutions to nonlinear problems (see Diehl et al. 2006). Furthermore, Zhang successfully formulated a general robust optimization approach for nonlinear problems with parameter uncertainties involving both equality and inequality constraints (see Zhang 2007). This approach provides first-order robustness at the nominal value.

However, an increasing number of design problems in the real world, besides being nonconvex, involve the use of computer-based simulations. In simulation-based applications, the relationship between the design and the outcome is not defined as functions used in mathematical programming models. Instead, that relationship is embedded within complex numerical models such as partial differential equation (PDE) solvers (see Ciarlet 2002 and Cook et al. 2007), response surface, radial basis functions (see Jin et al. 2001), and Kriging metamodels (see Simpson et al. 2001). Consequently, robust techniques found in the literature cannot be applied to these important practical problems.

In this paper, we propose an approach to robust optimization that is applicable to problems whose objective functions are nonconvex and given by a numerical simulation-driven model. Our proposed method requires only a subroutine that provides the value as well as the gradient of the objective function. Because of this generality, the proposed method is applicable to a wide range of practical problems. To show the practicability of our robust optimization technique, we applied it to an actual nonconvex application in nanophotonic design.

Moreover, the proposed robust local search is analogous to local search techniques such as gradient descent, which entails finding descent directions and iteratively taking steps along these directions to optimize the nominal cost. The proposed robust local search iteratively takes appropriate steps along descent directions for the robust problem to find robust designs. This analogy continues to hold through the iterations; the robust local search is designed to terminate at a robust local minimum, a point where no improving direction exists. We introduce descent directions and the local minimum of the robust problem; the analogies of these concepts in the optimization theory are important, well studied, and form the building blocks of powerful optimization techniques such as steepest descent and subgradient techniques. Our proposed framework has the same potential, but for the richer robust problem.

In general, there are two common forms of perturbations: (i) implementation errors, which are caused in an imperfect realization of the desired decision variables; and (ii) parameter uncertainties, which are due to modeling errors during the problem definition, such as noise. Note that our discussion on parameter errors also extends to other sources of errors, such as deviations between a computer simulation and the underlying model (e.g., numerical noise) or the difference between the computer model and the metamodel, as discussed by Stinstra and den Hertog (2008). Even though perturbations (i) and (ii) have been addressed as sources of uncertainty, the case where both are simultaneously present has not received appropriate attention. For the ease of exposition, we first introduce a robust optimization method for generic nonconvex problems to minimize the worst-case cost under implementation errors. We further generalize the method to the case where both implementation errors and parameter uncertainties are present.

In a previous work, we introduced a more specialized robust local search algorithm to address the specific problem of optimizing the design of nanophotonic structures (see Bertsimas et al. 2007). Although having its original motivation in Bertsimas et al. (2007), the method we present here is quite different. We determine the descent direction for the robust problem based on a directional derivative framework, whereas previously we relied solely on a geometric approach. With this new framework, the method can serve as a building block for other gradient-based optimization routines, allowing a larger range of applicability. Moreover, we provide a thorough mathematical analysis along with proofs of convergence, geometric intuition, and, as mentioned above, an extension to problems with parameter uncertainties.

Structure of the Paper. In §2, we define the robust optimization problem with implementation errors and present relevant theoretical results for this problem. Here we introduce the conditions for descent directions for the robust problem in analogy to the nominal case. In §3, we present the local search algorithm. We continue by demonstrating the performance of the algorithm with two application examples. In §4, we discuss the application of the algorithm to a problem with a polynomial objective function to illustrate the algorithm at work and to provide geometric intuition. In §5, we describe an actual electromagnetic scattering design problem with a 100-dimensional design space. This example serves as a showcase of an actual real-world problem with a large decision space. It demonstrates that the proposed robust optimization method improves the robustness significantly, while maintaining optimality of the nominal solution. In §6, we generalize the algorithm to the case where both implementation
errors and parameter uncertainties are present, discuss the necessary modifications to the problem definition as well as to the algorithm, and present an example. Finally, §7 contains our conclusions.

2. The Robust Optimization Problem Under Implementation Errors

First, we define the robust optimization problem with implementation errors. This leads to the notion of the descent direction for the robust problem, which is a vector that points away from all the worst implementation errors. A robust local minimum is a solution at which no such direction exists.

2.1. Problem Definition

The cost function, possibly nonconvex, is denoted by \(f(x) \), where \(x \in \mathbb{R}^n \) is the design vector. \(f(x) \) denotes the nominal cost because it does not consider possible implementation errors in \(x \). Consequently, the nominal optimization problem is

\[
\min f(x) .
\]

When implementing \(x \), additive implementation errors \(\Delta x \in \mathbb{R}^n \) may be introduced due to an imperfect realization process, resulting in an eventual implementation of \(x + \Delta x \). \(\Delta x \) is assumed to reside within an uncertainty set

\[
\mathcal{U} := \{ \Delta x \in \mathbb{R}^n \ | \ |\Delta x|_2 \leq \Gamma \}.
\]

Here, \(\Gamma > 0 \) is a scalar describing the size of perturbation against which the design needs to be protected. Although our approach applies to other norms \(|\Delta x|_p \leq \Gamma \) in (2) \((p \) being a positive integer, including \(p = \infty \)), we present the case of \(p = 2 \).

We seek a robust design \(x \) by minimizing the worst-case cost

\[
g(x) := \max_{\Delta x \in \mathcal{U}} f(x + \Delta x)
\]

instead of the nominal cost \(f(x) \). The worst-case cost \(g(x) \) is the maximum possible cost of implementing \(x \) due to an error \(\Delta x \in \mathcal{U} \). Thus, the robust optimization problem is given through

\[
\min_x g(x) \equiv \min_x \max_{\Delta x \in \mathcal{U}} f(x + \Delta x).
\]

2.2. A Geometric Perspective of the Robust Problem

When implementing a certain design \(x = \tilde{x} \), the possible realization due to implementation errors \(\Delta x \in \mathcal{U} \) lies in the set

\[
\mathcal{N} := \{ x \ | \ |x - \tilde{x}|_2 \leq \Gamma \}.
\]

We call \(\mathcal{N} \) the neighborhood of \(\tilde{x} \); such a neighborhood is illustrated in Figure 1. A design \(x \) is a neighor of \(\tilde{x} \) if it is in \(\mathcal{N} \). Therefore, the worst-case cost of \(\tilde{x} \), \(g(\tilde{x}) \) is the maximum cost attained within \(\mathcal{N} \). Let \(\Delta x^* \) be one of the worst implementation errors at \(\tilde{x} \), \(\Delta x^* = \arg \max_{\Delta x \in \mathcal{U}} f(\tilde{x} + \Delta x) \). Then, \(g(\tilde{x}) \) is given by \(f(\tilde{x} + \Delta x^*) \). Because we seek to navigate away from all the worst implementation errors, we define the set of worst implementation errors at \(\tilde{x} \) as

\[
\mathcal{U}^*(\tilde{x}) := \left\{ \Delta x^* | \Delta x^* = \arg \max_{\Delta x \in \mathcal{U}} f(\tilde{x} + \Delta x) \right\}.
\]

2.3. Descent Directions and Robust Local Minima

2.3.1. Descent Directions. When solving the robust problem, it is useful to take descent directions that reduce the worst-case cost by excluding worst errors. It is defined as:

Definition 1. \(d \) is a descent direction for the robust optimization problem (4) at \(x \) if the directional derivative in direction \(d \) satisfies the following condition:

\[
g'(x; d) < 0.
\]

The directional derivative at \(x \) in the direction \(d \) is defined as

\[
g'(x; d) = \lim_{t \to 0} \frac{g(x + td) - g(x)}{t}.
\]

Note that in problem (4) a directional derivative exists for all \(x \) and for all \(d \) (see Appendix A).

A descent direction \(d \) is a direction that will reduce the worst-case cost if it is used to update the design \(x \). We seek an efficient way to find such a direction. The following theorem shows that a descent direction is equivalent to a vector pointing away from all the worst implementation errors in \(\mathcal{U} \):

Theorem 1. Suppose that \(f(x) \) is continuously differentiable, \(\mathcal{U} = \{ \Delta x \ | \ |\Delta x|_2 \leq \Gamma \} \), where \(\Gamma > 0 \),
\[g(x) := \max_{x \in U} f(x + \Delta x), \] and \[\nabla^*(x) := \{ \Delta x^* | \Delta x^* = \arg \max_{x \in U} f(x + \Delta x) \}. \] Then, \(d \in \mathbb{R}^n \) is a descent direction for the worst-case cost function \(g(x) \) at \(x = \tilde{x} \) if and only if

\[d^T \Delta x^* < 0, \]
\[\nabla_x f(x)|_{x=\tilde{x}+\Delta x^*} \neq 0, \]
for all \(\Delta x^* \in \mathcal{U}^*(\tilde{x}) \).

Note that the condition \(\nabla_x f(x)|_{x=\tilde{x}+\Delta x^*} \neq 0 \), or \(\tilde{x} + \Delta x^* \) not being an unconstrained local maximum of \(f(x) \) implies that \(\|\Delta x^*\|_2 = 1 \). Figure 1 illustrates a possible scenario under Theorem 1. All the descent directions \(d \) lie in the strict interior of a cone, the normal of the cone spanned by all the vectors \(\Delta x^* \in \mathcal{U}^*(\tilde{x}) \). Consequently, all descent directions point away from all the worst implementation errors. From \(\tilde{x} \), the worst-case cost can be strictly decreased if we take a sufficiently small step along any directions within this cone, leading to solutions that are more robust. All the worst designs, \(\tilde{x} + \Delta x^* \), would also lie outside the neighborhood of the new design.

The detailed proof of Theorem 1 is presented in Appendix B. The main ideas behind the proof are:

(i) the directional derivative of the worst-case cost function, \(g'(x; d) \), equals the maximum value of \(d^T \nabla_x f(x + \Delta x^*) \) for all \(\Delta x^* \) (see Corollary 1(a)); and

(ii) the gradient at \(x + \Delta x^* \) is parallel to \(\Delta x^* \) due to the Karush-Kuhn-Tucker conditions (see Proposition 3).

Therefore, in order for \(g'(x; d) < 0 \), we require \(d^T \Delta x^* < 0 \) and \(\nabla_x f(x + \Delta x^*) \neq 0 \) for all \(\Delta x^* \). The intuition behind Theorem 1 is: We have to move sufficiently far away from all the designs \(\tilde{x} + \Delta x^* \) for there to be a chance to decrease the worst-case cost.

2.3.2. Robust Local Minima

Definition 1 for a descent direction leads naturally to the following concept of a robust local minimum:

Definition 2. \(x^* \) is a robust local minimum if there exists no descent direction for the robust problem at \(x = x^* \).

Similarly, Theorem 1 easily leads to the following characterization of a robust local minimum:

Proposition 1 (Robust Local Minimum). Suppose that \(f(x) \) is continuously differentiable. Then, \(x^* \) is a robust local minimum if and only if either one of the following two conditions are satisfied:

i. there does not exist a \(d \in \mathbb{R}^n \) such that for all \(\Delta x^* \in \mathcal{U}^*(x^*) \),

\[d^T \Delta x^* < 0, \]

ii. there exists a \(\Delta x^* \in \mathcal{U}^*(x^*) \) such that \(\nabla_x f(x + \Delta x^*) = 0 \).

Given Proposition 1, we illustrate common types of robust local minima, where either one of the two conditions are satisfied.

Convex case. If \(f \) is convex, \(g \) is convex, as shown in Corollary 1(b) in the appendix. Hence, there are no local maxima in the interior of the feasible set of \(f \), i.e., condition (ii) is never satisfied. Condition (i) is satisfied when \(\Delta x^*_i \) are surrounding the design, as illustrated in Figure 2(a). Because \(g \) is convex, a robust local minimum of \(g \) is a robust global minimum of \(g \).

General case. Three common types of robust local minima can be present when \(f \) is nonconvex, as shown in Figure 2. Condition (i) in Proposition 1, that there is no direction pointing away from all the worst implementation errors \(\Delta x^*_i \), is satisfied by both the robust local minimum in Figures 2(a) and 2(b). Condition (ii), that one of the worst implementation errors \(\Delta x^*_i \) lie in the strict interior of the neighborhood, is satisfied by Figures 2(b) and 2(c).

Compared to the others, the "robust local minimum" of the type in Figure 2(c) may not be as good a robust design, and can actually be a bad robust solution. For example, we can find many such "robust local minima" near the global maximum of the nominal cost function \(f(x) \), i.e., when \(x^* + \Delta x^* \) is the global maximum of the nominal problem. Therefore, we seek a robust local minimum satisfying condition (i), that there does not exist a direction pointing away from all the worst implementation errors.

The following algorithm seeks such a desired robust local minimum. We further show the convergence result in the case where \(f \) is convex.

![Figure 2. A two-dimensional illustration of common types of robust local minima.](image-url)
2.4. A Local Search Algorithm for the Robust Optimization Problem

Given the set of worst implementation errors at \tilde{x}, $\mathcal{U}^*(\tilde{x})$, a descent direction can be found efficiently by solving the following second-order cone program (SOCP):

$$\begin{align*}
\min_{d, \beta} & \quad \beta \\
\text{s.t.} & \quad \|d\|_2 \leq 1, \\
& \quad d^* \Delta x^* \leq \beta \quad \forall \Delta x^* \in \mathcal{U}^*(\tilde{x}), \\
& \quad \beta \leq -\epsilon,
\end{align*}$$

(9)

where ϵ is a small positive scalar. When problem (9) has a feasible solution, its optimal solution, d^*, forms the maximum possible angle θ_{max} with all Δx^*. An example is illustrated in Figure 3. This angle is always greater than 90° due to the constraint $\beta \leq -\epsilon < 0$. $\beta \leq 0$ is not used in place of $\beta \leq -\epsilon$ because we want to exclude the trivial solution $(d^*, \beta^*) = (0, 0)$. When ϵ is sufficiently small, and problem (9) is infeasible, \tilde{x} is a good estimate of a robust local minimum satisfying condition (i) in Proposition 1. Note that the constraint $\|d^*\|_2 = 1$ is automatically satisfied if the problem is feasible. Such an SOCP can be solved efficiently using both commercial and noncommercial solvers.

Consequently, if we have an oracle returning $\mathcal{U}^*(x)$ for all x, we can iteratively find descent directions and use them to update the current iterates, resulting in the following local search algorithm. The term x^k is the term being evaluated in iteration k.

Algorithm 1

Step 0. Initialization: Let x^1 be the initial decision vector arbitrarily chosen. Set $k := 1$.

Step 1. Neighborhood Exploration:
Find $\mathcal{U}^*(x^k)$, set of worst implementation errors at the current iterate x^k.

Step 2. Robust Local Move:
(i) Solve the SOCP (problem (9)), terminating if the problem is infeasible.
(ii) Set $x^{k+1} := x^k + t^k d^*$, where d^* is the optimal solution to the SOCP.
(iii) Set $k := k + 1$. Go to Step 1.

If $f(x)$ is continuously differentiable and convex, Algorithm 1 converges to the robust global minimum when t^k is chosen. This is reflected by the following theorem:

Theorem 2. Suppose that $f(x)$ is continuously differentiable and convex with a bounded set of minimum points. Then, Algorithm 1 converges to the global optimum of the robust optimization problem (4), when $t^k > 0$, $t^k \to 0$ as $k \to \infty$ and $\sum_{k=1}^{\infty} t^k = \infty$.

This theorem follows from the fact that at every iteration, $-d^*$ is a subgradient of the worst cost function $g(x)$ at the iterate x^k. Therefore, Algorithm 1 is a subgradient projection algorithm, and under the stated step-size rule, convergence to the global minimum is assured. A detailed proof of Theorem 2 is presented in Appendix C.

2.5. Practical Implementation

Finding the set of worst implementation errors $\mathcal{U}^*(\tilde{x})$ equates to finding all the global maxima of the inner maximization problem

$$\max_{\|\Delta x\|_2 \leq t} f(\tilde{x} + \Delta x).$$

(10)

Even though there is no closed-form solution in general, it is possible to find Δx^* in instances where the problem has a small dimension and $f(x)$ satisfies a Lipschitz condition (see Horst and Pardalos 1995). Furthermore, when $f(x)$ is a polynomial function, numerical experiments suggest that Δx^* can be found for many problems in the literature on global optimization (Henrion and Lasserre 2003). If Δx^* can be found efficiently, the descent directions can be determined. Consequently, the robust optimization problem can be solved readily using Algorithm 1.

In most real-world instances, however, we cannot expect to find Δx^*. Therefore, an alternative approach is required. Fortunately, the following proposition shows that we do not need to know Δx^* exactly to find a descent direction.

Proposition 2. Suppose that $f(x)$ is continuously differentiable and $\|\Delta x^*\|_2 = \Gamma$ for all $\Delta x^* \in \mathcal{U}^*(\tilde{x})$. Let $\mathcal{M} := \{\Delta x_1, \ldots, \Delta x_m\}$ be a collection of $\Delta x_i \in \mathcal{U}$, where there exist scalars $\alpha_i > 0$, $i = 1, \ldots, m$ such that

$$\Delta x^* := \sum_{i \in \mathcal{M}} \alpha_i \Delta x_i,$$

(11)

for all $\Delta x^* \in \mathcal{U}^*(\tilde{x})$. Then, d is a descent direction for the worst-case cost function $g(x = \tilde{x})$, if

$$d^* \Delta x_i < 0 \quad \forall \Delta x_i \in \mathcal{M}.$$

(12)
Figure 4. A two-dimensional illustration of Proposition 2.

Notes. The solid bold arrow indicates a direction \(\hat{d} \) pointing away from all the implementation errors \(\Delta x_i \in \mathcal{M} \), for \(\mathcal{M} \) defined in Proposition 2. \(\hat{d} \) is a descent direction if all the worst errors \(\Delta x_i \) lie within the cone spanned by \(\Delta x_i \). All the descent directions pointing away from \(\Delta x_i \) lie within the cone with the darkest shade, which is a subset of the cone illustrated in Figure 1.

PROOF. Given conditions (11) and (12),

\[
\hat{d}' \Delta x^* = \sum_{i | \Delta x_i \in \mathcal{M}} \alpha_i \hat{d} \Delta x_i < 0,
\]

we have \(\Delta x^* \hat{d} < 0 \) for all \(\Delta x^* \) in set \(\mathcal{U}^*(\hat{x}) \). Because the “sufficient” conditions in Theorem 1 are satisfied, the result follows. \(\square \)

Proposition 2 shows that descent directions can be found without knowing the worst implementation errors \(\Delta x^* \) exactly. Note that condition (11) can only be checked numerically because we do not assume any structure of the cost function \(f(x) \). As illustrated in Figure 4, finding a set \(\mathcal{M} \) such that all the worst errors \(\Delta x^* \) are confined to the sector demarcated by \(\Delta x_i \in \mathcal{M} \) would suffice. The set \(\mathcal{M} \) does not have to be unique, and if it satisfies condition (11), the cone of descent directions pointing away from \(\Delta x_i \in \mathcal{M} \) is a subset of the cone of directions pointing away from \(\Delta x^* \).

Because \(\Delta x^* \) usually reside among designs with nominal costs higher than the rest of the neighborhood, the following algorithm embodies a heuristic strategy to finding a more robust neighbor:

Algorithm 2

Step 0. Initialization: Let \(x^1 \) be an arbitrarily chosen initial decision vector. Set \(k := 1 \).

Step 1. Neighborhood Exploration:

Find \(\mathcal{M}^k \), a set containing implementation errors \(\Delta x_i \) indicating where the highest cost is likely to occur within the neighborhood of \(x^k \).

Step 2. Robust Local Move:

(i) Solve an SOCP (similar to problem (9), but with the set \(\mathcal{M}^k \) replaced by set \(\mathcal{M}^k \)), terminating if the problem is infeasible.

(ii) Set \(x^{k+1} := x^k + t^* \hat{d}^* \), where \(\hat{d}^* \) is the optimal solution to the SOCP.

(iii) Set \(k := k + 1 \). Go to Step 1.

This algorithm is the robust local search, to be elaborated upon in the next section.

3. Local Search Algorithm When Implementation Errors Are Present

The robust local search method is an iterative algorithm with two parts in every iteration. In the first part, we explore the neighborhood of the current iterate both to estimate its worst-case cost and to collect neighbors with high cost. Next, this knowledge of the neighborhood is used to make a robust local move, a step in the descent direction of the robust problem. These two parts are repeated iteratively until termination conditions are met, which is when a suitable descent direction cannot be found anymore. We now discuss these two parts in more detail.

3.1. Neighborhood Exploration

In this subsection, we describe a generic neighborhood exploration algorithm employing \(n + 1 \) gradient ascents from different starting points within the neighborhood. When exploring the neighborhood of \(\hat{x} \), we are essentially trying to solve the inner maximization problem (10).

We first apply a gradient ascent with a diminishing step size. The initial step size used is \(\Gamma/5 \), decreasing with a factor of 0.99 after every step. The gradient ascent is terminated after either the neighborhood is breached or a time limit is exceeded. Then, we use the last point that is inside the neighborhood as an initial solution to solve the following sequence of unconstrained problems using gradient ascents:

\[
\max_{\Delta x} f(\hat{x} + \Delta x) + \epsilon_r \ln(\Gamma - \|\Delta x\|_2). \tag{13}
\]

Note that if we use \(\mathcal{U} = \{ \Delta x \in \mathbb{R}^n \mid \|\Delta x\|_2 \leq \Gamma \} \), then we should use \(\|\Delta x\|_2 \) in Equation (13). The positive scalar \(\epsilon_r \) is chosen so that the additional term \(\epsilon_r \ln(\Gamma - \|\Delta x\|_2) \) projects the gradient step back into the strict interior of the neighborhood, so as to ensure that the ascent stays strictly within it. A good estimate of a local maximum is found quickly this way.

Such an approach is modified from a barrier method on the inner maximization problem (10). Under the standard barrier method, one would solve a sequence of problem (13) using gradient ascents, where \(\epsilon_r \) are small positive diminishing scalars, \(\epsilon_r \to 0 \) as \(r \to \infty \). However, empirical experiments indicate that using the standard method, the solution time required to find a local maximum is unpredictable and can be very long. Because (i) we want the time spent solving the neighborhood exploration subproblem to be predictable, and (ii) we do not have to find the local maximum exactly, as indicated by Proposition 2, the standard barrier method was not used.
The local maximum obtained using a single gradient ascent can be an inferior estimate of the global maximum when the cost function is nonconcave. Therefore, in every neighborhood exploration, we solve the inner maximization problem (10) using multiple gradient ascents, each with a different starting point. A generic neighborhood exploration algorithm is: For an different starting point. A generic neighborhood exploration problem (10) using multiple gradient ascents, each with a ascent can be an inferior estimate of the global maximum changed within an iteration to ensure a feasible move. In In the second part of the robust local search algorithm, we discuss in detail how the direction and the distance can be found efficiently.

3.2. Robust Local Move

In the second part of the robust local search algorithm, we update the current iterate with a local design that is more robust, based on our knowledge of the neighborhood \(\mathcal{N}^k \). The new iterate is found by finding a direction and a distance to take so that all the neighbors with high cost will be excluded from the new neighborhood. In the following, we discuss in detail how the direction and the distance can be found efficiently.

3.2.1. Finding the Direction. To find the direction at \(\mathbf{x}^k \) that improves \(\tilde{g}(\mathbf{x}^k) \), we include all known neighbors with high cost from \(\mathcal{H}^k \) in the set

\[
\mathcal{M}^k := \{ \mathbf{x} \mid \mathbf{x} \in \mathcal{H}^k, \mathbf{x} \in \mathcal{N}^k, f(\mathbf{x}) \geq \tilde{g}(\mathbf{x}^k) - \sigma^k \}. \tag{14}
\]

The cost factor \(\sigma^k \) governs the size of the set and may be changed within an iteration to ensure a feasible move. In the first iteration, \(\sigma^1 \) is first set to 0.2 \((\tilde{g}(\mathbf{x}^k) - f(\mathbf{x}^k)) \). In subsequent iterations, \(\sigma^k \) is set using the final value of \(\sigma^{k-1} \).

The problem of finding a good direction \(\mathbf{d} \), which points away from bad neighbors as collected in \(\mathcal{M}^k \), can be formulated as an SOCP:

\[
\begin{align*}
\min_{\mathbf{d}, \beta} & \quad \beta \\
\text{s.t.} & \quad \|\mathbf{d}\|_2 \leq 1, \\
& \quad d^\top \left(\frac{\mathbf{x}_i - \mathbf{x}^k}{\|\mathbf{x}_i - \mathbf{x}^k\|_2} \right) \leq \beta \quad \forall \mathbf{x}_i \in \mathcal{M}^k, \\
& \quad \beta \leq -\epsilon,
\end{align*} \tag{15}
\]

where \(\epsilon \) is a small positive scalar. The discussion for the earlier SOCP (9) applies to this SOCP as well.

We want to relate problem (15) with the result in Proposition 2. Note that \(\mathbf{x}_i - \mathbf{x}^k = \Delta \mathbf{x}_i \in \mathcal{U} \) and \(\|\mathbf{x}_i - \mathbf{x}^k\|_2 \) is a positive scalar, assuming \(\mathbf{x}_i \neq \mathbf{x}^k \). Therefore, the constraint \(d^\top (\mathbf{x}_i - \mathbf{x}^k) / \|\mathbf{x}_i - \mathbf{x}^k\| \leq \beta \) \(\leq 0 \) maps to the condition \(\Delta \mathbf{x}_i < 0 \) in Proposition 2, whereas the set \(\mathcal{M}^k \) maps to the set \(\mathcal{M} \). Comparison between Figures 3 and 5(a) shows that we can find a descent direction pointing away from all the implementation errors with high costs. Therefore, if we have a sufficiently detailed knowledge of the neighborhood, i.e., condition (11) is numerically satisfied, \(\mathbf{d}^\top \) is a descent direction for the robust problem.

When problem (15) is infeasible, \(\mathbf{x}^k \) is surrounded by “bad” neighbors. However, because we may have been too loose in classifying the bad neighbors, we reduce \(\sigma^k \), reassemble \(\mathcal{M}^k \), and solve the updated SOCP. When reducing \(\sigma^k \), we divide it by a factor of 1.05. The terminating condition is attained when the SOCP is infeasible and \(\sigma^k \) is below a threshold. If \(\mathbf{x}^k \) is surrounded by “bad” neighbors and \(\sigma^k \) is small, we presume that we have attained a robust local minimum of the type as illustrated in Figures 2(a) and 2(b).

3.2.2. Finding the Distance. After finding the direction \(\mathbf{d}^\top \), we want to choose the smallest step size \(\rho^* \) such that every element in the set of bad neighbors \(\mathcal{M}^k \) would lie at least on the boundary of the neighborhood of the new iterate, \(\mathbf{x}^{k+1} = \mathbf{x}^k + \rho^* \mathbf{d}^\top \). To make sure that we make
meaningful progress at every iteration, we set a minimum step size of $\Gamma/100$ in the first iteration, and decrease it successively by a factor of 0.99.

Figure 5(b) illustrates how $\|x_t - x^{t+1}\|_2$ can be evaluated when $x^{t+1} = x^t + \rho d^*$ because

$$\|x_t - x^{t+1}\|_2^2 = \rho^2 + \|x_t - x^t\|_2^2 - 2\rho(x_t - x^t)'d^*.$$ Consequently,

$$\rho^* = \arg\min_{\rho} \rho$$

subject to $\rho \geq d^*(x_t - x^t)$

$$+ \sqrt{(d^*(x_t - x^t))^2 - \|x_t - x^t\|_2^2 + \Gamma^2}$$

$\forall x_t \in \mathcal{M}$. Note that this problem can be solved with $|\mathcal{M}|$ function evaluations without resorting to a formal optimization procedure.

3.2.3. Checking the Direction. Knowing that we aim to take the update direction d^* and a step size ρ^*, we update the set of bad neighbors with the set

$$\mathcal{M}_{k_{\text{updated}}} = \{x \mid x \in \mathcal{M}, \|x - x^k\|_2 \leq \Gamma + \rho^*, f(x) \geq \tilde{g}(x^k) - \sigma^k\}. (17)$$

This set will include all the known neighbors lying slightly beyond the neighborhood, and with a cost higher than $\tilde{g}(x^k) - \sigma^k$.

We check whether the desired direction d^* is still a descent direction pointing away from all the members in set $\mathcal{M}_{k_{\text{updated}}}$. If it is, we accept the update step (d^*, ρ^*) and proceed with the next iteration. If d^* is not a descent direction for the new set, we repeat the robust local move by solving the SOCP (15) but with $\mathcal{M}_{k_{\text{updated}}}$ in place of \mathcal{M}^k. Again, the value σ^* might be decreased to find a feasible direction. Consequently, within an iteration, the robust local move might be attempted several times. From computational experience, this additional check becomes more important as we get closer to a robust local minimum because the design is more and more surrounded by bad neighbors.

4. Application Example I—Robust Polynomial Optimization Problem

4.1. Problem Description

For the first problem, we chose a polynomial problem. Having only two dimensions, we can illustrate the cost surface over the domain of interest to develop intuition into the algorithm. Consider the nonconvex polynomial function

$$f_{\text{poly}}(x, y) = 2x^5 - 12.2x^4 + 21.2x^3 + 6.2x - 6.4x^3 - 4.7x^2$$

$$+ y^6 - 11y^5 + 43.3y^4 - 10y - 74.8y^3 + 56.9y^2$$

$$- 4.1xy - 0.1y^2x^2 + 0.4y^2x + 0.4x^2y.$$ Given implementation errors $\Delta = (\Delta x, \Delta y)$, where $\|\Delta\|_2 \leq 0.5$, the robust optimization problem is

$$\min_{x, y} g_{\text{poly}}(x, y) \equiv \min_{x, y} \max_{\|\Delta\|_2 \leq 0.5} f_{\text{poly}}(x + \Delta x, y + \Delta y). (18)$$

Note that even though this problem has only two dimensions, it is already a difficult problem. Recently, relaxation methods have been applied successfully to solve polynomial optimization problems (Henrion and Lasserre 2003). Applying the same technique to problem (18), however, leads to polynomial semidefinite programs (SDP), where the entries of the semidefinite constraint are made up of multivariate polynomials. Solving a problem approximately involves converting it into a substantially larger SDP, the size of which increases very rapidly with the size of the original problem, the maximum degree of the polynomials involved, and the number of variables. This prevents polynomial SDPs from being used widely in practice (see Kojima 2003). Therefore, we applied the local search algorithm on problem (18).

4.2. Computation Results

Figure 6(a) shows a contour plot of the nominal cost of $f_{\text{poly}}(x, y)$. It has multiple local minima and a global minimum at $(x^*, y^*) = (2.8, 4.0)$, where $f(x^*, y^*) = -20.8$. The global minimum is found using the Gloptipoly software as discussed in Henrion and Lasserre (2003) and verified using multiple gradient descents. The worst-case cost function $g_{\text{poly}}(x, y)$, estimated by evaluating discrete neighbors using data in Figure 6(a), is shown in Figure 6(b). Figure 6(b) suggests that $g_{\text{poly}}(x, y)$ has multiple local minima.

We applied the robust local search algorithm in this problem using two initial designs (x, y), A and B, terminating when the SOCP (see problem (15)) remains infeasible when σ^* is decreased below the threshold of 0.001. Referring to Figure 7, Point A is a local minimum of the nominal problem, whereas B is arbitrarily chosen. Figures 7(a) and 7(c) show that the algorithm converges to the same robust local minimum from both starting points. However, depending on the problem, this observation cannot be generalized. Figure 7(b) shows that the worst-case cost of A is much higher than its nominal cost, and clearly a local minimum to the nominal problem need not be a robust local minimum. The algorithm decreases the worst-case cost significantly while increasing the nominal cost slightly. A much lower number of iterations is required when starting from point A when compared to starting from point B. As seen in Figure 7(d), both the nominal and the worst-case costs decrease as the iteration count increases when starting from point B. Although the decrease in worst-case costs is not monotonic for both instances, the overall decrease in the worst-case cost is significant.

Figure 8 shows the distribution of the bad neighbors upon termination. At termination, these neighbors lie on the boundary of the uncertainty set. Note that there is no
good direction to move the robust design away from these bad neighbors so as to lower the disc any further. The bad neighbors form the support of the discs. Compare these figures with Figure 2(a), where condition (i) of Proposition 1 was met, indicating the arrival at a robust local minimum. The surface plot of the nominal cost function in Figure 8 further confirms that the terminating solutions are close to a true robust local minimum.

5. Application

Example II—Electromagnetic Scattering Design Problem

The search for attractive and novel materials in controlling and manipulating electromagnetic field propagation has identified a plethora of unique characteristics in photonic crystals (PCs). Their novel functionalities are based on diffraction phenomena, which require periodic structures. Upon breaking the spatial symmetry, new degrees of freedom are revealed that allow for additional functionality and, possibly, for higher levels of control. More recently, unbiased optimization schemes were performed on the spatial distribution (aperiodic) of a large number of identical dielectric cylinders (see Ghormla et al. 2004 and Seliger et al. 2006). Although these works demonstrate the advantage of optimization, the robustness of the solutions still remains an open issue. In this section, we apply the robust optimization method to electromagnetic scattering problems with large degrees of freedom, and report on novel results when this technique is applied to optimization of aperiodic dielectric structures.

5.1. Problem Description

The incoming electromagnetic field couples in its lowest mode to the perfectly conducting metallic wave guide. Figure 9(a) sketches the horizontal setup. In the vertical direction, the domain is bounded by two perfectly conducting plates that are separated by less than 1/2 the wave length to warrant a two-dimensional wave propagation. Identical dielectric cylinders are placed in the domain between the plates. The sides of the domain are open in the forward direction. To account for a finite total energy and to warrant a realistic decay of the field at infinity, the open sides are modeled by perfectly matching layers (see Kingsland et al. 2006 and Berenger 1996). The objective of the optimization is to determine the position of the cylinders such that the forward electromagnetic power matches the shape of a desired power distribution, as shown in Figure 9(b).

As in the experimental measurements, the frequency is fixed to $f = 37.5$ GHz (see Seliger et al. 2006). Furthermore, the dielectric scatterers are nonmagnetic and lossless. Therefore, stationary solutions of the Maxwell equations are given through the two-dimensional Helmholtz equations, taking the boundary conditions into account. This means that only the z-component of the electric field E_z can propagate in the domain. The magnitude of E_z in the domain is given through the PDE

$$
(\partial_x(\mu_0^{-1}\partial_x) + \partial_y(\mu_0^{-1}\partial_y))E_z - \omega_0^2\mu_0\epsilon_0\epsilon_r E_z = 0,
$$

with μ_r the relative and μ_0 the vacuum permeability, ϵ_r denotes the relative and ϵ_0 the vacuum permittivity. Equation (19) is numerically determined using an evenly meshed square grid (x_i,y_j). The resulting finite-difference PDE approximates the field $E_{z,i,j}$ everywhere inside the domain including the dielectric scatterers. The imposed boundary conditions (Dirichlet conditions for the metallic horn and perfectly matching layers) are satisfied. This linear equation system is solved by ordering the values of $E_{z,i,j}$ of the PDE into a column vector. Hence, the finite-difference PDE can be rewritten as

$$
L \cdot E_z = b,
$$

where L denotes the finite-difference matrix, which is complex valued and sparse. E_z describes the complex-valued
electric field that is to be computed, and b contains the boundary conditions. With this, the magnitude of the field at any point of the domain can be determined by solving the linear system of Equation (20).

The power at any point on the target surface $(x(\theta), y(\theta))$ for an incident angle θ is computed through interpolation using the nearest four mesh points and their standard Gaussian weights $W(\theta)$ with respect to $(x(\theta), y(\theta))$ as

$$s_{\text{mod}}(\theta) = \frac{W(\theta)}{2} \cdot \text{diag}(E_z) \cdot E_y. \quad (21)$$

In the numerical implementation, we exploited the sparsity of L, which improved the efficiency of the algorithm significantly. In fact, the solution of a realistic forward problem ($\sim 70,000 \times 70,000$ matrix) including 50 dielectric scatterers requires about 0.7 second on a commercially available Intel Xeon 3.4 GHz. Because the size of L determines the size of the problem, the computational efficiency of our implementation is independent of the number of scattering cylinders.

To verify this finite-difference technique for the power along the target surface (radius $= 60$ mm from the domain center), we compared our simulations with experimental measurements from Seliger et al. (2006) for the same optimal arrangement of 50 dielectric scatterers ($\varepsilon_r = 2.05$ and 3.175 ± 0.025 diameter). Figure 9(b) illustrates the good agreement between experimental and model data on a linear scale for an objective top-hat function.
Figure 8. Surface plot shows the cost surface of the nominal function $f_{\text{poly}}(x, y)$.

(a) Termination (from point A)

Note: The same robust local minimum, denoted by the cross, is found from both starting points A and B. Point A is a local minimum of the nominal function, whereas point B is arbitrarily chosen. The worst neighbors are indicated by black dots. At termination, these neighbors lie on the boundary of the uncertainty set, which is denoted by the transparent discs. At the robust local minimum, with the worst neighbors forming the “supports,” both discs cannot be lowered any further. Compare these figures with Figure 2(a), where the condition of a robust local minimum is met.

In the optimization problem, the design vector $x \in \mathbb{R}^{100}$ describes the positions of the 50 cylinders. For a given x in the domain, the power profile s_{mod} over discretized angles on the target surface θ_k is computed. We can thus evaluate the objective function

$$f_{\text{EM}}(x) = \sum_{k=1}^{m} |s_{\text{mod}}(\theta_k) - s_{\text{obj}}(\theta_k)|^2.$$ \hfill (22)

Note that $f(x)$ is not a direct function of x and is not convex in x. Furthermore, using the adjoint technique, our implementation provides the cost function gradient $\nabla f_{\text{EM}}(x)$ at no additional computational expense. We refer interested readers to Bertsimas et al. (2007) for a more thorough discussion of the physical problem.

Because of the underlying Helmholtz equation, the model scales with frequency and can be extended to nanophotonic designs. Although degradation due to implementation errors is already significant in laboratory experiments today, it will be amplified under nanoscale implementations. Therefore, there is a need to find designs that are robust against implementation errors. Thus, the robust optimization problem is defined as

$$\min_{x \in \mathcal{X}} \max_{\Delta x \in \mathcal{Y}} f_{\text{EM}}(x + \Delta x).$$
In this setting, Δx represents displacement errors of the scattering cylinders.

5.2. Computation Results

We first construct the uncertainty set \mathcal{U} to include most of the errors expected. In laboratory experiments, the implementation errors Δx are observed to have a standard deviation of 40 μm (Levi 2006). Therefore, to define an uncertainty set incorporating 99% of the perturbations, i.e., $P(\Delta x \in \mathcal{U} = 99\%)$, we define

$$\mathcal{U} = \{\Delta x \mid \|\Delta x\|_2 \leq \Gamma = 550 \text{ }\mu\text{m}\},$$

where Δx is assumed to be independently and normally distributed with mean 0 and standard deviation 40 μm.

The standard procedure used to address problem (5.1) is to find an optimal design minimizing Equation (22). Subsequently, the sensitivity of the optimal design to implementation errors will be assessed through random simulations. However, because the problem is highly nonconvex and of high dimension, there is, to the best of our knowledge, no distributed with mean 0 and standard deviation 40 μm.

6. Generalized Method for Problems with Both Implementation Errors and Parameter Uncertainties

In addition to implementation errors, uncertainties can reside in problem coefficients. These coefficients often cannot be defined exactly because of either insufficient knowledge or the presence of noise. In this section, we generalize the robust local search algorithm to include considerations for such parameter uncertainties.

6.1. Problem Definition

Let $f(x, \bar{p})$ be the nominal cost of design vector x, where \bar{p} is an estimation of the true problem coefficient p; for example, for the case

$$f(x, \bar{p}) = 4x_1^4 + x_2^3 + 2x_1x_2, \quad x = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\bar{p} = \begin{pmatrix} 4 \\ 1 \end{pmatrix}. $$

Because \bar{p} is an estimation, the true coefficient p can instead be $\bar{p} + \Delta p$, Δp being the parameter uncertainties. Often, the nominal optimization problem

$$\min_x f(x, \bar{p})$$

is solved, ignoring the presence of uncertainties.

We consider problem (24), where both $\Delta p \in \mathbb{R}^n$ and implementation errors $\Delta x \in \mathbb{R}^n$ are present, while further assuming that $\Delta z = (\Delta x, \Delta p)$ lies within the uncertainty set

$$\mathcal{U} = \{\Delta z \in \mathbb{R}^{n+m} \mid \|\Delta z\|_2 \leq \Gamma\}. $$

As in Equation (2), $\Gamma > 0$ is a scalar describing the size of perturbations. We seek a robust design x by minimizing the worst-case cost given a perturbation in \mathcal{U},

$$g(x) := \max_{\Delta x \in \mathcal{U}} f(x + \Delta x, \bar{p} + \Delta p). $$

The generalized robust optimization problem is, consequently,

$$\min_x g(x) \equiv \min_{x, \Delta x} \max_{\Delta x \in \mathcal{U}} f(x + \Delta x, \bar{p} + \Delta p). $$

6.2. Basic Idea Behind Generalization

To generalize the robust local search to consider parameter uncertainties, note that problem (27) is equivalent to the problem

$$\min_{x, \Delta z} f(z + \Delta z)$$

s.t. $p = \bar{p}$.

where $z = \begin{pmatrix} 1 \\ \bar{p} \end{pmatrix}$. This formulation is similar to problem (4), the robust problem with implementation errors only, but
with some decision variables fixed; the feasible region is the intersection of the hyperplanes \(p_i = \bar{p}_i, \; i = 1, \ldots, m. \) The geometric perspective is updated to capture these equality constraints, and is presented in Figure 11. Thus, the necessary modifications to the local search algorithm are:

i. **Neighborhood Exploration**: Given a design \(\hat{x}_i \), or equivalently, \(\hat{z} = (\hat{p}) \), the neighborhood is

\[
\mathcal{N} := \{ z \mid \| z - \hat{z} \|_2 \leq \Gamma \} = \left\{ \left(\begin{array}{c} x \\ p \end{array} \right) \mid \left\| \left(\begin{array}{c} x - \bar{x} \\ p - \bar{p} \end{array} \right) \right\|_2 \leq \Gamma \} \right\} \text{.} \tag{29}
\]

ii. **Robust Local Move**: Ensure that every iterate satisfies \(p = \bar{p}. \)

6.3. Generalized Local Search Algorithm

For ease of exposition, we shall only highlight the key differences to the local search algorithm previously discussed in §3.

6.3.1. Neighborhood Exploration. The implementation is similar to that in §3.1. However, \(n + m + 1 \) gradient ascents are used instead because the neighborhood \(\mathcal{N} \) now lies in the space \(z = (\bar{p}) \) (see Figure 11), and the inner maximization problem is now

\[
\max_{\Delta x, \Delta p} f(\hat{z} + \Delta z) = \max_{\Delta x, \Delta p} f(\hat{z} + \Delta x, \bar{p} + \Delta p) \text{.} \tag{30}
\]

The \(n + m + 1 \) sequences start from \(\Delta z = 0, \; \Delta z = \text{sign}(\partial f(x = \hat{x})/\partial x_i)(\Gamma/3)e_i \) for \(i = 1, \ldots, n, \) and \(\Delta z = \text{sign}(\partial f(p = \bar{p})/\partial p_{n-i})(\Gamma/3)e_i \) for \(i = n+1, \ldots, n+m. \)

6.3.2. Robust Local Move. At every iterate, the condition \(p = \bar{p} \) is satisfied by ensuring that the descent direction \(d^* = (d^*_x, d^*_p) \) fulfills the condition \(d^*_p = 0 \) (see Figure 11). Referring to the robust local move discussed in §3.2, we solve the modified SOCP:

\[
\begin{align*}
\min_{d, \beta} & \quad \beta \\
\text{s.t.} & \quad \|d\|_2 \leq 1, \\
& \quad d^T (x_i - x^\dagger) \leq \beta \left\| \left(x_i - x^\dagger \right) \right\|_2 \quad \forall \left(x_i \right) \in \mathcal{A}^k, \\
& \quad d_p = 0, \\
& \quad \beta \leq -\epsilon,
\end{align*}
\tag{31}
\]

Figure 10. Performance of the robust local search algorithm in Application Example II.

Notes. The initial cylinder configuration \(x_i \) and the final configuration \(x_{65} \) are shown outside the line plot. Although the differences between the two configurations seem negligible, the worst-case cost of \(x_{65} \) is 8% lower than that of \(x_i \). The nominal costs of the two configurations are practically the same.

Figure 11. A two-dimensional illustration of problem (28), and equivalently, problem (27).

Notes. Both implementation errors and uncertain parameters are present. Given a design \(\hat{x} \), the possible realizations lie in the neighborhood \(\mathcal{N} \), as defined in Equation (29). \(\mathcal{N} \) lies in the space \(z = (x, p) \). The shaded cone contains vectors pointing away from the bad neighbors, \(z = (x, p) \), whereas the vertical dotted line denotes the intersection of hyperplanes \(p = \bar{p} \). For \(d^* = (d^*_x, d^*_p) \) to be a feasible descent direction, it must lie in the intersection between both the cone and the hyperplanes, i.e., \(d^*_p = 0 \).
which reduces to
\[
\begin{aligned}
\min_{\alpha, \beta} \beta \\
\text{s.t. } \|d_i\|_2 \leq 1, \\
\quad d_i'(x_i - x^k) \leq \beta \| (x_i - x^k) \|_2, \quad \forall (x_i, p_i) \in M^k, \\
\quad \beta \leq -\epsilon.
\end{aligned}
\]

6.4. Application Example III—Revisiting Application Example I

6.4.1. Problem Description.
To illustrate the performance of the generalized robust local search algorithm, we revisit Application Example I from §4 where the polynomial objective function is
\[
f_{\text{poly}}(x, y) = 2x^6 - 12.2x^5 + 21.2x^4 + 6.2x - 6.4x^3 - 4.7x^2 + y^6 - 11y^5 + 43.3y^4 - 10y - 74.8y^3 + 56.9y^2 - 4.1xy - 0.1y^2x^2 + 0.4y^2x + 0.4x^2y = \sum_{r > 0, x > 0} c_{r,s} x^r y^s.
\]

In addition to implementation errors as previously described, there is uncertainty in each of the 16 coefficients of the objective function. Consequently, the objective function with uncertain parameters is
\[
f_{\text{poly}}(x, y) = \sum_{r > 0, x > 0} c_{r,s} (1 + 0.05 \Delta p_s) x^r y^s,
\]

where \(\Delta p\) is the vector of uncertain parameters; the robust optimization problem is
\[
\min_{x, y} g_{\text{poly}}(x, y) \equiv \min_{x, y} \max_{|\Delta|_2 \leq 0.5} f_{\text{poly}}(x + \Delta x, y + \Delta y),
\]

where
\[
\Delta = \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta p \end{pmatrix}.
\]

6.4.2. Computation Results.
Observations on the nominal cost surface have been discussed in Application Example I. Given both implementation errors and parameter uncertainties, the estimated cost surface of \(g_{\text{poly}}(x, y)\) is shown in Figure 12(a). This estimation is done computationally through simulations using 1,000 joint perturbations in all the uncertainties. Figure 12(a) suggests that \(g_{\text{poly}}(x, y)\) has local minima, or possibly a unique local minimum, in the vicinity of \((x, y) = (0, 0.5)\).

We applied the generalized robust local search algorithm on this problem starting from the global minimum of the nominal cost function \((x, y) = (2.8, 4.0)\). Figure 12(b) shows the performance of the algorithm. Although the initial design has a nominal cost of \(-20.8\), it has a large worst-case cost of 450. The algorithm finds a robust design with a significantly lower worst-case cost. Initially, the worst-case cost decreases monotonically with increasing iteration count, but fluctuates when close to convergence. On the other hand, the nominal cost increases initially, and decreases later with increasing iteration count.

Figure 12(a) shows that the robust search finds the region where the robust local minimum is expected to reside. The

![Figure 12](image-url)

Figure 12. Performance of the generalized robust local search algorithm in Application Example III.

Notes. (a) Path taken on the estimated worst-case cost surface \(g_{\text{poly}}(x, y)\). Algorithm converges to the region with low worst-case cost. (b) The worst cost decreased significantly, whereas the nominal cost increased slightly. The inset shows the nominal cost surface \(f_{\text{poly}}(x, y)\), indicating that the robust search moves from the global minimum of the nominal function to the vicinity of another local minimum.
inset in Figure 12(b) shows the path of the robust search “escaping” the global minimum. Because the local search operates on the worst cost surface in Figure 12(a) and not the nominal cost surface in the inset of Figure 12(b), such an “escape” is possible.

Efficiency of the Neighborhood Exploration: In the local search algorithm, \(n + 1 \) gradient ascents are carried out when the perturbations have \(n \) dimensions (see §3.1). Clearly, if the cost function is less nonlinear over the neighborhood, fewer gradient ascents will suffice in finding the bad neighbors; the converse is true as well. Therefore, for a particular problem, one can investigate empirically the trade-off between the depth of neighborhood search (i.e., number of gradient ascents) and the overall runtime required for robust optimization.

For this example, we investigate this trade-off with (i) the standard \(n + 1 \) gradient ascents, (ii) \(10 + 1 \), and (iii) \(3 + 1 \) gradient ascents, in every iteration. Note that dimension of the perturbation \(n \) is 18:2 for implementation errors and 16 for parameter uncertainties. Case (i) has been discussed in §3.1 and serves as the benchmark. In case (ii), 1 ascent starts from \(z^k \), whereas the remaining 10 start from \(z^k + \text{sign}(\partial f(z^k)/\partial z_i)(1/3)e_i \), where \(i \) denotes coordinates with the 10 largest partial derivatives \(|\partial f(z^k)/\partial z_i| \). This strategy is similarly applied in case (iii).

As shown in Figure 13, the worst-case cost is lowered in all three cases. Because of the smaller number of gradient ascents per iteration, the decrease in worst-case cost is the fastest in case (iii). However, the algorithm fails to converge long after terminating conditions have been attained in the other two cases. In this example, case (ii) took the shortest time, taking 550 seconds to converge compared to 600 seconds in case (i). The results indicate that, depending on the problem, the efficiency of the algorithm might be improved by using a smaller number of gradient ascents, but if too few gradient ascents are used, the terminating conditions might not be attained.

7. Conclusions

We have presented a new robust optimization technique that can be applied to nonconvex problems when both implementation errors and parameter uncertainties are present. Because the technique assumes only the capability of function and gradient evaluations, few assumptions are required on the problem structure. Consequently, the presented robust local search technique is generic and suitable for most real-world problems, including computer-based simulations, response surface, and Kriging metamodels that are often used in the industry today.

This robust local search algorithm operates by acquiring knowledge of the cost surface \(f(x, p) \) in a domain close to a given design \(\hat{x} \) thoroughly but efficiently. With this information, the algorithm recommends an updated design with a lower estimated worst-case cost by excluding neighbors with high cost from the neighborhood of the updated design. Applied iteratively, the algorithm discovers more robust designs until termination criteria are reached and a robust local minimum is confirmed. The numerically determined termination criteria of the algorithm acts as an optimality condition for robust optimization problems.

The effectiveness of the method was demonstrated through the application to (i) a nonconvex polynomial problem, and (ii) an actual electromagnetic scattering design problem with a nonconvex objective function and a 100-dimensional design space. In the polynomial problem, robust local minima are found from a number of different initial solutions. For the engineering problem, we started from a local minimum to the nominal problem, the problem formulated without considerations for uncertainties. From this local minimum, the robust local search found a robust local minimum with the same nominal cost, but with a worst-case cost that is 8% lower.

Appendix A: Continuous Minimax Problem

A continuous minimax problem is the problem

\[
\min_{x} \max_{y \in \mathcal{C}} \phi(x, y) \equiv \min_{x} \psi(x),
\]

(A.1)

where \(\phi \) is a real-valued function, \(x \) is the decision vector, \(y \) denotes the uncertain variables, and \(\mathcal{C} \) is a closed compact set. \(\psi \) is the max-function. Refer to Rustem and
Howe (2002) for more discussions about the continuous minimax problem. For convex and constrained continuous minimax problems, it was shown that the initial problem can be transformed into an equivalent equality problem that can be solved using the interior point technique to compute saddle points (see Žaković and Pantelides 2000). However, this work is restricted to convex problems only.

The robust optimization problem (4) is a special instance of the continuous minimax problem, as can be seen through making the substitutions: \(y = \Delta x, \mathcal{C} = \mathcal{U} \), \(\phi(x, y) = f(x + y) = f(x + \Delta x) \), and \(\psi = g \). Thus, problem (4) shares properties of the minimax problem; the following theorem captures the relevant properties:

Theorem 3 (Danskin’s Min-Max Theorem). Let \(\mathcal{C} \subset \mathbb{R}^n \) be a compact set, \(\phi: \mathbb{R}^n \times \mathcal{C} \mapsto \mathbb{R} \) be continuously differentiable in \(x \), and \(\psi: \mathbb{R}^n \mapsto \mathbb{R} \) be the max-function \(\psi(x) := \max_{y \in \mathcal{C}} \phi(x, y) \).

(a) Then, \(\phi(x) \) is directionally differentiable with directional derivatives
\[
\psi'(x; d) = \max_{y \in \mathcal{C}} d^T \nabla_y \phi(x, y),
\]
where \(\mathcal{C}^*(x) \) is the set of maximizing points
\[
\mathcal{C}^*(x) = \left\{ y^* \mid \phi(x, y^*) = \max_{y \in \mathcal{C}} \phi(x, y) \right\}.
\]

(b) If \(\phi(x, y) \) is convex in \(x \), \(\phi(\cdot, y) \) is differentiable for all \(y \in \mathcal{C} \), and \(\nabla_x \phi(x, \cdot) \) is continuous on \(\mathcal{C} \), then \(\psi(x) \) is convex in \(x \) and \(\forall x \),
\[
\partial \psi(x) = \text{conv}\{\nabla_x \phi(x, y) \mid y \in \mathcal{C}^*(x)\},
\]
where \(\partial \psi(x) \) is the subdifferential of the convex function \(\psi(x) \) at \(x \),
\[
\partial \psi(x) = \{ z \mid \psi(x) - z \geq \psi(x) + z'(\tilde{x} - x), \forall \tilde{x} \},
\]
and \(\text{conv} \) denotes the convex hull.

For a proof of Theorem 3, see Danskin (1966, 1967).

Appendix B: Proof of Theorem 1

Before proving Theorem 1, observe the following results:

Proposition 3. Suppose that \(f(x) \) is continuously differentiable in \(x \), \(\mathcal{U} = \{ \Delta x \mid \| \Delta x \|_2 \leq \Gamma \} \) where \(\Gamma > 0 \) and \(\mathcal{U}^*(x) := \{ \Delta x^* \mid \Delta x^* = \arg \max_{\Delta x \in \mathcal{U}} f(x + \Delta x) \} \). Then, for any \(\tilde{x} \) and \(\Delta x^* \in \mathcal{U}^*(x = \tilde{x}) \),
\[
\nabla_x f(x)|_{x=\tilde{x}+\Delta x^*} = k\Delta x^*.
\]
where \(k \geq 0 \).

In words, the gradient at \(x = \tilde{x} + \Delta x^* \) is parallel to the vector \(\Delta x^* \).

PROOF. Because \(\Delta x^* \) is a maximizer of the problem \(\max_{\Delta x \in \mathcal{U}} f(\tilde{x} + \Delta x) \) and a regular point, because of the Karush-Kuhn-Tucker necessary conditions, there exists a scalar \(\mu \geq 0 \) such that
\[
-\nabla_x^T f(x)|_{x=\tilde{x}+\Delta x^*} + \mu \nabla_{\Delta x} (\Delta x^T \Delta x - \Gamma)|_{\Delta x=\Delta x^*} = 0.
\]
This is equivalent to the condition
\[
\nabla_x f(x)|_{x=\tilde{x}+\Delta x^*} = 2\mu \Delta x^*.
\]
The result follows by choosing \(k = 2\mu \). \(\square \)

In this context, a feasible vector is said to be a regular point if all the active inequality constraints are linearly independent, or if all the inequality constraints are inactive. Because there is only one constraint in the problem \(\max_{\Delta x \in \mathcal{U}} f(\tilde{x} + \Delta x) \) that is either active or not, \(\Delta x^* \) is always a regular point. Furthermore, note that where \(\| \Delta x^* \|_2 < \Gamma \), \(\tilde{x} + \Delta x^* \) is an unconstrained local maximum of \(f \), and it follows that \(\nabla_x f(x)|_{x=\tilde{x}+\Delta x^*} = 0 \) and \(k = 0 \). Using Proposition 3, the following corollary can be extended from Theorem 3:

Corollary 1. Suppose that \(f(x) \) is continuously differentiable, \(\mathcal{U} = \{ \Delta x \mid \| \Delta x \|_2 \leq \Gamma \} \) where \(\Gamma > 0 \), \(g(x) := \max_{\Delta x \in \mathcal{U}} f(x + \Delta x) \), and \(\mathcal{U}^*(x) := \{ \Delta x^* \mid \Delta x^* = \arg \max_{\Delta x \in \mathcal{U}} f(x + \Delta x) \} \).

(a) Then, \(g(x) \) is directionally differentiable and its directional derivatives \(g'(x; d) \) are given by
\[
g'(x; d) = \max_{\Delta x \in \mathcal{U}^*(x)} f'(x + \Delta x; d).
\]

(b) If \(f(x) \) is convex in \(x \), then \(g(x) \) is convex in \(x \) and \(\forall x \),
\[
\partial g(x) = \text{conv}\{\nabla x f(x, \Delta x) \mid \Delta x \in \mathcal{U}^*(x)\}.
\]

PROOF. Referring to the notation in Theorem 3, if we let \(y = \Delta x, \mathcal{C} = \mathcal{U} \), \(\mathcal{C}^* = \mathcal{U}^* \), \(\phi(x, y) = f(x, \Delta x) = f(x + \Delta x) \), then \(\psi(x) = g(x) \). Because all the conditions in Theorem 3 are satisfied, it follows that:

(a) \(g(x) \) is directionally differentiable with
\[
g'(x; d) = \max_{\Delta x \in \mathcal{U}^*(x)} d^T \nabla_x f(x + \Delta x) = \max_{\Delta x \in \mathcal{U}^*(x)} f'(x + \Delta x; d).
\]

(b) \(g(x) \) is convex in \(x \) and \(\forall x \),
\[
\partial g(x) = \text{conv}\{\nabla_x f(x, \Delta x) \mid \Delta x \in \mathcal{U}^*(x)\} = \text{conv}\{\Delta x \mid \Delta x \in \mathcal{U}^*(x)\}.
\]
The last equality is due to Proposition 3. \(\square \)
We shall now prove Theorem 1:

Theorem 1. Suppose that \(f(x) \) is continuously differentiable, \(\mathcal{U} = \{ \Delta x \mid \| \Delta x \|_2 \leq \Gamma \} \) where \(\Gamma > 0 \), \(g(x) := \max_{\Delta x \in \mathcal{U}} f(x + \Delta x) \), and \(\mathcal{U}^* := \{ \Delta x^* \mid \Delta x^* = \arg \max_{\Delta x \in \mathcal{U}} f(x + \Delta x) \} \). Then, \(d \in \mathbb{R}^n \) is a descent direction for the worst-case cost function \(g(x) \) at \(x = \hat{x} \) if and only if for all \(\Delta x^* \in \mathcal{U}^*(\hat{x}) \),

\[
d^t \Delta x^* < 0
\]

and \(\nabla_x f(x)|_{x = \hat{x} + \Delta x} \neq 0 \).

Proof. From Corollary 1, for a given \(\hat{x} \),

\[
g'(\hat{x};d) = \max_{\Delta x \in \mathcal{U}^*(\hat{x})} f'(\hat{x} + \Delta x; d)
\]

\[
= \max_{\Delta x \in \mathcal{U}^*(\hat{x})} d^t \nabla_x f(x)|_{x = \hat{x} + \Delta x^*}
\]

\[
= \max_{\Delta x \in \mathcal{U}^*(\hat{x})} k d^t \Delta x^*.
\]

The last equality follows from Proposition 3. \(k \geq 0 \), but may be different for each \(\Delta x^* \). Therefore, for \(d \) to be a descent direction,

\[
\max_{\Delta x \in \mathcal{U}^*(\hat{x})} k d^t \Delta x^* < 0.
\]

Equation (B.1) is satisfied if and only if for all \(\Delta x^* \in \mathcal{U}^*(\hat{x}) \),

\[
d^t \Delta x^* < 0,
\]

\[
\nabla_x f(x)|_{x = \hat{x} + \Delta x} \neq 0 \quad \text{for} \quad k \neq 0. \quad \square
\]

Appendix C: Proof of Theorem 2

Proposition 4. Let \(\mathcal{G} := \{ \Delta x_1, \ldots, \Delta x_n \} \) and let \((d^*, \beta^*)\) be the optimal solution to a feasible SOCP

\[
\min_{d, \beta} \quad \beta
\]

\[
\text{s.t.} \quad \|d\|_2 \leq 1,
\]

\[
d^t \Delta x_i \leq \beta \quad \forall \Delta x_i \in \mathcal{G},
\]

\[
\beta \leq -\epsilon,
\]

where \(\epsilon \) is a small positive scalar. Then, \(-d^* \) lies in \(\text{conv} \mathcal{G} \).

Proof. We show that if \(-d^* \not\in \text{conv} \mathcal{G} \), \(-d^* \) is not the optimal solution to the SOCP because a better solution can be found. Note that for \((d^*, \beta^*)\) to be an optimal solution, \(\|d^*\|_2 = 1\), \(\beta^* < 0\), and \(d^* \Delta x_i < 0 \quad \forall \Delta x_i \in \mathcal{G} \).

Assume, for contradiction, that \(-d^* \not\in \text{conv} \mathcal{G} \). By the separating hyperplane theorem, there exists a \(c \) such that \(c^t \Delta x_i \geq 0 \quad \forall \Delta x_i \in \mathcal{G} \), and \(c^t (-d^*) < 0 \). Without any loss of generality, let \(|c| = \|d^*\| = 1 \) and let \(c^t d^* = \mu \). Note that \(0 < \mu < 1 \), strictly less than 1 because \(|c| = |d^*| = 1 \) and \(c \neq d^* \). The two vectors cannot be the same because \(c^t \Delta x_i > 0 \) while \(d^t \Delta x_i < 0 \).

Given such a vector \(c \), we can find a solution better than \(d^* \) for the SOCP, which is a contradiction. Consider the vector \(q = (\lambda d^* - c) / \|\lambda d^* - c\|_2 \). \(\|q\|_2 = 1 \), and for every \(\Delta x_i \in \mathcal{G} \), we have

\[
q^t \Delta x_i = \frac{\lambda d^* \Delta x_i - c \Delta x_i}{\|\lambda d^* - c\|_2}
\]

\[
= \frac{\lambda d^* \Delta x_i - c \Delta x_i}{\lambda + 1 - 2\mu}
\]

\[
\leq \frac{\lambda \beta^* - c \Delta x_i}{\lambda + 1 - 2\mu} \quad \text{because} \quad d^t \Delta x_i \leq \beta^*
\]

\[
\leq \frac{\lambda \beta^*}{\lambda + 1 - 2\mu} \quad \text{because} \quad c^t \Delta x_i \geq 0.
\]

We can ensure \(\lambda / (\lambda + 1 - 2\mu) < 1 \) by choosing \(\lambda \) such that

\[
\left\{ \begin{array}{ll}
\frac{1}{2\mu} < \lambda & \text{if} \quad 0 < \mu \leq \frac{1}{2}, \\
\frac{1}{2\mu} < \lambda < \frac{1}{2\mu - 1} & \text{if} \quad \frac{1}{2} < \mu < 1.
\end{array} \right.
\]

Therefore, \(q^t \Delta x_i < \beta^* \). Let \(\tilde{\beta} = \max q^t \Delta x_i \), so \(\tilde{\beta} < \beta^* \). We have arrived at a contradiction because \((q, \tilde{\beta}) \) is a feasible solution in the SOCP; and it is strictly better than \((d^*, \beta^*) \) because \(\beta < \beta^* \). \(\square \)

Given Proposition 4, we prove the convergence result:

Theorem 2. Suppose that \(f(x) \) is continuously differentiable and convex with a bounded set of minimum points. Then, when the step size \(t^k \) are chosen such that \(t^k \to 0 \) as \(k \to \infty \), and \(\sum_{k=1}^\infty t^k = \infty \), Algorithm 1 converges to the global optimum of the robust optimization problem (4).

Proof. We show that applying the algorithm on the robust optimization problem (4) is equivalent to applying a subgradient optimization algorithm on a convex problem.

From Corollary 1(b), problem (4) is a convex problem with subgradients if \(f(x) \) is convex. Next, \(-d^* \) is a subgradient at every iteration because:

\(-d^* \) lies in the convex hull spanned by the vectors \(\Delta x^* \in \mathcal{U}^*(x^k) \) (see Proposition 4), and

\(-d^* \) this convex hull is the subdifferential of \(g(x) \) at \(x^k \) (see Corollary 1(b)).

Because a subgradient step is taken at every iteration, the algorithm is equivalent to the following subgradient optimization algorithm:

Step 0. Initialization: Let \(x^0 \) be an arbitrary decision vector, set \(k = 1 \).

Step 1. Find subgradient \(s^k \) of \(x^k \). Terminate if no such subgradient exists.

Step 2. Set \(x^{k+1} := x^k - t^k s^k \).

Step 3. Set \(k := k + 1 \). Go to Step 1.

From Theorem 31 in Shor (1998), this subgradient algorithm converges to the global minimum of the convex problem under the step-size rules: \(t^k > 0 \), \(t^k \to 0 \) as \(k \to 0 \), and \(\sum_{k=1}^\infty t^k = \infty \). The proof is now complete. \(\square \)
Acknowledgments

The authors thank D. Healy and A. Levi for encouragement and fruitful discussions. They also acknowledge C. Wang, R. Mancera, and P. Seliger for providing the initial structure of the numerical implementation used in the electromagnetic scattering design problem. This work was supported by DARPA-N666001-05-1-6030.

References

